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We will refer to the ordinary linear programining prohlem

maximize z o= cox )
Adx =b,a >0

as problem 1. Tu (1) b is an integer m-vector, ¢ is an m - n veclor, and 4 is an
m X (m 4+ n) infeger matrix. =z is an m 4+ n vector, all of whese components are
required to be nonnegative.  We assume that 4 is of the form (4’, 7} with 7 an
m X midentity matrix, so that in (1) Ax = bis equivalent to the m inequalities in n
variables 4% < b We will say that z is feasible if it satisfies the equality and non-
negativity conditions of (1) and optimal if it also maximizes.

A problem closcly related to 1 is the integer programming problem P2 which is
P1 with the added coudition that the components of « be integers. Because of the
comparative ease with which Pl is solved! and the comparative difficulty of P2,% 3
it is natural to consider getting from the solution of £1 1o the solution to P2 by
some sort of & “rounding” process through which the noninteger components of the z
selving F1 are rounded either up or down te produce a solution to P2 This
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procedure seoms particularly plausible when the eomponents x; of 2 are reasonably
Jarge mnbers. However, 1618 eastly shown Ty exaunples that a nearest-neighbor
rotnding proeess eannet generally produce the optimal selation to P2, These
examples are neither pathological nor unconvnon: it s simply not the case that the
optimal solution can be obiained by simple ronnding fo seme vecfor 2" with ', —
£ 1, even il the rounding 1= followed by some sort of optimization on the residual
problem and evenif the b and & of (1) beeore arbitrardy large.

Nevertheless, there s a elose connection hetween the optimal solutions to T and
P2 for a wide range of right-hand sides & We firsl give some theorems on this
conncelion and then an algorithm which for these h obiaing the optimal solution of
£22 from the oplimal solution 1o 1

IF s s basis, e, an o Xom nonsingular subimatriz of A, we will assume that A

has hoen rearranged and partitioned into matvices B asd & with 4 = (BN}
We will also partition & = (o, oyd and o = (e, ex). The columms of A will be
referred to as e, o= {an 0 wn). We confine ourselves to right-hand side

veetors bin that part of pespace for whieh (1) i solvable. T1 B s the optimal basis
for P71 with rvight-hand side £, then 1t s also the aptimal basis for all &7 sueh that
Both” = 00 These b form a eone i s-space. and o faet all solvable m-space is
partitioned oo sueh cones K7 On removing from K% all points within a distance
d of its boundary, we have the reduced cone K*(d; With 1his notation we can
now slate Theorem 1.

Turonrey 1o Led b= max Jay L7 o= om b L e bon 1= det B and #2,(h)
he the value of the solnifon fo Pio Then <f be XTI — 13}, the value (b)) of the
seludione fo 12 08 given by

(b) = by + 0, )
aredd an apfimal solution vector 18 given by
a(b) = Leall), axlb)) = (B0 — Ny®d)), y"(h)), (3)

iwhare bath Hie sealar funetion (D) and the neveetor function () are m-periodie, i.e.,
(b A o) = BBy L and ¥ b w) s g8y, e 1, .

The periodicity means that the values of ¢®(b) and »2(0) depond only on the
position of b relative to the tiice £5 of points generated by integer combinations of

a1, ..., e This is equivalent 1o saying thal @7 is a funelion on the factor
madnte W7} W{R) wherve A{7} is the module of all ntoger points in m-space and
A(B) the module of lnteger combinationsof the ey, 7 = 1, ..., »

Although (2) and (3} have just the form one would expect i rounding were
possible, the integer sehution x(b) ig generally not a continuation of a rounded
nearest-neighbor solution. 1l s insfead a confinuation from a polnt p = b —
Ny#(by whichtson £5 A measure of the distance from p to b is given by Theorem
2

Tuegorms 2. I beKPHD 1)), then the oplimed solution veclor 2(b) has the
property ’
i=1?iz\'{~rz %;_il
2oow= o S D~ L
foem el |

We next discuss the arithmetic work involved in actuaily obtaining () and
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yHL). The calenlation may be broken inie two parts, of which the first is o
standard caleulation.

The factor module )/ () is a finite addilive group having 1) elements,
By the methods of references 4 or 5 we ealeulate W (1) /A7(BY as the direet sum of
eyclie groups of known orders.  The arithmetic work involved is bounded by
2m(m® b dngloga 2. Ov) alternatively, given /2% as a starting point, the standard
forme of AI({}/3 (B} can be oblained in at wost 2r(m® 4 2m)iog.D) arithmetic
steps, where v << omets the rank of AF(N /M (). the faclor group is cyclie, ris 1.

This caleulation also provides explicitly 8 means of mapping integer meveetors
onto corresponding clements of M3 /30(B). 10 we eall this mapping f, then p = fp
can be obtained for any integer ne-veclor p by at most w? -4 2w arithmetic st Cps.

Binee both ¢"(b) and y"(b) are ne-periodic, one can obtain, by periodicity, values
(D) and 20 for all b i they are known for one period.

Tueorky 3. There are I} distinel b values in one period. 17 MY /MR has been
pul in standard forne and the growp elements &; = fe, obiained for © = m + 1, .,
m o+, then the values of @by can be compuied for oll b én one period in less than Tnl)
elementary arithwietic steps. The values of y*(0) for o pariievdar b can be compuded in
nonore steps or the valucs for all b in one period innd) more sieps.

The arvithnwetie steps referred o here are operations such as the addition and sub-
traction of real numbers, comparison of real munbers, or the addition and sub-
traction of eloments of A7 /A7(B). We now turn 1e the proofs of these Lheorems.

In reference 20t was pointed out that M (7)/37(B) is isomorphic to the group F
generated by the rows of the matriv B4 with the entries being replaced by the
corresponding enfries moduio 1. These “fractional rows” then provided the basie
wedqualities for the methods of reference 2 and, inoa fess evident way, for reference 2.
As was remarked v reference 2, similar reasoning shows that 37(/)/47(B) is also
isomorphie fo the group generated by the cehuuns of B804 with coeffeionts being
treated the same way, Lo, redoced Lo proper fractions. As B4 is the simplex
tableau provided by the simplex method in solving (1), each ecohunn has associated
with it & relative cost factor.  This representation suggests she following problem
involving maximization over 3 (1) /3 (1),

£t

Max 2. %yl
i

HEE)
o Bl = by > 0 and infeger, -
[T

Here &, and b are the elements of W (D /1 (B) carresponding to the veclors a, and b,
and ¢¥;1s the relstive cost ¢¥; = ¢; — ¢l ~ta,

1t is & fundamental property of linear programming that all ¢*, associated with an
optimal basis arc <0; so the maximum in (4) does exist for optimal bases {though
not for other bases),

Since the &, 3 (1) /37 (1), a group with I clements, D, = &; so for a minimal
solution to (4} it is only necessary o consider y; salisfving 0 < ¥y < D We will
indicate later how (4) can, in faet, be solved Tor all §in a tota) of 7ab elementary
steps. '

If b is an integer m-veetor, define (B as the value of the solution of (4) with & =
fb,  This 1s the ¢® of Theovem 1. .
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One of the properties of pisimmediate.  Clearly, (0 -k o) = ob),d =1, ... .

Also (b} - epli 10 2 w(b). Forif («'p, #y) isafeasible integer solution to (1),
then the corrosponding cost ela’y, 2'0) = cp’n + epn’s can be exprossed in Lerms
of the 'y only by using the relation

Brip 4 Naly = b, {7)
whieh vields
cle y, 20 n) = el A Lo - 0n BB IN Y

rf2 W08 21(h), so

2_: . C*fljf. ({‘])

Formn el

el po ) = nlb)y -

Applying the homomorphism [ (o (5), B disappears and we got

zo o’y s a feasible solution to (4}, Heneo

T fn
S cral < elh);
¥=aed 1

so from (6, e(0r, @'5) < 200) - B, and sinee this holds for all sueh (a"n, 70,

2 < () + o). '8
Now Jet us consider the y that solves (4). Vor thisy
E_: C*f-}- mly = ﬁf‘([ﬁ
i
We oxtend this to a solution o (3) by choosing 7 = B-i(b — Nyi. Bince g

salves (4), {b —~ Nyjefy, s0 2p will be integral, 12538 also nonnegative, {rg, )
solves (1) and, in fact, is the optimal integer soluiion since its cost, hy {(6),is () +
w(l), which, by (7), establishes optimality.
T'o establish conditions for the nonnegativity of 1y we need the following lemma.
Lamasa,  There is an optimal sobuiton (o (4) with

{e=q

Z e =D 1.
i
Proof: 1 the y,are the componentis of that optimal solution having Sy, minimai,
form any sequence of the &, in which each &, appears exactly y, times.  Then
form the partinl sum S, of the first p clements of the sequence. We inelude 5, = 4.
If the sequence has more than 7 — 1 clements, there are more than 1) Spr 50 there
must bea pand p’, p < p’forwhich S, = S, The elements, between p and ' the
sequence total 4 and can be deleted.  The remaining clements form a new solution
which contradicts either optimality or minimal total Yy,
A related argument can be used Lo prove the following which, though not used in
the proofs of Theorems 1, 2, or 3, bears on the multiplicity of solutions 1o integer
programs.
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¢

Tusones L T (g 1) = D = 1 then the sofution o (4) 48 nof untigne,

T

Returning to the proof, 1t Tollows frova the lemma that g <y — 1)l Hence,
if BB — D), b — Ny owill be in K2 and g0y will be nonnegative. This
establishes Fheorem 1

Theorem 2 now follows at ouee from the lenia.

To establish Theorem 3, we now furn {o the actual computation of . Guided by

dvnamie progranming,® we define @ (), HAT(/AH{) as the solution (o
A Prog

max p, ol

ﬁ;‘;m?l’f = 1’.)

We have recursively
e B = man fe (P = Fon) b i w1 (8)
Lot us assumoe thal e () is known farall ped7 (07471, Then we can compute
recursively, stariing with ¢ (8] = 0,
@l@amy = max fedo) b %o, voalom)]

S U BT T NN ) S

e{Fd ) = Max e (rd@ i —
&, is of erder D), we will ebtain all values ¢ (F). I &, is of some order o which
divides 22 then d, = o, and after d stops we return to 6. One then chooses some p
not yvel reached v the endendation (the standard form of ihe group is needed here),

and setling ¢'o(py = @1 (B) computes o () -4 r&o ) = max {cp’x(f} A+ B
Form) T e P+ rag ,,,){— o 1, de Alter d steps, dagen = 6, 80 we ob-
!

fain a new vahioe for ¢ (A and then continue obinining new values lor o/ o(f b 78,4
the seeond time around.  As soon asone of these now values agrees with the old, the
caleulation is stopped. 10 is not hard (o show that: (4} the ealeulation will stop
after g sleps d < g <0 2d; (37) the @' J{p + rag.) values are the correct values
ool b T, This procedure is vepeated for 1374 starting points § to get values
e Y lor all pd7 (1) /83

If A7 < min o, wo can start with ¢lp) = A for all p. Then repeating the

1
pleniation leads o the ealeulation of ¢, (5 for all pin at most 2nl} elemeniary
recursions cach involving adding two group elements, looking up two valies, adding
two real nmbers, and making one ecompare. To obtain the oplimal solution with
the smallest Yy one simply reeords with ecach ¢, (0, when eomputed, the 1otal
-
TPy = 3oyof they, of that solulion. Clearly, T(F) = T, (P, il the second tern

L

gives the maximum in (8 and T (p) = T(p — Ao) -+ 1 otherwise. Incaseofatie
inthe maxinnunin (8), the term yielding the smadler 7.05) value should be chosen.
The solutions y; ave oblained by tracing back the recursion in the usual manner of
dynamic programming. By proper reeording, backiracking can be done even if the
@e-1 values sre disearded, onee the ¢, are known.  These backiracking operations
are virtually identical with those used in solving the knapsack problem,” and, in fact,
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work done with . C. Gilmare on knapsack problems strongly suggested the results
of this paper.

Finally, we note that the following sleps, (&) solve I obtaining ithe opitmal B,
(@) put M {7y /8 (B) into standard form and identify the &, (407) solve (4) obtaining
¥, (o) compute xx = B — Nyj, will yield an optimal soluiion (g, y) if 2y > 0.
It is not necessary for b Lo he in A7(1(D — 1)) to apply the procedure.  The prob-
lems for which the procedure provides a solution are those for which those in-
equalities binding the sclution of 1 alone determine the solution to P2.
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