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CHAPTER i6

PROPERTIES OF A CLASS OF INTEGER POLVHEDRA

R, E. GOMORY
TBM Watson Rescareh Center, Yorkiown Heights, New York, USA

1. Introduction

Very little is known at present about the polyhedra underlying integer
programming. This contrasts with the situation in linear programming
where there is a clear-cut connection between the data of the problem and
the structure of the feasible polyhedra. In linear programming, the feasible
polyhedron is given by a system of inequalities

Ax'<h  x'=0 (0

and cach of these inequalities corresponds to a face of the feasible poly-
hedron.® In integer programming, we are interested only in the integer
points & satislying (1). Of course, these points arc a discrete set; however,
from this discrefe set we can form a new polyhedron P by taking the convex
hull. His the vertices (all of them integer points) of this polyhedron that are
solutions to an integer programming maximization problem. However,
almost nothing is known about this polyhedron. There are a few exceptions.
In transportation and assignment probiems, P coincides with the feasibie
region of {1) and for matrices 4’ corresponding to graph covering problems
P has been characterized by Edmonds [1965]. There are a few other cases,
all quite special in nature, but in general, aimost nothing is known even
about such apparently simple questions as the number of faces of 2. In this
paper, we discuss a class of polyhedra related to P but whose properties are
much more accessible.

In general, in this paper we give thearems without preofs. Proofs and
more complete stalements can be found in Gomory [1969].

The polyhedra we describe are related to the underlying polyhedron P
and to the integer programming problem in three ways:

* A7 is assumed Lo be an integer malrix and b an integer vector.
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(13 Under certain circumstances, the polyhedra coincide with part of P,

(2) The polyhedra provide the complete solution of the asympiotic integer
programming problem;

(3} The laces of these new polyhedra provide what are, in some sense, best
possible cutling plancs for integer programming,

2. The polyhedra P¥

Let us consider the integer programming problem associated with the in-
equalitics (1) which can be writien in equality form as

Ax =D x =0

where the x now includes the slacks. Assocated with a vertex I of the linear
programming problem is a basis B and we can imagine that the matrix A4,
which we will take to be mx {m 1), has been partitioned into its basic and
nonbasic parts so that A=(B8, N). Sinularly, we will partition x into x, and
Xy with x=(xp, xy). The lincar programming cquations then are

By - Nxy=5 Xp=0,xy=0.
I we now drop the condition x, =0, we replace the feasible region of the

linear programming problem by a cone ¢ whose vertex is al ¥, and il we
ask for integer solutions to the system

Bxy+ Nxy=b, xy=0, (2)

we get a set of points whose convex hull we will call ¥ P¥ is the poly-
hedron we will investigate. As Fig. | indicates, P* can be closely related

Fig. 1. P* is shaded region.
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to part of P; however, we will sce that we can find out a good deal more
about P*,

The necessary and suflicient condition for an inicger point x to belong to
P#is that it should be integer and should satisfy (2); however, since there
is 0o non-negativity restriction on the components of xy, satisfying 2)
means merely that

Nxy = b mod(B).

That is to say, that the left- and right-hand sides can differ by any veclor
that is an integer combinalion of the columns of A. The columns of &V as well
as the right-hand side b can be replaced by elements that are equivalent to
these mod(B}. More precisely, we can replace the cquation by one involving
only elements of the factor group %= (F)/M (B). That is to say, the factor
group of all integer vectors modulo the Jattice formed from the columns of
B. Each column of & corresponds to some element of this group as docs b,*
Thus, if we number the components of x, from 1,..., 7 and call the group
clement, corresponding to the ith column of N, g, we can rewrite the
cquation as

i=n

Z giXi = go (3

i=1

where g is the group element corresponding to the right-hand side element
5% Any non-negative integer solution to (3) can be extended to an integer

@
k]
&
O
]
2
E:

Fig. 2.

* 1L is important to vealize that the corvresponding group element can be computed
explicitly by standard methods.
#% In this paper we assume go is not the zero clement 0 of %,
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solution to (2) and, heace, gives an integer point of 2%, Tt is only necessary
to take the x;, /=1, ..., 5, to be the xy in {2) and choose xp=8""(b— Nxy)
which will necessarily turn out to be integer. Since the vy alone determine
the polyhedron P¥, it is convenient Lo work with these variables alone and
to discuss 2* in terms of these coordinates {the noabasic variables). This is
essentially viewing ¥ from a coordinate system based on the vertex V. In
these coordinates £* is the convex hull of those first quadrant inieger points
that satisfy (3). P* in xy space is ilustrated in Fig. 2.

3, Faces of P*

We irst turn our aliention to the faces of 2%, In xy space, what is a face
of P*7 First of all, i is an inequality

I

DN = . 4)
i
We will denote such an inequality by (i, iy} 11 (=, x,) is to be a face, we
must have all points of P* lying on onc side of it. For this, it is clearly neces-
sary and sufficient that {(4) hold for all non-negative integer vectors safisfying
(3), the group cquation, In addition, there must be a set of # vectors x*, ..., &"
cach of which satisfies the group equation and for which Y mxi=mn,. The
set of vectors must be of rank il 7,0 and of rank a1 if xa=0. Any n
satisfying these conditions will be a face.
After these remarks, we can state a very simple theorem which connects
the laces of P* with ordinary linear programming.
Tueorew 11 The ineguality (v, ng) is & face of P* if and only il it is a
basic fcasible solution to the system ol incqualities

}, (IR {5)

formed from all x; that are solutions to the group equation (3).

In the system (5) we can, of course, take ng =1 with no loss of generality
and, in addition, consider only group cquation sclutions in which x, <%,
the order of the group %, Since [#] is known (o be |det B, this means (5)
becomes a finite list of inequalities. Thus, we have connected the faces of
the integer polyhedron P* with the basic feasible solutions (or vertices) of
an ordinary linear programming problem. In the above theorem, we have
assumed 7,>>0. It is not hard to prove Theorem 2.

Tueorem 20 The only possible faces (r, ng) of P¥ with ny=0 are the »
hyperplanes x;=0.
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We next turn to some of the propertics of the x; making up a face. Fach
is associated with a group element g, which is an clement of the fnite
Abelian group %. We have the following propertics for the 7,

THEOREM 3: 1f 21,50, then

(1) m=0all i;

(2) if g, +g =g, then w47, > n,

(3) 1 g;+g;=¢q, then 7+7;=m,.

These properties (not proved here), which connect the x, with the relations
between their corresponding group elements, prove to be especially signifi-
cant when dealing with the larger polyhedra introduced below,

Although Theorem | connects faces with basic feasible solution of systems
of simultancous equations, it was also shown in Gomory [1969] that there
arc always some faces of P* that can be computed by a recursive or dynamic
programming calculation. In this caleniation, the n; are compuied one al a
time with the value of each =; depending only on those already computed,
The significance of this fact in our present context is that it asserts that some
of the basic feasible sofutions of (5) always correspond to triangular bases,
a fact that is rather surprising, Recent work of Glaver [1969] using & dynamic
programming calculation has brought out the interesting fact that laces of
this type not exist, but are very numercus.

4. Alarger polyvhedron

In our group equation {3), cach variable x; was associated with a group
element g, In what foltows, we will make the unnccessary, but simplifying,
assumption that each x; is associated with a distinct element g, and that
none of the g, are 0, the zero of the group %. In the group equation (3), only
certain group elements appear; in fact, only those elements appear that
correspond to nonbasic columns of the matrix 4. We introduce a new
higher dimensional polyhedron P (%, g,} by means of the equation (6):

Pl — 1

‘Zl 9% = go (6)
i

where a variable has now been introduced for every non-zero group element.
The polyhedron P(%, g,) is defined (o be the convex hull of the non-
negative integer solutions to (0). This is a polyhedron in | %} — ! dimensional
space. An equivalent and handier notation is one in which each variable is
associated directly with the group element; that is to say, associale with
cach group clement g the integer variable ¢(g). The x; of our previous
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notation is f{g,;). In this notation, equation (6) becomes

2 gi{g)= ga 0
gew’
where %7 stands for the set of all group elements excluding 0 and our old
cguation {3) becomes
2, gtg) = do
ge .t
where. /" isthe set of group elements corresponding to the non-basic columns,

We note that while 7% depended on @, g, and 47, the polyhedron P (%, g,)
is determined by % and g, alone, The relation between the two is given by
the lollowing theorem.

THEOREM 4 P¥=P(F, go)nk,.

Here, £, is that subspace of our [#|—1 dimensional space in which
t{g)==0 for all components /(g) with g¢.#", The meaning of the theorem is
that the various P* possible for fixed group % and right-hand side g, are
lower dimensional faces of the one polyhedron P{%, g,).

This refationship has consequences which relate the faces and the vertices
of P, go) with those of any P*. We will now use the notation (n, 7,) to
stand for a face of P (%, g,); that is to say, the {x, #y) are the coefficients in
the inequalily

2, wlg)i(g)=m
gaw”
which viclds a face. A consequence of Theorem 4 is that if (z', #5) is a com-
plete list of the faces of P{%, gy), then the inequalitics
¥ w(9) ()=
gE.t
contain among them all the faces of P* (together with some superfluous
inegualities),

Simitarly, the vertices of £% can be found even more simply from the
vertices of P{%, g,).

Qune further fact about the P (%, go) is quiic important.

Frrorem 50 H (&, 7,) is a face of P (%, go) with components a(g), and
¢ @—% is any automorphism of 7, then (%, n,) with components 7{g)=
w{p T g} is a face of P(#, ${go)).

This means that two polyhedra P (¥, g,) and P (%, g4} are identical,
except for a renumbering of coordinales, as long as ¢, and gq are in the
same automorphism class, i.e., as long as there is an automorphism ¢ (rom
¢o 10 gg. Ht means that there is essentiafly only one pelyhedron for cach
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automorphism class of each Abclian group % for example, there is only
one polyhedron for each cyclic group of prime order,

The (7, g4) clearly have many symmetries lacking in the earlier %, This
is reflected in the following theorem,

THEOREM 6: {7, y), 7y >0, i a face of the polyhedron P{%, ¢o), go#0,
if and only if it is a basic feasible solution to the system of equations and
inequalities:

Tf(go) = Ty

n{g) b nlgo—g)=ns e g # gq 4
! . [P (8}
alg)+r(g)z=n(g+4g") g.g'e¥
7y =0 ge¥’.
T'he necessity of these conditions on the #; appeared carlier in conncction

with properties of the faces of P*.

The equations and inequalities of this theorem can casily be written down
explicitly. There will be roughly 1{%] variables if the equalitics are used
to eliminate and there are about § %)% incqualities aside from the non-
negativity conditions. These equations have been used to compule the
P (%, go) explicitly for all [%[=13. The faces, verlices, and incidence
matrices of the P (%, g,) are given in Gomory [1969] for [#< 1} and the
two distinct polyhedra associated with the cyclic group of order 9, (P (%, (8))
and P (%, (6)) are given in Table 1.

5. The graph H(¥, =)

We will next see that it is possible Lo create some (but by no means ally of
the faces for any group polvhedron very easily and rapidly. To see this we
introduce the graph H (%, ). This graph consists of

(i) & node for cach group element;

(i) a directed arc of fength n(f) from node g to node g-+/4 for cach g

and fie &,
En terms of this graph, we can sec that any path fromnode 0 to node g, in ihe
graph yields a solution 1o (7) and any solution to {7) gives several distinct
paths from node 0 to node g, the different paths being formed by taking
the variables in different orders. Now consider a set of arc lengths ={/), If
mg 15 the length of the shortest path from: 0 10 gq in A, then the inequality

Y wlg)t{a)zm,

geawt

must hold for all #{g) that represent paths from G to g, and, hence, for alf
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sotutions to (7). The problem of finding a face for P (%, g4) is equivalent to
the problem of finding a set of arc lengths & such that there is a multiple tie
among shortest paths to node gg; in fact, the tiec should be sufficiently
multiple that the shortest paths form a maximal linearly independent set of
vectors /(g).

We will give a staple construction that does this and thus produce a lace,
but this is by no means the only such construction,

Let us consider a cyclic group @, Let g, =myg, where g, is the gencrator.
Then part of the corresponding graph i is shown in Fig. 3,

/_'_Huww_h ‘«-\.M\ 1/ €D}
" I
N \
Epemss g G e it ¥ I D e O

o
0 G 2g g B-21g; (D-t)g,

Let D=1%|, the order of the group. In H we can form D1 independent
paths 7, by using the group element pg, once and then completing the path
to g, by iterating g, i p=<tm. or iterating —g, = (D1} g, il p>m. This
set of paths is clearly independent. Now if we set n,(pg,)=pin, p<im,
all the T, p<tm have a total length 1. To achieve the same result for (he
remaining paths, we set o, (pg)=(D— (D), Tor p>m. Now il is
casily seen that this choice of = provides a lace.

Actually, a number of faces can be produced this way for a fixed right-
hand sidc clement gq. 1t is only necessary to choose a different gg from the
same auwlomorphism class, carry out the construction, and then do an auto-
morphism carrying gq Into gy. 1t can be shown that disiinet laces will result
from any distinct gg and g, unless gg= - ga.

This consiruction shows the possibility of making faces for cyclic groups
essentiaily by fermula. The next theoremn has as a consequence the fact that
simple faces are also avaifable for Abelian groups that are not cyclic,

TuroreM 7: Let W be a homomorphism of % onto 47 with kernel 2 and
with go¢ 4" Then if {7, ng} is a face of P {7, rgy), (r, 7y) is a face of
P, a6) wl}m a(g) is given by n(gi=nr"(g). (We take =’ (0)=0;
alg)=0, ge.u".)

For instance, if @ is the direct sum of cyclic groups @, then go ={g9, Jon.
go,...) where the g, are elements in the %, Choose any / for which g{);&{).
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Call this p. We can then take the 2 of the theorem to be 7, and the mapping
i s simply ¥{g*. g7, ..., g',..)=g"; i.e., map cach group clement onto its
pth component. Tt is readily seen that all the conditions of the theorem are
fulfilled and thus faces of the cyclic group #7 carry up into faces of @,

6. Characters and incqualities

Of course, all the inequalities produced by these various methods are
valid inequalities lor the original integer programming problem, because
they are faces for P*, a polyhedron that includes the original P: however,
to oblain any of them, we have to recognize which group element ¢ corre-
sponds to which non-basic column of the lincar programming probiem.
However, in the carlier work (Gomory {19631} this identification was not
necessary, We mercly used the fractional parts appearing in the transformed
maltrix to form “cutiing planes”™. It is reasonable to ask whether some
similar procedure can be used here and the answer is that it can.

To see this, construct from the matrix A, whose columns we will designate
by €y the transformed matrix 4% =B""A=(1, B7'N). Each C; has associ-
ated with it some group clement g;e% =M (7)/M (8): however, we have
not worked out what the group % is or which greup element in % g is We
next define a mapping ¥’ from the columns C; nto the cyclic group ol order
De=jdet Bl =91 as lollows:

W(C) = F(a]).

Here, 7 (x) stands for the fractional part of x; i.e., x—{x] and ai’; is the
entry in the fth row and jth columun of A%, Since D= |det B, the numbers af:j
are atl of the form n/D where 1 is an integer; hence, F{af y=miD where m
is an integer less than D. However, the fractions m/D with addition modulo 1
form the eyclic group of order 2. Thus, b can be considered as mapping <
onto an clement of this cyclic group %, ' can also be thought of as mapping
the correspending (unknown) group element g, onto an clement of %,
Regarded as a mapping from % into @, the mapping ¥ is readily shown to
be a character; L., /(g ;) (g) =y (g,+ g,). 1L Follows from this property
that, if (r, 7y} is a face of P (%), g,),
Pty

Yoo C)) x = w () Y

il

is an inequality that must be satisfied by any integer point in P* and, hence,
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by any integer in . In (9) y/(h) is the group element correspoading to the
fractional part of the ith component of B 5,

Different rows / give different mappings ' and, hence, different inequali-
ties. Different incqualitics also result from using different faces {(m, my) of the
corresponding cyclic group. 1t follows from what is known about characters
that ali possibic mappings of this sort are obtained by using integer com-
binations of the row mappings ' and that, in fact, this collection of mappings
forms a group somorphic to % isell, The “fraciional inequalities™ of
Gomory [1963] can be shown to be a special case of this, T hey are obtained

by using all characters i together with one fixed face of P (%, g

7. Asymptotic integer progranuning

It is reasonable to suppose that if the numbers in the right-kand side
vector b become large, the problem of solving an integer programming
problem such as max ¢-x

Ax =5 xz=0 x integer (10}

should reduce {o the problem of masimizing that same objective function
over the polybedron P* which comes from the vertex ¥ that maximizes the
ordmary linear program. Looking at the probiem in its inequality form

A'x" < h x'=0

we can see that as & gets large, the faces tend to move away frony each other
and after a while the only inequalities that seem relevant to the vertex ¥,
or to any integer points in its neighborhoad are the faces meeting at ¥, The
other laces become quite distant.

There is a theorem which substantiafes this intuitive conjecture, but in
order to understand its slatement, some preliminarics are needed. Let s
consider the right-hand sides 4 as points in m-dimensional space. The set of
such points Tor which Bis a leasible basis form the cone Ky made up of the
points y for which 7' 0. In fact, for a single objective function C, b space
splits up into cones associated with the various optimal hases. If the right-
hand side b lies anywhere in the cone K, Bis the o ptimal basis. Let us define
Ky(7) as the set of points inside K, at a distance at least / from the frontier of
Ky, This is & sort of inner cone.

In what follows, B is the optimal basis for the linear programming problem
max ¢+, Ax=b, x>0, and D=|det 8] and /,_ is the length of the longest
veclor in NV, the non-basic part of A4,
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THeoREM 81 I be Kyl (D—1)}, then there is an optimal integer solution
te (10) of the form

N o= (xg xy) = (BT — Nxi(h), x3(0), (11)
where xx(b}is a solution to the group minimization problem

min Z Flgyilg)
FE.
stibject 1o Z;;e.i" g 1(g)=gq. In this formula, the ¢® are the relative prices of
linear programming; i.c., il ¢= (Cy, Cy), then the vector of the ¢*(7) is the
veclor {Cy— CpB7'N).

This theorem has several consequences, First, we nofe that xi{h} is a
periodic function of the right-hand side b; that is to say, that x5(h)=
X%(h+ 8,) where B, is any column of the matrix 8. This is because x5 solves
the group cquation and the group equation is unaffected by changes in B
that are equivalent to 0 mod (B). Thus, (11} consists of two parl% the linear
programming solution (B~ 'h, 0)and acorrection (— BT Nx{D), x5 (5)) which
is periodic. Inside the cone Ky(/.,), the relation between the miegel and
non-inleger solutions is a periodic one with x%(#) obtained by minimizing
over the group eguation.” Since that part of K, not in Ky{{.) 15 a strip of
fixed width, almost any right-hand side b {except lor a set of right-hand
sides £ of tower dimension) multiplied by a large enough scalar, will eventu-
ally enter the tnner cone K (/.. ), and henee, enter the domain of applicability
of the theorem.

For any b, we can find the optimal 5. & is, of course, in K. If it is also in
Kp{lwd» then we know from the theorem that the optimization of any ¢
subject to {10) gives the same result as its optimization over the corre-
sponding *, Thus, those vertices of the integer polyhedra associated with
{(10) which maximizc an objective function ¢ maximized at V are the same
as the vertices of P*. Thus, P¥ coincides with a portion of the integer

polyhedron belonging to (10).

8. Conclusions

This paper has indicated that there is a highly structured class of polyhedra
closely refated to integer programming problems. Most of the properties of
these polyhedra remain to be discovered and exploited, This looks like a
promising arca lor further research.

* This minimization is the problem of finding the shoriest path from 0 to go in #7(7, ¢*).
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