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The Group Problems and
Subadditive Functions

RALPHE. GOMORY AND ELLIS L. JOIINSON

1. Introduction

A, Inequalities based on the initeger nature of some or
all of the variables are useful in almost any algorithm for
integer programming. They can furnish cut-offs for branch
and bound or truncated enumeration methods, or cutting plane
methods. In this paper we describe methods for producing ¢
such inegualities.

We will attempt to outline our general approach,
taking the pure integer case first,
Consider a pure integer problem

(1) Ax=h, x>0

in which A is an mX(m+n) matrix, x is an integer m+n
vector, and b an m-vector. If we consider a basis B {in
most applications this will be an optimal basgis) we can write
(1) as

BXB*E' NXN:bX >0, x.2>20

B N

where Xp is the m-vector of basic variables and xy the
non-hbasic n-vector, The usual transformed matrix [1, pages
75-80] corresponds to the equations
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xBJfBHleN::B—lb,X >0, x>0, or

(2) y4+ N'z=Db', y>0, z>0.
. s
Taking the i row we have

I=n
Wl
3 nl - - bl
vi Li'm T
j=1

We can form a new but related equation by reducing
all ceefficienis modulo 1 and replacing the equality by
equivalence modulo 1 . This yields

j=n

(3) %1 Fn )z = (b)) (mod 1) .

Now any integer vector (y,z) satisfying (2) automatically
satisfies (3) , so that any inequality
j=n
N .
_Lﬂjzjiwo’ or w-. z
i=l
which is satisfied by all solutions z 10 (3) ig also satisfied
by all selutions to (2) , i.e.

w

0

v

(0,7) « (y,2) 27
holds for any integer vector (y,z) satisfving (2} .

The approach of this paper is to develop inequalities
valid for all soluticons to (2) by obtaining those valid for all
solutions to the simpler equations like {(3)

More generally, we can proceed as follows, let
be a linear mapping sending the points of m-space into some
other topclogical group § with addition, If we have an
equation {like {2))

4 V Cx. = C
(4) ZJ i ¢

in which the C, and Cp are m vectors, we can obtain a
new equation by using the mapping & to obtain, by linearity,
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(5) ij(cjxj) = WG]

which is an equation involving a set of group elements in S
the elements \U(C ®j). For integer X5, d;(C WG, )x] s
equivalent group equatlons are

-
(6) L}. T )%, = U(Cp) .

In the discussion leading up to eguation (3) the C. were the
columng of the matrix (I, N") and & was the mapping that
sends an m vector into the fractional part of its ith coordi-
nate. The group § was the unit interval with addition mod-
ulo 1. Equation (3) was the equation (6).

Again, if w.x > 7, holds for all integer x satisfy-
ing {5) or (&) it holds for integer x salisfving {(4) .

In this paper we study eguations such as (6) and
develop inequalities for their solutions which are then satis-
fied by the solutions to {4). Specificaily we study the case
where S is 1, the unit interval mod 1, and develop inequal-
ities for the equations:

(7} Z ut{u) = u
ue U

where U represents the gset U(C;) « T and #u) is a non-

negative integer. Equation {7}, which we refer to as the

problem (or eguation), P(U,uo}, is merely (6) rewritten in a

different notation.

Returning to equation {4) when some of the x, are
not resiricted to be integer, a linear mapping sti]& gives
another equation (%) satisfied by all solutions to {4). Thus,
any solution to (4} satisfies the equation

0

LJ. UG = pleg) .

Just as before, if any x; is required to be integer, then
u(C b )mq;(C])x Let I dencte the subset of j for which
xj 1s required to be 1ntegor and I be the j for which =x,
is only required to be non- negauvo Then, any solution td
(4) with xj integer for j ¢ J) satislies
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(8) 7 W, Y MO ) = (G )
je ]1 je IZ
When & is the same (fractional) map used to derive
(3), we rewrite (8) as

(9) 'L}J Hnt )z ) Fng 2)= (o) (mod 1).
je Il JcI
Consider 07 for j e 12 . I ni; = 0, then z; does not
raally enter in%‘.o the equation, If J * {} we can rescale
Z by letting
7 = fnij !Z; ; el

let I& ={je 1> n}j > G} and Ié = {j e Iz:nij <0}. Then

| 4 Lt U e
z}. = n”/J for i« I and zJ = n! J7j for ie jz . The
restriction z; > 0 is equivalent to zJ > 0. Hence, (9} be-

J
comes

goy ) Bng )z, + )J B(z1) = B(hy)  (mod 1),
ie ]l }C f 2
Since
by, Bz =8 2!) (mod 1)
je I je J
(10) can he 31mp]_1£1c—,d to
(1 2 gz, o F3z) - BT = WD) (mod 1)
JCI '
where
7l = 3 7!
- s
i Ilz J
Z = 3 7!
J‘%J]'" ’
2

160



THE GROUP PROBLEMS AND SUBADDITIVE FUNCTIONS

We can rewrite {11} in a form similar to (7) to obtain the prob-
lem we call P”‘ {U,u }

(12) 2wt 4 s s wsT) = vy
ue U

In this paper, we concentrate on the development of
valid inequalities for equations of the form (7) and (12).
These inequalities, satisfied by every solution to (7} or (12),
are immediately appliciable to the original problem (4). In
the case of an inequality

. n
13 A, Tz 4wy >1

(13) 2 K >

Jely
satisfied by every solution to (11), the inequality
{14} Zﬁ?!zl(ﬂn l}_, 1Tn > 1
J
jeld je E

is satlsfled by every solution to (10)j and hence to {4) .

2. Problem Definition

Let I be the group formed by the real numbers on the
interval [0,1} with addition modulo 1. Let U be a subset
of I andlet t be an integer-valued function on U such
that (i) t(u) 20 forall ue U, and (ii) t has a finite sup -
port; that is, t(u) >0 only for a finite subset U, of U.

The nota’cion and definitions above will be used
throughout so that © will always refer to a nen-negative inte -
ger valued function with finite support.

We say that the function t is a solution to the prob-
lem P(U,uy), for uge - {0}, if

(1) Z ut(u) = g -
ue U

Here, of course, addition and multiplication are taken mod-
uvle I, Let T(U,u ) denote the set of all such solutions +
to P(U, Uo)
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Correspondingly, the problem P‘f(U,uO} has solution
t' = (t,s%,57) satisfying

(2) ), ut(u) ¢ Hsh) - HsT) = u
ue U
where t is, as before, & non-negative integer valued func-
tion on U with a finite support, where s*, s~ are non-
negative real numbers, and where #x) denotes the element
of 1 given by taking the fractional part of a real number x.
Let Tf(U,uO) denote the set of solutions t' = {t,s7,57) to
PH(U,ug) .

It is also possible to define problems P'{'(U, uo} and
P_(U, uo) in which only sT or s” appear, and these prob-
lems are useful in scome situations. Their develepment paral-
lels that of PT(U,ug).

The notation ue I will mean that u is a member of
the group I so that arithmetic is always modulo 1. If we
want to consider u as a point on the real line with real
arithmetic, we will write fu | Thus, lu! and J{(x) are
mappings in cpposite directions between I and the reals,
And, in fact, F( Iulj = u but x and I‘&(x}l may differ by
an integer.

0

Definition ], Valid Inequalities, Tor any problem P(U, up),
we have so far defined the solution set T(U,up). A valid
inequality for the problem P(U, ug) is a real-valued function
T defined for all u e I such that

(3) mu) >0, alluel, and w(0) =0,

and

(4) ), muytw) 21, allt e T(U,u ).
Uell

For the problem PT(U, uy), 7= (m, w0, 77) is a valid
inequality for PJ:(U,uO) when # is a real-valued function
on I satisfying (3), and =%, 7~ are non-negative real num-
bers such that
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(5) Doty s e wsT >, allt e (v, ug) .
ue U

A valid inequality {w, »*, =7) for P*(I, ug) can be
used to give a valid inequality for P(U, ug) or PHU, ug) for
any subset U of . FPor example, Zw(u)t(u) >1 is clearly
true for any te T(U, ug) since that t can be extended to a
function t' belonging to T(I,u,} by letting t'(u) = 0 for
ue i-U, Thus, the problem PZ{I, ugp) acts as a master
problem as in [2] where the master problem is a group prob-
lem with all group elements present, This fact is the main
reason for studying the case U = I in such detail., How-
ever, the next two properiies of valid inequalities do not
necessarily carry over to subsets U and 1.

Definition 2, Minimal Valid Inequalities, A valid inequality
™ for P(U,uo) is a minimal valid inequality for P{(U,up) if
there is no other valid inequality p for P(U,uo) satisfying
p(U) < w(U) , where p(U) < w(U) is defined to mean plu) <
w(u) forall ue U and p{u) <w(u) for at least one ue¢ U .
A valid inequality w' for PH(U, ug) is a minimal valid in-
equality for PE(U,UG) satisfying p'(u) < w'{u} where

p'(u) < 7' (U} is defined to mean

4 + -

po=m , p £W

and
plu) <m{u), uve U,

with strict ineguality holding for at ieast one of the above
inegualities,

The minimal valid inequalities are important because
a valid inequality which is not minimal is implied by some
other valid ineguality. Notice that we have scaled the in-
equalities to have a right-hand side equal to one, and mini-
mality is always with respect to that scaling,

163



A, E. GOMORY AND E. L. JOHNSON

Definition 3. Extreme Valid Inegualities. A valid inequality
m for P{U, uo) is an extreme valid inequality for P{U, uo)
if © can not be written as 7 = 3p+ 40 for p#o  where
p, o are valid inegualities for P(U, uG)

A valid inequality w' = (’iT w7y for P‘(U uO) is
an extreme valid mequallty for Pt (U, uo} if w' cannot be
written as ¥ = $p+ o' for p' #¢' where p', ¢' are valid
inequalities for PL (U,u. ).

Theorem I.1 of [3] says that the extreme valid in -
egualities are also minimal. These inegualities are in some
sense "the best” possible since they cannct be derived from
any other valid inequalities,

Definition 4. Subadditive Valid Tnequalities. Avalidinegual-
ity w for P(U,up) is a gubadditive valid inequality for
P(U,ug) i

{6) wu) + w(v) > m{udv)

whenever all three of u,v, and uwtv are in U,
For a valid inequality =' for P'E{U, ug) to be sub-
additive, we require, in addition to (6),

(7) wlu) + wt lv~ul > w{v), whenever u,v, ¢ U, lui < !vf,
(8) m(u) + oW Iu--vl > w{v}, whenever u,v, ¢ U, lu[ s |vl .

Theorems I.1 and I, 2 of [3] prove the following se-
quence of inclugions: the set of valid inequalities include
ithe subadditive valid inequalities which include minimal
valid inegualities which include extreme valid inequalities,
The subadditive valid inequalities form a convex set con-
tained in the larger convex set of valid inequalities,

Theorem 1.3 of [3] says that the extreme points of the get

of subadditive valid inegualities include all the extreme
valid inequalities, Further, among the extreme subadditive
valid inequalities, those which are extreme valid ineqgualities
are the minimal ones. This fact allows us to actually find the
extreme valid inegualities for some problems,

164



THE GROUP PROBLEMS AND SUBADDITIVE FUNCTIONS

3. Subadditivity for Subgroups U,

The problems for which we can find extreme valid in-
equalities are P(U,uq) or P‘f(U,uO) where U is a non-
empty subgroup of I . We permit U = I and note that 0 is
always in U.

Definition 5, A function v defined on T is subadditive
on a subgroup U of T if

w(u) >0, uwe I, w0)=0, and
m{u) + w(v) > wluiv),u,v, ¢ U,

The function 7w is not assumed to be a valid inequality.
Theorem £, 5 of [3] establishes the close connection between
subadditive functions on U and subadditive valid ineqgual-
ities. That theorem assgerts that the subadditive valid in-
equalities for P(U,up) are precisely the subadditive func-
ticnhs 7 satisfying "(uo)i I, TFurthermore, if # is a sub-
additivg function on U and w(ug) >0 for some ugc U,
then 7" defined by

()

{T(uo}

(9) 5 (u) = , ucl,

is a valid inequality for P(U,u,.) .

The analogous theorem for P7 (U, ug) will now be
developed.
Definition 6. 7 = (w, ", 77) is an extended subadditive
function on a subgroup U of [ if © is subadditive on U ,
and if, in addition

(11) ol rwu), ue U,
(12) wul > ), ~ue UL

Theorem 1. 5B of [3] says that the subadditive valid inegual-
ities are precisely the extended subadditive functions which
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satisfy both:
,

(14) w{u) + Tr"fuwuol >1 whenever ue¢ U and jul< iuol,

(13) m(u} + Tr"E'IuO—uI >1 whenever ue U and |ul< iu{)

Although subadditivity of » on T ig not easily char-
acterized, a graphical representation can be given. If 7 is
drawn as a periodic function with period 1 as in figure 1, and
if we then shift the image of 7 by transferring the origin to
another point (u, #{u)}, as shown in figure 1 by dotting lines,
then subadditivity of T is eguivalent to the dotted line
staving above the sclid line. The reason is that the points
on the dotted line are of the form (u + v, w{u) + (v}).

Some examples of subadditive functions are shown
in figure 2. Figure 2{a} shows Gomory's fractional cut,
figure 2(b) shows Gomory's mixed integer cut, and figure
2(c) is a more complicated function,

When w is subadditive on I, then (=, 77, w7) is
an extended subadditive function on 1 if, and only if, =«
has a right derivative at ¢ and a left derivative at 1, and
wt is larger than or equal to the right derivative at 0 while
17 is larger than or equal to the absolute value of the left
derivative at 1. In figure 2(a), v has a right derivative
at 0 equal to 1, but v has no finite left derivative at 1.
Inboth figures 2(k) and (c), 7 has both left and right de-
rivatives at 0 and l, so ' v~ could be set to make
(w,7",m7) an extended subadditive function in those two
cases,

4, Minimality for Subgroups U .

Theorem 1.6 of [3] is as follows: If U is a subgroup
of T with u, ¢ U and if m is a valid inequality for
P{U, uo), then 7 is a minimal valid inequality if and only if

(15} w(u) + w(uo—u) =1, all ve U,
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(A4R) L
(ny

(AyLL+(n)u
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This condition imposes a peculiar symmeiry on w so that
w(u) for %uo <u <uy is determined by w(u) on [O,%uo],
for example. This symmeiry is illustrated in figure 3, One
way of picturing it is that w{u) and w{ug-u} must change
by equal amounts butl in opposite directions as u increases
from 0 oras u decreases from | .

[> -
5. I(Gn,uo), UO € Gn

Let Gn denote the subset

1 2 -l
Gnm {O’n’n"“’ n}

of T . The elements of Gn will be denoted g; = F(i/n).
Each set G, for n>1 is a subgroup of I. By virtue of
G being a subgroup, the results of 3 and 4 apply o
this section.

The results from 3 and 4 are specialized in
Theorem Il 2 of [3]: The extreme valid inequalities for
P(Gp,up),ug ¢ Gy, are the extreme points of the solutions
to

(16) rg) 20, m0) =0,
(17) mig )+ a,) 2 lg )
(18) Tr(uo) > ]

which satisfy the additional equations,
g, )+ m(uy-g) =1, g G

in particular, (4) implies w(uO) =1 since w(0)=20.

In [2], the extreme valid inequalities, or faces, are
given for all G,, n=1,...,1l. In addition, the faces are
given for non-cyclic, but still abelian, groups of order less
than 1. An example of the linear inegualities defining those
faces iz given below for n = 6 and Uy = gg :
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w(l) w(2) w{(3) w(4) m{5)
1 i -] =0
1 i ~1 =0
2 -1 >0
1 1 -1 > ()
1 1 -1 =0
2 -1 >0
1 1 1 > {
-1 2 |>o0
6. PG Lu), u e
= nt o 0

The condition (2) now becomes

gtglds ... 9, e, )t As') - F(s7) = Hy s
where g; = %(i/n) as before and where the t(gi) must be
non-negative integers and s%,s” must be non-negative real
values, We no longer confine uy to bein G,. Let L(uo)
and R(uo) denote, respectively, the points of G, immedi-
ately below and above ug - I Uy happens to be in G ,
then L(uo) = R(uo) = Uy

From Theorem II. 2B of [3] we know that the extreme
valid inequalities 7' for P'E(Gn,uﬂ), Up € I, are the exireme
points of the solutions to the system of linear equationg and
inequalities (16), (17}, and all of the following:

1 1
(19) = wlg), 9) = B0,
(20) w_;% > ﬁ(gn—l), gnml = F{(n-1)/n).
(21 w(Llu,)) + - ’uOHL(uO)f -1,
(22) M(R(ug)) + 7 ER(UO)-uOI =1,
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(23) for all 9, ¢« G_, ﬂ(gi) + TT(L(uo)—gi) TF(L(UG))

I

)-g,)

or TT(gi) + Tr(R(‘uo i

T(R{uy )}

In [3], the extreme valid inequalities for PT(G ,u )
are given for n=1,,.,,7 andall u,. . We give beiow the
inequ??lities used to generate these faces for n = 6 and

g =gt

a w1y w(2) w(3) w4) w(5) v

A | >0

1 1 -1 >0

1 1 -l >0

1 1 -1 >0

2 -1 >0

] 1 ] >0

-1 1 1 >0

-1 1 ] >0

-1 2 >0

-1 1 1 >0

—5 -1 1 >0
-1 T >0

L ) o
i T =1

In addition, condition (23) must be checked in order for

(w, ’IT-E-, w7} to represent an extreme valid inequality, In the
appendix of [3], the computation and condition (23) are dis-
cussed,
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7. Valid Inequalities for P(U,u )

0

We now connect the results about P(Gn,uo) with
the general problem P(U, uo). Here, U can be any subset
of the unit interval including the interval I itseif, Thecrem
L 1 of [3] says that valid inequalities can be obtained sim-
ply by connecting the points (g, 7(g,)) by straight line
segments. More precisely, if 7 ig a subadditive function
on Gn and if

(24)  w(u) = n{ju-L) {nRE)+ RO -uin(L)}, ve -G,

Then, w iz a subadditive function on I, and 7" defined
on I by

is a valid inequality for any P{U, uo}, U a subset of I,
provided W{uo) >0,

8. Valid Inegualities for PJ_‘:(U,uO}

From valid inequalities for P't(Gn,uO), a different
method for generating valid inequalities for P‘{_“(U,uo) is
avatlable., This method will be referred to as the two-slope
fill -in (fheorem IIL 3 [3]). Iet #' = {w, 77 w~) be an ex-
tended subadditive function on Gg. Define w(u) for u e
I-G by

(25) n(u) = min{m(L{)} + 7 Ju-Liu)]
TRy + 7 IR(u)-ul} .

Then, 7' is an extended subadditive function on I, and p'
defined by

ig a valid inequality for Pt(U,u provided w(u,) >0 .

o)
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Theorem II. 2B of [3] shows how to compute faces
for pt _(Gp,upg) and this theorem shows how to uge them to
generate valid inegualities for any U . Table 2 of [3] was
obtained using Theorem II, 2B , and we will frequently refer
to the two-slope fill-in of those faces,

The functions 7 generated by this two-slope fill-
in can also be used for P(U,uy} as well as pP* (U,ug). That
is, for a problem with neither s* nor s7, the 7 can be
used, ignoring 7t and -, to give a valid inequality for
U, uo), The functions © generated by the two-slope fill-
in have the advantage over the straight line fili-in that they
are generated for a particular Un 80 that Tr(u{)) will be
large and the resulting inequality stronger.

Example 1: Consider the integer linear program

XJ, >0, xj integer, j=1,2,3,4,5

EE 4 4. R —
xlxax2+x31x4!3x5 10
- 3 . .3 T =
3xl Jx24 2x3 Jx4:+ Jx5 5
BN X N + 2 = i .
Rph xR, 4R, 2X4 t ?:xc5 Z(min)

The optimum linear programming tableau is

I 1 1 4
gy 3Rt By = g
1 2 1 7
ad it R - 72—
2¥9X3+3X4%i3><5 5
L 2 ] .
9x3+13x4+%x = Z{min) ,
The optimum linear programming solution is Xl = 4 5 N = Z§—,
Ry =K, =X = 0, z= 73 . From the fn"st row of the Lableau,
using as the mapping : LII(A]X ) = S(a Xy, we obtain
7 2 1 4
5 x3‘.- 7%y + 3 x5 = (mod 1} .
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Thatis, U= {7/9,2/3,1/3}, uy =4/9 . The mapping used
in the introduction is simply this; that is, we get a problem
P{U,un) from every row of an optimum lincar programming
tableau for which the basic variable is integer constrained
but at a fractional value.

From Appendix 5 of [2], we find the following three
extreme valid inequalities among those for P(Gn,uo) s
n=2,3,6,

PGy, El_): ™0 =0, Wl(‘zl") =1
P(GB,%“) m,(0) =0, wz(é«);l, ﬁz(g):}%;
‘ﬂ'3(g'):‘l} w?(g—)_—%, ﬂ3(§_):% °

We ceould take any of the faces for cyelic groups from
Appendix 5 and use them in the following way. The linear
interpolation of extends Ty, T, 10 the interval T :

3
1
Zu, 0 <u <
- 2
ﬁ](u)x 1
B Z?u,5<u<l
1
3u, 0<u <z
- -3
TWEC s 5
'Z"—ZZu,5;<u<l
1
2u, 0 <u < =
1
3-4u, - <u <7
2
'rrg(u)_
5
I{Zu,—3~<ugg
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Our congruence problem hasg ug = 4/9, and so ?Tl(uo) = 8/9,
“z(uo} = 5/6, Tr3(u0) = 8/9 . Since U = {7/9, 2/3, 1/3}, the
valid inequalities from Ty Moy and 7, are of the form

7 2 i
ni(g)x {wi(g}x kﬁi(?’)x >
5 i f
ﬁi(uo) 3 Wi(uo) 4 TFi(UO) 5
for 1=1,2,3, and are given helow:
1 3
EX3 - ;gx4+ =x,. >l
3 6
— ,}_ — de vy > .
5F3 T gEgt s 2L
2] 3 3
Z g mw o >
8X3{ 8x4 f 4:><;5w]_
The 'fractional cutting plane' is, here,
Z‘X ke -Z——X ..’.—]—'-X s i or Z“X + _3_.X A E‘X >l
973 " 374 375 =g 473 27474752

That inequality is obtained from the subadditive function
on I given by m{(u} = u. The figure 4 illustrates the func-
tions m, My Ty Ty

I %
'??“| w,

| i i
0 /2 i 0 1/3 /2 2/3 s

Figure 4
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Fxample 2: Consider the same inleger program but without
the integrality restriction on Hp The first row of the opti-
mal linear programming tableau now gives the congruence:

7 2 toa

gxg + 3x4 1+ 8 = 3 (mod 1)
+ T2 4
where s = 35 - Thus, U_{Q,B}and uo_(}.

M
—
-
ey
O

From table 2 of the appendix of [3], for n
only extreme valid inequality has

+ 1 - 1

0" T T

0 0
Here, ug =4/9 so wt =9/4 and v =9/5. Another
extreme valid inequality, this time for n = 3 | is

TF(-;-)‘* —-1—- TT(-Z-)~ 1 ﬂ_—%—'_ 1 .n.—__ ()luolm'{
DT U T T T T s = -
0 0 0 4Fuol_6|uol
Since ug = 4/9 here,
o3 2, 3 9 . 45
TT(E,)"(‘,}:)T(S)"SJTT u:_ﬂﬂ—*l-().

The two-slope fill-in extends these two inequalities to
functicons m and T, oD the unit interval:

9 < ul<

4|u| ,G;Iu!g9
Wi(u):

za-luby, Felul <,
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(i, o<l
S L de sk
"2 %i— “{lul —%), 5 < fu| 5;7)"
i0-luh, S<lul <
Since U = { Z:, %—} , @& valid inequality is
wi(g{}x34 1?(%)}(4 por s+3_l , i=1,2, or
“i(czf)xs* "1(%)}{4 Py zli=lz.
Evaluating w. at %« and %_ gives the twoe valid inegualities
—i;xg + %xﬂl + :1_1><:5 >1, and
g—x?) + %qu + %XSZ 1.

Cther inegualities can be generated in the same way from
Table 2 of [3].

Example 3: Consider the integer program from Example 1,
but let us use the funciions wy, 7y from Example 2 to give
cutting planes for that pure integer program, Thig example
will provide a comparison on the coefficient of a variable
(here XS) which is an integer variable in one case and a
continuocus variable in anothcr

Now U = { s 3,_} as in bxample 1, and the valid
inequalities from il and v, given in Example 2 are:

2 3 3
FRE A e >1, and
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3 éx>i
4775 — 7

A
8X3 8x4 -
are smaller here than in

Notice that the coefficients for =
txample 2, illustrating the additional strength gained by the

used here.

integrality assumption on x_
Figure 5 shows ™ and ™,

1 ] i

4 27 g

9 3 9
Figure 5
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9. Rounding Methcods

This section will give some wavys to approximate
the answer to a given cyclic group troblem by a smaller group.
For any problem:

, + -
X, 20 and integer, s >0, 5 >0

fx 4+ s -5 = fO (mod 1)

form the points (f,,c.) in the plane. The rounding methods
are based on forming ‘a funclion below the poinis and with no
siope greater than ¥ nor less than -c~ . This function is
then lowered to one which is subadditive by sclving a smaller
cyclic group problem, The derived function does give awvalid
inequality for the original group problem, and the value of the
function at fy 1s & lower bound on the vaiue of the cost z
to satisfy the group problem,

When st {or £-) is not present in the prokiem, the
restriction that no slope be greater than ¢t {or less than ¢}
can be dropped,

The simplest method is first shown when neither s+
nor s is present. In that case, there are no restrictions
on the slopes. The method is described below. The number
E can be any positive integer. Define

, h-1 +]
Yh = mjm{cj ~—H“ <fj < —b—ﬁ"«}
for h=1,2,...,H-1, Let Yo © vg = 0. Now, solve the
cyclic group problem
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minimize v, &
h=l hh

H-1

W

), bt =h (mod H)
no n 0
th > 0 and integer,
where ho ig either the integer above or below Hfo .

Shortest path methods, including the one giving in

Section 5, will give numbers d(h) < Vi such that

d(h} + d(g) > d(h + g({mod H)} .
Extend d to a function p on the unit interval by letting
p(x) = max {d{[Hx]), d({Hx]}}

where [y] means the smallest integer larger than or equal
to v and |y] means the largest integer less than or egual
to y . Figure 5 illuztrates this function. The claim is
that

&
jél Pt} 3, 2 p(f))

ig a valid inequality for the original problem. Furthermore
p(fo) is & lower bound on z for the original problem, and
plly) > dlhg) .

The original choice of vy, assures that p(fj) <.
Thus, if the inequality is valid, the bound of p(f,) is true.
All that remains is to show that p is subadditive, that is,
p{x) + p(y) > p(xty(mod 1)). Bug,

3

p(x)+ ply) = max {d([Fx]), d(|[Hx])}
+ max {d(I—HY]} d(l_HY_l)} 3
and p{xt+y(mod)) is either
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® 7,
X @ h
3
X @ X ; —p
X ® I }““‘”““’“‘”‘é"’””"“(
: l X
.
it 1. i i
[heceend ]
- ] i i i 3 Iy
51 2z 3 4 5
& 6 68 & 8
i z 3 4 5 &
Figure 6
max {d{[Hx] + [Hy]), d([Hx]+ [Hy])}
or
max {d{{Hx]+ |Hy]), d{{dx] + YDy,
where the 4+ here is mod H. Which of the two terms ig

p(x+y(mod 1)) depends on where Hx+Hy{mod H) happens to
fall relative to [Hx|+ |Hy|, Hx1+ |Hy], [Hx]+ [Hy]. How-
ever, any cone of the numbers d(hl%-hz), for hy = [Hx{ or
MHz} and h, = [Hy] or {Hy] , is legs than or equal to

p(x) + p(y} because that sum is the sum of two maxima in-
cluding d(hl) and d(hz) .
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This methoed should help to establish the general
principle. The general method involves extending the num-
bers d(h), h=0,...,H, toa function p(x), 0 <x <1, such
that p(h/H) = d{h). Further, the function p should be sub-
additive on the whole interval [0,1] whenever d is sub-
additive on 0,1,...,h. Three general forms of such exten-
sions are given below,

Given values 0 = d(0), d(l),...,d(}H-1), DHE) =0,
and dv>0, d” >0, such that d{(l) gd'i'/H and d(H-1)<d/H,
let L{x) = [Hx| and R(x) = [Hx] for 0<x <1, Define

pl{X) = min {{L{x)) + d"'(x~L(x}), A(R{x})+d (R(x)-x),
max {(L(x)), d(R(x))}} .

Here, the d are assumed subadditive, i.e., d(h)+ d{g) >
dig+t {mod H)) .

Figure 7

In order for p; to be continuous, d(h-1)<d(h)+ d"/H and
d(hrl) < d(h) + &7 /H are required. These inequalities follow
from subadditivity of d and from d(1) < d* /1, d(H-1)<d /M
since then d{h-1)< d(h) + d{E-1) <d{h)+ d"/H . Theln "
will be subadditive with slope from above at most d7 and
slope from below at least -d” ., To show py subadditive,

if pl(X) and pl(y) are given by max {d{L{x)), d{R(x})} and
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max {d(L(y)}, d(R(y)}} respectively, then the previcus proof
still holds, Suppose either p(x) or p{y) is given by a
term such as d{L{x)) + dJ"(x-L{x)). in ’i:]his case, x can be
decreased to L{x), decreasing x+y. But pl(X) decreases
by more than or the same as p(#+y} because nowhere is the

slope steeper than db ., Thus, it suffices to show that
d(LG)) + oy (y) 2 pp (L{x) + ¥) .

If oply)is givenby d(L{y)}}+ d" (v-L{v)) or d(R{(y))+ d (R(y}-¥),
then vy can be similarly moved to either L({y) or R(y), and
subadditivity of o) follows from subadditivity of &, If
pi(y) is given by max {d(L{y}), d(R(y))}, then the result fol-
lows from subadditivity of d and from

p L) y) < max{d(Lex) + d(L(y)) ,

A(L{x)) + diR(y)}} .

P onor s”

The simplified method given when no s
is present can be easily modified by letting dt - c'}', d =c”
and replacing vy by min{y,d"/H} and vyy_; by
min{vyy_1.d"/H}. Once this is done, there is some possi-
bility of increasing some of the Yn'8. The idea is to lirst
extend v,,h =0,...,H toa function pp of this form, As
tong as pl(f.)i c., the resulting p(fo) will be a bound, Thus,
the Yy can be increased as long as the resulting P1 satis -
fied pl(fj) < c; . Then, reduction of Yh to subadditive dh
results in a reéduction of p; to a subadditive function and,
thus, a valid inequality.

There are two other methods of extending subaddi-
tive dh, h=0,...,H, toa subadditive functicn. These
extensions were discussed in Section 6 but will be restated
here. Both extensions give rise to rounding procedures along
the lines given here. One extension is simply linear inter-
polation:

p, (%) = AL (x)) + (L-MA(R(x))
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where X = (R(x)-x)/H. Here, d(1}) < ¢"/1I and d(II-1)< c/H
are also needed when s’ and s~ are present.
The other extension is a two-siope extension:

p, (%) = min {d(L{x)) + at LGN,

d(R(x)) + d (R(x)-x)} .
When s¥ and s are present, df <ct and d” <c” are

required, Otherwise, dt and d~ are arbitrary positive
numbers,
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