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Mathematical Programming

In this timély work of unusual interest
the editors provide a complete, authori-
tative overview of the present state of
mathematical programming.

The book consists of a eollection of papers
presented at the Symposium for Mathe-
matical Programming held at The Uni-
versity of Chicago during the summer of
1962. The symposium was sponsored by
the Graduate School of Business of The
University of Chicago, the RAND Cor-
poration, and the Association for Com-
puting Machinery.

Since this was the first international
meeting in the field of mathematical pro-
gramming since 1959, the papers repre-
sent the major work of its most important
contributors for the period 1959-1962.
Certain especially-commissioned papers
survey the major areas of mathematical
programming for nonspecialists. Other
papers deal with advanced research
topies.

The subject matter includes aspects of
the theory and application of linear pro-
gramming, nonlinear programming, dis-
crete programming, and network flow
theory. These topics are among the most
important basic disciplines underlying
mathematical economics and operational
research, and constitute one of the pri-
mary areas of application of high-speed
computers to industrial problems.

Many papers are devoted to program-
minge models arigine in real sitnatione
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Introduction

The growth of mathematical programming since its birth in 1947 has
been marked — and stimulated — by a distinguished series of Symposia at
which the major part of the research workers in the field have presented
their work. The quality of these meetings has been ensured by a certain
continuity of participants and supporters. The first such meeting was held
in Chicago in 1949, sponsored by The RAND Corporation; selected papers
from it appeared as ‘‘Activity Analysis of Production and Allocation’’,
(1951), edited by Tjalling C. Koopmans. The first meeting to bear the title
“‘Symposium’’ was held in Washington, D. C. in 1951 under the sponsorship
of the National Bureau of Standards and the U. S. Air Force; abstracts and
selected papers were published in ‘‘Symposium on Linear Inequalities and
Programming’’ by the Air Force (1952). The “Second Symposium in Linear
Programming’’ was held in Washington in 1955, under the same sponsor-
ship as the first; its Proceedings, edited by Henry A. Antosiewicz, were
published by the sponsors in 1955 The third symposium, ‘‘A Symposium on
Mathematical Programming: Linear Programming and Recent Extensions’’
was held in Santa Monica, California in 1959; a report, ““The RAND Sym-
posium on Mathematical Programming’’, was published by The RAND Cor-
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Chicago, Illinois, under the joint sponsorship of the Association for Com-
puting Machinery, the Graduate School of Business of the University of
Chicago, and The RAND Corporation, on June 18-22, 1962. The organizers
of the present conference were drawn from the membership of SIGMAP,
the Special Interest Group for Mathematical Programming in the Associa-
tion for Computing Machinery. SIGMAP is devoted to furthering all aspects
of mathematical programming.

Forty-three papers were presented at the Symposium, to an audience of
more than 240 persons, from five continents. Papers were given in each of
eight areas of mathematical programming. In four of these, especially in-
vited survey papers gave the audience a broad view of the methods and
problems of that area. The surveys are among the twenty-three papers ap-
pearing in full in these Proceedings. The remaining papers, whose appear-
ance in full here has been sacrificed to the requirement that this volume be
of reasonable size and to some authors’ commitments to publish elsewhere,
are given as abstracts. Full copies of such papers can generally be obtained



Irom tne authors. Papers 14, 16, and 38 were edited by the authors from
transcriptions made at the Symposium. ’

The first nine papers deal with the general theory of mathematical pro-
gramming. The survey paper by Tucker, which begins this group, presents
the theory of linear programming in its most powerful current form. The
eight papers which follow deal with various aspects of the theory of both
linear and nonlinear programming.

Papers 10 through 13 deal with nonlinear programming — with ‘‘nonlin-
ear’’ used in the accepted sense as referring to ‘“‘reasonably smooth’’ non-
linear objective functions and constraints. The first paper of these, by
Wolfe, is a survey of most of the proposals which have been made for sol-
ving such problems.

Papers 14 through 18 are devoted to stochastic programming — mathe-
matical programming problems whose data may be random variables. Such
problems require careful statement if meaningful results are to be obtained.
The first paper of these, by Madansky, surveys the outstanding problems of
this field.

Papers 19 through 22 are concerned with computational procedures for
very large linear programming problems. Such problems always have some
regularity of structure that appropriately designed algorithms can take ad-
vantage of. The papers of this group constitute four different methods of
attack on aspects of that regularity.

Papers 23 through 26 are concerned more intimately with the computa-
tional processes of mathematical programming, examining in detail, ways
in which variations of the simplex algorithm — the most effective current
tool for linear programming — can be made even more effective.

Papers 27 through 33 lie in the area of applications of mathematical pro-
gramming. Since entire series of books are being written on this subject,
these papers can no more than sample the area by showing some of the
latest uses of currently available methods.

Papers 34 through 37 are devoted to integer programming problems.
The first of these is Gomory’s 1958 paper, now almost a classic, which es-
tablished the subject of integer programming. It has been substituted for
his paper presented at the Symposium because, still in great demand, it has
been out of print for some time.

The last group of papers, 38 through 43, are concerned with problems of
network flow, a special class of linear programming problem which, be-
cause of its rich structure, has given rise to an extensive and elegant
theory. The first paper, by Fulkerson, surveys this area, reviewing its
main tools and its outstanding problems.
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Combinatorial Theory Underlying Linear Programs

Albert W. Tucker

The simplex method of G. B. Dantzig is much more than the basic
computational tool of linear programming. It is also a combinatorial
algorithm which provides constructive means of establishing fundamental
theorems, not only in programming, but also in cognate areas, such as
Farkas’ theorem for linear inequalities and von Neumann’s minimax
theorem for matrix games. In an effort to discover the underlying theo-
retical structure, the author has been led to develop a combinatorial linear
algebra which employs pivot steps (Gauss-Jordan elimination) and inter-
changes of rows and of columns to generate finite equivalence-classes of
‘‘dual linear systems.’’ Such a class embraces in palpable form all the
information needed to treat many theoretical and practical matters cus-
tomarily handled by more elaborate linear algebra. Over an ordered field
this algebra seems to provide a unified and simplified means of dealing
with linear inequalities, linear programs, matrix games, etc.

DUAL LINEAR SYSTEMS.

The schema

(v?
Ym+1 e o o o o Ym+n
X4 Qg4 o 0o 0 0 o Q1p =y
1 . . . . 1
(x") . . (A) . . (==Y (1)
L] L] * L]
Xm| 9mi e o o 0o o 9nn | *7Ym
Xm+1 e e o o o “Xpyp
(=x?)

is a succinct joint representation of two systems of linear equations. One

1+This paper has been prepared with the assistance of Drs. Michel L.
Balinski and Robert R. Singleton and with the support of the Office of
Naval Research, Logistics Branch.
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system arises by forming the inner products of the vector X! with the
columns of the matrix A, and setting each inner product equal to the cor-
responding component of X%, This leads to a system of n linear equations
in the m +n variables x;:

X1a33 * ... T Xmam1 = Xm+y

Xiain+ “es +Xmamn= Xm+n (2)

The second system arises by forming the inner products of Y? with the
rows of A, and setting each equal to the corresponding component of -yl
This yields a system of m linear equations in the m +n variables y;:

a11¥m+1 t---t2p¥m+n T V1

am1Ym+1 t ... *amnY¥m+n = ~¥m (3)
In matrix notation these systems are written
XA =X? and AY? = -Y!

where X!, X2 are row vectors and Y!, Y? are column vectors.
The two systems are dual, in the sense that any solution X of the
x-system is orthogonal to any solution Y of the y-system. This is because

XY =x4y1 + ...t Xm¥m t Xm+1¥m+1 T - T XpeanYmen
=x'y!+ X2 v2 = X' cAYY) + (X1A)YE=0 @

For solutions X and Y which are nonnegative (i.e., x; 20 and y; 20,
i=1, ..., m +n), the orthogonality XY =0 yields a strong condition on
individual components: namely, x; =0 or/and y; =0 for i=1, ..., m +n.
This is because the inner product XY is then a sum of nonnegative terms
Xiyj, Wwhich sum equals zero only if each individual term x;y; equals zero.
By a natural generalization of ordinary analytic geometry, solutions X
and Y may be regarded as (m + n)-tuples of coordinates specifying points
in an (m + n)-dimensional space. Then the set of all solutions X and the
set of all solutions Y constitute two complementary orthogonal linear sub-
spaces in the (m + n)-space. The system X?=X1A specifies an m-dimen-
sional linear subspace because the m components of X! can be taken
arbitrarily and then the components of X? are determined. Similarly,
AY? = —Y! specifies an n-dimensional linear subspace because the n com-
ponents of Y2 can be taken arbitrarily and then the components of Y! are
determined. The two linear subspaces are orthogonal because of (4); they
are complementary because the sum of their dimensions is m + n, the
dimension of the containing space. Thus, each linear subspace determines
the other.
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XZ
n - subspace A m-:ubs}pace
X'z X2 (-AT) X2z X'A
- X!
Fig. 1

The complementary-orthogonal nature of the two subspaces is indicated
schematically in Figure 1, where the matrix equation Y! = —AY? for the
n-dimensional subspace has been rewritten as X! = X2 (=AT) by transposing
and then substituting X!, X2 for Y!T, v2T.

In plane analytic geometry two orthogonal straight lines through the
origin have equations y = ax and x = —ay, where a =y/x is the usual slope
of the first line and —a =x/y is the reciprocal slope of the second line.

By analogy, the matrix A can be regarded as the *X?:X!-slope’’ of the
linear subspace specified by X? = X'A and the negative-transpose matrix
—AT as the X! :Xz—slope” of the complementary-orthogonal linear sub-
space specified by X! = X?(—AT).

COMBINATORIAL EQUIVALENCE.

We will now see that the process of Gauss-Jordan elimination can be
applied simultaneously to the x-system (2) and the y-system (3) to pass
from one pair of dual linear systems to a second pair of dual linear sys-
tems which are equivalent in the sense that the second systems have the
same solutions as the first systems. Suitably organized, this use of Gauss-
Jordan elimination leads to the concept of ‘“combinatorial equivalence,’’
so called because each equivalence class contains just a finite number of
members.

If a coefficient ajj =0 in schema (1), the two equations in which it
enters,

Xjaqy ... Xja4) +...+xmamj =Xm+j
8itYmet* -+« * 8 j¥mej* -+ + Bin¥men= Vi (5)

can be solved for x; and Ym+j to give

aq + 1 amj
=Xy T e TEmyj T T - T Xm L. TXj
a.ij * aij au
aj P S o 1 e
a—-i-j— Ym+t * ... aij yit ... aij Ym+n Ym+j
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These can be used to eliminate xj and ym.j from the remaining equations,
but of course xm.j and yj are introduced into the left sides. When this is
done, the new coefficient for x} in equation k of (2) is

_shjak
ahk aij #1, =)

which is also the coefficient for y .k in equation h of (3).

We are thus led to a transformation of the schema (1), called an
‘‘elementary pivot transformation’’ (or briefly, “pivot step’’), which may
be represented as follows:

Ym+j Yi

® L] L .

L] . Ld L d

L] L] L] .o

Xifeee @ e B oeee [FTYi Xmtj| eee g1 ees  G1B ees [T-Vmy
. L] Ld .
oo Y cee O ese P —yq-l ees 8'7(1-13 coe

. L3 .o L]

. . L] L]

L 3 L ] LJ

FXm+ =i

The pivot ais any element ajj #0, B is any other entry aji in the pivot’s
row, vy is any other entry apj in the pivot’s column, and § is the entry ank
in B’s column and y’s row. In the margins x; and Xm+j have been inter-
changed, as have y; and Ym-+j- In the interchange of the y’s the minus
sign stays with the row. All other marginal variables remain unchanged.

In addition to pivot steps we admit two other types of elementary trans-
formations on a schema: interchange of any two rows and interchange of
any two columns. These are trivial modifications corresponding merely to
the interchange of two equations in one system and of corresponding terms
in the other system. Clearly the solutions of the two systems are not
changed except for the order in which the variables appear.

Note that the schema (1) imposes an ordered partition

(L ..., m|m+1, ..., m+n)

of the subscripts of the variables. An interchange of two rows permutes

two of the subscripts 1, ..., m; an interchange of two columns permutes
two of the subscripts m+1, ..., m+n; a pivot step permutes one subscript
from 1, ..., m with one from m+1, ..., m+n.

A finite succession of elementary transformations of the three types
results in a transformed partition

(I, ..., m|m+, ..., mn)

and transformed schema
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(Yz)
ottt Yim
X3 E” * o o o o -Cl_m =—y;
1 L] . - . L]
(X,,) . 3 (A) . . (:'Y:,), (6)
X -O-ml e o o o o Emn *=Ym
=Xm e o o o o =XE
2
(=X5)
where m denotes the permutation of m+n objects which carries (1, ..., m+n)
into (1, ..., m+n).

The new dual linear systems
X;A=X% and AYZ = -Y!
are equivalent respectively to the original dual linear systems
X!'A =X? and AY? = -Y!
in that they have the same solutions —subject to the understanding that the
correspondence between the solutions of one system and those of the
equivalent system is a one-to-one correspondence established by the

permutation .
Define any two schemata

Y’ Y
= X2 = X%,

to be combinatorially equivalent if the dual linear systems X}TK = X2 and
AY? = —Y} have the same solutions as the dual linear systems xta=x?
and AY?=-Y!, where X, = [X}, X%] arises from X = [X!, X?] by a
permutation 7 of the m+n component variables and Y arises similarly
from Y. Then, as seen above, a finite succession of elementary transforma-
tions of the three types leads from a schema (1) to a combinatorially
equivalent schema (6). Conversely, it can be shown that it is always pos-
sible to find a finite succession of elementary transformations of the three
types leading from a schema to any combinatorially equivalent schema.
Table 1 shows a numerical example of combinatorially equivalent
schemata, generated in this case by a single cycle of pivot steps. The set
shown is essentially complete, in the sense that all other schemata com-
binatorially equivalent to these may be found by permutations only. The
pivots are starred to permit the reader to check the transformations, the
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Table 1

A SMALL EXAMPLE OF COMBINATORIALLY EQUIVALENT DUAL
LINEAR SYSTEMS

(1)

Y3 Y4 Y5
x4 O 3 4| =-yy
Xyl —2% 5 9| =~y

=x3 =}{‘=X5

describes the following pair of dual systems of linear equations:
— 2Xy = Xg
3%, + 5%, = X, 3y4+4y5 =~y
axy + 9%, = xg —2yg + 5y4 + 9y5 = ~Ya.
From the schema (1) the following combinatorially equivalent schemata are
formed by successive|pivot steps, employing the starred entries as pivots.

2 @

Ya Y4 Ys Y2 y3 ¥s
X4 0 6/2 8/2 =7y X4 _3/5 6/5 _7/5 =7y
x3|—1/2 —5/2% —9/2 | =—ys x,| 1/5 —2/5 9/5% =—y,

=X2 =X4 =X5 =X2 =X3 =X5
4) (5)

Y2 Y3 Y4 yi Y3 Y4
Xy|—4/9% 8/9 /9 |=-y; X,|-9/4 —8/4 -1/4|=-y,
Xs 1/9 _2/9 5/9 ="¥s X5 1/4 0 3/4* =7Ys5

= Xo = X3 =Xy =Xy =X3 = X4
(6) ' M

y1 Y3 Ys Y1 Y2 Ys
Xy|=5/3 —6/3% 7/3|=-y, x3| 5/6 —3/6 —1/6 |=—y,
x4| 1/3 0 4/3 | ==y, x,| 2/6 0 8/6%| =—y,

=Xy =X3 =Xj =Xy =Xy =X5
@®) (9)

Y1 Y2 Y4 Y1 Y2 Y3
X3 9/8 "'4/8 7/8* ="Yys3 X4 9/7 "'4/7 8/7 ="YyVs
xs| 2/8 0 6/8 | ==ys x%5(~5/71 38/1 —6/1 |=-y;

These nine schemata, along with those formed by row and column permu-
tations, constitute the finite equivalence class (108 in all).
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Table 2

A UNIMODULAR EXAMPLE OF COMBINATORIALLY EQUIVALENT

X4
Xy
Xy

X4
X3
Xy

X
X3
X5

X2
Xy
Xg

(124:356)
Y3 Y5 Ye
0 -1 1
1 0 0
1 1 -1
T X3 T X5 T Xg
(134:256)
Yo Y5 JYe
0 -1 1
1 0 0
-1 1 -1
(235:146)
Y1 Y4 Y
-1 -1 0
1 1 o0
-1 0 -1
(246:135)
Y1 ¥3 Y5
0 1 0
1 1 0
1 0 -1

=7V

=Y
=74

=7y

=7Ys
=7Yd

=Y
=7YVs
=~"Y¥5

=7Y2
="V4

= 7Ys

X4
Xy
X3

Xy
X2
X5

Xy
X3
X5

Xa
X3
X

X3
Xy
X5

(123:456)
Yo Y5 Ye
0 -1 1
-1 -1 1
1 1 -1
(125:346)
Y3 Y4 Ys
1 1 0
1 0 0
1 1 -1
SX3 T X4 T Xg
(135:246)
Y2 Y4 Y8
-1 1 0
1 0 O
-1 1 —1
(236:145)
Yi Y4 Y5
-1 -1 0
1 1 0
1 0 -1
(345:126)
Yi Y2 Ys
0 1 0
1 -1 0
-1 0 -1

TX1TX T Xg

DUAL LINEAR SYSTEMS

=7y
=Y
=7ys

="V
=Y
=7Ys

=7V
=7Y3
=7Ys5

=Y
=7Vs

=TYs

=7Y3
=Ty

=7Ys

X4
X2
Xg

Xy
X3
Xg

X
Xy
X5

X3
Xy
Xg

(126 :345)
Y3 Y4 Y5
1 1 0
1 0 0
-1 -1 -1
(136:245)
Yo Y4 V5
-1 1 0
1 0 0
1 -1 -1
(245:136)
Y1 Y3 Vs
0 1 0
1 1 0
-1 0 -1
(346:125)
Yi Y2 Y5
0 1 0
1 -1 0
1 0 -1

TX1TXTXp

=7y
=Y

=7y
=7Ys
= ~Ys

=7Y2
=7Ye
="Ys

=7Ys
="V4
=Y

The full equivalence class contains 468 (= 13 x 36) schemata, i.e. the
above 13 and all their row and/or column permutations.
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fractional entries being left unreduced as a futher aid. The complete
equivalence class consists of all row and column permutations of these
nine representations, or

9x 2Ix3!=9x%x12 =108

in all. The maximum possible number for a2 2 x 3 matrix is (2 + 3)! = 120.
However, because of the zero entry in schema (1), one representation and
its 12 permutations are lacking.

Table 2 shows a second example which is convenient for computation,
since its entries and all subdeterminants that can be formed from it have
the value 1, —1 or 0, so that denominators do not occur. The reader may
check that different sequences of elementary transformations may result
in the same schema. Thus

(123:456) — (124:356) — (134:256)
and

(123:456) — (143:256) — (134:256) .

DUAL LINEAR PROGRAMS.

We will now see that the algebra of dual linear systems, pivot steps,
combinatorial equivalence, etc., developed above in homogeneous form (for
an arbitrary number-field), can be employed in nonhomogeneous form (for
an ordered number-field, such as real numbers or rational numbers) to
treat dual linear programs and the Dantzig simplex method.

Let it be required to

minimize UB + d constrained by UZ0, UAZC, and

maximize CV +d constrained by AVEB, V20

We reformulate these dual linear programs in the following schema:

(Y2) (nmin,y's 20)
1 Ym+1 3 . . ym+n
' laoo|aor e (-C) e a@on | =9
Xy {010 | O . . . Oin ==Yy
(7
L] L] L] L] L]
(xh o |-B) o (A) o | et=vY
Xm |Gmo| Omt ¢ ¢ * Omn | =~Ym
=£ EXm+1 . ) ® =Xm+n

(€ max,x's20) (=x3)
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where ay = —d, ayj = —cj, 29 = ~bj, £ =~UB—d, n=—CV—d, X' =1,
X?=UA - C, Y! =AV —'B, Y2 = V. The instructions minimize and max-
imize are interchanged because maximizing ¢ and minimizing 7 are
equivalent to minimizing UB +d = —¢ and maximizing CV +d = —5. Note
that the schema (7) differs from schema (1) in just two respects: the x’s
and y’s are required to be nonnegative, and non-homogeneity is introduced
by the border column with marginal labels 1 and ¢ and by the border row
with marginal labels 1 and 7.

The Dantzig simplex algorithm consists of a non-repeating sequence of
pivot steps, using pivots not in the border row and column. Hence it must
end in some terminal schema after a finite number of steps, since it re-
mains within a finite (combinatorial equivalence) class of schemata. The
four possible terminal schemata are given in the following theorem.}

Theorem:

By a finite succession of pivot steps, excluding pivots in the border
row and column, it is always possible to pass to a (combinatorially
equivalent) terminal schema

(Y2)
(g min, y's > 0)
VoY e Ve —
1 't?oo .aol . ('6) . FOII =7
XT 310 E” ) . . Eln =-yT
L] L] L] L] L ]
(Xy) o [(-B)] » (R) . o« (=-Y}) @®)
L] L] . L] L]
Xm Em Omi . ) . OGmn |=- "
. =€ =xm ° ° . =Xm
(¢ max, x's 2 0) (=x2)

which has one of the following four forms:

+A compact inductive proof (to be published elsewhere) has recently
been devised by the author along lines suggested by the paper of R. E.
Gomory and M. L. Balingki presented at this Symposium, and by
G. B. Dantzig’s inductive proof [see IBM Journal 4, 1960, pp.505-506]
which assumes B Z 0.
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(I) 1 0 o o o 0O (II) 1 @ o o« « @
1 @ o« o o @|=min 1 @ ¢ @
o|© =@ o)
- : 0
01|© =@ xml + | @ o o o @|=+
=max =@ ¢ °* ° =@ = =@ ¢+ o o =@
(III) 1 0 eee O yo—oob (IV) t @ o o« « @
i . - |=7 1 -
@| O SO @ o
- .- : o
CIES o |=-® @ +|D e @D o=+

Here + @, O, ©, and — symbolize quantities which are positive, non-
negative, zero, nonpositive, negative, respectively. Inside the four boxes
above, they represent the actual nature of the entries a in the terminal
schema (7). At the left and top margins, they represent values of xi ...,
X and Ymais - - -» YmenWhich we will assign to determine the correspond-
ing values of Xp+1s ---» Xmen a0d yT, - ... ¥y at the bottom and right.

Terminal form (I) is the ‘“successful’’ one, yielding optimal solutions
to both programs. As indicated in the border row and column of (I),

—~B =<0 and —C Z 0. If the marginal variables at the left and top are set
equal zero, nonnegative x’s and y’s are determined at the bottom and right,
while ¢ and 5 take on the common value 2y. Such feasible solutions with

¢ =7 are necessarily optimal.

In terminal form (II) the border row —C is again nonnegative, but there
is another row (shown above as the last row) which is nonnegative and has
a positive entry in the border column —B. The x-program is feasible but
its objective function ¢ is not bounded above. To see this take

X{ =+ =Xm-; =0 and any xm; 20
to determine nonnegative x’s at the bottom, and
£ =35 +Xpay0, dm0> 0.
Then ¢ —+w as x5 —+«, S0 N0 maximum exists. At the same time the

y-program is infeasible, because yy; < 0 for any assignment of non-
negative y’s at the top.
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Terminal form (Il) is just the ‘“‘negative transpose’’ of form (II). The
x-program is now infeasible and the y-program is feasible but with ob-
jective n not bounded below.

In terminal form (IV) there is a nonnegative row (shown as the last row)
with positive entry in the border column and a nonpositive column (shown
as the last column) with negative entry in the border row. Any assignment
of nonnegative X’s at the left and nonnegative y’s at the top makes
Xm+n < 0 and yp < 0. Hence neither program is feasible.

ANALYTIC GEOMETRY OF DUAL LINEAR PROGRAMS.

The constraint equations of the x-program in schema (7) specify a linear
manifold

P:X2=Xa-cC

in m+n-space. P is an m-dimensional linear manifold which can be ob-
tained by translating the m-dimensional linear subspace X? = X!A parallel
to itself until it intercepts ‘‘the X2-axis’’ (i.e., the n-subspace X! =0) at
the point X! =0, X2=-C. Similarly the constraint equations of the
y-program in schema (7) specify a linear manifold

Q:X'=x2AT) + BT

in the (m + n)-space, where this matrix equation is obtained from
Y!=—AY? + B by transposing and then substituting X!, X* for Y!7, Y27,

Q is an n-dimensional linear manifold which can be obtained by
translating the n-dimensional linear subspace X! = X2?(—AT) parallel to
itself until it intercepts ‘‘the X'-axis®’ (i.e., the m-subspace X = 0) at the
point x! = BT, X2 = 0. Hence P and Q are linear manifolds of comple-
mentary dimensions, m and n, which are orthogonal because they are
parallel, respectively, to the linear subspaces X2 = XA and X! = X?(—AT)
that were seen to be orthogonal in our earlier discussion of (homogeneous)
dual linear systems. Thus, in summary, P and Q are complementary
orthogonal linear manifolds of dimensions m and n.

With respect to the partitioning (X1, ..., Xy |xm+1, . s Xm.p) of the
m+n coordinates into X! and X2, indicated schematically in Fig. 2, P has
the matrix A as ‘X2 :Xi—slope” and X! =0, X?=—-C as ‘“X’-intercept,’’
while Q has the negative transpose matrix —AT as ex!. %2 slope” and
x! =BT, X% =0 as “X!-intercept.”” Passing from

1 Y2 1 Y2
1 |-d|-C|=q 1 |-d|-C| =1
xt[Bla|=-v* * xt|[-B|a|-=-1t
==X ==X
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m-subspace

xZ=x'A

m~manifold P
x%x'A-C

n-manifold Q

X1=Xz(— AT) +BT
/ x%:-C
n-subspace
x'=x3-A")
Fig. 2

by any succession of elementary transformations, excluding pivots in the
border row and column, we get another ‘‘slope-intercept’’ representation,

X2=X\A-C and Xi=x}(-AT)+3BT )

of the same linear manifolds P and Q, because combinatorial equivalence
leaves invariant the solution sets specifying P and Q. With respect to the
new partitioning g, ..., Xm | X+ - - -0 XfmFn) of the m+n coordinates
into X} and X%, P has the matrix A as ‘‘X%:Xk-slope” and X3 = 0, X2=—C
as ‘“‘X*-intercept,”’ while Q has the negative-transpose matrix ~AT as
“X}r:X%—slope” and X%,- =BT X4 =0 as “X,‘T—intercept.”

In terms of this analytic geometry, the aim of the Dantzig simplex
method is to pass, if possible, from the initial ‘“slope-intercept’’ represen-
tation of P and Q, based on schema (7), to a terminal ‘‘slope-intercept’’
representation (9), based on schema (8), in which the intercepts —C and
BT will both be nonnegative. In terminal form (I) this aim is achieved. In
terminal form (II) we fail because Q does not intersect the ‘‘nonnegative
(m+n)-orthant’’ R, consisting of all points X 2 0, and so cannot have a
nonnegative intercept at all; in terminal form (III) P does not intersect

the orthant R; and in terminal form (IV) neither P nor Q intersects the
orthant R.
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HOMOGENEOUS LINEAR PROGRAMS.

The schema

(YZ) .
Yo Ymbt e e e Ymt (y's 2z 0)
Xf G0 91 o 4 4 O4n [=-y,
(S DR (31 S YS A A vl (10)
Xm| Omo| 9mi . o e Amn | *"Ym
(g max, x's >0) O TXmi .. . FXmen
- = (=X2)

obtained by deleting the border row of schema (7), presents a mixed form
of dual linear systems, one homogeneous and one not. Here the x-program,
to maximize { = —X'B (or minimize X!B = —£) constrained by x! 2 0,
X1A=X220,isa ‘‘homogeneous linear program’’ with homogeneous
objective-function and homogeneous constraints; and the y-program, to
solve B— AY?=Y'20, Y220, is merely a nonhomogeneous ‘‘feasibility
program.’’

In this case the terminal schema (8) with border row deleted has one of
just two possible forms:

(I)-t 0 0 (rm)y + ® , . . &
o |® =@ 0
e|® =@ 0
=® wl +|® & 0 . B =+
={=0 =®

Form I shows that max £ = 0 since ¢ = 0 for any nonnegative x’s and
¢ =0 trivially for all x’s zero, and that the y-program has a feasible

solution obtained by taking ym+1 = ‘" =¥m+n - 0. Form II shows that £ is
unbounded above since £ — + for xy = -+ =Xm53=0 and X — +oo, and
that the y-program is infeasible since yy < 0 for any assignment of non-
negative values to ym+1s - -2 Ymn

These two mutually exclusive terminal forms provide simple construc-
tive means of establishing transposition-duality theorems such as Farkas’
theorem for linear inequalities. In particular, these two alternative forms
can be used to prove the author’s lemma [Ref. 2, page 5] from which
classical and sharpened transposition-duality theorems follow [ in Ref. 2].
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MULTIPLICITY OF SOLUTIONS.

We now look again at form (I) of the terminal schema (8) —the ‘‘suc-
cessful’’ form, in which the dual linear programs possess optimal solu-
tions. If none of the m+n border entries (excluding ay) is zero, then the
terminal schema has the form

(a) 1 . . .

1 + o o o + |= min

o - = -

ol - .-
=max = + . . ° = +

In this case both programs have unique optimal solutions.

On the other hand, if at least one of the m+n border entries is zero,
then at least one of the dual programs has a multiplicity of solutions. In
this event, it can be shown that a further succession of elementary
transformations (excluding border entries as pivots) leads to a normal
form of one of the following three types:

/‘__'\
b) 1 0 -+ O (c) 1 + e+ 0 e 0
1 =min 1 O es¢ O]+ oo <+ |=min
"block of
+ 0 2222’;\;%‘_ =0 Y ,  block of =-
ple | o columns . . | "negative- headed" .
; (') _(‘) O rows _
0 - = =mox =0 e =0 =+ cee =4
5 |- ,
r——
ZMOX =+ see = o4 (d) 1 + ecee 4+ 0 e 0
1 0 «¢¢ O =min
block of
+10 |0 =+« 0] "positive- |=
i : heoded" :
AT . . columns .
+ 0 0 LRCI ] 0 =0
0 block of ==
“negative - headed" .
0 rows =_'_

=Emax = 0 cece =0 =4 oo = 4
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In a block of ‘‘positive-headed’’ columns each column has its first entry
positive or a later entry positive which is preceded by zero entries only.
In a block of ‘‘negative-headed’’ rows each row has its first entry negative
or a later entry negative which is preceded by zero entries only.

In normal form (b), with its 4 + 1 by n block of ‘‘positive-headed’’
columns, the x-program has a u-dimensional closed convex set of optimal
solutions and the y-program has a unique optimal solution. The symbols
+ for the marginal x’s indicate an optimal solution in the (relative) interior
of the u—-dimensional convex set. The existence of such an optimal solution
can be inferred from the block of ‘‘positive-headed’’ columns.

In normal form (¢), with its m by » + 1 block of ‘‘negative-headed’’
rows, the x-program has a unique optimal solution and the y-program has
a v-dimensional closed convex set of optimal solutions: The symbols +
and — for the marginal y’s at top and —y’s at right indicate an optimal
solution in the (relative) interior of the p-dimensional convex set. The
existence of such an optimal solution can be inferred from the block of
‘‘negative-headed’’ columns.

In normal form (d), with its u + 1 by n — p block of ‘‘positive-headed’’
columns and its m — u by v + 1 block of ‘‘negative-headed” rows, the
x-program has a y-dimensional closed convex set of optimal solutions and
the y-program has a y-dimensional closed convex set of optimal solutions.
Marginal symbols indicate (relative) interior solutions, as previously
described.

The four forms (a), (b), (c), (d) exhaust the possibilities for optimal
solutions in the ‘‘successful’’ case. For a specific pair of dual linear
programs having optimal solutions, only one of the four forms can occur.

Note the full ‘‘complementary slackness’’ in the four forms (a), (b), (c).
(d). Opposite each positive or zero component of the optimal x-solution
indicated there is, without exception, a zero or positive component of the
optimal y-solution indicated.
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A Mutual Primal-Dual Simplex Method

Michel L. Balinski
Ralph E. Gomory

1. SMPLEX METHODS

A pair of dual linear programs

Primal (Row) Program Dual (Column) Program
Minimize Maximize
Yo T2 *auymer tccoctagpnymey Xo  Fag txqay *---+Xmamg
constrained by constrained by
Y1 Tan tapny¥mer too-tapymen S0 X120 (1.1)
“Ym = 2mo * 8mi¥met * ** + A YmenS 0 T Xm 20
Ymet 2_0 Xmet =8p1 +Xq8y +*c +Xmay, 20
Ymen 20 Xmen = n + Xg84p * -+ F Xmamp 20

is conveniently exhibited in the tableau

Primal Program

1 Ym+1° ° *Ym+n
|
! Goo | G0t ° * ° don = Yo
e e ]
| —
X4 Q0 | Gy = * qyp =Y (1.2)
. N . .
. . " . . .
. . | . . .
Xm °mo: Omt * * °* Omn = "Ym
]
= Xo = Xm41° ** = Xm+n

Dual Program

In the dual linear programs (1.1) or their tableau (1.2) y,, Yir ooos Ymo
the basic variables of the primal program are expressed in terms of
Yms+t> - --» Ym+n the nonbasic variables; similarly, Xg, Xpaqs - - -» Xman,
the basic variables of the dual program, are expressed in terms of
Xy ..., Xm, the nonbasic variables.

A pivot step on (1.1) or (1.2) with pivot entry ajj =0 (i,j =0) is a
17
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Gauss-Jordan or complete elimination step which simultaneously solves
the ith (row) equation of the primal for ym.j and the jth (column) equation
of the dual for xj, and uses these equations to eliminate Ym+j and x; from
the remaining row and column equations at the cost of introducing y; and
Xm+j- The ym.j and X; thereby become basic variables and y; and xyy,;
nonbasic variables. The pivot step with pivot entry a = ajj #0 takes the
tableau

c e ymejc s oo
3 P P s

2 DU S

. . . .

ce=Xmtje e )
into the tableau

ce oy, v .

x,'n+j o ;" . ;_13‘ . =';'rn+j (1.9
| .._7;-1..3-7;-13.. :

the other marginal variables and labels remaining in the same positions.
Successive tableaus obtained by pivot steps simply reexpress the original
pair of dual linear programs through different partitions into sets of basic
and nonbasic variables. Any such tableau has the form

1 Ym+ie * ¢ Ym+n
T
1 Qoo | Qo1 o e o apn = Yo
|
___.+. __________ -
xi [Gio] Ot + e« Gin | =-y (1.5)
. o | Y .
. . ' - .
. . : . . .
Xm | Gmo| Om1 « ¢ o am = -Ym
l
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where the primed variables are a rearrangement of the original variables
and the primed entries are determined by the succession of preceding pivot
steps. Basic solutions to both programs are associated with any tableau
(1.5); they obtain by setting the nonbasic variable equal to zero, thereby

determining values for the basic variables y] = —aj,, ..., Yin = —amo»
Y0 = 250 =X X+t =28y .., Xpnan =ajy. If —alg 20, ..., —ak, 20 a basic
feasible primal solution obtains; if agy 20, ..., agp 20 a basic feasible

dual solution obtains. If both primal and dual basic feasible solutions ob-
tain, then they constitute optimal solutions to the programs.

A simplex method for solving a pair of dual linear programs is a finite
sequence of tableaus exhibiting equivalent pairs of dual linear programs
obtained by successive pivot steps, with prescribed pivot entry choice
rules, which obtain a tableau exhibiting optimal solutions to both programs,
or the noncompatibility of the primal and/or dual constraints. Letting @
denote nonnegative ‘entries, and © nonpositive entries, these cases can be
exhibited in tableau form:

(optimal solutions) (1.6)

- : (primal or row con-
_: _:_ _____________ straints noncom-

+ | O patible) (1.7
I T

(dual or column
constraints non-
compatible) (1.8)

@0

e e —————
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A primal (dual) simplex method is a simplex method beginning with a
tableau exhibiting a primal (dual) basic feasible solution with pivot steps
which maintain primal (dual) feasibility in each succeeding tableau. A
primal (dual) pivot choice rule is as follows:

If a tableau (1.5) does not exhibit optimal solutlons to both programs
there must exist a aoJ <0 for some j(a am >0 for some i). Either
(a) every entry in the column of aOJ < 0 is nonpositive (every entry
in the row of 3-10 > 0 is nonnegative) or (b) there exist positive
(negative) entries. (a) The tableau exhibits the noncompatibility of
the dual constrains (of the primal constraints).

(b) Choose as pivot entry al'q >0 (a{ﬂ < 0) satisfying

afj g > 0 ag ajy  afs <0ajg,
If an initial tableau does not exhibit a primal (dual) basic feasible solution
some special device is introduced enabling consideration of an allied
problem whose solution provides a primal (dual) basic feasible solution
for the original problem. The original Dantzig method [1] is a primal
simplex method; the Lemke paper [5] describes a dual simplex method.
The proofs for termination of a simplex method in a finite number of
pivot steps use the fact that any tableau is uniquely determined by its
associated nonbasic variables (of primal or of dual programs) and that
there exist at most (Pf%)= (P{™) possible sets of nonbasic variables.
Then any pivot steps assuring that no tableau is ever repeated guarantees
finiteness. The finiteness proof for a primal (dual) simplex method in
which no ‘‘degeneracies’’ occur, i.e., in which a10 <0,i=0, (363' >0,j =0)
is clear, for each pivot step strictly decreases (increases) the value of
a{;g and thereby assigns an order to the sequence of tableaus. If, however,
degeneracy occurs, some form of lexicographic order must be introduced
to avoid the possibility of cycling.

2. A MUTUAL PRIMAL-DUAL SIMPLEX METHOD

We describe here a simplex method for directly solving any pair of
dual linear programs (1.1) or (1.2). The method specifies pivot choices for
any tableau whether feasible or not, and degenerate or not, which lead to a
tableau exhibiting a primal feasible solution (or, primal infeasibility) and
then to a tableau exhibiting optimal solutions to both programs (or, primal
objective unboundedness and dual infeasibility). This is accomplished by
using a primal simplex pivot choice rule until primal degeneracies occur;
then a dual simplex pivot choice rule is used on a subtableau corresponding
to primal zero valued basic variables until the degeneracies are resolved.
If ‘“‘sub-dual degeneracies’’ are or come to be present in the subtableau, a
primal simplex pivot choice rule is used on a sub-subtableau until these
degeneracies are resolved, and so forth. The hierarchy of tableau, sub-
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tableau, sub-subtableau, etc., is used to establish a hierarchy of goals
which are associated with every tableau. Every pivot step leads to a
strict ‘“‘improvement’’ in one of the goals, with goals higher in the
hierarchy remaining unaffected. This serves to order the sequence of
tableaus, thus assuring termination of the method in a finite number of
pivot steps.

Every tableau (1.5) in the sequence of tableaus obtained by successive
pivot steps has associated with it a hierarchy of numbered subtableaus each

with a distinguished entry (and hence row and column). Odd numbered sub-
tableaus k have the form

(“‘primal or row
feasible form’’) (2.1)

with ofk) 21, the number of rows, and —8(k), the value of the distinguished
entry. Even numbered subtableaus k have the form

umn feasible
form’’) {2.2)

-
1
i
i (**dual or col-
1
]
|
1
H

with o(k) 2 1, the number of columns, and B(k), the value of the distin-
guished entry.

The hierarchy of subtableaus associated with a tableau is initiated as
follows. Subtableau 1 consists of all columns and all rows of (1.1) with
aj, S 0, with distinguished entry some apg > 0 (if all ajy = 0 and the entire
tableau is in primal feasible form, the entire tableau is taken as ‘‘sub-
tableau 1’’). Given any tableau suppose a subtableau k in primal (dual)
feasible form has been defined with distinguished row R and column C.
If C (if R) contains zeros and R is not all nonnegative (C is not all non-
positive), a subtableau k ~ 1 in dual (primal) feasible form is defined as
consisting of rows (columns) corresponding to the zeros of C (of R),
columns (rows) corresponding to the nonnegative entries of R (non-
positive entries of C), with distinguished entry some negative entry of R
{some positive entry of C). Schematically,



22 MATHEMATICAL PROGRAMMING

R
VAN

w

i
-
|
|
|
1

N

="

1
S

A
O

vy
st
|

|

|

|

,——-——-—--—
r] *“ .0 T

|
|-
]
I
|
|
1
1
|
!
|
|
|
I
I
!
L

where the whole diagram represents a primal feasible form subtableau k,
and the subdiagram enclosed in solid lines a dual feasible form subtableau
k + 1.

Associate with any tableau and its subtableaus a hierarchy of goals with
goal k (k =1, 2, ...) being to pivot to obtain a new tableau whose new sub-
tableau k (if it exists) has a(k) larger, or, has «(k) unchanged but B (k)
larger; while (i), 8(i) for i <k remain unchanged.

Suppose, now, that we have reached the pth tableau with entries a{’,,
along with its well-defined hierarchy of subtableaus and their associated
values (ap &), Bp (k)). We describe the choice of pivot entry to obtain the
P+ 1)"th tableau and the hierarchy of subtableaus associated with the
(o + 1)"th tableau.

Rules

Suppose the subtableau with highest index K is in primal (dual) feasible
form.

(a) Apply the primal (dual) simplex pivot choice rule (see above) to the
subtableau K. Maintain same hierarchy of subtableaus, except K.
Redefine K and any subsequent ones if possible.

¥ rule (a) is not applicable then one of the two possibilities (b)
or {c) must hold.

by
it Bt bt r-r—-
L‘J—‘—-“'““'——i 1 l_._.__*{@...@
A e Bl D
N : I ; I
o ! | |
L i | o |©
T I e *
_C{):s__@.'__'_: @ | {: E
1 B .
| 1 i
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o! o 9
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Choose as pivot entry the distinguished entry. Maintain same
hierarchy of subtableaus, except K —1 and K. Redefine K — 1 and
any subsequent ones if possible.

(c)
T 5T H
IR SCESRNC]
o o B d
SR EHORERNC]
o 1o !

Choose as pivot entry the negative (positive) entry in the distin-

guished row (column) whose column is nonpositive (whose row is
nonnegative). Maintain same hierarchy of subtableaus except K.
Redefine K and any subsequent ones if possible.

Finally, if ever the choice of pivot entry is an element of the
first row (some ag’j) or of the first column (some aﬁ), stop.

If the process is stopped because the choice of pivot entry is 31?0'
solutions to both programs obtain; if it is stopped because the choice
of pivot entry is some aP, the primal or row program has no feasible
solution; if it is stopped because the choice of pivot entry is some afl
the primal program is in feasible form but the dual or column program
has no feasible solution.

If the pivot entry is chosen according to (a) either there is no Kth sub-
tableau or ap.s{K) éap(K) and if ap“(K) = ap (K) then Bp-r-l(K) >8p(XK)
(due to the absence of “‘Kth degeneracies’’); while ap+1(i) =eap (D) and
Bp+t (i) =B, (i) for i < K since the pivot entry has zeros in rows and
columns that could have an effect on these values. If the pivot is chosen
according to (b) either there is no (K — 1)th subtableau or
op+1 (K —1) > ap (K~ 1) [see subtablean in (b)]; while again, and for the
same reason, ap+1(i) = oep(i) and Bp.y (i) =Bp (i) for i<K—1. Finally, if
the pivot is chosen according to (c¢), either there is no Kth gsubtableau or
ap+1 (K) > ap X) [see subtableau in (c)], while again ep.s (i) = ap(i) and
Bp”(i) = ﬁp (i) for i < K. Therefore, this choice of pivot entry and as-
signment of subtableaus always leads to strict improvement in some goal,
thereby ordering the sequence of tableaus obtained in successive pivot
steps. As noted above, this suffices to assure termination of the method
in a finite number of pivot steps.

A. W. Tucker has pointed out that the inductive counterpart of this
construction leads to a particularly simple and appealing proof of ter-
mination. The induction is made on the number m+n of primal (or dual)
variables.
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3. SOME REMARKS

1t is perhaps of interest to review the primal-dual algorithm of
Dantzig, Ford, and Fulkerson [2] to enable comparison with the algorithm
proposed here. By our definition the primal-dual algorithm is a simplex
method applied not directly to the problem as stated but to an ‘‘extended’’
problem and with rather special pivot choice rules.

The problem to be solved and its dual as posed in [2] is

Primal (Row) Program

Minimize Maximize
Yo =2i¥met *t°otamYymen Xy = xqay9 + -+ ¥ Xmamg
constrained by constrained by (3.1)
ap = au¥me Tt 2mYmen 20 X+t =731 XAy 0 XmAm)

= 1 2 = - S .-
8me = Ami¥mei* + 2mnY¥men 20 Xmen T T8m *Xan * 0 Xmimn

Yme1Z0 -o.s Ymen 20 Xm+1 20 «. s Xmen =0

where it is assumed that the dual program has a feasible solution (if not,
the extra variable ypy+n+1 =0 and constraint yms1 * ... ¥ Ymen + Ym+n+
= am+1,0 With am.y,0 arbitrarily large can be added to the primal pro-
gram, thus assuring an easily found initial feasible solution to the new
dual problem). An ‘‘extended’’ problem and its dual is then defined which
can be exhibited in the tableau

Extended Primal Program

m-+1 m+n
T
! boo | “bor * * * bon [ 2o
e e LR,
9 |=0g | Oy °*° Gy |=7Y
3 . 1 . . m
A . % L4 « where b0j= Z?u (32)
. . . i=
i
% [0 ] Ym " °° 9mn [ " TVm
1
= “Om+1* * * “Om+in
Dual to

Extended Primal Program

Here zy =yy + --- + yy is to be minimized subject to the row equations
and ¥4 20, ..., Ym«n =0, and oy is to be maximized subject to the
column equations and 0y 20, ..., Op+n = 0. Since ajp 20, (3.2) is in
primal feasible form. Notice that a feasible solution exists to the primal
program (3.1) only if min zy = 0.

The primal-dual algorithm can be described as consisting of a finite
sequence of tableaus, starting with (3.2), obtained by successive pivot
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steps. With every tableau is associated a (not necessarily basic) feasible
solution {Xg, X4, ..., Xy} to the dual or column program (3.1). Then,
given any tableau and its associated {xg, Xy, ..., Xm.nf @ primal pivot
choice rule is used on a subtableau consisting of all columns except for those
corresponding to yms+j for which Xp.; >0 (=1, ..., n). If a primal
pivot choice cannot be made the subtableau can only be in (*‘optimal’’)
form (1.6) and one of three cases for the complete tableau must hold:

(a) The distinguished entry has value 0

(b) The distinguished entry has positive value and the distinguished
row some negative entry

(¢) The distinguished entry has positive value and the distinguished
row all nonnegative entries.

I (a) occurs the values exhibited for ym.1, ..., ¥+ in the tableau and
the associated values for {xq, Xy, ..., Xy} Constitute optimal solutions
to the dual programs (3.1). This is easily established since these values
are feasible and they make x; =yy. If (b) occurs then a new feasible
solution to the dual program (3.1) with values {Xg X1, -..» Emen}

is associated with the whole tableau, with X, > xy. Namely,

X

m+j
Xk = Xk + B0y, o= min - J (> 0)
Omej <0 T
3=1,....n) (3.3)

where o) is the value exhibited by the tableau of the variable ok. (This
step can easily be described as a ‘‘partial pivot step’’ in which the
values of the xj are altered by the values of the ok). If (c) occurs then
the minimum value of z, is attained but is positive, implying no feasible
solution to the primal problem (3.1) exists.

In ‘‘geometric language’’ the primal-dual algorithm defines a sequence
of successive neighboring vertices or extreme points of the convex
polyhedron defined by the constraints of the extended primal program
(3.2). It also defines a sequence of feasible points in the dual program
(3.1) space which are not, in general, extreme. In fact the straight line
joining two successive such dual feasible points [defined by (3.3)] usually
lies in the interior of the dual convex polyhedral region (3.1), while the
points themselves (except possibly the first) lie on some face of the
polyhedron. In contrast, the mutual primal-dual simplex method defines a
sequence of successive neighboring points (vertices after feasibility is
achieved) of the convex polyhedron defined by the constraints of the
original primal problem and visits only extreme points. Although there is
no logical basis for comparison, intuition would seem to indicate that the
computational advantage resides with ‘‘sticking to extreme points of the
original problem.’’

Of course, the primary interest of these methods is in their application
to highly ‘‘degenerate’ problems, for example the assignment and trans-
portation problems. The primal-dual algorithm applied to an assignment



26 MATHEMATICAL PROGRAMMING

or transportation problem is the Hungarian method [4] (though it must be
said that it was the ideas of the Hungarian method which led to the de-
velopment of the primal-dual algorithm). Contrary to widely held
beliefs, the Hungarian method (as described in [6]) can be described as a
simplex method in much the same way as the primal-dual algorithm has
been above. In fact, every operation as given in [6] has its simplex
method counterpart. It is hoped (and expected) that the application of the
idea of the mutual primal-dual simplex method to the assignment and
transportation problems will lead to a new computational method which
may better the efficiency of the Hungarian method, for in these

problems the geometric considerations alluded to above appear to be
important. Finally, the application of these ideas to the network flow
algorithms, and particularly the ‘“out of kilter’’ method of Fulkerson [3],
should lead to further insight concerning the relationship between these
specialized algorithms and simplex methods.
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On Cone Functions

Edmund Eisenberg

I. INTRODUCTION

In what follows we shall be concerned with generalizations of the follow-
ing ‘‘feasibility’’ theorem of Fan, Glicksberg, and Hoffman:

Theorem 1: Let K be a convex subset of RP, let fj:K—R,i=1, ...,
m, be convex functions, then one, and only one, of the following conditions
holds:

There is an x in K such that
fik)y <0 forall i=1, ..., m. 1)

There exists a2 ¥ = (yy, ..., ym) € R™ such that

y=0,yj=0 foralli, and

m
2, yifix) =0 forall x € K- (2)
i=1

The concept underlying our discussion is that of ‘‘convexity with respect to
a fixed cone C in R™’’ of a function F:K — R™ (K being a convex subset
of RM). This definition turns out to be a natural extension of the case where
each component of F is convex in the usual sense, the last being essen-
tially the assumption of Theorem 1. One can then generalize Theorem 1
and its variants to a system of ‘‘cone’’ inequalities (Theorems 3 and 4).

The results discussed here can be shown to hold in a more general
framework than that imposed here, e.g., R" and R™ may be replaced by
normed linear spaces satisfying appropriate conditions. However, to be
specific, we limit our discussion to the more restricted situation.

1This research has been partially supported by the Office of Naval Re-
search under Contract Nonr-222(83) with the University of California. Re-
production in whole or in part is permitted for any purpose of the United
States Government.
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O. BASIC DEFINITIONS

For each positive integer k we denote by RX the set of all real
k-tuples x = (xq, ..., Xk); we sometimes write R in place of R'. If K is
a subset of RX we say K is convex providing Ax + (1 —A)x' is in K when-
ever x and x' are bothin K, A isin R,and 0 =A =1, If C is a nonempty
subset of RK we say that C is a (convex) cone providing C is convex and
Ax is in C whenever x is in C and A is non-negative real number. Hence-
forth, we shall use ‘‘cone’’ and ‘‘convex cone’’ interchangeably. Equiva-
lently, C is a cone providing Ax +pux' is in C whenever x and x' are in
C and A and p are both non-negative real numbers. If x and z are in RK,
X=X, ..., XK), Z = (2q, ..., 2k) We write xz' for the inner product of x
and z, i.e.,

k
xzT = 27 XizZi
i=1

Wesay that x <z providing xj =zj forall i =1, ..., k. For any subset
S of RK we define the polar of S to be:

sx=RkN{z]zxT =0 forall xesS}

It is clear that S* is always a closed, convex cone.

Whenever we use topological concepts such as ‘‘open set,”’ ‘“closed
set,’’ etc., it will always be with respect to the usual norm, i.e.,
[Ix]| = 6xT)Y2 We shall use the following fundamental separation theorem,
the proof of which may be found in the literature (cf. [1] or [4]).

Theorem 2: Let K be a convex subset of R", x, a point in R? but x,

notcontained in K. Then there must exist a € R}, o € R, such that a = 0
and

a.XO =
axl =@ forall xeK (3)

If, in addition, K is closed, then we may assume that ax; > a.

II. CONE FUNCTIONS

The fact that the conclusion of Theorem 1 holds does not depend, in the
last analysis, so much on the properties of each of the functions

fy, ..., fiy individually but rather on the way fj are inter-related, that is
the relevant properties are those of the vector valued function
F) = € x), ..., ip&). Specifically, to say that each fj is convex on K

is equivalent to saying that:
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foreachx,z€K, A€R, 0=<x=1, GzA) =0 )
where

G®,2z,A) = FAx + (1 —A)z) —AF &) — (1 = A)F (2) )

One observes that {4) simply states that G{x,z,A} is in R[", the non-negative
orthant of R™, whenever x,z € K and A € [0,1]. It is clear then that a very
natural generalization of (4) is the requirement that G(x,z,A) always be in
some fixed cone C in R™, For functions F satisfying that condition one
would expect an analog of Theorem 1 to hold with “‘fj(x) < 0 all i,”’
replaced by ‘‘F(x) € Interior (C)”’ and ‘‘y; = 0’ replaced by “‘'y € C*.”
This turns out to be the case and is formalized in Theorem 3. Accordingly,
we have:

Definition: Let K be a convex subset of R®. Let C be a cone in R™,
F:K— RM, Wesaythat F is a C-function providing G{x,z,A) € C when-
ever X,z € K, A € [0,1} and G is as in (5).

Let us illustrate the preceding definition. For m =1, the only cones C
in R™M are the origin, closed rays from the origin, and the whole line. In
the first case a C-function is a linear function; in the second case, a
C-function is convex or concave according to whether C is the negative or
positive ray; in the last case, any function F:K — R™ is a C-function. In
general, if C = R™ then every function is a C-function, however Theorem
3 is then of no interest because F(x) is in the interior of C for any x in
RD.

For m =2, the class of C-functions does not provide a great amount of
new information either, primarily because the closed cones in R? are
rather simple; they are all finite cones (i.e., the sum of a finite number of
rays).

In general, whenever C is a finite cone in R™, that is there exists an
mxk matrix A such that C = R™ 1 {y|yA = 0}, C-functions may be
characterized quite simply as follows: let al, ..., aK be the column vec-
tors of A then F:K— R™ is a C-function if, and only if, each of the func-
tions F(x)al, ..., F(x)ak is convex on K. Thus, if C is a finite cone, then
questions concerning C-functions can be formulated in terms of a finite
collection of convex functions, which may, in turn, be accomplished by
reference to Theorem 1 or variants of it.

In case C is not a finite cone (and thus m = 3) the property that F is a
C-function can no longer be stated in terms of convexity of each of a finite
collection of functions. In fact, a way of looking at Theorem 3 in case C is
not a finite cone is that it represents a generalization of Theorem 1 fo a
system with infinitely many inequalities.

IV. OPEN FEASIBILITY

The analog of Theorem 1 for C-functions is:
Theorem 3: Suppose C is a cone in R™ with nonempty interior. Let K



30 MATHEMATICAL PROGRAMMING

be a convex subset of R® and F:K — R™ be a C-function. We conclude
that one, and only one, of the following statements holds:

There is an x such that

x € K and F(x) € Interior (C) (6)

There exists a y € C* such that
y = 0 and F(x)yT =0 forall xeK (7)

Before proving Theorem 3 we require two simple preliminary results:

Lemma 1: Suppose C is a convex cone in R™, y € Interior (C), z € C*,
z # 0. Conclusion: sz <0.

Proof: Suppose y,z are as above and sz = 0. Since y € Interior (C),
there exists a § > 0 such that w € C whenever ||w —y|| =6. Let w be any
such vector, then v =2y —w is also in C because ||v —y}| = ||y —w|| =5.
Now y=3(v+w),vywe C and z € C¥; thus 0 syzT=JwzT +wzT) =0
and wzT = 0. We have just demonstrated that wzT = 0 for all w in some
neighborhood of y, contradicting z = 0.

Lemma 2: Let C be a convex cone in R™, y € Interior (C), z € C,

A €R, A>0. Conclusion: y +z € Interior (C) and Ay € Interior (C).

Proof: Since y is in the interior of C we know there exists 2 6 > 0
such that u € C whenever ||u—y|| =§; however if ||(y +2) —w|| =& then
|ly—w-2)|| =6 and w—z € C. Butthen w =(w—1z) +z € C because C is
a cone. Thus y +z is in the interior of C. For the statement:

Ay € Interior (C) we have the following sequence of implications:
[IAy =wl] =x6 => ||y —Aw|| <6 =>rlwe C => w € C, and thus Ay is
in the interior of C.

Proof of Theorem 3: The proof that (6) and (7) cannot hold simulta-
neously follows from Lemma 1 because if (6) and (7) both hold then y € C*,
x € K, F(x) € Interior (C) and from Lemma 1 we have F(x)yT < 0, contra-
dicting (7). To show that either (6) or (7) holds, let us assume that (6) is
false and consider the set:

Y = {y| there exist x € K and 7 € Int(C) with y =§ — Fx)}

The fact that (6) is false is equivalent to saying that y = 0 is not a member
of Y. We intend to show that Y is convex, then apply Theorem 2 to Y,
knowing it does not contain the origin, and thus obtain a y satisfying (7).
Suppose we have y;,y, € Y, i.e., there exist Y1,¥2 € Int(C), and x,,x, € K
with yk = §x —F,), k =1, 2. Nowif A € (0, 1) we wish to show
YEAy ¥ (L=Qys € Y. Let u=Ag; + (1 =My, v =FQx, + (I ~\)x,)
“AF&) — (1 “A)F{x,) then y=u +v— FQx; + (1 —A)x,). However,
¥1 € Interior (C) and (1 —A)¥y € C thus, by Lemma 2, u € Int(C). Also,
because F is a C-function, v € C and thus by Lemma 1 we haveu + v
€ Interior (C), showing that Y is convex.

Next, we know that Y is convex and Yo =0 is not an element of Y.
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Applying Theorem 2 we know that there exists an a e R®,a= 0, a € R
such that:

0=q
alf ~F&)IT =a all yeIt(C), xe K (8)

From Lemma 2 we know that Ay € Interior (C) whenever A > 0 and
y € Interior (C), thus we may infer from (8) that:

yaT =0 all § € Int(C) ©)

Now, by assumption there is a 5‘. € Interior (C), so thatif ye C,A =0
then by Lemma 2 Ay + y, € Interior (C). We see then, using (9), that

ravaT +50T <0 alla=zo0,yecC

Thus, yaT = 0 whenever y € C and consequently a € C*. Furthermore,
for each A > 0 we have by Lemma 2 A§, € Interior (C), thus from (8} we
have

AyaT ~F&)aT =a =<0 alla>0,xeK

whence it follows that F(x)a'r = 0 for all x € K and of course a = 0; thus
y-= a satisfies all the conditions in (7).

As an immediate corollary of Theorem 3 one obtains Theorem 1 by
letting C be the nonpositive orthant and Fx) = (f; x), ..., fm &)).

V. CLOSED FEASIBILITY

The statement of Theorem 1, and similarly of Theorem 3, is in many
respects inadequate. Frequently, one encounters situations where it is