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In this timely work of unusual interest
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matical Programming held at The Uni-
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Introduction

The growth of mathematical programming since its birth in 1947 has

been marked and stimulated by a distinguished series of Symposia at

which the major part of the research workers in the field have presented

their work. The quality of these meetings has been ensured by a certain

continuity of participants and supporters. The first such meeting was held

in Chicago in 1949, sponsored by The RAND Corporation; selected papers
from it appeared as ''Activity Analysis of Production and Allocation",

(1951), edited by Tjalling C. Koopmans. The first meeting to bear the title

"Symposium" was held in Washington, D. C. in 1951 under the sponsorship

of the National Bureau of Standards and the U. S. Air Force; abstracts and

selected papers were published in "Symposium on Linear Inequalities and

Programming" by the Air Force (1952). The "Second Symposium in Linear

Programming" was held in Washington in 1955, under the same sponsor-

ship as the first; its Proceedings, edited by Henry A. Antosiewicz, were

published by the sponsors in 1955 The third symposium, "A Symposium on

Mathematical Programming: Linear Programming and Recent Extensions"

was held in Santa Monica, California in 1959; a report, "The RAND Sym-
posium on Mathematical Programming", was published by The RAND Cor-

poration in 1960.
wjijwjv OJTY fwn } PUBLIC LIBRARY

The fourth symposium, on wnich inis voiureT*^6rra;^ras*held in

Chicago, Illinois, under the joint sponsorship of the Association for Com-

puting Machinery, the Graduate School of Business of the University of

Chicago, and The RAND Corporation, on June 18-22, 1962. The organizers
of the present conference were drawn from the membership of SIGMAP,
the Special Interest Group for Mathematical Programming in the Associa-

tion for Computing Machinery. SIGMAP is devoted to furthering all aspects

of mathematical programming.

Forty-three papers were presented at the Symposium, to an audience of

more than 240 persons, from five continents. Papers were given in each of

eight areas of mathematical programming. In four of these, especially in-

vited survey papers gave the audience a broad view of the methods and

problems of that area. The surveys are among the twenty-three papers ap-

pearing in full in these Proceedings. The remaining papers, whose appear-
ance in full here has been sacrificed to the requirement that this volume be

of reasonable size and to some authors' commitments to publish elsewhere,

are given as abstracts. Full copies of such papers can generally be obtained



irom me autnors. Papers 14, 16, and 38 were edited by the authors from

transcriptions made at the Symposium.
The first nine papers deal with the general theory of mathematical pro-

gramming. The survey paper by Tucker, which begins this group, presents

the theory of linear programming in its most powerful current form. The

eight papers which follow deal with various aspects of the theory of both

linear and nonlinear programming.
Papers 10 through 13 deal with nonlinear programming with "nonlin-

ear" used in the accepted sense as referring to *

'reasonably smooth*' non-

linear objective functions and constraints. The first paper of these, by

Wolfe, is a survey of most of the proposals which have been made for sol-

ving such problems.

Papers 14 through 18 are devoted to stochastic programming mathe-
matical programming problems whose data may be random variables. Such

problems require careful statement if meaningful results are to be obtained.

The first paper of these, by Madansky, surveys the outstanding problems of

this field.

Papers 19 through 22 are concerned with computational procedures for

very large linear programming problems. Such problems always have some
regularity of structure that appropriately designed algorithms can take ad-

vantage of. The papers of this group constitute four different methods of

attack on aspects of that regularity.

Papers 23 through 26 are concerned more intimately with the computa-
tional processes of mathematical programming, examining in detail, 'ways
in which variations of the simplex algorithm the most effective current

tool for linear programming can be made even more effective.

Papers 27 through 33 lie in the area of applications of mathematical pro-

gramming. Since entire series of books are being written on this subject,

these papers can no more than sample the area by showing some of the

latest uses of currently available methods.

Papers 34 through 37 are devoted to integer programming problems.
The first of these is Gomory's 1958 paper, now almost a classic, which es-

tablished the subject of integer programming. It has been substituted for

his paper presented at the Symposium because, still in great demand, it has

been out of print for some time.

The last group of papers, 38 through 43, are concerned with problems of

network flow, a special class of linear programming problem which, be-
cause of its rich structure, has given rise to an extensive and elegant

theory. The first paper, by Fulkerson, surveys this area, reviewing its

main tools and its outstanding problems.
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Comb/nafor/a/ Theory Underlying Linear Programst

Albert W. Tucker

The simplex method of G. B. Dantzig is much more than the basic

computational tool of linear programming. It is also a combinatorial

algorithm which provides constructive means of establishing fundamental

theorems, not only in programming, but also in cognate areas, such as
Farkas' theorem for linear inequalities and von Neumann's minimax
theorem for matrix games. In an effort to discover the underlying theo-

retical structure, the author has been led to develop a combinatorial linear

algebra which employs pivot steps (Gauss-Jordan elimination) and inter-

changes of rows and of columns to generate finite equivalence-classes of

"dual linear systems.'* Such a class embraces in palpable form all the

information needed to treat many theoretical and practical matters cus-

tomarily handled by more elaborate linear algebra. Over an ordered field

this algebra seems to provide a unified and simplified means of dealing
with linear inequalities, linear programs, matrix games, etc.

DUAL LINEAR SYSTEMS.

The schema

(Yz)

(X
1

) .

QII in

(A) (1)

E U
'rr

is a succinct joint representation of two systems of linear equations. One

tThis paper has been prepared with the assistance of Drs. Michel L.

Balinski and Robert R. Singleton and with the support of the Office of

Naval Research, Logistics Branch.
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system arises by forming the inner products of the vector X1 with the

columns of the matrix A, and setting each inner product equal to the cor-

responding component of X2
. This leads to a system of n linear equations

in the m + n variables xj:

. . . + xm aml =xm+1

Xi aln + . . . + xm amn = xm+n (2)

The second system arises by forming the inner products of Y2 with the

rows of A, and setting each equal to the corresponding component of -Y 1
.

This yields a system of m linear equations in the m + n variables y^:

= -vm (3)

In matrix notation these systems are written

X 4A = X2 and AY2 = -Y 1

where X1
, X2 are row vectors and Y 1

, Y2 are column vectors.

The two systems are dual, in the sense that any solution X of the

x-system is orthogonal to any solution Y of the y-system. This is because

XY=x iyi + ...

= X 1 Y 1 + X2 Y2 = X 1

(-AY2
)
+ (X

1
A) Y2 =

(4)

For solutions X and Y which are nonnegative (i.e., x^ ^ and yj ^0,

i
=

1, . . . , m + n), the orthogonality XY =
yields a strong condition on

individual components: namely, xi
= or/and yi

= for i
=

1, . . . , m + n.

This is because the inner product XY is then a sum of nonnegative terms

XiYi, which sum equals zero only if each individual term x
i y i equals zero.

By a natural generalization of ordinary analytic geometry, solutions X
and Y may be regarded as (m + n) -tuples of coordinates specifying points
in an (m + n) -dimensional space. Then the set of all solutions X and the

set of all solutions Y constitute two complementary orthogonal linear sub-

spaces in the (m + n)-space. The system X2 = X*A specifies an m-dimen-
sional linear subspace because the m components of X 1 can be taken

arbitrarily and then the components of X2 are determined. Similarly,
AY2 = -Y1

specifies an n-dimensional linear subspace because the n com-
ponents of Y2 can be taken arbitrarily and then the components of Y 1 are
determined. The two linear subspaces are orthogonal because of (4); they
are complementary because the sum of their dimensions is m + n, the

dimension of the containing space. Thus, each linear subspace determines
the other.
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X 2

n -
subspoce

X''X 2
(-A

T

m- subspace

X 2 =X ] A

Fig. 1

The complementary-orthogonal nature of the two subspaces is indicated

schematically in Figure 1, where the matrix equation Y1 = -AY2 for the

n-dimensional subspace has been rewritten as X 1 = X2
(-A

T
) by transposing

and then substituting X1
, X2

for Y1T, Y2T.

In plane analytic geometry two orthogonal straight lines through the

origin have equations y = ax and x =
-ay, where a = y/x is the usual slope

of the first line and -a = x/y is the reciprocal slope of the second line.

By analogy, the matrix A can be regarded as the "X2
iX^slope" of the

linear subspace specified by X2 = X1 A and the negative-transpose matrix
-AT as the "X1 :X2

-slope" of the complementary-orthogonal linear sub-

space specified by X 1 = X2
(-A

T
).

COMBINATORIAL EQUIVALENCE.

We will now see that the process of Gauss-Jordan elimination can be

applied simultaneously to the x-system (2) and the y-system (3) to pass
from one pair of dual linear systems to a second pair of dual linear sys-
tems which are equivalent in the sense that the second systems have the

same solutions as the first systems. Suitably organized, this use of Gauss-

Jordan elimination leads to the concept of "combinatorial equivalence,"
so called because each equivalence class contains just a finite number of

members .

If a coefficient ay ^0 in schema (1), the two equations in which it

enters,

aiiym+ ainym+n =
(5)

can be solved for x^ and
ym+j to Sive

ajj _ i _ _
Xl

ay
* ' * + Xm +3

ay
' ' ' Xm

ay
"
Xl

yi

ain
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These can be used to eliminate xj and ym +j
from the remaining equations,

but of course xm+j
and yi are introduced into the left sides. When this is

done, the new coefficient for xn in equation k of (2) is

ahj ai
* k

which is also the coefficient for y m+k in equation h of (3).

We are thus led to a transformation of the schema (1), called an

"elementary pivot transformation" (or briefly, "pivot step"), which may
be represented as follows:

Vm+j Vi

=-yi x
m+j of i

-yee"
1

=
Xj

The pivot a is any element ay *0, /? is any other entry aik in the pivot's
row, y is any other entry ay in the pivot's column, and <5 is the entry a^
in0's column and y's row. In the margins X[ and xm+ j

have been inter-

changed, as have y t
and ym +j.

In the interchange of the y's the minus
sign stays with the row. All other marginal variables remain unchanged.

In addition to pivot steps we admit two other types of elementary trans-
formations on a schema: interchange of any two rows and interchange of

any two columns. These are trivial modifications corresponding merely to
the interchange of two equations in one system and of corresponding terms
in the other system. Clearly the solutions of the two systems are not

changed except for the order in which the variables appear.
Note that the schema (1) imposes an ordered partition

(1, . . ., m|m+l, . . ., m+n)

of the subscripts of the variables. An interchange of two rows permutes
two of the subscripts 1, . . . , m; an interchange of two columns permutes
two of the subscripts m+1, . . .

, m+n; a pivot step permutes one subscript
from 1, . . . , m with one from m+1, . . . , m+n.

A finite succession of elementary transformations of the three types
results in a transformed partition

(1, .. ., m|m+l, ..., m+n)

and transformed schema
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(A)

= X
m+t

7 m+n

ln

(6)

wherejr denotes the permutation of m+n objects which carries (1, . . . , m+n)
into (1, . . ., m+n).

The new dual linear systems

A = and

are equivalent respectively to the original dual linear systems

X*A =X2 and AY2 = -Y1

in that they have the same solutions subject to the understanding that the

correspondence between the solutions of one system and those of the

equivalent system is a one-to-one correspondence established by the

permutation TT.

Define any two schemata

Y1

to be combinatorially equivalent if the dual linear systems XJ-A
= X& and

AY|.
=

YTJ- have the same solutions as the dual linear systems X*A = X2

and AY2 = -Y 1
, where X^ = [Xk X^l arises from X = [X

1
, X2

] by a

permutation :r of the m+n component variables and Y^ arises similarly
from Y. Then, as seen above, a finite succession of elementary transforma-

tions of the three types leads from a schema (1) to a combinatorially

equivalent schema (6). Conversely, it can be shown that it is always pos-
sible to find a finite succession of elementary transformations of the three

types leading from a schema to any combinatorially equivalent schema.
Table 1 shows a numerical example of combinatorially equivalent

schemata, generated in this case by a single cycle of pivot steps. The set

shown is essentially complete, in the sense that all other schemata com-

binatorially equivalent to these may be found by permutations only. The

pivots are starred to permit the reader to check the transformations, the
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Table 1

A SMALL EXAMPLE OF COMBINATORIALLY EQUIVALENT DUAL
LINEAR SYSTEMS

- X3
- X4

- X5

describes the following pair of dual systems of linear equations:

- 2x2
= x

3

3Xi + 5x2
= x4

4Xi + 9x 2
= x5

3y4 + 4y5
= -

yi

5y4
+ 9y5

= -y2 .

From the schema (1) the following combmaterially equivalent schemata are
formed by successivel pivot steps, employing the starred entries as pivots.

(2) (3)

l

x4

-3/5
1/5

-
6/5

2/5

-7/5
9/5*

= X5

(5)

(6)

(8)

= x l

= X4

= X5

-9/4 -8/4 -7/4
1/4 3/4*

(7)

X4

(9)

ys

5/6 -3/6 -7/6
2/6 8/6*

: x
l

= X2 X5

X 5

=
X!

= X2
= X4

X4 9/7 -

-5/7
4/7

3/7

8/7

6/7

These nine schemata, along with those formed by row and column permu
tations, constitute the finite equivalence class (108 in all).
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Table 2

A UNIMODULAR EXAMPLE OF COMBINATORIALLY EQUIVALENT
DUAL LINEAR SYSTEMS

X2

X
5

X2

X4

(124:356)

y3 ys ye

" X
3
" X

5
" X6

~ x
l
~ X

3
- X

5

(123:456)

Y4

= X 3
= X4

= X6
=

Xg
= X4

=
Xg

= X2
= X6

- x
l
~ X2

" X5

The full equivalence class contains 468 (= 13 x 36) schemata, i.e. the

above 13 and all their row and/or column permutations.
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fractional entries being left unreduced as a futher aid. The complete

equivalence class consists of all row and column permutations of these

nine representations, or

9x 2!x 3! 12 = 108

in all. The maximum possible number for a 2 x 3 matrix is (2 + 3) !
= 120.

However, because of the zero entry in schema (1), one representation and

its 12 permutations are lacking.

Table 2 shows a second example which is convenient for computation,

since its entries and all subdeterminants that can be formed from it have

the value 1, 1 or 0, so that denominators do not occur. The reader may
check that different sequences of elementary transformations may result

in the same schema. Thus

and

(123:456) (124:356) (134:256)

(123:456) (143:256) (134:256).

DUAL LINEAR PROGRAMS.

We will now see that the algebra of dual linear systems, pivot steps,
combinatorial equivalence, etc., developed above in homogeneous form (for

an arbitrary number -field), can be employed in nonhomogeneous form (for

an ordered number-field, such as real numbers or rational numbers) to

treat dual linear programs and the Dantzig simplex method.
Let it be required to

minimize UB + d constrained by U = 0, UA = C, and

maximize CV + d constrained by AV ^ B, V =

We reformulate these dual linear programs in the following schema:

(Y
z

)

ym+1

(X
1

)

(gmox,x's>0) (=X
2

)

(7)
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where aoo
= -d, a

j

=
-Cj, a^

=
-bi/ 1

= -UB -
d,

77

= -CV -
d, X1 = U,

X2 = UA - C, Y1 = AV -
B, Y2 = V. The instructions minimize and max-

imize are interchanged because maximizing and minimizing 77
are

equivalent to minimizing UB + d =
|
and maximizing CV + d =

-77* Note

that the schema (7) differs from schema (1) in just two respects: the x's

and y's are required to be nonnegative, and non-homogeneity is introduced

by the border column with marginal labels 1 and and by the border row
with marginal labels 1 and

77.

The Dantzig simplex algorithm consists of a non-repeating sequence of

pivot steps, using pivots not in the border row and column. Hence it must
end in some terminal schema after a finite number of steps, since it re-

mains within a finite (combinatorial equivalence) class of schemata. The
four possible terminal schemata are given in the following theorem -t

Theorem:

By a finite succession of pivot feteps, excluding pivots in the border

row and column, it is always possible to pass to a (combinatorially

equivalent) terminal schema

(Y*)
IT

(-T) min
, y s > 0)

~. 1 1
* * '-..

""*

'm+1

=-XT

(8)

max, x's 0)

which has one of the following four forms :

tA compact inductive proof (to be published elsewhere) has recently

been devised by the author along lines suggested by the paper of R. E.

Gomory and M. L. Balinski presented at this Symposium, and by
G. B. Dantzig's inductive proof [see IBM Journal 4, 1960, pp. 505-506]

which assumes B = 0.
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(ID

1

(III) 1 ... y

1

ffl e e

e =-

Here +, , O, 0, and -
symbolize quantities which are positive, non-

negative, zero, nonpositive, negative, respectively. Inside the four boxes

above, they represent the actual nature of the entries a in the terminal

schema (7). At the left and top margins, they represent values of xf, . . . ,

xj and y^Ti, . . . , y^T^ which we will assign to determine the correspond-

ing values of x^JTT, . . . , x^^ and yf, . . . , y^ at the bottom and right.

Terminal form (I) is the "successful" one, yielding optimal solutions

tojDoth programs. As indicated in the border row and column of (I),

-B ^ and -C = 0. If the marginal variables at the left and top are set

equal zero, nonnegative x's and y's are determined at the bottom and right,

while and
77
take on the common value a00 . Such feasible solutions with

|
=

TJ
are necessarily optimal. _

In terminal form (II) the border row -C is again nonnegative, but there

is another row (shown above as the last
JTOW)

which is nonnegative and has

a positive entry in the border column -B. The x-program is feasible but

its objective function 4 is not bounded above. To see this take

xf
- =

XrrTT
= and any xm =

to determine nonnegative x's at the bottom, and

| =a00< +XiSL
amO, ~amO> 0.

Then + = as x^ * + oo, so no maximum exists. At the same time the

y-program is infeasible, because y^J < for any assignment of non-

negative y's at the top.



COMBINATORIAL THEORY UNDERLYING LINEAR PROGRAMS 11

Terminal form (IE) is just the "negative transpose" of form (EQ. The
x-program is now infeasible and the y-program is feasible but with ob-

jective 77
not founded below.

In terminal form (IV) there is a nonnegative row (shown as the last row)
with positive entry in the border column and a nonpositive column {shown
as the last column) with negative entry in the border row. Any assignment
of nonnegative x's at the left and nonnegative y's at the top makes
xm^n < and vm < - Hence neither program is feasible.

ANALYTIC GEOMETRY OF DUAL LINEAR PROGRAMS.

The constraint equations of the x-program in schema (7) specify a linear

manifold

P:X2 =X 1A- C

in m+n -space. P is an m-dimensional linear manifold which can be ob-
tained by translating the m-dimensional linear subspace X2 = X*A parallel
to itself until it intercepts "the X2-axis" (i.e., the n-subspace X1 = 0) at

the point X1 = 0, X2 = -C. Similarly the constraint equations of the

y-program in schema (7) specify a linear manifold

QiX1 1/-ATAT )
+ B1

in the (m + n) -space, where this matrix equation is obtained from
yi = _AY2 + B by transposing and then substituting X1

, X2
for Y4T

, Y2T .

Q is an n-dimensional linear manifold which can be obtained by
translating the n-dimensional linear subspace X1 = X2

(~AT ) parallel to

itself until it intercepts "the X-axis" (i.e., the m-subspace X2 = 0) at the

point X1 = BT, X2 = 0. Hence P and Q are linear manifolds of comple-
mentary dimensions, m and n, which are orthogonal because they are

parallel, respectively, to the linear subspaces X2 = X*A and X1 = X2
(~AT )

that were seen to be orthogonal in our earlier discussion of (homogeneous)
dual linear systems. Thus, in summary, P and Q are complementary
orthogonal linear manifolds of dimensions m and n.

With respect to the partitioning (x t , . . . , xm |xm+i, . . . , xm+n) of the

m+n coordinates into X1 and X2
, indicated schematically in Fig. 2, P has

the matrix A as "X2 rX1
-slope" and X1 = 0, X2 = -C as "X2

-intercept,
"

while Q has the negative transpose matrix -AT as "X1
:X2

-slope" and

X1 = BT, X2 = as ^-intercept." Passing from

to
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m-subspace

X
2
=X

1

A

n-manifold Q

= X
2
(-A

T
)+B

T

n-subspace

= X
2
(-A

T
)

Fig. 2

by any succession of elementary transformations, excluding pivots in the

border row and column, we get another "
slope -intercept" representation,

Xj-
= - C and - = x(-AT )

+ BT (9)

of the same linear manifolds P and Q, because combinatorial equivalence
leaves invariant the solution sets specifying P and Q. With respect to the

new partitioning (xf, . . . , Xf^ | x^^, . . . , Xfj^j) of the m+n coordinates

into Xj- and X&, P has the matrix A as "x:Xjr-slope" and xj-
=

0, x = -C
as "X2

-intercept," while Q has the negative-transpose matrix -AT as

"XJr:X$-slope" and xjr
= B T, X$-

= as "X^-intercept."
In terms of this analytic geometry, the aim of the Dantzig simplex

method is to pass, if possible, from the initial "slope-intercept" represen-
tation of P and Q, based on schema (7), to a terminal "slope -intercept"

epresentation (9), based on schema (8), in which the intercepts -C and

BT will both be nonnegative. In terminal form (I) this aim is achieved. In

terminal form (II) we fail because Q does not intersect the "nonnegative
(m+n)-orthant" R, consisting of all points X 0, and so cannot have a

nonnegative intercept at all; in terminal form (III) P does not intersect

the orthant R; and in terminal form (IV) neither P nor Q intersects the

orthant R.
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HOMOGENEOUS LINEAR PROGRAMS.

The schema

13

(xM

( max, x's >

(Y
2

Vm+n
(y's > 0)

(10)

obtained by deleting the border row of schema (7), presents a mixed form
of dual linear systems, one homogeneous and one not. Here the x-program,
to maximize J

= -X*B (or minimize X*B = -) constrained by X1
=; 0,

X*A =X2 ^ 0, is a "homogeneous linear program" with homogeneous
objective-function and homogeneous constraints; and the y-program, to

solve B - AY2 = Y 1 i 0, Y2 i 0, is merely a nonhomogeneous "feasibility

program."
In this case the terminal schema (8) with border row deleted has one of

just two possible forms:

(I) 1 (II) 1

=-e c

-e

Form I shows that max = since ^ for any nonnegative x's and

|=0 trivially for all x's zero, and that the y-program has a feasible

solution obtained by taking yinTT
= =

yf^TH
=

- Form II shows that J is

unbounded above since +< for xf = =
x^li = and x^ +<, and

that the y-program is infeasible since yfjj
< for any assignment of non-

negative values to yj^, . . . , yfjj^.
These two mutually exclusive terminal forms provide simple construc-

tive means of establishing transposition-duality theorems such as Farkas'

theorem for linear inequalities. In particular, these two alternative forms

can be used to prove the author's lemma [Ref. 2, page 5] from which

classical and sharpened transposition-duality theorems follow [ in Ref. 2].
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MULTIPLICITY OF SOLUTIONS.

We now look again at form (I) of the terminal schema (8) the "suc-
cessful" form, in which the dual linear programs possess optimal solu-

tions. If none of the m+n border entries (excluding a o) is zero, then the

terminal schema has the form

= max = -f s +

In this case both programs have unique optimal solutions.

On the other hand, if at least one of the m+n border entries is zero,
then at least one of the dual programs has a multiplicity of solutions. In

this event, it can be shown that a further succession of elementary
transformations (excluding border entries as pivots) leads to a normal
form of one of the following three types:

= max

=max = = +

= max = - +
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La a block of "positive-headed" columns each column has its first entry

positive or_ a later entry positive which is preceded by zero entries only.

In a block of "negative-headed" rows each row has its first entry negative
or a later entry negative which is preceded by zero entries only.

In normal form (b), with its p + 1 by n block of '

'positive-headed"

columns, the x-program has apt -dimensional closed convex set of optimal

solutions and the y-program has a unique optimal solution. The symbols
+ for the marginal x's indicate an optimal solution in the (relative) interior

of the JLJ
-dimensional convex set. The existence of such an optimal solution

can be inferred from the block of *

'positive-headed" columns.

In normal form (c), with its m by v + 1 block of "negative-headed"

rows, the x-program has a unique optimal solution and the y-program has

a y-dimensional closed convex set of optimal solutions: The symbols +

and for the marginal y's at top and y's at right indicate an optimal
solution in the (relative) interior of the ^-dimensional convex set. The

existence of such an optimal solution can be inferred from the block of

"negative-headed" columns.

In normal form (d), with its pi
+ 1 by n - v block of "positive-headed"

columns and its m -
p, by v + 1 block of "negative-headed" rows, the

x-program has a
\JL
-dimensional closed convex set of optimal solutions and

the y-program has a ^-dimensional closed convex set of optimal solutions.

Marginal symbols indicate (relative) interior solutions, as previously

described.

The four forms (a), (b), (c), (d) exhaust the possibilities for optimal

solutions in the "successful" case. For a specific pair of dual linear

programs having optimal solutions, only one of the four forms can occur.

Note the full "complementary slackness" in the four forms (a), (b), (c),

(d). Opposite each positive or zero component of the optimal x-solution

indicated there is, without exception, a zero or positive component of the

optimal y-solution indicated.
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A Mutual Primal-Dual Simplex Method

Michel L Balinski

Ralph E. Gomory

1. SIMPLEX METHODS

A pair of dual linear programs
Primal (Row) Program Dual (Column) Program
Minimize Maximize

yo
=

aoo +
aiiym+1 + . . . + a0n ym+n XQ

=
aoo + Xla10

+

constrained by constrained by

-yi = a10
+ aliym+ i

+ + aln ym+n S
Xl g

+n =

is conveniently exhibited in the tableau

'Vm-fn

- - - + xmam0

(1.1)

xm
+ xmaml ^

+ xmamn S

G oo

mO

Primal Program

= yo

(1.2)

=
"Vrr

= X

Dual Program

In the dual linear programs (1.1) or their tableau (1.2) y , y lt . . . , ym ,

tn basic variables of the primal program are expressed in terms of
vm+i Ym+n' the nonbasic variables; similarly, x , xm+1 , . . . , xm+n ,

the basic variables of the dual program, are expressed in terms of
x

i *m , the nonbasic variables.
A pivot step on (1.1) or (1.2) with pivot entry ay *0 (i,j *0) is a

17
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Gauss-Jordan or complete elimination step which simultaneously solves
the i

th (row) equation of the primal for ym+j
and the jth (column) equation

of the dual for xj, and uses these equations to eliminate Ym+j and x^ from
the remaining row and column equations at the cost of introducing y^ and
xm+j- The vm+j an(J x

i thereby become basic variables and y^ and xm+ ;

nonbasic variables. The pivot step with pivot entry a.
-
ay *0 takes the

tableau

= x m +
j

(1.3)

into the tableau

-ya

(1.4)

the other marginal variables and labels remaining in the same positions.
Successive tableaus obtained by pivot steps simply reexpress the original
pair of dual linear programs through different partitions into sets of basic
and nonbasic variables. Any such tableau has the form

1 V/n+1'

X 1 (1.5)
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where the primed variables are a rearrangement of the original variables
and the primed entries are determined by the succession of preceding pivot
steps. Basic solutions to both programs are associated with any tableau
(1.5); they obtain by setting the nonbasic variable equal to zero, thereby
determining values for the basic variables y{

= -aJ , . . . , y'm = -amo ,

Yo
=

aoo =xo xm+i , xm+n
feasible primal solution obtains; if

5n . If -aJ ^ 0, . . . , -amo a basic

wi = 0, . . . , a^n ^ a basic feasible
dual solution obtains. If both primal and dual basic feasible solutions ob-
tain, then they constitute optimal solutions to the programs.

A simplex method for solving a pair of dual linear programs is a finite

sequence of tableaus exhibiting equivalent pairs of dual linear programs
obtained by successive pivot steps, with prescribed pivot entry choice
rules, which obtain a tableau exhibiting optimal solutions to both programs,
or the noncompatibility of the primal and/or dual constraints. Letting
denote nonnegative entries, and nonpositive entries, these cases can be
exhibited in tableau form:

(optimal solutions) (1-6)

(primal or row con-
straints noncom-

patible) (1.7)

(dual or column
constraints non-

compatible) (1.8)
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A primal (dual) simplex method is a simplex method beginning with a

tableau exhibiting a primal (dual) basic feasible solution with pivot steps

which maintain primal (dual) feasibility in each succeeding tableau. A
primal (dual) pivot choice rule is as follows:

If a tableau (1.5) does not exhibit optimal solutions to both programs
there must exist a

a^j
< for some j (a a{ > for some i). Either

(a) every entry in the column of
aoj

< is nonpositive (every entry

in the row of a! > is nonnegative) or (b) there exist positive

(negative) entries, (a) The tableau exhibits the noncompatibility of

the dual constrains (of the primal constraints) .

(b) Choose as pivot entry a^j
>

(aj^
< 0) satisfying

ako = max a
so /

a
ol = max a

os\

a
kj

"

4j > a
sj \*U ais <

a{8/

If an initial tableau does not exhibit a primal (dual) basic feasible solution

some special device is introduced enabling consideration of an allied

problem whose solution provides a primal (dual) basic feasible solution

for the original problem. The original Dantzig method [1] is a primal

simplex method; the Lemke paper [5] describes a dual simplex method.

The proofs for termination of a simplex method in a finite number of

pivot steps use the fact that any tableau is uniquely determined by its

associated nonbasic variables (of primal or of dual programs) and that

there exist at most Pm^)
55

(

n
n
m

) possible sets of nonbasic variables.

Then any pivot steps assuring that no tableau is ever repeated guarantees
finiteness. The finiteness proof for a primal (dual) simplex method in

which no "degeneracies" occur, i.e., in which a[
< 0, i *0,

(a^j
> 0, j *0)

is clear, for each pivot step strictly decreases (increases) the value of

aoo and thereby assigns an order to the sequence of tableaus. If, however,

degeneracy occurs, some form of lexicographic order must be introduced

to avoid the possibility of cycling.

2. A MUTUAL PRIMAL-DUAL SIMPLEX METHOD

We describe here a simplex method for directly solving any pair of

dual linear programs (1.1) or (1.2). The method specifies pivot choices for

any tableau whether feasible or not, and degenerate or not, which lead to a

tableau exhibiting a primal feasible solution (or, primal infeasibility) and

then to a tableau exhibiting optimal solutions to both programs (or, primal

objective unboundedness and dual infeasibility). This is accomplished by

using a primal simplex pivot choice rule until primal degeneracies occur;

then a dual simplex pivot choice rule is used on a subtableau corresponding
to primal zero valued basic variables until the degeneracies are resolved.

If "sub-dual degeneracies" are or come to be present in the subtableau, a

primal simplex pivot choice rule is used on a sub-subtableau until these

degeneracies are resolved, and so forth. The hierarchy of tableau, sub-
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tableau, sub-subtableau, etc., is used to establish a hierarchy of goals
which are associated with every tableau. Every pivot step leads to a

strict "improvement" in one of the goals, with goals higher in the

hierarchy remaining unaffected. This serves to order the sequence of

tableaus, thus assuring termination of the method in a finite number of

pivot steps.

Every tableau (1.5) in the sequence of tableaus obtained by successive

pivot steps has associated with it a hierarchy of numbered subtableaus each
with a distinguished entry (and hence row and column). Odd numbered sub-
tableaus k have the form

("primal or row
feasible form") (2.1)

with o<k) ^ 1, the number of rows, and -(k), the value of the distinguished

entry. Even numbered subtableaus k have the form

("dual or col-

umn feasible

form") (2.2)

with a(k) = 1, the number of columns, and (k), the value of the distin-

guished entry.

The hierarchy of subtableaus associated with a tableau is initiated as

follows. Subtableau 1 consists of all columns and all rows of (1.1) with

a^ = 0, with distinguished entry some a^o > (if all a^ = and the entire

tableau is in primal feasible form, the entire tableau is taken as "sub-

tableau 1"). Given any tableau suppose a subtableau k in primal (dual)

feasible form has been defined with distinguished row R and column C.

If C (if R) contains zeros and R is not all nonnegative (C is not all non-

positive), a subtableau k T l in dual (primal) feasible form is defined as

consisting of rows (columns) corresponding to the zeros of C (of R),

columns (rows) corresponding to the nonnegative entries of R (non-

positive entries of C), with distinguished entry some negative entry of R
(some positive entry of C). Schematically,
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R
A

'FT
o r

c< o

1

where the whole diagram represents a primal feasible form subtableau k,

and the subdiagram enclosed in solid lines a dual feasible form subtableau

k + 1.

Associate with any tableau and its subtableaus a hierarchy of goals with

goal k (k
- 1, 2, . . . ) being to pivot to obtain a new tableau whose new sub-

tableau k (if it exists) has a(k) larger, or, has a(k) unchanged but /3{k)

larger; while o<i), 0(i) for i < k remain unchanged.

Suppose, now, that we have reached the pth tableau with entries
ag

,

along with its well-defined hierarchy of subtableaus and their associated

values
(a^(k), p (k. We describe the choice of pivot entry to obtain the

(p + i)-th tableau and the hierarchy of subtableaus associated with the

(p + l)~th tableau.

Rules

Suppose the subtableau with highest index K is in primal (dual) feasible

form.

(a) Apply the primal (dual) simplex pivot choice rule (see above) to the

subtableau K. Maintain same hierarchy of subtableaus, except K.

Redefine K and any subsequent ones if possible.

If rule (a) is not applicable then one of the two possibilities (b)

or (c) must hold.

(b)

[II
I

*

* :

\

V
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Choose as pivot entry the distinguished entry. Maintain same
hierarchy of subtableaus, except K 1 and K. Redefine K -

1 and

any subsequent ones if possible.

(0

- **

4

,-*! jjj j j

_J

Choose as pivot entry the negative (positive) entry in the distin-

guished row (column) whose column is nonpositive (whose row is

nonnegative) . Maintain same hierarchy of subtableaus except K.

Redefine K and any subsequent ones if possible.

Finally , if ever the choice of pivot entry is an element of the

first row (some
ajj*.)

or of the first column (some aP), stop.

If the process is stopped because the choice of pivot entry is a^,
solutions to both programs obtain; if it is stopped because the choice

of pivot entry is some a?
Q

, the primal or row program has no feasible

solution; if it is stopped because the choice of pivot entry is some
ajj,

the primal program is in feasible form but the dual or column program
has no feasible solution.

If the pivot entry is chosen according to (a) either there is no K^h sub-

tableau or ap+i(K) ^ap (K) and if ap .i(K)
= ap (K) then ^p+1 (K) >0p (K)

(due to the absence of "Kth degeneracies"); while ap+i(i)
= ap (i) and

p+1 (i)
=

p (i) for i < K since the pivot entry has zeros in rows and

columns that could have an effect on these values . If the pivot is chosen

according to (b) either there is no (K
-

l)th subtableau or

G?p+i (K
-

1) > ap (K
~

1) [see subtableau in (b)J; while again, and for the

same reason, o?p+i(i) =a p (i) and p+i(i)
=

p tt) for i < K - 1. Finally, if

the pivot is chosen according to (c), either there is no K**1 subtableau or

Q?p+i(K)
> o?p (K) [see subtableau in (c)], while again o?p+1 (i)

= orp (i) and

Pp+iW
=

p (i) f r i < K. Therefore, this choice of pivot entry and as-

signment of subtableaus always leads to strict improvement in some goal,

thereby ordering the sequence of tableaus obtained in successive pivot

steps. As noted above, this suffices to assure termination of the method
in a finite number of pivot steps .

A. W. Tucker has pointed out that the inductive counterpart of this

construction leads to a particularly simple and appealing proof of ter-

mination. The induction is made on the number m-ha of primal (or dual)

variables.
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3. SOME REMARKS

It is perhaps of interest to review the primal-dual algorithm of

Dantzig, Ford, and Fulkerson [2] to enable comparison with the algorithm

proposed here. By our definition the primal-dual algorithm is a simplex

method applied not directly to the problem as stated but to an "extended-

problem and with rather special pivot choice rules.

The problem to be solved and its dual as posed in [2] is

Primal (Row) Program

Minimize

yo
'
a^yim-i + * ' * +

constrained by

ami
=

Maximize

KO
=

constrained by

+ + xmamo

' " + xmaml

(3 . 1)

+n = <

where it is assumed that the dual program has a feasible solution (if not,

the extra variable ym *n+i = and constraint ym+i
+ . . . + ym+n + ym+n-i

=
BTO^.O with am+ i, arbitrarily large can be added to the primal pro-

gram, thus assuring an easily found initial feasible solution to the new

dual problem). An "extended" problem and its dual is then defined which

can be exhibited in the tableau

1 Y
Extended Primal Program

L._l_ *m-l-nmT1 mTn

boo

Sm

x Z

where b : (3.2)

\
Dual to

Extended Primal Program

Here z = y t
+ + ym is to be minimized subject to the row equations

and yi = 0, . . . , ym+n = > and cr is to be maximized subject to the

column equations and o^ = 0, . . . , o^n = 0. Since aj
~ 0, (3.2) is in

primal feasible form. Notice that a feasible solution exists to the primal

program (3.1) only if min z = 0.

The primal-dual algorithm can be described as consisting of a finite

sequence of tableaus, starting with (3.2), obtained by successive pivot
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steps. With every tableau is associated a (not necessarily basic) feasible

solution {x , Xj, ... xm +n} to the dual or column program (3.1). Then,

given any tableau and its associated {x , x 4 , . . . , xm+n} a primal pivot

choice rule is used on a subtableau consisting of all columns except for those

corresponding to ym+j * r which xm +j
>

(j
=

1, . . . , n). If a primal

pivot choice cannot be made the subtableau can only be in ("optimal")
form (1.6) and one of three cases for the complete tableau must hold:

(a) The distinguished entry has value

(b) The distinguished entry has positive value and the distinguished

row some negative entry

(c) The distinguished entry has positive value and the distinguished

row all nonnegative entries.

If (a) occurs the values exhibited for ym *i, . . . , ym +n in tne tableau and

the associated values for {x , x lf
. . ., xm +n} constitute optimal solutions

to the dual programs (3.1). This is easily established since these values

are feasible and they make x$ = y . If (b) occurs then a new feasible

solution to the dual program (3.1) with values {x~ , x lf . . . , xm +n }

is associated with the whole tableau, with x > x . Namely,

_
xk ~ xk + **0k

= min

(j=l, ...,n) (3.3)

where o^ is the value exhibited by the tableau of the variable ok- (This

step can easily be described as a ''partial pivot step" in which the

values of the xk are altered by the values of the ok>- If (c) occurs then

the minimum value of z is attained but is positive, implying no feasible

solution to the primal problem (3.1) exists.

In "geometric language" the primal -dual algorithm defines a sequence

of successive neighboring vertices or extreme points of the convex

polyhedron defined by the constraints of the extended primal program
(3.2). It also defines a sequence of feasible points in the dual program

(3.1) space which are not, in general, extreme. In fact the straight line

joining two successive such dual feasible points [defined by (3.3)] usually

lies in the interior of the dual convex polyhedral region (3.1), while the

points themselves (except possibly the first) lie on some face of the

polyhedron. In contrast, the mutual primal-dual simplex method defines a

sequence of successive neighboring points (vertices after feasibility is

achieved) of the convex polyhedron defined by the constraints of the

original primal problem and visits only extreme points. Although there is

no logical basis for comparison, intuition would seem to indicate that the

computational advantage resides with "sticking to extreme points of the

original problem."
Of course, the primary interest of these methods is in their application

to highly "degenerate" problems, for example the assignment and trans-

portation problems. The primal-dual algorithm applied to an assignment
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or transportation problem is the Hungarian method [4] (though it must be

said that it was the ideas of the Hungarian method which led to the de-

velopment of the primal-dual algorithm). Contrary to widely held

beliefs, the Hungarian method (as described in [6]) can be described as a

simplex method in much the same way as the primal-dual algorithm has

been above. In fact, every operation as given in [6] has its simplex
method counterpart. It is hoped (and expected) that the application of the

idea of the mutual primal-dual simplex method to the assignment and

transportation problems will lead to a new computational method which

may better the efficiency of the Hungarian method, for in these

problems the geometric considerations alluded to above appear to be

important. Finally, the application of these ideas to the network flow

algorithms, and particularly the "out of kilter" method of Fulkerson [3],

should lead to further insight concerning the relationship between these

specialized algorithms and simplex methods.
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On Cone Functfons

Edmund Eisenberg

I. INTRODUCTION

In what follows we shall be concerned with generalizations of the follow-

ing "feasibility" theorem of Fan, Glicksberg, and Hoffman:

Theorem 1: Let K be a convex subset of Rn , let fj : K -* R, i
-

1, ,

m, be convex functions, then one, and only one, of the following conditions

holds:

There is an x in K such that

fi(x)
< for all i

-
1, ... m. (1)

There exists a y =
<ylf . . . , ym ) Rm such that

y yt o, yj ^ for all i, and

yAW - for all x e K- (2}

The concept underlying our discussion is that of "convexity with respect to

a fixed cone C in Rm " of a function F :K -* Rm (K being a convex subset

of Rn). This definition turns out to be a natural extension of the case where
each component of F is convex in the usual sense, the last being essen-

tially the assumption of Theorem 1. One can then generalize Theorem 1

and its variants to a system of "cone" inequalities (Theorems 3 and 4).

The results discussed here can be shown to hold in a more general
framework than that imposed here, e.g., Rn and Rm may be replaced by
normed linear spaces satisfying appropriate conditions , However, to be

specific, we limit our discussion to the more restricted situation.

tThis research has been partially supported by the Office of Naval Re-
search under Contract Nonr-222(83) with the University of California. Re-

production in whole or in part is permitted for any purpose of the United

States Government.
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H. BASIC DEFINITIONS

For each positive integer k we denote by Rk the set of all real

k-tuples x =
(Xf, . . . , xfc); we sometimes write R in place of R1

. If K is

a subset of Rk we sky K is convex providing Xx + (1 -X)x
T

is in K when-

ever x and x7 are both in K, X is in R, and ^ A, ^ 1. IfC is a nonempty
subset of Rk we say that C is a (convex) cone providing C is convex and

Xx is in C whenever x is in C and X is non-negative real number. Hence-

forth, we shall use "cone" and "convex cone" interchangeably. Equiva-

lently, C is a cone providing Xx +
JLIX'

is in C whenever x and XT are in

C and X and^ are both non-negative real numbers. If x and z are in Rk,

x =
(xj, . . . , xfc), z =

(zj, . . . , zjj) we write XZT for the inner product of x

and z, i.e.,

XZ
T =

1=1

We say that x ^ z providing x{ ^ z{ for all i = 1, . . . , k. For any subset
S of Rk we define the polar of S to be:

S* = Rk fl {z |
ZXT ^ for all x S>

It is clear that S* is always a closed, convex cone.

Whenever we use topological concepts such as "open set," "closed
set," etc., it will always be with respect to the usual norm, i.e.,

||x||
=

fcx
1
*)

1/2
. We shall use the following fundamental separation theorem,

the proof of which may be found in the literature (cf. [1] or [4]).

Theorem 2: Let K be a convex subset of Rn, x a point in Rn but x
not contained in K, Then there must exist a e Rn, a e R, such that a ^
and

axT 2= QJ for all x K
(3)

If, in addition, K is closed, then we may assume that axj > a.

m, CONE FUNCTIONS

The fact that the conclusion of Theorem 1 holds does not depend, in the
last analysis, so much on the properties of each of the functions
f
i

- - fm individually but rather on the way fj are inter-related, that is
the relevant properties are those of the vector valued function
F(x) =

tfj(x), . . , , fm (x)). Specifically, to say that each fj is convex on K
is equivalent to saying that:
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for each x,z K, X R, ^ X = 1, G(x,z,X) s (4)

where

G(x,z,X) = F(Xx + (1 -X)z) -XF(x) -
(1 -X)F(z) (5)

One observes that (4) simply states that G(x,z,X) is in Rm , the non-Degative
orthant ofRm , whenever x,z e K and X [0,1]. It is clear then that a very
natural generalization of (4) is the requirement that G(x,z,X) always be in

some fixed cone C in Rm . For functions F satisfying that condition one

would expect an analog of Theorem 1 to hold with "fi(x)
< all i/'

replaced by
4i
F(x) Interior (C)" and "y{

> 0" replaced by "y C*."

This turns out to be the case and is formalized in Theorem 3. Accordingly,
we have:

Definition: Let K be a convex subset of Rn . Let C be a cone in Rm ,

F:K Rm . Wesfcythat F is a C -function providing G(x,z,X) C when-

ever x,z e K, X [0,1] and G is as in (5).

Let us illustrate the preceding definition. For m =
1, the only cones C

in Rm are the origin, closed rays from the origin, and the whole line. In

the first case a C -function is a linear function; in the second case, a

C -function is convex or concave according to whether C is the negative or

positive ray; in the last case, any function F : K -* Rm is a C -function. In

general, if C = Rm then every function is a C -function, however Theorem
3 is then of no interest because F(x) is in the interior of C for any x in

Rn .

For m =
2, the class of C -functions does not provide a great amount of

new information either, primarily because the closed cones in R2 are

rather simple; they are all finite cones (i.e., the sum of a finite number of

rays).

In general, whenever C is a finite cone in Rm , that is there exists an

mxk matrix A such that C = Rm {y | yA ^ 0}, C -functions may be

characterized quite simply as follows: let a1
, . . . , a^ be the column vec-

tors of A then F :K -* Rm is a C -function if, and only if, each of the func-

tions F(x)a*, . . . , F(x)a
k is convex on K. Thus, if C is a finite cone, then

questions concerning C-functions can be formulated in terms of a finite

collection of convex functions, which may, in turn, be accomplished by
reference to Theorem 1 or variants of it.

In case C is not a finite cone (and thus m ^ 3) the property that F is a

C -function can no longer be stated in terms of convexity of each of a finite

collection of functions. In fact, a way of looking at Theorem 3 in case C is

not a finite cone is that it represents a generalization of Theorem 1 to a

system with infinitely many inequalities.

IV. OPEN FEASIBILITY

The analog of Theorem 1 for C-functions is:

Theorem 3: Suppose C is a cone in Rm with nonempty interior. Let K
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be a convex subset of Rn and F :K -* Rm be a C -function. We conclude

that one, and only one, of the following statements holds:

There is an x such that

x K and F(x) e Interior (C) (6)

There exists a y C* such that

y * and F(x)y
T ^ for all x e K (7)

Before proving Theorem 3 we require two simple preliminary results:

Lemma 1: Suppose C is a convex cone in Rm , y Interior (C), z C*,
z ^ 0. Conclusion: yz

T < 0.

Proof: Suppose y,z are as above and yz
T ^ 0. Since y e Interior (C),

there exists a 5 > such that w C whenever ||w
-

y|| ^6. Let w be any
such vector, then v = 2y

- w is also in C because ||v -y||
=

||y
-

w||
< 6.

Now y = \ (v + w), v,w C and z C*; thus ^ yz
T = J(vz

T + WZT )
<

and WZT = 0. We have just demonstrated that WZT = for all w in some
neighborhood of y, contradicting z * 0.

Lemma 2; Let C be a convex cone in Rm, y Interior (C), z C,
X R, X > 0. Conclusion: y + z Interior (C) and Xy Interior (C).

Proof: Since y is in the interior of C we know there exists a 6 >

such that u C whenever ||u -y|| ^ 6; however if
|[ (y + z)

-
w|| ^6 then

||y
-

(w
-

z)||
< 6 and w - z C. Butthen w = (w-z)+zeC because C is

a cone. Thus y + z is in the interior of C. For the statement:

Xy Interior (C) we have the following sequence of implications:
||Xy

-
w|| ^ X6 => ||y -X^wll < 6 => X^w e C => w e C, and thus Xy is

in the interior of C.

Proof of Theorem 3: The proof that (6) and (7) cannot hold simulta-
neously follows from Lemma 1 because if (6) and (7) both hold then y e C*,
x K, Ffx) Interior (C) and from Lemma 1 we have F(x)y

T < 0, contra-
dicting (7). To show that either (6) or (7) holds, let us assume that (6) is
false and consider the set:

Y =
{y |

there exist x K and y Int(C) with y = y
-

F(x)}

The fact that (6) is false is equivalent to saying that y = is not a member
of Y. We intend to show that Y is convex, then apply Theorem 2 to Y,
knowing it does not contain the origin, and thus obtain a y satisfying (7).
Suppose we have yi,yx Y, i.e., there exist ylfyj e Int(C), and Xl ,x2 K
with yfc

=
Jfc

-
Ffc2), k =

1, 2. Now if X (0, 1) we wish to show
y - Ay t

+ a -X)y Y. Let u =Xyt
+ (1 -X)y2 , v =

Ffcxj +
(1 -X)x2)

XFfct )
- a -X)Ffc2) then y = u + v - FvXXj + a ~X)x2). However,

?! e Interior <C) and (1 -X)y2 C thus, by Lemma 2, u Int(C). Also,
because F is a C-function, v e C and thus by Lemma 1 we have u + v
Interior (C), showing that Y is convex.
Next, we know that Y is convex and y = is not an element of Y
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Applying Theorem 2 we know that there exists an a Rm , a * 0, a R
such that:

^a

at?
-

F(x)]
T ^ of all y Int(C), x e K (8)

From Lemma 2 we know that Xy Interior (C) whenever X > and

y c Interior (C), thus we may infer from (8) that:

ya
T < all y Int(C) (9)

Now, by assumption there is a y Interior (C), so that if y C, X ^
then by Lemma 2 Xy + y Interior (C). We see then, using (9), that

Xya
T + y^a

T <Q all X & 0, y C

Thus, ya
T ^ whenever y C and consequently a C*. Furthermore,

for each X > we have by Lemma 2 Xy Interior (C), thus from {8} we
have

Xy0a
T -

F(x)a
T < a ^ all X > 0, x K

whence it follows that Ffc)a
T ^ for all x K and of course a * 0; thus

y-= a satisfies all the conditions in (7).

As an immediate corollary of Theorem 3 one obtains Theorem 1 by

letting C be the nonpositive orthant and F(x) =
(^(x), . . . , fmW).

V. CLOSED FEASIBILITY

The statement of Theorem 1, and similarly of Theorem 3, is in many
respects inadequate. Frequently, one encounters situations where it is re-

quired, within the framework of Theorem 1 as an example, to find an

x K with fj(x)
< for all i, rather than the strict inequalities of (1). It

would seem reasonable, given that K is closed, to replace (1) by weak

inequalities and correspondingly replace (2) by a statement of the form:

"there is a y =
(yt , . . . , yn) Rm such that y ^ and s[2i yifi&O >

for all x K," and expect a true statement. This turns out to be indeed

the case when K is a linear variety and all the fj are linear. In general,
with the fi being convex, it may happen that there is no x K such that

fi(x)
< for all i, and yet there is no y Rm with Siyi^M > for all

x K. This is illustrated by: m =
2, n =

2, K =
Rj, fi^Xg) = x2

-
1,

f
2 (x1 ,x2 )

= 1 -X
1
x2 (x1 +x2)^(f2 (0)

=
0). It is readily checked that f

t
and f2

are convex; furthermore if f
t (x)

^ and x in K then either x^Cxj * x2)"
1

< x2
^ 1 or x2

=
0, in each case we have f2 (x)

> 0. However, if there exist

ylsy2
^ such that yt^Cx) +y2f2 (x)

> for all x in K, i.e.,
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1) + y2 Fl
- > a11 xl>*2 *

then, letting x2
=

0, x^
=

1, we get y2
> y^ On the other hand, letting x

i

become arbitrarily large, we must have: yj(x2 -1) + y2 (l -x2)
> for all

x2
^ 0, and thus y^

= y2 , a contradiction.

It thus follows, in particular, that the rephrasing of Theorem 3 in terms
of weak inequalities, i.e., replacing "Interior (C)" in (6) and "F(x)y

T

> 0" by "F(x)y
T > 0" in (7), need not always hold. We can show, however,

that under certain regularity assumptions on C, K and F the statement in

question does hold:

Theorem 4: Let C, K and F be as in Theorem 3, let

H =
{y |

there exist x in K and y in C with y = y
-

F(x)}

then H is a convex set. Furthermore, if H is also closed and the

statement:

There is an x such that

x is in K and F(x) is in C (10)

is false, then the statement:

There is a y e C* such that

F(x)y
T > for all x in K

is a true statement.

Proof: As in the proof of Theorem 3, the convexity of H is a direct

consequence of the assumptions on C, K and F. The fact that (10) is
false is equivalent to saying that y = is not in H, thus if H is closed
and convex then, from Theorem 2, it follows that there must exist an
a e Rm and a R such that:

ay
T < a < ay

T =
0, all y H (12)

i.e.,

ay
T -

F(x)a
T < a < 0, all y e C, x K (13)

However, c C and also Xy C whenever y e C and \ ^ and thus we
infer from (13) that:

ay
T ^0 all y c C

~
F(x)a

T < a < all x K
(14)



ON CONE FUNCTIONS 33

and (14) states that the vector a is precisely the one required for (11).

Q.E.D.
Note: We have stated Theorem 4 in slightly different form than

Theorem 3; however it is quite obvious that (10) and (11) cannot be simul-

taneously true.

It is worth noting that the condition that H be closed though certainly
sufficient in order that (11) hold in case (10) is false, is by no means nec-

essary. For one thing, as is clear from the proof of Theorem 4, we can

actually get a positive lower bound for F(x)yT on K (namely the number
a) when H is closed; however, consider the case m = n =

1, K =
R+,

C = R_ and F(x) =
(1 + X)"

1
. Then F is a C -function (because F is convex)

but x e K, F(x) C has no solution because F(x) > for all x K. Now
C* = R+ and in fact any y C* will satisfy (11). Nevertheless, no matter
what y C* we take, F(x)yT has no positive lower bound as x ranges over
K (by letting x become arbitrarily large we can make F(x) arbitrarily
close to zero). Thus, in this case, H is not closed. Other situations where
the closedness of H is not necessary arise when K itself is not closed.

In a future note it is intended to relate to cone functions the following
characterization of differentable convex functions: Suppose K is an open
convex set in Rn, f : K * R has all second partial derivatives then f is

convex if, and only if, the quadratic form
[fjj(x)]

is positive-semi -Kiefinite

for each x in K.
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THE MAXIMUM TRANSFORM

R. E. Bellman and W. Karusk

ABSTRACT

k6* tne niaximum (additive) convolution of two functions f and g_ on n

nonnegative real variables x =
(xj, x2 , . . . , xn ) be defined by (f g)(x)

= max [f(u> + g(v)], u ^ Q, v : 0, x ^0. This operation arises in optimiza-
u-Lv=x

tion problems and prompts the consideration of transformations Tf having
the "disassociative" property (*)T{f g)

= Tf + Tg.
Let the maximum transform Mf -

<p be defined by <p(|)
= sup [ (,x)

x>0
+ f(x>], where <|,x)

= 2 ^Xj. Then (1) M has property (*); (2) Mf = Mf,
i=l

where f is the concave increasing "cap" of f; (3) if Mf =
<p, then M^ = F.

[For closely related results, see W. Fenchel,
"Convex Cones, Sets, and

Functions," Lecture notes (1953), Department of Mathematics, Princeton

University; there, <p is called the conjugate of f, for f concave.] Let T be
an arbitrary transformation with property (*). Then (i) Tf =

Tf; (ii) T
= A.M for some transformation A. such that A.(<pj

+
(p 2)

=
\tp l

+ A.<^2 . This
shows that M is a "best" transformation T. Similar results apply to the

product convolution (F G)(x) = max [F(u) x G(v)].
u--v=x

The paper also includes a discussion of applications and of certain ex-

tensions of the theory.
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REPRESENTATIONS FOR THE GENERALIZED INVERSE"
OF MATRICES PARTITIONED AS A -

[U,V]

R. E. Cline

ABSTRACT

The generalized inverse of a matrix has been used by L. D. Pyle in the

development of an "interior gradient projection method" for solving linear

programming problems. It is of interest, therefore, to have techniques for

determining the generalized inverse of a matrix.
Let A designate any m by n matrix with complex elements. Partition

A arbitrarily as A = [U,V] where the submatrices U and V have k and
n - k columns, respectively, 1< k = n - 1. Designating the generalized
inverse of any matrix, X, as X* and the conjugate transpose as X* then
Theorem 1

Let C =
(I
- UIT)V

and

K = p +
(i
- c+c)v*u4

*trva - c+or1

Then

[u*

- irvc* - irv(i
- c +

c)Kv*ir*u*a -
vc+)

c
+ + a - e +QKv*ir*u+a -

Proceeding in the opposite direction, suppose that A =
[U,V] and that A+

is known. Partition A+
as A* = where G has the dimensions of U*

and H has the dimensions of V*. Then
Theorem 2

U* = G[I + V(I
-
HV)*H]{I

-
[H

-
(I
- HV)

x a -
HV)*Hr[H

-
(I
-
HV)(I -

HV)*H]}

V* -
H[I

-
U(I

-
GU)*G]{I

-
[G

-
(I
~ GU)

x (I
- GUTG]

+
[G

-
(I
- GUMI -

GUTG]}
Using Theorems 1 and 2 and various corollaries derived therefrom, it

is possible to combine the interior gradient projection method and the

simplex method into a technique for solving linear programming problems.
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On Ummoc/ular Sefs of Vectors

Isidore Heller

The definition of the concept of a unimodular set (Section 2) is followed

by a discussion of some of its properties {Sections 3-5) and a study of

inter-relations between classes of maximal unimodular sets (Sections 6-9).
The main result is a theorem on the union of two unimodular sets

{Section 9). The paper constitutes an introductory presentation on the

subject.

1. INTKODUCTION

In order to relate the definition to some familiar concept we recall that

given a group G of transformations on a set (say a vectorspace) V, and

given a subset S of V, it is frequently of interest to study the structure of

the subgroup H of G which is defined as the set of all those transforma-
tions that leave S invariant, that is

H = {TG|T(S)CS} (1.1)

where T(S) is a short notation for the image of S under T. Conversely,
given a subgroup H of G one may be interested in those subsets S of V
for which H is the associated subgroup defined by (1.1).

It is a slight generalization of (1.1) if, instead of the subgroup H, we
consider the subset HT

of all those elements of G which map a specified
subset S of S into S, that is

H' ={TG|T(S )CS} (1.2)

where HT
will in general no longer be a group.

Conversely, having specified an S for each S of V, and given a sub-

group H of G, one may ask: for which subsets S of V is the [by definition

(1.2)] associated H? contained in H. This question, for a special choice of

S , G and H, leads to the definition of unimodular sets.

tThis work was sponsored in part by the RAND Corporation and in part

by the National Science Foundation,
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2. DEFINITION

For the purpose of this paper V is assumed to be a vector space of

finite dimension over the field of real numbers. The G denotes the group

of nonsingular linear transformations on V, U the unimodular subgroup of

G, that is, the group of transformations whose determinants have absolute

value 1. Without further loss of generality, the consideration is restricted

to those subsets of V which are not contained in a proper subspace of V;

then each such subset S contains some basis B of V.

Definition: InV,a subset S containing some basis B of V is unimodular

iff every nonsingular linear transformation that maps B into S is a uni-

modular transformation. Or, briefly:

S is unimodular iff, for some basis B C S,

{T G|T(B)CS}CU. (2.1)

This definition does not depend on the particular choice of B in S.

That is, if B and C are two bases in S,

Hi ={T G| T(B) C S}, H2 ={T G| T(C) C S}

and H
t
C U, then H2 C U. To see this, let T(C) C S and T^B) = C. Then

T! U, and from T(C) = TT
t (B) C S it follows that TT

t U. Hence, T
= TT

tTf U. This proves the asserted independence from the choice of

basis, and thereby the equivalence of definition (2.1) to the formally more
restrictive definition:

S is unimodular iff {T e G| T(B) C S for some basis

BCS} CU (2.2)

or, in other words:

S is unimodular iff every two bases in S are related by a
unimodular transformation. (2.3)

3. PROPERTIES

The motivation for the study of the concept will become clear from its

properties. We shall discuss a few which are characteristic, that is, con-
stitute necessary and sufficient conditions for a set S to be unimodular
and can therefore serve as alternative definitions.

Let B =
{bj, ba, . . . , bn} be a basis in S, and

d = E x
i
b

i (3.1)

be the representation of a vector d of S in terms of B.
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If
Xj

* 0, replacement of
bj

in B by d yields a new basis D in S. If

T is a linear transformation mapping B onto D, the matrix f of T with

respect to the basis B is a permutation matrix except for the column of

the j
th unit vector which is replaced by the sequence of the A.. Therefore,

the determinant of T and hence of T equals \j.
If S is unimodular, then T is a unimodular transformation, and hence

Aj
must equal 1. Since

Xj
was assumed * but otherwise arbitrary, we

have for unimodular S the property that in (3.1) \i {0, 1, -l} for
i
=

1, 2, . . . , n and for every pair d, B in S.

Conversely, if a set S has that property, a linear transformation T
satisfying T(B) = D will certainly have determinant 1 and hence be uni-

modular whenever the two bases B and D of S coincide in all but one
vector (and trivially so when they coincide in all). If B and D have less

or no vectors in common, it is readily seen that appropriate successive

replacement of vectors in B by vectors of D leads to a sequence of bases
B =

BO, Bj, B2 , . . . , Bjt
= D, where every two consecutive ones differ in

only one vector. Hence, T can be represented as a product of unimodular
transformations T =

Tfc . - - T2Tt , where T^B^) =
BI (i

-
1, 2, . . . f k).

Therefore, T is unimodular.

The two statements combine to this:

S is unimodular iff, for every basis B C S, and every d S,

the coordinates of d with respect to B equal 0, 1, or -1. (3.2)

Considering a fixed basis in S, it becomes immediate from (3,2) that a

unimodular set in Vn contains at most 3n vectors. It should also be noted
that weakening the conditions of (3.2) to read "some" instead of "every"
in either one of the two occurrences would render them insufficient. How-
ever, the following weaker form still holds:

S is unimodular iff, for every basis B C S and every d S,

the coordinates of d with respect to B are integers. (3.3)

To see that the condition of (3.3) implies the condition of (3.2), assume
that the latter is not satisfied; that is, that for some basis B and element
d of S, the representation (3.1) contains some Xj

* 0, 1, -1. But then re-

placement of bj in B by d yields a new basis in which b[ has the

representation

where the coefficient of d is not an integer. Hence, the condition of (3.3)

is not satisfied either.

For later reference we mention some other formulations of (3.3). If

J(S) denotes the integral span of S, that is, the set of all linear combinations
of elements of S with integral coefficients, then (3.3) reads
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S is unimodular iff, for every basis B of S, S C J(B). (3.4)

Further, since J(B) D S<^> J(B) D J(S), and since B C S implies J(B)

C J(S), we have

S isunimodulariff, for every basis B in S, J(B) = J(S). (3.5)

Each of the last two statements can be taken as the definition of unimodular

sets S in a free abelian group of rank n, if B denotes a set of n linearly

independent elements in S (and hence in general not necessarily a basis for

the entire group).

If S is in Euclidean Rn , it is convenient to interpret a basis B, in some

arrangement of its vectors,jis matrix, B, and to represent a linear trans-

formation T by its matrix T. Then the relation T(B) = D implies

T B = D P where P is an adequately chosen permutation matrix. Since the

determinant |P| =1, T isunimodulariff |BJ
=

|D| . Hence, by (2.3),

S isunimodulariff the determinants associated with bases in

S have the same absolute value. (3.6)

In Rn the set S itself can, of course, for some arrangement of its

vectors as columns, be interpreted as matrix. However, care must be

taken not to confuse the concept of a unimodular set with the (classical)

concept of a unimodular transformation. To enforce the necessary distinc-

tion in cases where the set S takes visually the form of a matrix A, we

shall have to specify whether we are concerned with A as representative

of a set of vectors or as matrix of a linear transformation, whenever this

is not clear from the context. In order to avoid too lengthy terminology,

we propose that

In conjunction with a matrix, "set" shall mean "set of

columns" (3.7)

so that when D is a matrix, expressions like "the set D is unimodular,"
"D is a unimodular set," will have a clear meaning.

To obtain still another property of unimodular sets, we consider the

system of linear equations

Ax^b (3.8)

where A is a matrix of n rows and of rank n, and hence the number of

columns k ^ n.

Solving (3.8) can be interpreted as finding a representation of b in

terms of the set A. If the columns of A entering a particular representa-
tion with nonzero coefficients are linearly independent, then b appears
represented in terms of some basis B of A, and the solution is called
"basic."
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The existence of an integral solution is equivalent to b J(A). If the

set A is unimodular and b J(A), then (3.5) asserts b J(B) for every
basis B in A, that is, all basic solutions are integral. Conversely, if for

every b J(A) all basic solutions are integral, that is, b J(B) for every
B in A, then J(A) =

J(B) for every B in A, and, by (3.5), A is a unimodu-
lar set. Hence, we have

The set A is unimodular iff the system Ax = b has the property
that all its basic solutions are integral whenever b is such that

an integral solution exists, that is, for every b J(A). (3.9)

Properties (3.2) and (3.9) suggest the role of the concept in applications.

Heuristically, the concept actually arose from these properties; (3.9) has

to do with the existence of integral-valued solutions to systems of linear

equations, matrix games and linear programs; (3.2) relates to the possi-

bility of simplified computational algorithms for the solution of such

systems: it states that the unimodular property amounts to the absence of

division in those iterative computational algorithms where each step in-

volves transition from one basis to another by the exchange of a vector in

the basis.

4. GENERAL DEFINITION

The definition (2.1) was restricted to those sets S in Vn which contain

a basis of Vn . If S in Vn is of dimension k < n, the restriction in (2.1)

is circumvented by considering S in its linear span L(S) which is a Vfc.

Then the definition (2.1) reads:

In Vn a set S of dimension k ^ n is unimodular iff, for a given
subset Bfc of k linearly independent vectors of S, every
nonsingular linear transformation on the subspace V^

=
L(S),

which maps B^ into S is a unimodular transformation on V^. (4.1)

This definition obviously includes (2.1) as the special case k = n.

Of the statements in Sections 2 and 3, all but one remain true for k < n
if "transformation" is taken to mean "transformation on L(S)," [hence,
in particular, U is taken to denote the group of unimodular transformations
on L(S)], and "basis" is taken to mean "basis of L(S)," that is, a maximal
set of linearly independent vectors in S. The excepted statement is (3.6),

which, for the general case k ^ n, will receive a more direct formulation
in (4.3) and (4.4) below. For this purpose, we first note:

If a linear transformation T on Vn preserves the dimension of

S, then S is unimodular iff T{5) is unimodular. (4.2)

Proof. The restriction of T to Vfc
= L(S), as isomorphism between Vk
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and Wfc
= L(T(S)), preserves linear relations both ways. Hence, (3.2)

implies (4.2).

If now A is a matrix of rank k, A& =
{a^, a,^,

. . . , a^ } is a set of k

independent rows of A and T is the orthogonal projection on the linear

span of the set of unitvectors {ej | aj e A^}, then (4.2) yields

If A is of rank k and Afc is a submatrix consisting of k linearly

independent rows of A, then A is a unimodularsetiff A& is a

unimodular set. (4.3)

Application of (3.6) to Afc of (4.3) yields

If A is of rank k, then the set A is unimodular iff in each set

Afc of k rows in A, the nonvanishing minors of order k have

the same absolute value. (4.4)

It should be noted that this value may vary with the choice of A^. Applica-
tion of (4.4) to A and its transpose AT

suggests:

If A is of rank k, then the sets A and AT are both unimodular

iff all nonvanishing minors of order k have the same absolute

value. (4.5)

Proof. To see that the condition is necessary, let M
t , M2 be nonsingular

minors of order k, Rj and C i the set of rows and the set of columns of A
which contain M

t
. Then the minor P common to Rj and C% is nonsingular,

since the k by k coefficient matrix D representing C^ in terms of C 2 ,

that is, satisfying C 2D = C
t , also satisfies PD = M

4
. If the sets A and AT

are both unimodular, then by (4.4) ||P|| =||M1 |1
and ||P|| =||M2||.

Of methodological interest for subsequent investigations is

If S is unimodular, every subset of S is unimodular. (4.6)

Proof. Let S be of dimension k, R a subset of dimension r ^ k, and
d e R represented in terms of a basis B in R by d =

A.^ + \2l>2
+ + Xrbr .

Obviously d has the same representation in a basis of S which contains B.
If S is unimodular, the \i satisfy (3.2) and hence R is unimodular.

As a statement on matrices, (4.6), in conjunction with (4.3) and (4.4),
reads: Let A be a matrix of rank k and let C, a submatrix consisting of
columns of A, have rank r. If the nonvanishing minors of order k in some
fixed set Afc of k linearly independent rows of A have the same absolute
value, then, in each set C r of r rows of C, the nonvanishing minors of
order r have the same absolute value. It should be noted that the conclu-
sion is not generally true for Ar instead of Cr . Hence, Ar need not be a
unimodular set when the set A is unimodular.
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5. TOTALLY UNIMODULAR SETS

Let S be a set of dimension n in Vn+k- If n linearly independent
vectors in S are chosen as basis for a coordinate system in L(S), then S

appears represented by a set S in Rn and S contains the unit vectors of

Rn . Since the transition from L<S) = Vn to Rn is an isomorphism, it is

obvious that S is unimodular iff S is unimodular. Hence, the study of uni-

modular sets reduces to the study of those unimodular sets in Rn which
contain the unit vectors of Rn (and hence, in particular, are of dimension

n). Such a set, viewed as matrix (for some arrangement of its vectors), is

of the form A =
[In | D] where In denotes the identity matrix of order n.

A =
[In | D] is a unimodular set iff every nonvanishing minor

in D (in A) has absolute value 1. (5.1)

Proof, Sufficiency is obvious. Necessity follows from (3.6) and the ob-
servation that the k columns of A which contain a given minor of order k
can be completed to a basis by columns of In .

Originally the connotation ikunimodular " was used by A. J. Hoffman and
J. B. Kruskal [2] to characterize sets satisfying the condition of (5.1), In

the context of our definition (2.1) it now becomes desirable to distinguish
the special character of these sets. Following a suggestion of C. Berge
and A. J. Hoffman, we define

In Rn , the set A is totalty unimodular iffevery nonvanishing
minor in A has absolute value 1. (5.2)

The following two statements are obvious:

If A is a matrix and AT
its transpose, then the set A' is totally

unimodular iff the set A is totally unimodular. (5.3)

In R*1 the set A is unimodular iff there exists a nonsingular

linear transformation T such that T(A) is a totally

unimodular set. (5.4)

6. CLASSES OF MAXIMAL UNIMODULAR SETS

For brevity of exposition we return again to the practice adopted in

Section 2: for a given Vn consideration shall be restricted to sets of

dimension n.

Since subsets of a unimodular set are unimodular, the question as to

which sets are unimodular reduces to the question as to which are the

maximal unimodular sets. Clearly, a maximal unimodular set contains the

nullvector and with each vector also its negative.

Further, since nonsingular linear transformations preserve the uni-

modular and maximality property of a set, two sets related by such trans-
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formation can be considered as equivalent, thus leading, for each dimen-

sion n, to a collection of equivalence classes of maximal unimodular sets.

For a given dimension the number of distinct classes is finite, as is

immediate from (3.2).

One particular class, which we shall term "Class I," is well known. A
member of Class I is, if we disregard the nullvector, a set D of the form

D =
{ai -aj} (i * j; i,j

=
1, 2, . . . , n+1) (6.1)

where the aj are n+1 affine independent vectors, that is

M = =>xi
=

ft
=

1> 2, . . . , n+1) (6.2)

i=l 1=1

Geometrically D can be interpreted as the set of edges of an n-simplex
in affine space (each edge taken in both orientations).

In Rn a member D of Class I which contains the unit vectors can be

viewed graphtheoretically as the set of paths in an oriented tree of n+1

vertices, if a path is represented by an incidence column which charac-

terizes the edges of the tree that are contained in the path.

Major facts on Class I are the following :

(i) A unimodular set of dimension n belongs to Class I iff it

consists of n(n+l) vectors (not counting the nullvector).

(ii) A maximal unimodular set of dimension n which is not in Class

I consists of less than n(n+l) vectors; such sets exist iff

ns=4. (6.3)

For proofs and further details see [3] and [4]. For another graph-
theoretical interpretation and related facts see [2], [5] and [6]; for related

concepts [7].

While the preceding sections dealt with properties of an individual uni-

modular set, the consideration now turns to properties that inter-relate

distinct classes of unimodular sets; it is the objective of the remaining
sections to obtain a fundamental property of this nature, namely the theorem
of Section 9. This is achieved by a series of auxiliary statements concern-

ing the representation of vectors in terms of certain bases (Section 7), the

structure of the intersection of two unimodular sets (Section 8) and finally
a comparison of classes of unimodular sets (Section 9).

7. REPRESENTATION

Notation,

When A fl B =
0, we shall write A + B instead of A U B, and when

A C B, we will write B - A for the complement of A in B. Conversely,
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the use of this notation shall mean that the assumptions are satisfied.

Further, for a set consisting of a single element x, we shall write x

instead of {x} whenever the meaning is clear from the context. Thus, if

B =
{bj, bj, . . . , bn}, the notation A = B -

ty
* a shall mean

A =
{a, b2 , . . . , bjj}:

Finally, if B is a basis and x a vector in Vn, R(x,B) denotes the set

of vectors in B that enter, with nonzero coefficients, the representation of

x in terms of B. That is, if x = ZA^, then R(x,B) =
{bf | Xf * 0}.

For later reference we first translate a few trivial facts into this

notation.

If B and C are bases, then R(x,B) = R(x,C)=>R(x,B) C C (7.1)

If B is a basis, and C = B - b + x, then C is a basis iff

b R(x,B) (7.2)

If B is a basis, b e R(x,B) fl R(y,B), and C - B - b + x,

then C is a basis and

(i) R(y,C) D R(x,B) U R(y,B)
-
R(x,B) f\ R(y,B) + x

(ii) R(y,C) C R(x,B) U R(y,B)
- b + x

(iii) R(y,C) n [B
-
R(y,B)] = R(x,B) [B

-
R(y,B)]

(iv) R(y,C) n [B -R(x,B)] =R(y,B) [B ~R(x,B)] (7.3)

In (7.3) the last two relations are immediate consequences of the first

two. We shall have use for the following form of (iii) and (iv):

If B is a basis, B+ C B, b Rfx,B) fl R(y,B), b e
T B* and

C = B - b + x, then C is a basis such that B* C C and

Ci) R(x,B) B+ = 0=e> R(y,C) B* = R(y,B) fl B*

(ii) R(y,B) fl B* = =^> R(y,C) n B* = R(x,B) R B*. (7.4)

The following statement concerns representations within a unimodular
set.

Let B be a basis in S, x S, y S, and

R(x,B) n R(y,B) = B # 0,

so that in the representations

the linear combinations L
t
and LS have all nonzero coefficients. If S is

unimodular, then
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L3(B)=L1 (B ). (7.5)

Proof. By (3.2) all nonzero coefficients are 1. Hence, (7.5) can be

violated only when B contains at least two vectors, say b
4 , b2 , and

where
j

= 1. But then in the basis C = B -b
t
+ x, the representation of

y would be

y = x -

where 02 has the coefficient 2, in contradiction to (3.2). Hence, (7.5)

must hold.

We note that for unimodular sets (7.5) implies a sharper form of (7.3),

namely,

If S is unimodular, B a basis in S, x S, y S, and

b R(x,B) R(y,B), then, for the basis C = B -b + x,

R(y,C) =R(x,B) U R(y,B) -R(x,B) fl R(y,B) +x. (7.6)

8. INTERSECTION OF TWO UNIMODULAR SETS

Assumptions and notation.

Throughout this section we are concerned with two sets, F and G, such
that

(i) both are unimodular

(ii) each contains with x also -x

(iii) their intersection F fl G = D contains a common basis B

(iv) there exist f e F and g e G such that f * g and

R(f,B)=R(g,B)=B. (8.0)

Without loss of generality, we may then assume

f =
bj

+ b2 + - - + bk
-

(bk+ j
+ bk+ 2

+ - -

g =
D!

-f b2
+ - + bk + bk+ i

+ - - - + bk+s

for which we symbolically write

f =2B*-SB-

g = SB* + SB" = 2B. (8.1)
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Obviously

f F -D, g G -D (8.2)

since otherwise f and g would both belong to the same unimodular set,
and (8.1) would contradict (7.5).

We denote by

<B = {B I
B is a basis and B C B C D}. (8.3)

For the intersection D the given assumptions imply a special structure
which will emerge from the study of representations in the remainder of

this section.

x c D, B e (B, R(x,B) fl B+ * Q=> R(x,B) B" = 0. (8.4)

Proof. In the representation of x consider the nonzero coefficients of

vectors in B* and B" in conjunction with (7.5) and (8.1); since x F, those
coefficients must be of opposite sign; since x G, they must be of the

same sign. Hence, R(x,B) cannot intersect both B"
1
"

and B".

x D, y e D, B <B , R(x,B) R B* * 0, R(x,B) f] R(y,B) *

=> R(y,B) B- = 0. (8.5)

Proof. Assume R(y,B) f] B~ * 0. Then, by (8.4), R(x,B) fl B~ = and

R(y,B) n B+ =
0, hence R(x,B) fl R(y,B) fl B = 0. If now b R(x,B) fl R(y,B),

then b T B, hence C=B-b+xe<B. Then (7.6) implies R(y,C) fl B
D [R(x,B) U R(y,B)] fl B, hence R(y,C) intersects B* as well as B~, in

contradiction to (8.4).

If we define

D+ = {x D| R(x,B) n B* 96 o for some B }

D" = {x e D| R(x,B) n B~ * for some B <B}

D' = D -
(D+ U D-) (8.6)

then obviously D*D B+ and D"D B". Furthermore,

D*, D", DT are pairwise disjoint. (8.7)

Proof. By its definition, D' is disjoint from D* and D". To show that

D* and D" are disjoint, assume x D+
fl D~. Then, for some A e (B and

some C (B, we will have R(x,A) n B* # 0, R(x,C) n B" * 0. Let
H = B U R(x,A) U K be a maximal independent set in B U R(x,A) U R(x,C),
and B an extension of H to a basis in D, Then, noting that R(x,B) = R(x,A),
we have H C B e (B, R(x,B) fi B+ ^ 0. Note that B f> R(x,C) since other-
wise uniqueness of representation would imply R(x,C) = R(x,B) and hence

by (8.4), R(x,C) n B" = 0.
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Let y R(x,C), y e
T

B. The assumption on H implies R(y,B) c H The
R(x,B) n R(y,B) * 0, since otherwise y C and R(y,B) C B U K c C wouM
imply R(y,B) =

R(y,C) =y B, contradicting y
T

B. Hence, by (8.5)
R(y,B) fl B- = 0. Therefore, if we pass from the representation of x' in
terms of C, x= L(R(x,C)), to the representation of x in terms of B
x = ^(R^B)), by means of substituting for each y in R(x,C) which is not
in B its expression y = L2 (R(y,B)), then these substitutions will not affect
elements in B~, and hence lead to R(x,B) fl B- =

R(x,C) fl B~ * in contra
diction to (8.4). This completes the proof of (8.7).

x D, y D, B <B, R(X,B) (] B + * 0, R(x,B) f| R(y,B) *

=>y D+.
(8.8)

Proof. R(y,B ) n B+ * implies y e D+ by definition of D* R(y B )
fl B - in conjunction with (8.5) implies R(y,B) B = Hence 'if

-
> n B-

As a special case of (8.8), we note

x e D, B e (B, R(X(B) n B* * =>
[x U Rfr.B)] c D+.

(8 . 8a)

We are now prepared to prove the essential statement of this section:

(i) x e D*=*R(X)B) C D* for all B a

(ii) x e D-=s>Rfc,B) c D- for all B e 03 , M
(o.y)

> n B- - for all B e (B

H = {A CB|R(X,A) f]B+ * 0}.

Then, for B H, (8.8a) implies R(X,B) C D+

Now assume B f H and R(x,B) ^ D+
. Then

B) = E + E+
, * E C D -D+

, E + C D+ - B +
.

(2)

Since x D+, H is not empty. Let C H be such that

B H C is maximal in {B n A
|
A H}.

We first show

CDE and R(x,C) P E =0
(3)

E ' y
?

* The first
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contradicting y
T
C, Then in particular c

* B, hence C-c+y = C*<B.
Furthermore, R(x,C*) fl B+ = R(x,C) fl B* * 0; this is obvious when

c e' R(x,C), and in the other case it follows from c R(x,C) fl R{y,C),

R(y,C) fl B+ = and (7.4i). Hence, C* H. However, the relation B ft C*
= B C + y contradicts the assumption that B fl C was maximal, since

y
T C implies y

f B fl C. This proves C D E.

The assertion R(x,C) fl E = is a special case of R(x,C) C D* which

follows from C H and (8.8a). This completes the verification of (3).

We have thus

R(x,C)=Q + Q+
, QCC-E-B , * Q* C B+. (4)

Denoting by B the set of those elements of R(x,B) which are not in C,

it follows from (2) and C D E that

B = R(x,B)
- C n R(x,B) C E*: (5)

Given the representation of x in terms of B, we can substitute for each

y e B its representation in terms of C. This substitution should yield the

(unique) representation of x in terms of C. Since R(x,B) D E while

R(x,C) fl E =
0, we must have R(y,C) fl E * for some y B. However,

this is not possible as we will show in the following two steps:

y B => R(y,C) D Q* (6)

y e B => R(y,C) fl E = (7)

Proof of (6). Assume q 6 Q*, q *' R(y,C). Let c R(y,C), c e
T

B; such

c exists since otherwise R(y,C) = R(y,B) = y and y would be in C. Then

C-c+y=C*(B. Further, q R(x,C) implies q R<x,C*); this is ob-

vious when c
f

R(x,C), and in the other case it follows from q
f

R(y,C).

Therefore C* H. However, BfiC*=BfiC+y contradicts the assump-
tion that B n C was maximal, since y

f C implies y
f B C. This proves

(6).

Proof of (7). For y B, (6) implies R(y,C) n B* * 0. Hence, by (8.8a),

R(y,C) C D+
. Then, by definition of E in (2), R(y,C) D E = 0. This proves

(7) and hence completes the proof of (8.9i).

Proof of (8.911). By assumption (ii) of (8.0), -f F. Substitution of -f

for f in (8.1) interchanges B*and B" and subsequently D* and D". Then

(8.91) implies (8.9ii). This completes the proof of (8.9).

x Df

=>R(x,B) C If for all B e (B. (8.10)

Proof. If, for some x e D1 and B <B, R(x,B) jt D* f let b R(x,B) such

that b D - D1 = D* + D". If b B = B* + B" , then definition (8.6) implies

x e' DT

, thus contradicting x D1
. If b f B, then B-b+x=C<B and

x R(b,C). Hence, R(b,C) fl DT * 0, which by (8.7) and (8.9) implies

b T

(D* + D"), contradicting our assumption on b. This proves (8.10).
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The statements (8.9) and (8.10) combined achieve the aim of this section
in the following assertion on the structure of the set D:

Let V(S) denote the linear span of the set S.

Under the assumptions (8.0) and definition (8.6) the three subspaces
V* = V(D*), V" = VffO, Vf = V(D

T

) are pairwise disjoint. (3.11)

Proof. For an arbitrary but fixed B CB, let Q
+ = B ft D+

, Q" = B fl D~,

Qf = B n Df

. By (8.7), B = Q* + Q~ + Q
f

; then, by (8.9) and (8.10): V* = V(Q
+
)

VT =

9. COMPARISON OF CLASSES

A comparison of two classes of maximal unimodular sets of the same
dimension is effectuated by comparing a pair of representatives, F and G.
To this end, the representatives are so chosen that their intersection is

maximal. That is, if denotes the group of nonsingular linear transfor-
mations, we assume, for given G, F so chosen that

F n G is maximal in {G D T(F) |
T }. (9.!)

Theorem.

Let two maximal unimodular sets, F and G, satisfy (9.1), let

f e F, g e G, and B be a common basis. Then R(f,B)
= R(g,B)=> f = g, and hence {f,g} c F fl G. (9.2)

Stated in other words, the theorem says: if f and g are not common
elements, then R(f,B) * R(g,B). To see the geometric meaning, note that

R(x,B) associates to each x a minimal subspace among the subspaces
spanned by subsets of B. Then (9.2) asserts about the union of F and G:
if a subspace V spanned by a subset A of B contains x,y of F U G, then
either x =

y, or at least one of the two elements is in a subspace spanned
by a proper subset of A.

Proof - We note first that each of F and G contains with x also -x
{since each is maximal unimodular) and that F fl G contains a basis, as
easily follows from (9.1). Further, if we assume that under the conditions
of (9.2) f *

g, then all assumptions of (8.0) appear satisfied. The special
assumption (8.1) can be satisfied in replacing, if necessary, some of the
vectors in B by their negatives so as to achieve nonnegative coefficients
in the representation of g. Then (8.11) holds, and we define T by Tx= -x when x V- and Tx - x when x e V* V'. Then T(D) = D and Tf=

g. Hence, G D T(F) D D + g in contradiction to assumption (9.1) This
completes the proof of (9.2).
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Dual Programs

Pierre Huard

1. INTBODUCTION

This article is a direct application of the Kuhn-Tucker optimality condi-

tions [1], well known to those who are interested in nonlinear programming.
These conditions, necessary (in return for a weak hypothesis) and often

sufficient (under the hypothesis that the functions are concave), are natu-

rally at the root of the principal algorithms for solving such nonlinear

programs, particularly with respect to the optimality tests of these algo-
rithms.

Another interesting aspect of nonlinear programs which has been of

concern to certain authors in recent years is how to generalize the well

known duality properties of linear programs to the nonlinear cases. Of

particular interest are the definition of the program dual to a given pro-

gram and the theorem on the existence of a solution to the dual program
when the primal program has a finite solution. After the articles of

Dennis [2] and Dorn [3] concerning quadratic programming (linear con-

straints and a quadratic objective function), some more general results

appeared such as the articles of Dorn [4], Wolfe [5], and Hanson [6]. The

goal of this article, whose principle results had been established in the

beginning of 1961 [7], is essentially to complete the work by establishing
the second part of the duality theorem. As will be seen later, this reci-

procity (the existence of a solution to the dual implying the existence of a
finite solution to the primal) necessitates a supplementary hypothesis S

which distinguishes between the linear and nonlinear cases. This hypoth-
esis S can be expressed by a regularity condition of a matrix. A sufficient

condition that this hypothesis be satisfied is that the objective function or

at least one of the constraints satisfied by the optimum of the dual program
be strictly concave in the neighborhood of this optimum [9J.

We have tried to generalize, that is, to weaken our supplementary hy-

pothesis. But we have been able to do no better than to apply the hypoth-
esis S only to the nonlinear parts of the concave functions; this result,

nevertheless, permits the theorem to be applied to partly linear functions,

so that linear programs appear simply as a limiting case.

Finally, to return to the conditions of Kuhn and Tucker, one ascertains

that the use of these latter ideas considerably shortens the proofs.
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Notation

Matrices are denoted by capital letters, vectors by small letters, and
scalars by Greek letters. The transposition sign T is used to denote row
vectors. If A is a matrix and i and j are indices, then AI represents the

|th row of A, AJ represents the fih column of A, and A] represents the

element in row i and column j of A. If a is a (column) Vector and E a

set of indices, then ag is a subvector of a whose rows are defined by the

indices of E. If the scalar, $, and the column vector, a, are each functions

of a vector, x, then (d</dx) is a row vector whose j^
1 component is

O<(x)/8xj) and (da/dx) is a matrix whose general element (i, j) is Oai(x)/9xi).

2. MATRIX EXPRESSIONS OF THE KUHN-TUCKER CONDITIONS

Let (P) be the following general program: Maximize 0(x) under the

conditions t

a(x) ^
(2.1)

where ^ is a scalar, a is a vector, and both are continuously differentiable
functions of a vector x.

The following hypothesis H [1] has the role of eliminating possible
singular points of the domain defined by (2.1).

Hypothesis H: Let x be the optimum of (P), E the set of indices of the
constraints exactly satisfied by x (that is for which one has a(x) =

0), and
K the cone tangent at x defined by

(da /dx) (x
-

x)
>

where the partial derivatives are evaluated at x = x. It is assumed that for
all points x in K, there is an arc tangent to (x -x) at the point x and en-
tirely contained in the domain defined by (2.1).

Under hypothesis H, the following conditions are necessary for an
optimum at x = x.

There exists a vector u such that:

u "
(2.2)

UT (da/dx) +
(fy/dx) =0 (2.3)

uTa(x) =
(2 4)

The vector u is indexed like the vector a and the derivatives are
evaluated at x - x.

tThe relations (2.1) may include nonnegativity constraints on certain
components of x as well as equality relations. For example, b(x)

= may
be written b(x) 2= G and ~b(x) > 0.
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If < and a are concave functions of xt then the Kuhn-Tucker conditions

are also sufficient. The solution of the concave program (P) is equivalent
to the solution of the system formed by the relations (2.1) to (2.4).

It is easy to give these conditions when the program (P) itself is of the

form on the left:

3. DEFINITION OF THE DUAL PROGRAMS

Let us consider the general program (P) considered in the previous
section as max

<f> (x) under the conditions

a(x) 2:
(3.1)

where the functions
<j>

and a are concave and twice continuously differ-

entiable, and such that hypothesis H of Kuhn and Tucker is satisfied. We
shall call the dual program of (P) the program (D) following:

minimize 0{x,u) =
<>(x) + uTa(x)

under the conditions

(d/dx) + UT (da/dx) =
(3.2)

u 2: (3.3)

the program (P) being called the primal program of (D).

One can remark that the domain of (P), defined by (3.1), is convex since

a is concave.

Further, since a and < are concave, 8 is a concave function of x for

all fixed u ^ 0. But one can say nothing as such about the constraint (3.2).

Finally, for all given u 2: 0, but u ^ 0, the point x (if it exists) such
that (x,u) belongs to the domain of (D), is unique if $ is strictly concave as
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a function of x. For that, it is sufficient that <p, or at least one of the com-
ponents a^ of a, corresponding to un > 0, be strictly concave. In fact,

under these conditions 6 is strictly concave with respect to x, and the

relations (3.2), which can be written

(80/axj)
= for all j in J

admit a unique solution, corresponding to the maximum, for the given value
of u, of the strictly concave function 0.

4. DUALITY THEOREM

The optimal solutions of the programs (P) and (D) defined in section 3

are described by the following theorem.

Theorem

1) If x maximizes the program (P), there exists a vector u such that

(x,u) is an optimal solution of program (D).

2) Conversely, if (x,u) minimizes the program (D) and if, in addition,
the following supplementary hypothesis (S) is satisfied

CS): The matrix 2
0/8x

2
) is nonsingular at (x,u),

then the vector x is a solution of the program (P).

3) In both cases one has

maximum 0(x) = minimum 0(x,u).

Proof

Part 1. If x is an optimal solution of (P) then there exists u such that

a *
(4.1)

(4 2)

uT (da/dx) + (d0/dx)
=

(4 3)

u
Ta =

(4 4)

where a and the derivatives are evaluated at x = x.
Relation (4.1) merely states that x is feasible for (P) while the other

relations are those of Kuhn and Tucker.
It is clear that (x,u) is a feasible solution of (D) from relations (4.2) and

(4.3).

Further, if (x,u) is any feasible solution whatever of (D) we have:

uTa)-uT
a(x)

-
x)

by definition

because is concave
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u
T
a(x)

=

- u
T
a(x) ^ uT (da/dx)0c

-
x)

- uTa(x)

-uTa(x) ^0

from (4.4)

because a(x) is con-

cave and u 2=

from (4.1) and (3.3),

(x,u) being a feasible

solution of (D)

by addition

With (3.2) we obtain finally:

0(,u) -0(x,u) ^0 (4.5)

The relation (4.5) being verified for any feasible solution (x,u) of (D), it

follows that (x,u) is the optimal solution of (D).

On the other hand,

follows from (4.4), which concludes the proof of the first part of the

theorem.

Part 2, The vectors (x,u) form an optimal solution to (D) satisfying the

relations

(d0/dx) + U
T
(da/dx)

=
(4.7)

u ^
(4.8)

where the derivatives are evaluated at x = x.

We shall suppose that hypothesis H of Kuhn and Tucker is satisfied for

this point Cx,u) relative to the domain of D. Under this hypothesis, the con-
ditions of Kuhn and Tucker are necessary and they can be written by apply-
ing the particularized formulas of section 2 to the program (D).

(da/dx)v -a ^
(4.9)

(3[(d0/dx) + u
T
(da/dx)]/ax)v =

(4.10)

u
T
[(da/dx)v-a] =

(4.11)

The derivatives are evaluated at x = x.

The supplementary hypothesis S, introduced in the second part of the

statement of the theorem, assures us that the solution v of the homoge-
neous system (4.10) is unique, and therefore

v =
(4.12)
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Under these conditions, it is easy to verify that the relations (4.7) to

(4.12) imply the optimality conditions (2.1) to (2.4) relative to the program

(P), and for x = x and u = u:

(4.9) and (4.12) imply (2.1)

(4.8) implies (2.2)

(4.7) implies (2.3)

(4.11) and (4.12) imply (2.4).

Since a and $ are concave functions, the optimality conditions (2.1) to

(2.4) are sufficient, and thus x is the optimal solution of the program (P).

Further, (4.11) and (4,12) imply

(4.13)

which concludes the proof of the second part of the theorem.

5. MODIFICATION OF HYPOTHESIS S AND OF THE THEOREM FOR THE
PARTIALLY LINEAR CASE.

The hypothesis S, introduced for the proof of the second part of the

theorem is clearly too strong to select programs having suitable duality

properties. This point appears clearly in the cases where
<j>

and a are

partially linear, that is when the functions can be put in the form

a(x,y)
= a' (x) + Ay - a (5.2)

where x and y form a partition of the vector variable. Here <

f and a!

are concave scalar and vector functions, f and a are constant vectors, and
A is a constant matrix.

The matrix of relation (4.10), which enters in hypothesis S, can be
written in the form

L OJ (5.3)

This matrix is clearly singular, and the hypothesis S is not satisfied.
But in the limiting case where <p and a are completely linear the corre-
sponding program of course satisfies the linear duality theorem, which,
although different from the theorem established above, is rather analogous.
Tbe essential difference is that, in the linear case, the program (D) does
not contain terms in x. As a consequence, only the first part of the theorem
is always valid {the dual variable u is the optimal solution of (D), and the
variable x simply becomes useless); as for the formulation of the second
part, one sees clearly that it is insufficient to give the solution to (P)
apart from that to (D), this latter not containing x.
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It thus seems useful to formulate the duality theorem in a more general
form which applies to all cases; linear, nonlinear, or partially linear.

This result is obtained very simply by considering the functions <j> and a
written in the form of (5.1) and (5.2). The programs (P) and (D), as well

as the corresponding Kuhn -Tucker conditions, become

(5.8)

(5.9)

(5.10)

[The expression for the objee- [In the last three relations, aT and 0' and
tive function of program (D), their derivatives are evaluated at x = x.J

which does not contain y, has

been simplified in writing

(5.6).]

If one calls (x,u) the optimal solution of (D), and (v\w) the corresponding
dual variables, one can verify easily that if the matrix of relation (5.9)

O[u
T
(da

T

/dx) + (d0
f

/dx)]/ax) (5.11)

evaluated at (x,u) is nonsingular, then an optimal solution of (P) is given by

x =
x, y = -w

with the dual variable u = u. Thus are found the properties of the duality
theorem stated above for the nonlinear part, namely the functions & and
aT

, and the classical duality properties of linear programs for the linear

parts involving the variable y. In particular, the dual variable of (D),
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relative to the constraint (5.6) which is independent of x, represents the

"linear" part of the optimal solution of (P).

The program (P) having its objective function and its constraints written

in the form (5.1) and (5.2), the duality theorem may be modified as

Theorem

1) If (x,y) maximize the program (P), there exists a vector u such that

(x,u) is the optimal solution of the program (D).

2) Conversely, if (x,u) minimize the program (D), and under the limita-

tion of the following supplementary hypothesis

(S) The square matrix 0[u
T
(da

T

/dx) + (d<
T

/dx)]/ax) is nonsingular
at x = x,

there exists a vector w such that (x, -w) is an optimal solution of the

program (P).

3) In both cases one has

maximum $(x,y)
= minimum 0(x,u)

It appears that the first and second parts have a more symmetric form
as far as the extra variables are concerned.
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SYMMETRIC DUAL QUADRATIC PROGRAMS

Richard W. Cattle

ABSTRACT

The purpose of this paper is to exhibit a pair of quadratic programs
which are symmetric, dual, and related to one which is self-dual. Sym-
metry, duality, and self-duality in quadratic programming have each been
treated by W. S. Dorn in separate publications. It is believed that the pro-

grams offered here encompass all these features and hence tend to unify
the theory.

Specifically, the programs are:

(1) Primal problem

Minimize F(x,y)
= |y

T

C*y + Jx'Cx + p'x

subject to C*y + Ax ^ -b

and x >

(2) Dual problem

Maximize G(u,v) = -Jv
T C*v - uTCu - bf v

subject to AT

v * Cu ^ p

and v ^ G

where C and C* are symmetric, positive semi-definite matrices.

The symmetric dual programs of linear programming can be obtained

from (1) and (2) by setting C and C* equal to zero matrices. Setting just

C* equal to zero yields the dual problems of Dorn.

The duality of (1) and (2) is proved by means of the duality theorem of

linear programming. It is a consequence of the demonstration that

Theorem; If either problem (1) or (2) has an optimal solution, there

exists a common optimal solution for (1) and (2) .

Theorem: If both (1) and (2) are feasible, then both (1) and (2) have

optimal solutions.

It is shown that there exists a (primal) quadratic program which is

formally self-dual. Here the results are analogous to those in linear

programming and, in a sense, generalize them.
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ORTHOGONALITY, DUALITY, AND QUADRATIC TYPE PROBLEMS
IN MATHEMATICAL PROGRAMMING

C. E. Lemke

ABSTRACT

In this paper a number of problems of near-linear and quadratic-like
character are considered, all of which may be posed as linear programs
subject to additional orthogonality side constraints. The aim is to effect a

single general formulation embracing a wide class of programming prob-
lems. An extension of the duality notions of linear programming, and based

thereon, is proposed for these problems.
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Methods of Nonlinear Programming^

Philip Wolfe

1. INTRODUCTION

The problem of concern is that of maximizing the objective function

f(x) in the n variables x -
(xj, . . . , xn) subject to the constraints

gi(x) :s for i = 1, . . . , xn (1)

Except for these constraints, it is supposed that each x; may assume any
real value. The term "nonlinear programming" is not appropriately used

to refer to any programming problem which is not linear; the functions

above must have some kind of smoothness. Problems having integer-valued

variables, for example, while being problems of "not-linear programming/'
are not conventionally taken to be problems of nonlinear programming. The

functions f and g^ will be assumed differentiate throughout, although

nothing is lost from most of our work if only piecewise differentiability is

assumed.
Most of the methods studied here aim at finding a local solution of the

problem a solution valid in the immediate neighborhood. If, however, f is

assumed concave, and gj convex, then any local solution is global is the

actual solution of the problem. Some of the procedures studied, in fact,

require these properties in order that they arrive at even a local solution.

There are two equivalent definitions for the convexity of a differentiate

function g:

For any two points x,y and scalars r,s ^ 0, r + s = 1,

g(rx + sy) ^ rg(x> + sg(y); (2)

For any two points x,y,

fThis article is an abridgment of Recent Developments in Nonlinear

Programming, The RAND Corporation, R-401-PR, May 1962. The research

was sponsored by the United States Air Force under Project RAND. Views

or conclusions contained in this article should not be interpreted as repre-

senting the official opinion or policy of the United States Air Force or The

RAND Corporation. Permission to quote from or reproduce portions of

this article must be obtained from The RAND Corporation.
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g(y)
-

g(x) Vg(x) (y
-

x) ,
(3)

where Vg(x)
=
Og/8x,, . . . , 8g/8xn) is the gradient of g, the vector pointing

in the direction of its maximum rate of change.

Figure 1 will be used to illustrate the general nonlinear programming
problem. The constraint set is bounded by five nonlinear constraints,
whose boundaries gt (x)

= intersect in the edges and vertices of the figure.
Convexity of gj entails convexity of the set, as shown. A suitable concave
objective function is f(x)

=
-Zj (xj

-
Pj)

2
; the problem is then that of finding

the point of the constraint set closest to P.

Table 1 summarizes some of the features of the procedures studied in
the sequel: whether the procedure is designed for a quadratic (Q) or a
general nonlinear (N) objective function; whether for linear (L) or non-
linear (N) constraints; whether further assumptions are needed to insure
convergence to a local solution; and whether the procedure terminates in
aa exact solution if the constraints are linear and the objective either
linear or quadratic.

Note that a procedure which can handle nonlinear constraints can always
handle a nonlinear objective, since a constraint of the form z - f(x) < maybe added to the problem. The matter of termination in the linear and quad-
ratic applications of the procedure is possibly not of great interest, but
may bear on the speed of convergence in other cases. The term "convexity"

I. The nonlinear programming problem
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Table 1

FEATURES OF THE METHODS

Direct differential

gradient

Lagrangian differ-

ential gradient

Simplex method for

quadratic progr.

Gradient Projection
I

Gradient Projection

II

Reduced-gradient

Separable progr.

Decomposition

Cutting-plane

Accelerated

cutting-plane

Objective

N

N

Q

N

N

N

N

N

N

N

Conditions

for

Constraints Convergence

N not known

Termination

if Objective
is ...

Lin, Quad,

no no

N

N

L

N

N

N

L

strict

convexity

convexity

convexity

no no

yes yes

yes no

yes no

convexity

convexity

convexity

yes

yes

yes

yes

yes

no

no

no

no

yes

is used in the table to refer to convexity of the constraints and concavity of

the objective.

All these methods are discussed in the sections which follow. Computer
routines for them and computational experience are cited wherever possible,
but there is little to report. Lacking data which would permit the compari-
son of any of these methods, we nevertheless have opinions on the relative

efficiencies of some of them. We trust that these opinions, which are de-
livered at the end of each section, will be readily distinguished from the

more objective portion of this paper.
The present paper is a modest condensation of an unpublished report [1J-

Discussion of a procedure [2] for quadratic programming which has been

superseded by others [3, 4] has been omitted, as has a discussion of proce-
dures for finding a feasible solution to a nonlinear problem, that is, a point

x satisfying the constraints of Eq. (1). The latter discussion can be sum-
marized in these two remarks: For linear constraints, the simplex method

for linear programming provides a means for finding a feasible solution

which is hard to improve upon; For nonlinear constraints, a procedure
similar to that generally used with the simplex method can be employed
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apply the nonlinear procedure under consideration to the minimization of

the function 2i{gi<x) : gi(x) > 0}, which will vanish when x is feasible.

2. BSRECT DIFFERENTIAL GRADIENT METHODS

The "
differential gradient" procedures are best described by differen-

tial equations expressing the idea that a trial point x is to be moved in the

direction of greatest increase of the objective f with appropriate altera-

tions to enforce the constraints. Their basic form can be given as

where

if gi(x)
^ 0,

0. (5)

In q. (5), the number K is chosen sufficiently large to keep x from leaving

the constraint set for example, larger than the maximum of all

| Vf(x) ! / 1 Vg(x) I for any x on the boundary. The terms of Sifii^Vg^x)
serve to "kick back" x when it tends to leave the constraint set.

It can be shown, under fairly general conditions, that these equations

have a. solution. Of course, one would not attempt to find it analytically,

but rather by a digital procedure in which, with a suitable selected interval

At chosen, the equations would be used to calculate a displacement Ax of

the test point to x + Ax, and the process repeated.

The question of the convergence of the solution x(t) of the differential

equations has not been studied in detail, as far as we know. Assuming,
however, thatx = Limt oox(t) exists, and that the functions 61 have an

average value

Ui- Urn ~
J^

T
6i(x(t))dt

T-

we can show t&at x solves the problem, for:

To

vf{x)-;
i
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The point x must satisfy the constraints, for if gj{x) > then U{
= K, which

is impossible, owing to the choice of K. Further, it is evident from the

definition of 61 that if gi(x) < for any i then u =
0; and in general u| ^ 0.

We have thus proved the existence of the generalized Lagrange multipliers

Ui introduced into nonlinear programming by Kuhn and Tucker [5J:

If x solves the nonlinear programming problem, then there exist non-

negative Ui such that

Vf(x)
=

}
ui^gi(x) and gj < implies Ui

=
(6)

It is easy to show that if f is concave and gj convex then the existence of

multipliers satisfying these conditions is sufficient for x to be a solution

if it satisfies the constraints. Many other derivations of this result are

available, and the multipliers themselves have considerable significance

when suitably interpreted in applications.! They will appear here and

there in the sequel for computational purposes.
There has been a certain amount of activity in differential gradient

procedures for some twelve years; Brown [7] surveys in detail most of the

work done before 1957, and the basic idea is periodically proposed afresh

[8]. In view of the fact that no successful numerical experience on signifi-

cant problems has yet been reported, we feel that this class of method is

not promising. An important measure of the inefficiency of a digital proce-
dure is certainly the number of evaluations of nonlinear functions it re-

quires; and it appears that these methods require a great number. No doubt

the fact that they cannot give exact answers to problems for which other

methods can has also worked against their acceptance.

These objections are not important if analog, rather than digital, compu-
tation is considered; the analog computer is a natural setting for the basic

differential equations, and several experiments in this direction have been

made [9-11]. Solutions can be obtained almost instantaneously and param-
eters of the problem are readily changed. The possibilities of analog equip-

ment, especially for problems of linear programming, do not seem to have

been exploited to the degree they might; some reasons, probably, are the

rather long setup time and the fact that, if general-purpose equipment is

used, a large machine is needed for problems of reasonable size. The view

that the accuracy of analog equipment is insufficient for mathematical

programming is usually abandoned when the accuracy of the input data is

carefully considered.

3. THE LAGRANGIAN DIFFERENTIAL GRADIENT METHOD

The Lagrangian differential gradient method uses differential equations,

like Eqs. (4, 5) above, but explicitly introduces the Lagrange multipliers

whose existence was inferred in Sec. 2. The process is governed by the

differential equations

tSee Gale [6], for example, for many illustrations of their usefulness.
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mud

du ^ | gj(x)
if ui > or gi(x) > 0,

(8)

dt
1

otherwise.

It eta be shown that if f is strictly concave and gj are strictly convex, then

the differential equations have solutions x(t), u(t) which converge to values

x, u as t-* *. It is then easily argued that x and ii satisfy the Kuhn-

Tucker conditions, Eq. (6), and thus solve the problem. Strict convexity is

essential in this procedure; it will not converge, for example, if f and gj

are ail linear.

The Lagrangian differential procedure has the odd property that the

point x may depart from the constraint set during the computation; the

terms U which eventually force it back in do not immediately become

large. Only this method and the cutting-plane method below, of those

studied here, thus operate at times outside the constraint set.

Moat of the theoretical work on this method has been reported by Arrow,

Hurwicz, and Uzawa [12 J. Thomas Marschak- [12]f reports some experi -

meats programmed for the RAND JOHNNIAC computer on an ordinary

linear programming problem. Using a high-precision scheme for obtaining

the trajectory of the Eqs. (7, 8), that routine took an uncommonly long time

to solve small problems. It does not appear that this procedure has been

used as effectively as it might, since the exact trajectory x(t) is not of

much interest, but we feel that it is not likely to behave a great deal better

than the direct differential gradient method.

4, SIMPLEX METHODS FOR QUADRATIC PROGRAMMING

*'

Quadratic programming'
7 now conventionally denotes the problem of

maximizing a quadratic function under linear constraints. In the notation

of See. 1:

*<*>
- E P}*j

~ E QjkXjXk (j, k =
1, . . . , n) (9)

J 3,k

bi ft
=

l, ...,m) (10)

If the function f is to be concave, the n by n matrix Q must be positive
Bftmkiefinite. This problem has a unique property among nonlinear pro-
gramming problems: an exact solution may be obtained, as in linear pro-
gramming lay iiaear methods, essentially because the gradient of f is

Liaear. There are two prominent
"
simplex methods" for quadratic pro-
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gramming: that of Beale [3] and that of Wolfe [13], While the first uses the
ideas of the simplex method for linear programming in a more fundamental

way, and thus has a better claim to the title of this section, and further

yields a local solution even when the objective is not concave, unlike the

second procedure; we shall describe the latter here, on the grounds of

greater familiarity.

Assuming f concave, the conditions of Kuhn and Tucker, Eq. (6), are
both necessary and sufficient. Letting yi

=
-gj(x), for the quadratic prob-

lem they become

S aik*k +
71

= bi (a11

k

2 Qjkxk
+ uiaij

+
Pj

z
j

=
Pj (all J) (11)

k i

yi ^ 0, m a: 0,
Zj

=

Ignoring for the moment the requirement zj
=

0, they have the initial

solution

xk
=

0, ui
=

0, yi
=

bi, Zj
= 1 (all i, j, k) (12)

Our task is to

Minimize
Zj

under the constraints of Eq. (11) and the restriction:

If ui 5* 0, retain yj
=

0; and vice versa (13)

The minimization is performed exactly as in the simplex method for linear

programming, except that the restriction of Eq. (13) serves to restrict the

choice of incoming variable. The procedure will terminate with
Zj

=
0, so

that the
Xj

thus found will solve the problem.
The Beale procedure has been programmed for the Ferranti Mercury

computer under the name "Quandary A." The version of November 1960,

could accommodate 65 inequality constraints in 63 variables. The Wolfe

procedure is used by the SHARE routine RSQP1 for the IBM 704 and 7090,

accommodating problems for which the sum of the numbers of variables

and constraints is less than 253. While both these procedures have steps
not used in linear programming, the time taken for a quadratic problem
does not seem to differ greatly from that taken for a linear problem of

comparable size.

5. PROJECTED-GRADIENT METHODS

"Projected-gradient" methods can be viewed as resulting from the at-

tempt to make a differential gradient method take steps as large as passible
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while never allowing the point x to leave the constraint set. Several proce-

dures of this sort have been proposed, both for linear and for nonlinear

constraints (labelled respectively ''gradient projection I" and "gradient

projection II" in Table 1). We shall deal at greatest length with the proce-
dure for linear constraints due to Rosen [14]. It is illustrated in Fig. 2,

beginning at the feasible point x and leading to the sequence of points

x 1

, x
1

In the discussion below, the word "plane" denotes the entirety
of a single hyperplane of the form gj{x)

=
0, whose intersection with the

constraint set yields, in general, one of its faces.

Starting with the point x^ in the constraint set, either one or two suc-
cessors of xk are determined by the following steps. A particular set of

planes is associated with x^ at all times; initially, let this be the set of all

planes which pass through x^.

(1) Calculate Vf(x
k
).

(2) Find the projection of Vf{x
k

) onto the intersection of all the planes
associated with xk . (In case there are no planes as when xk is

interior to the constraint setthis intersection is the whole space,
and thus the projection is Vffck) itself.)

(3) If the projection is different from zero, extend a ray from xk in that

direction, and define xk+1 to be the farthest point along the ray be-
longing to the constraint set.

(a) If ffck*1 ) > ffck), then the cycle is complete.

Fig. 2. Projected-gradient method
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(b) Otherwise, choose xk+2 so as to maximize the function f on the

segment xkxk+l; this completes the cycle.

(4) If the projection is equal to zero, then Vf(xk) may be written

Vf(x
k

)
= u

as a linear combination of normals Aj to the planes associated with
xk (the AI are chosen to point away from the constraint set).

(a) If all U >
0, then xk is the solution of the problem, for the Kuhn-

Tucker conditions, Eq. (6), are satisfied.

(b) Otherwise, define a new set of planes to be associated with xk by
deleting from the present set some one plane for which uj < 0,

and return to step (2).

It is assumed that the one-dimensional maximization problem which

may have to be solved in step (3b) is not difficult to cope with, which is

usually the case. In Fig. 2, the points x4 and x6 have been obtained as the

result of minimizing on the segments x2x3 and x*x6; at these minima Vf is,

of course, perpendicular to the segment in question. Convergence of the

procedure in the case of a linear objective is not difficult to show.

A procedure very closely related to the above, which need not actually
use Vf(xk) as a projection, can be given. The projection of Vf(xk) onto
the face in which xk lies turns out to be precisely the direction of steepest
ascent for the function f per unit distance in the Euclidean metric, if that

direction is chosen so as to keep one in the constraint set. If, on the other

hand, some other metric were used, a different algorithm would be obtained.

The metric

I |Ax| | =max{|AXl |, ..., iAxn |},

for example, changes the work of step (2) from that of finding the projec-
tion of Vf(xk) onto the face of xk to that of determining a point y that maxi-
mizes Vf(xk)

- y under the linear constraints of the original problem aug-
mented by the constraints

|

x!f
-

yj
|

=s 1; the direction of motion away from

xk is then that of the ray from xk through y. Several variants of this proce-
dure have been proposed by Zoutendijk [15], and a related one by Lemke

[16], Some of the work of Frisch [17] is close to this approach. An excellent

detailed survey of projected-gradient procedures by Witzgall [18] exhibits

the Rosen, Frisch, and Lemke methods as variants of a single basic scheme.

Rosen [14] has reported programming his method for the IBM 704 and

7090. Computational experience with these has not been reported, except
for the observation that the procedure does not seem as well-suited to the

linear programming problem as does the simplex method. The experiments

of Witzgall [19] support this observation, as well as indicating the possi-

bility of numerical difficulties with this and with a Frisch procedure not

shared by the simplex method. No other experience with these methods

has been reported, although rumor has it that other Frisch and Zoutendijk

procedures have been tried.
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Extensions of the gradient projection procedure to problems having non-

linear constraints have been proposed by Rosen [20], and Fiacco, Smith,

and Biacfcwell [21], Both procedures operate roughly in this way: At any

trial point x the function f and the constraints effective in the immediate

neighborhood of x [i.e., those for which g^x) is close to zero] are replaced

by their first-order Taylor's series approximations. In the thus linearized

local problem, a step of carefully selected length is taken in accordance

with the rules above for the method with linear constraints. If the new

trial point is still feasible, this process can be repeated; if not, a step in

the direction of -Vgi(x) for those g^x) > (i.e., back through the boundaries

of those constraints which were violated) should yield a feasible point.

Roeen reports having programmed this procedure, but computational ex-

perience has not been cited.

The projected-gradient methods seem to constitute a sound attack on the

nonlinear programming problem, especially as they are not dependent on

any properties of the functions involved other than reasonable smoothness.

The likelihood of their efficiency is much more convincing in the case of

linear constraints than for nonlinear constraints, where it is not clear that

they will perform much better than a differential gradient method designed

to take fairly large steps. Some hope has been held that they might be use-

ful even for linear programming problems, since in a single step a

projected-gradient method can pass from a trial point on one side of the

constraint set clear to the other side, not being required to pass from

vertex to adjacent vertex as with the simplex method. No evidence has

appeared to support this hope, for which two reasons may be given. First,

it appears that the graph-theoretic diameter that is, the maximum number
of steps needed to trace a path from one vertex to any other, which is a

measure of the work required by the simplex method of a typical con-

straint set is smaller than intuition leads us to expect. Second, even if a

projected-gradient procedure were lucky enough to find the solution of the

problem in one step, it would still require as many as m iterations to con-

vince itself that no better point could be found. The fact that a procedure
must not only solve a problem but also demonstrate that it has done so is

often overlooked.

. THE REDUCED-GRADIENT METHOD

rducd~gradient method is like the projected-gradient methods in

tfee gradient erf tfc objective function to give the desired direction of

It is designed only for linear constraints, its computational basis

bsteg the simplex method for linear programming. The simplex method
dots sot, 0* course, provide for solutions other than vertices of the con-
straint set; tills procedure may be viewed [13] as an extension of the

simplex method which makes such provision. Since the gradient is not

projected but is "reduced 1 '
in order to impose the constraints of the prob-

ta*>, AS is the objective of a linear function for the simplex method, the

procedure is not conveniently illustrated geometrically.
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At the beginning of a typical step of the procedure there is a current
feasible point xk and a simplex method basis, which is essentially a parti-
tion (y, z)

= x of the variables of the linear constraints Ax = b into a set of

dependent (or basic) -variables z and independent (or nonbasic) variables y,

connected by the relations z = E - Ay which are equivalent to the original
constraints. (Unlike the simplex method, b ^ is not required.) We suppose
that the basic portion of xk is positive.

(1) Calculate Vf(xk), and obtain (as with the simplex method, using
Vf(xk) as the coefficients of the objective) the "reduced costs"

Cj
=

[Vf(xk)]j
-
SiSylVftx^lj for the nonbasic variables

yj (where i

ranges over all the basic variables).

(2) Define Ay by Ayj
=
Max{0, Cj}

for all nonbasic j, Az = -SAy, and

finally Ax =
(Ay, Az); Ax is the " reduced gradient.

"
If Ax =

0, the

problem is solved.

(3) Determine the step length O as the smaller of the two values of &

achieving

Max0 {x + 6Ax 2:
0}, Max$ f(x + BAx),

and replace x by x + 0Ax.
(4) If all basic variables of the new x are positive, return to step (1).

Otherwise perform a simplex method pivot step, interchanging any

vanishing basic variable with some non-vanishing nonbasic variable.

Return to step (1).

This procedure is very close to the simplex method. Indeed, it becomes
the simplex method if in step (2) the definition of Ay is altered so that Ayj
= 1 and Ayj

= for j*J, where J is such that
Cj

=
Maxj Cj;

then only one
nonbasic variable is increased at a time, and one basic variable vanishes,
so that only basic solutions appear. The method has been shown to con-

verge to a solution for a nonlinear objective function and to terminate for

a linear objective function if the objective is bounded and the constraints of

the problem are nondegenerate.
This recent procedure has not been tested computationally. It is ex-

pected to behave like the projected-gradient methods.

7. THE SEPARABLE PROGRAMMING METHOD

The separable programming method [22], like the decomposition method
of the following section, makes use of a linear programming problem con-

structed to be a good approximation of the nonlinear problem . The data for

the linear problem result from the evaluation of the functions of the non-

linear problem on a grid of points spanning a suitable portion of the space
of the problem.

Let x1

, x
2

, . . . , XT be a collection of n-vectors. Any point x of the

convex hull of this collection (the smallest convex set containing it) may
be written
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, where (14)

X* = 1 and Xt >
(all t). (15)

t

Given any function h of x, the linearization of h on the grid x
1
, . . . , x^

is attained through the approximation

(16)
t

Any mathematical programming problem becomes a linear problem in

the variables X* if x and h(x) are replaced throughout by their representa-
tions above. Using this representation, the mathematical programming
problem may be stated in the approximate form:

Maximize
J X^x*) subject to (17)

t

t =
1, and

SO (alii). (18)

Let X 1

, . . . , XT be the solution of the problem stated in Eqs. (17) and (18).
Then

~~ AA
(19)

is offered as an approximate solution of the original problem. If the func-
tions gi are convex, we have

: gijA l*t]*Xt
gi(xt)s:0, (20)

so that f satisfies its constraints. How closely f (x) approximates the max-
imum obtained in the linear problem is determined by the fineness of the
grid IB general. But if f is concave, then

*
5

1 " Et l6aSt aS hih a value of^ ob
J'
ective function as is indi-

by tbe solution of the linear problem.
The observations above make grid linearization an effective tool for
ems toying tfee proper convexity; but where convexity does not ob-
a more rafcoed technique must be used. This technique has so far
implemented only for problems in which each nonlinear function is
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separable, that is, may be written as the sum of separate functions of the

components xj of the point x:

f(x)
- J f(xj),

gi(x)
=

gij(xj)
(all i). (22)

The linearization technique is applied separately to each variable
Xj. Sup-

pose that for each j a sequence of values
xj,

. . . , xj has been chosen (we

suppose the same number T chosen for each j). Write

x
j

= E Vx (23)

The resulting linear programming problem, derived from Eqs. (17) and

(18), is

Maximize JyZ) *1 f
fcj)

subJect to (24)

j t

^ (all j, t), 2 *j
= 1 <al1 J). and

t

(25)

From the solutions X of this problem the approximate solutions

<26>

of the original problem are obtained.

These solutions will not be good approximations unless the following

condition is satisfied: For each j, X^
must vanish except for, at most, two

values of t, which must be adjacent. The condition ensures that the inter-

polation our formulas accomplish is always done between two adjacent

grid points. (Curiously, for convex problems this automatically occurs.)

In the separable programming algorithm, the condition is enforced by re-

stricting the choice of incoming variable permitted to the simplex algorithm

applied to the linearized problem: The nonbasic variable
Xj

is a candidate

for the basis only if either A*+l Or X?'1 is already a member of the basis.

If the grid is chosen suitably fine in the neighborhood of the solution,

answers of good accuracy can be obtained, and the procedure can be aug-

mented so that it automatically constructs its own refinements, in a manner

like that of the decomposition procedure below. A version of the procedure

for functions not necessarily separable into functions of single variables

has also been given [22],
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Separable programming is a feature of the mathematical programming
routine SCM3, scheduled for release by the SHARE distribution agency in

1962. The Standard Oil Company of California has used the method for

several years on a variety of nonlinear problems, although details of their

computational experience have not been given.

8. THE DECOMPOSITION PROCEDURE

In the case of nonseparable nonlinear problems, any grid of reasonable
fineness covering a large region will include a tremendous number of

points, posing considerable data processing problems. In actual fact, how-
ever, only a small number of these points would ever actually be used in
the computation. On account of the basic properties of the simplex method,
the final solution of the approximating linear programming problem would'
involve only m + I points; and probably only some small multiple of this
number would be used in the course of arriving at the final solution. These
facts indicate that it would be well to investigate how grid points might be
generated when needed, rather than all set down a priori. The decomposi-
tion algorithm for linear programming is a particular device for using the
data of very large linear programming problems of a certain form to gen-
erate recursively only the needed data for a smaller linear programming
problem whose iterated solutions solve the larger problem. What follows
is essentially the application of this method to our nonlinear programming
problem, conceived as being represented by a linear program of the form
of Eqs. (17, 18) constructed from an arbitrarily fine grid.

l*t a grid x 1
, . . . , XT be given, and let the associated linear program -

miagproWem, Eqs, (17, 18), be solved, yielding as well as the solution
X , . . . , X , the dual solution u , . . . , um (for convenience, the equation
It* * 1 Is numbered 0). Allowing complete freedom in choice of grid
points, we may pose the question: Of all possible points xT+1 that mightbe adjoined to fee given grid as a further refinement, which point would
fee simplex method first choose as contributing the most to the solution of
the feus extended linear programming problem?

T^colnma
added to the problem, Eqs. (17, 18), will have the objective

coefficient ffer+I) and the remaining coefficients
**** ** mfc

T<fl
. Recalling that in the "revised form" of the

method, the reduced cost for a column is formed by subtracting

!
C0efficleilt the illoer P>dact of the dual solution of the

wife fee coefficients of the column, and recalling that the

l r* is desired- *" the column to
of the problem.

Maximize f<x)
-

5,
- uigi(x) {x unconstrained) (27)
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method once more employed to find a new solution to the expanded linear

programming problem.
The repeated application of the procedure just described constitutes the

decomposition algorithm for nonlinear programming. It can be shown that,
when the functions involved are appropriately convex, the process con-

verges to a solution of the original nonlinear programming problem, in the
sense that any limit point of the sequence

S*y. T-co (28)
t=i

is a solution of the problem. Unfortunately, it seems that the method will

not give any useful results if the convexity assumptions do not hold.
As far as making efficient use of the grid points needed is concerned,

the decomposition algorithm seems perhaps as good as possible. Actually,
the burden of the work has been shifted to the subproblem, Eq. (27), which
must be solved afresh for each iteration using u"i from the previous itera-

tion; the over-all efficiency of the procedure depends on how readily it can
be solved. In the general case, it is not necessarily substantially easier to
solve than the original problem, but in many special cases it is. The fact
that it is expressed without inequalities often makes classical extremization

techniques practical.

For example, suppose that the original problem is separable: that is,

that f and gj are of the form given by Eqs. (22). Then the problem, Eq. (27) f

becomes

Maximize ]T
j

ff
j
(Xj )

- u - D u
igij

(Xj)l (29)

Since there are no constraints on x in this problem, its solution is obtained

when each of the terms of the summation is independently maximized. The
new xT+1 is tims made up of the components xT+1 =

xj
obtained from the

solutions of the n problems

Maximize
fj(Xj )

-
ujgy (xj)

(30)

In most practical cases, these are readily solved by elementary calculus,

The decomposition procedure for nonlinear problems has so far been
tried only in an experimental routine written by Shapiro [23] for the IBM
704, designed to solve the "chemical equilibrium" problem of minimizing
the expression 2jXj(cj

+ In xj/Zj^x^) under linear constraints. While de-

tailed records of computational experience were not kept, the procedure
worked satisfactorily, although no better than a special method devised

earlier for this problem [24].

9. THE CUTTING-PLANE METHOD

The cutting-plane method of Kelley [25] is a dual of the decomposition
method (in a manner which can be made precise, but which is not done
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here); while the decomposition method was based on the idea that the con-

straint set could be represented as the set of all convex combinations of a

sufficiently dense set of points in it, the cutting-plane method is based on

the idea that it can be represented as the intersection of a sufficiently

aumeroua set of half-spaces which contain it. In both procedures we try to

do as good a job as possible of deciding what data are needed before calcu-

lating them.

It is most convenient to describe the method for a problem having a

linear objective function; as mentioned in the Introduction, no generality

is lost. We must assume that the nonlinear constraint functions are convex

the procedure will not give reasonable answers otherwise.

The main tool of the procedure is the representation of the constraints

by first-order Taylor's series approximations. Let xt be some n-vector.

Expanding the function gi about X*, the nonlinear constraint gi(x)
< will

be replaced by the linear constraint

<x-xt
) ^0 (31)

Note that the left-hand side of Eq. (31) is never greater than g^x), since gi

is coocave; so that if x happens to belong to the constraint set that is, if

g|(x) ^ for all i then x will satisfy every inequality of the form of

Eq. {3D, for any xt .

Let now a sequence of points x1
, . . . , X

T be given. The linear program-
ming problem to be solved as an approximation to the original problem is:

Maximize f(x) subject to

gi(x*)
+ VgjMCx -x1

)
^ (i

=
1, . . . , m; t =

1, . . . , T) (32)

If the solution x = x of this problem should happen to satisfy all the original

constraints, then it would be the solution of the original problem, because
it would maximize the objective over a constraint set that defined by Eq.
(32) which is at least as large as the original.

The recursive step of the cutting-plane procedure is this: If x does not

satisfy all the constraints of the original problem, define X*14
"1 =

x, use
X141 to construct new linear inequalities of the form of Eq. (32), and solve

the new linear programming problem.
tte convergence of the procedure is not difficult to prove. The only

starting ccpditioii which must be assumed is that an initial set of points
K1

, . . . , x cms be chosen so that the objective of the linear programming
problem is bounded above, (If any of the family of linear problems thus

generated should have no point satisfying its constraints, it would follow
that the original problem had the same property, so that satisfaction of the
constraints is guaranteed if the original problem is known to have solutions.)

It is noteworthy that, unless the process terminates, the added point
xTO always lies outside the constraint set. Neither does that point satisfy
all the constraints constructed from it for the next iteration, since letting
x * x"*l in the relation of Eq. <32) gives gi(x

T+1
)
<

0, which cannot hold
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for all i. The point xT+1 thus lies on the opposite side from the constraint

set of the hyperplane

=
(33)

for such i that gi (x
T "

l
~
1
) > 0. These hyperplanes constitute "cuts," cutting

off pieces of the polyhedral constraint set defined by Eq. (32) and producing
an improved approximation to the original constraint set in the neighbor-
hood of the point xT+1 .

Considerable advantage can be taken of the fact that the linear program,
Eq. (32), does not change appreciably from one iteration to the next. The
dual simplex method makes it possible to add constraints to a linear prob-
lem which has already been solved and efficiently find a solution to the new
problem. In this respect the cutting-plane method is a sort of "dual" of the

columnar methods, in which rows rather than columns are added to a linear

programming problem at each iteration.

In practice one would not add all constraints of the form of Eq. (32) at

each iteration. The best scheme would probably be to add a single linear

Fig. 3. The cutting-plane method
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conatraint corresponding to the "most unsatisfied" nonlinear constraint,

formed for that i which achieves Maxi gi(x
T+1

). This step is then exactly

analogous to the decomposition procedure step of augmenting its linear

programming problem by the single most profitable column. Figure 3

shows two steps in this process,

The following acceleration device [26] has been proposed for the cutting-

plane method as applied to a problem having linear constraints: At, say,

every other step of the procedure, define a point x from which a new in-

equality is to be constructed by

T , ,

2) uV
t=i

where u* is the sum of the values of the dual variables associated with the

constraints generated from x*. Whether this device will indeed accelerate

the procedure in general is not known, but if the objective is quadratic, then

the procedure will terminate; some f will solve the problem.

Computer routines using the cutting-plane method have been reported by

Dorabeim [27J and in a simplified version by Griffith and Stewart [28], but

ttey are not available, and experience with them has not been detailed. It

appears that the method has given these users satisfaction. While we have

no experimental evidence to support our view of this method, its general
tidiness leads us to feel that it should constitute an excellent procedure for

problems having convex nonlinear constraints.
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ON THE GRADIENT PROJECTION METHODS
OF R, FRISCH AND J. B. ROSEN

C. Wttzgall

ABSTRACT

R. Frisch (1958, Multiplex Method) and J. B. Rosen (1959) gave two

closely related methods for solving linear and convex programming prob-
lems. Both methods use the same tableau technique, but different rules for

selecting the pivot.

A few experiments were conducted in the linear case in order to com-

pare these methods with the simplex method. These experiments indicate

a superior numerical stability of the simplex method. Compared with

Rosen's pivot selection, the one of Frisch payed off by reducing the number
of operations and increasing numerical stability.

More or less all algorithms for solving the linear programming problem
are known to be modifications of an algorithm for matrix inversion. Thus

the simplex method corresponds to the Gauss -Jordan method. The methods

of Frisch and Rosen are based on an interesting method for inverting sym-
metric matrices. However, this method is not a happy one, considered

from the numerical point of view, and this seems to account for the relative

instability of the projection methods.

The iteration steps of Rosen and Frisch may be interpreted as simplex

steps using a tableau which is based on the product ATA where A denotes

the constraint matrix. This interpretation leads into the neighborhood of

techniques due to P. Wolfe and G. Zoutendijk.

As far as the author is informed, the termination of the multiplex

method of Frisch is still not established, even in case of nondegeneracy.

Of course, this is a largely theoretical problem since nontermination is,

in any case, highly improbable. In this paper, two sets of pivot selection

rules are presented, which allow a termination proof. They may be re-

garded as a "primal" and a "dual" method.
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The Simp/ex Method for Loco/ Separable Programming

Clair E. Millert

FUNCTIONS OF A SINGLE VARIABLE

An important problem in mathematical programming is to generalize
the simplex method to solve certain nonlinear programming problems
[1, 6, 10]. This paper describes such a generalization, to a class of prob-
lems known as separable; i.e., ones in which the only nonlinear functions

allowed are functions of a single variable. The method has been pro-

grammed and has been in productive use for over two years.
The basic idea is to use a representation of polygonal functions in

terms of linear equations coupled with logical restrictions and to employ
a modified simplex method which enforces the required logical re-

strictions, These ideas are implicit in the work of many authors, notably

Dantzig [2, 3], Charnes and Cooper [1], and Manne and Markowitz [8].

Polygonal Approximation

Suppose a function f of a single variable is replaced by a piecewise
linear approximation. Then there are finitely many points PI =

(a^ f(a
=

(ai, bj) on the graph of f(x) and linear interpolation between adjacent

points will approximate f satisfactorily. An example is shown in Fig. 1.

This relation between y and x can be described by introducing variables

x , xt , . . . , Xfe with xj
> i = 0, . . . , k

and requiring that

i -; si (

x =
ai Si (2)

x (3)

tThis work was done while the author was with Standard Oil of

California.
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No more than two 5q can be nonzero and these must be

consecutive.

Except for (4), the system of equations would be purely linear. The

modified simplex method enforces this requirement.

u

1.0 -

0.8

0.6

0.4

0.2

(4)

0.2 0.4 0.6 0.8 1.0

Fig. 1. The approximation to u = x2
.

The Algorithm

Data are given as in a linear problem, with the addition that certain
ats of variables are designated as "special." There is one set,

S =
(S^, *j, . . . , %), for each nonlinear function y =

f(x) (see Fig. 2). The
simplex algorithm is modified to inhibit pricing (calculation of the re-
duced cost coefficients) of the special variables within each set, as
follows:

a. if no element of S is in the basis, then all of S will be allowed
for pricing. (This can occur only when artificial variables are in

the hasIs.)

b. If precisely one element of S is in the basis, then only the variable
{if any) immediately preceding it and the variable (if any) im-
mediately following it within S are allowed for pricing.

c. If two variables from S are in the basis, then no others from S
shall be allowed for pricing.

For separable programming the ordinary calculations of the simplex
algorithm are carried out except that the new rules are independently
applied at each iteration to each of the sets of special variables. These
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Regular-variables Special vortofates

Fig. 2. The constraint matrix for the example problem.

enforce the requirement that within each such set no more than two of the

special variables can be nonzero and these two must be adjacent.

An Example

To illustrate, consider the problem of maximizing z, subject to:

x2 +y2 +z2 = l

Restated, (5) becomes:

u + v + w = 1

u = x2

y
2

(5)

(6)

(7.1)

(7.2)

(7.3)

Replacing (7.1) by a polygonal approximation gives:

1 = x + xj + + xs

x = Ox +
.2x~!

+ - * + 1.0x~5

u = Ox + .04xi + + 1.0x5
<8

and similar sets of equations, and special variables, for (7.2) and (7.3).
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Th constraint matrix for the example is shown in Fig. 2. Note that

it has three sets of special variables

y* yi> > y

Z Zj, . . . , Zg

one for each of the nonlinear equations (7.1), (7.2), and (7.3). Evidently,

then, these parabolas have been replaced by polygonal functions (Fig. 1),

and these in turn induce a replacement of the original constraint set (the

surface of a sphere) by a piece wise linear approximation to it. A sketch

of the resulting constraint set is shown in Fig. 3.

This example was computed using a standard linear programming code

modified to do separable programming. It terminated Phase I with the

Initial feasible solution, QI6 , shown in Fig. 3. ft took eight more iterations

in Phase II, stepping along the path indicated in Fig. 3, to reach the

optimal solution, the north pole of the sphere.

Optimally and Termination

To have a workable algorithm, it must be shown that the process
terminates after a finite number of iterations and that the terminal solu-

tion is locally optimal. Since the process presented here is a simplex
method, the same reasoning applies as in the proofs of these facts for the

ordinary simplex algorithm [4, 5], This reasoning is sketched below.

At each step the objective function increases (barring degeneracy) and,

therefore, a basis cannot reappear, once having been used. Since there

ar only finitely many bases, the process terminates. Cycling theo-

retically can occur around degenerate bases but, as in the ordinary simplex
method, it hasn't been found to happen. It can be prevented by the use of

ksKioographic ordering (i.e., the so-called e method of Charnes or

Dtateig, Orden and Wolfe).

The terminal solution will be an optimum solution in a local sense.
That ia, no other feasible solution sufficiently close to it will have a better

objective value. If the problem possesses more than one local optimum
solution there is no guarantee that the separable programming process
will select the best among them. But for a large class of problems, in-

cluding linear and convex problems, there is only one local optimum, and
the separable programming process will find it.

Consider the terminal solution and examine a particular set of special
variables S * ^ . . , , xk). la view of equations (1) there must be at least
oae element of S in the basis. Three cases can arise:

Case 1 One (say xj) of S is basic. Necessarily 5q
= I.

C*je 2 Two (say Xj, xl+1 ) of S are basic, and Sq *0, xi+1 *0.

Cae 3 Two <5q, x^j) of S are basic but one of them is zero.
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Fig. 3. The approximate sphere of the example problem. Here Q16 , . . - , QM
"

is the sequence of basic solutions through which the algorithm

moved in Phase II. Subscripts are iteration numbers.

If Case 3 doesn't occur, look at the terminal solution again and take any

other nearby feasible solution. Express this solution in terms of the

variables of the problem using only those specialvariables which have

just been priced. Specifically, if Case 2 occurs (34, x1+i basic), express

the nearby solution using only x
{
and x1+1 -i.e., stay between PI and Pl+1

on the graph of y =
f(x), Fig. 1. If Case 1

occurs_stay
between PIM and P

t
or

Pi and Pi.t, using only SM and 34 or 34
and x1+1 . But all of these

special variables were already priced at the last simplex iteration aad

found to have disadvantageous reduced cost coefficients. Hence, evaluating

the nearby feasible solution via the reduced objective functional shows it

to have a less desirable (at any rate, no better) objective value than the

terminal one. So the terminal one is a local optimum.

If Case 3 should occur, the algorithm may have terminated on_a
solution

whicn is not a local optimum. However, Case 3, with Xl
- or xi+ i 0, is
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a degenerate situation and rare. And, as the example in the next section

illustrates, such a solution is the limiting case of a truly local optimum
one, in an appropriate sense.

An Example of Degeneracy

The following example illustrates how degeneracy among the special

variables can cause the algorithm to stop with a nonoptimum solution. It

also shows that such a case is truly singular and not of practical compu-
tational significance.

Consider the problem:

Maximize y, subject to

-x + y + s =0

X ~4 XQ
~

XJ
- 3X2

=

x + Xj + x2
= 1 (9)

IB this problem there is one set of special variables, S =
(x , xv x2). It is

a two dimensional problem, as sketched in Fig. 4.

The basis x, y, x^, Xj is the trouble maker. The canonical representa-
tion of the problem relative to the basis is

y + 2s - 3x2
= 1

x + s - 3x2
= 1

x^
~ 2s + 2x2

=

x t
+ 2s - x2

= 1
(10)

and it is degenerate because x enters the solution at level 0.

This basis appears to the algorithm to be locally optimal since the
only variable with negative cost coefficient, x2 , is not allowed for
pricing. Thus the algorithm terminates erroneously at this solution (the
true solution is evidently at x = 3, y = 2).

The trouble with this basis is that the vertex (1,1) is exactly on the
cooBfcrmJjftiag line y = x. Had the vertex been below the line the basis
wowkfcaH even have been feasible. Had it been above the line the basis
wnmld have been feasible, non-degenerate, and truly a local optimum.

Useful Modeling Devices

The algorithm does not directly take into account the structure of the
special variables, equations (1), (2), and (3). This may be used to ad-
vanUge in several ways. For example, if one replaces (1) by
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y=x

(3,2)

(0,0) (iQ)

Fig. 4. A degenerate example. The feasible set is the polygonal line

(1*0), (1D (3,2) and the optimal solution is (3,2).

with the points (x^y^ vertices of the graph of f<x), then the constraint be-

ing enforced among x, y, and z is

y = z f(x/z)

This is the most general section-wise linear homogeneous function of two

variables, x and z, that one can have.

Another device is to use the same set of special variables in a multiple
fashion. If, for example, one has two functions

y = f (x)

v =g(x)

of the same argument, x, then the same set of special variables will work
for both functions. One appends to (1), (2), and (3) the equation

fc

Ej
where dj

=
g(xi).

This can be extended to several functions of x.

Many functions of several variables can be separated fay appropriate

change of variable and thus placed in separable programming format.

For example, a quadratic form can always be diagonalized, which

separates the form after a linear change of variables. As a special case of

this, one can separate a product of two variables. For example, the ex-

pression

w = uv
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can be separated by the substitutions

w^tx'-y2
), u=x+y, v=x-y

Clearly this expression can also be separated by taking logarithms.

Limitations of th* Method

Several features of the method stand out as limiting its range of appli-

cation. 90 that it cannot be called a general-purpose nonlinear programming

procedure. Often the constraint set is not convex, so that there may be

several extremal or locally optimum solutions. There is, in general, no

way to show that the particular solution produced by the algorithm is a

global optimum. Ordinarily one has smooth nonlinear functions, and the

polygonal functions are merely approximations to them. The resulting

polygonal model can in some cases have local optima which are not good

approximations to local optima of the underlying smooth model, even

though the objective value is nearly optimum. Estimating the extent of such

discrepancies is a difficult problem, intimately related to an exhaustive

sensitivity analysis of the model. The previously mentioned tricks can

increase model size substantially and thus restrict the size of problem
which can be computed economically. The number of simplex steps to

optimum is increased by the use of many sets of special variables, and is

further increased by the use of fine grids in the polygonal approximations.
In extreme cases machine time has been four times what one would expect
of a purely linear problem with the same size constraint matrix. Within

these limits, however, the method has proved to be a dependable and
effective technique for coping with many nonlinearities. It has been in

productive use for over two years .

GENERALIZATIONS TO MULTI-DIMENSIONAL FUNCTIONS

The ideas just described extend quite readily to functions of several
variables

j ia real, but x is a variable in m-dimensional space. With some
modifications, to be discussed, this extension appears to be a workable
method &r solving general nonlinear problems, provided that the dimen-
sion of x is oot large.

1 is accessary to introduce the notion of a triangulation, the standard
topological tool lor defining piecewise linear functions. A triangulation of
a region, E, of m-dimensional space is merely a partition of the region

o m-diraeosiooal simpiexes, the latter being all convex combinations of
ra^l points or vertices a, a^ . . . , am in m-dimensional space. The
aimplex in said to be spanned by its vertices. This isn't a complete
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definition of triangulation, but it will do for present purposes by noting

the following two additional properties:

A real-valued function on R is piecewise linear if it is linear over

every simplex of the triangulation.

Simplexes of lower dimension than m are allowed. In fact every
face of a simplex (a face is a lower dimensional simplex spanned by

any subset of the vertices of the original simplex) is required to belong
to the triangulation.

Returning to the nonlinear programming problem, let y =
f(x) be a

real valued function of an m-dimensional variable, x, and suppose one has

a triangulation on the domain of x, with vertices a$, alt
. . . , a^. Then the

relations (1), (2), (3), and (4) define a piecewise linear approximation to

the function with minor changes in definitions. Equation (2) must be inter-

preted as an m-dimensional vector equation, ft is equivalent to m con-

straint equations, one for each coordinate of x. Condition (4) becomes:

No more than m+1 of x , Xj, , x^ can be nonzero, and these must

belong to vertices which span a simplex in the triangulation. (11)

This representation of the function y =
f(x) gives rise to a natural

generalization of the criterion for selecting variables for pricing.

Let S be a set of special variables and SB C S those which are

basic. Then if x~i is in S, but not basic* 5q shall be allowed

for pricing if and only if the vertices associated with Sg and

5q span a simplex in the triangulation. (12)

The algorithm discussed earlier is evidently this m-dimensional algo-

rithm particularized to m = 1.

This statement of the m-dimensional algorithm is deceptively simple.

The difficulty is that a general triangulation is cumbersome to deal with

and gives rise to awkward computer programming problems. It does not

appear to be feasible to program a completely general algorithm, with the

nature of the triangulation unspecified. It does seem feasible to handle

a standard triangulation, though it hasn't been done. A reasonable ap-

proach is described in the next section.

Cubical Triangulations

The triangulation of the m-cube described in [7] appears attractive as a

standard triangulation on which to base a computer code. The vertices are

lattice points in m-space (points whose coordinates are integers) in the

domain of definition of the nonlinear function y =
f(x). By choosing the unit

of length in each coordinate one can control the fineness of the triangulation.

A sequence of vertices
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span a simplex in this triangulation if and only if they are vertices of a

unit cube, and they can be ordered so that

(the iaequality to be interpreted coordinate-wise). This condition can be

restated as

ap-isa*
* <ap ==ao

+ I (14)

where I =
(1, 1 ..... 1).

The criterion (12) requires that all vertices be generated which can be

adjoined to a given basic simplex (13), and still get an allowed simplex.

This can be done, since a new vertex, to be admissible, must be equal to

ap
-

I or ao
* I (if a$

+ I *ap), or else must be insertable somewhere into

the inequality sequence (14). Two adjacent terms, say aj and ai +1 in this

sequence have integer coordinates differing by either 1 or 0. If the

number of coordinates which differ by 1 is q, then there are exactly

2^-2 readily generated vertices between aj and aj+1 .

Column Generation

The method for one dimensional problems calls for pre-calculating the

columns of the constraint matrix associated with each special variable,

xj. Since there is one 5q for each vertex a}, this leads to a very large set

of columns, most of which are in fact passed over during the computation.
For example, a function of 3 variables with each coordinate partitioned
into 10 divisions gives rise to 10 x 10 x 10 = 1000 vertices.

This can be avoided by using the revised simplex method and generating
each column when it is needed for pricing. This is easy to mechanize, since
the only nonzero entries are the coordinates of the vertex, a^ the function
evaluated at ai, f(a|), and 1. This requires a subroutine whose arguments
are the coordinates of ai and whose result is the desired column.

Grid Refinement

ft is natural that a fine grid, or triangulation, will result in more
Iterations to reach optimum than a coarse grid. This is borne out by ex-
perience in the one dimensional case. Therefore a grid refinement pro-
etee seems in order, in which one iteratively solves the nonlinear prob-
lem, each time using a grid which is a refinement of the preceding one and
using the old ofrtimal solution as a starting point for the new problem.

The steps lavolved in this procedure are:

Step 1. Solve the problem initially, using a coarse grid for each non-
lioear function.

Step 2. Refine the grid on each nonlinear function.

Step 3. For each nonlinear function, y =
f(x), examine the old optimal

valu, x , of x. Find the simplex in the refined grid in which x lies.
Heord its vertices.
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Step 4. Re-solve the problem using the refined grid, and starting the

problem with the old optimal basis, as modified by Step 3 for each non-

linear function (i.e., for each set of special variables).

Step 5. If each grid is not satisfactorily fine, return to Step 2,

Two points of caution need to be observed in applying grid refinement.

First, it is important that the new grid be a literal refinement of the old;

otherwise Step 3 will, in general, generate a simplex of higher dimension
than its predecessor, and this will not yield a basis for Step 4. Second,

the basis in Step 4,will, in general, turn out to be infeasible. Thus the

underlying simplex algorithm must be able to cope with negative solution

values. The Orchard-Hays composite algorithm [9] is designed to do this.

However, to work efficiently with it, criterion (12) should be modified so

that 83 is the set of basic variables whose solution value is nonnegative.

Although this procedure has not been automated, several experiments
have been made to simulate it, using the separable codes discussed in

Part I. This evidence suggests that an effective method of reducing total

machine time is to start at Step 1 with very coarse grids .

Open Mathematical Questions

The problem of degeneracy has not been satisfactorily solved, even

though it has been found to be an insignificant operational problem. The

problem is that if the algorithm terminates with a solution in which one or

more of the basic special variables has value zero, there is no guarantee
that the solution is locally optimal. Do recovery procedures exist which

can be employed to continue in such circumstances ?

Another problem, which is probably more fundamental, stems from the

fact that the algorithm addresses itself to an approximate programming
problem, rather than the original programming problem. What can one

say about the quality of the solution obtained in this way ? This latter

problem can be put in better perspective by referring to the grid refine-

ment procedure described above. In it, one finds exactly, barring de-

generacy, a locally optimal solution V(j), to a programming problem
Pfl). One then uses V(j) as an aid in finding a solution V(j+l) to P(j^l).

What can one say about the sequence V(0), V(l), . . , , V(j), . . . ? Does it

converge at all? If so, is its limit a locally optimal solution to P(ty> the

underlying problem which P(j) approximates ? Certainly P(j) converges
to P(co) in an appropriate sense. More generally one would like to have

some way of knowing that when PQ) is a good approximation to P{) then

V(j) will be a good approximation to some locally optimum solution to

PH.
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MINIMIZATION OF INDEFINITE QUADRATIC FUNCTIONS
WITH LINEAR CONSTRAINTS

Alex Orden

ABSTRACT

In the classical problem of minimization of a quadratic function subject

to linear equations it is useful to introduce a basis for the null-space of the

constraint matrix. The result provides a computation scheme and neces-

sary and sufficient conditions for a minimum.
Let $ = PX + XQX be a quadratic function, of a real n-term vector X,

where P is a given vector and Q a given symmetric matrix. is to be

minimized under the constraints AX = B where A is a given rectangular

matrix and B a given vector.

Let N be a matrix whose columns span the null-space of A. An N
matrix can easily be computed as part of a Gauss-Jordan reduction on A.

Necessary and sufficient conditions for existence of a minimum of $
are that both of the following hold:

(a) That the linear system of equations

2NTQX = -NTP

AX = B

be solvable for X.

(b) That the matrix (NTQN) be nonnegative (positive definite or positive

semi -definite).

When both conditions hold, any solution of (a) is an X which minimizes

<t>-

Q may be an indefinite matrix. When Q is a nonnegative matrix, condi-

tion (b) always holds, i.e., Q nonnegative implies that (NTQN) is non-

negative.

Lagrange multiplier type equations may be used in place of (a) . In place

of the above we can write:

Necessary and sufficient conditions for existence of a minimum are that

both of the following hold:

(a) That the linear system of equations

2QX + ATW = -P

AX = B
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where W is a vector of Lagrange multipliers associated with the

constraints, be solvable for X and W
<b) That (NTQN) be nonnegative.



Linear Programming under Uncertainty

Albert Madansky

This paper will describe some attempts at introducing "uncertainty,"

or, to be more precise, "risk" into the linear programming model. The
distinction between "risk" and "uncertainty" is that in a risky situation

one knows completely the probability distribution of the random variables,

whereas in an uncertain situation one might know the probability distribu-

tion except for, say, a parameter. The terminology in this area has grown
up out of a paper by Dantzig [3], entitled "Linear Programming under

Uncertainty," but what was really meant was "linear programming under

risk." In any event, we shall assume that the probability distributions of

any random variables which are introduced into the problem are com-
pletely known.

Let us take as the standard linear programming problem one given by
constraints Ax ^ b, x ^ 0, and where CTX is to be minimized. Here b is

an m-vector, x and c are n
4 -vectors, and A is an m x n

4
matrix. The

introduction of risk into the problem can occur in either the coefficients

of the objective function, or in the constraints either the right-hand side,

b, or the matrix A, or both. These two situations are clearly distinct.

THE STOCHASTIC OBJECTIVE FUNCTION

There has been some work done on the problem of introducing risk into

just the objective function. In this problem, the optimum vector x lies in

the convex polyhedron defined by the inequalities Ax ^ b, x ^ 0, and the

problem is just one of trying to find a vector in this polyhedron which min-
imizes an appropriate objective function for the risky situation, The appro-

priate objective function, as is well know, is obtained as follows: Consider

the utility of each possible value of the objective function, that is, the

utility of c'x for each possible c. Then take the expected value of the

utility of c'x over the distribution of the random vector c as the objective

function to be minimized. If the utility function is linear in the objective

function, then the problem reduces to one of merely looking at the inner

product of the expected value of c with x, and this now becomes a non-

stochastic linear programming problem. But whatever the nature of the

utility function, the problem has been converted to one which is non-

stochastic.
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In practice, the solution of this nonstochastic program may be very

difficult to obtain, as it depends on the nature of one's utility function.

Only one problem with nonlinear utilities has been studied in the literature.

This is ia a paper by Freund [6], studying a maximization problem in which

the utility function w^s 1 -exp(-ac
f

x) where the vector c had a multivar-

iate normal distribution. For such a problem, maximizing the expected

utility of the objective function reduced to a quadratic programming

problem.

STOCHASTIC CONSTRAINTS: THE 'TAT" FORMULATION

A problem of quite different nature arises when one introduces risk into

either the matrix A or the right-hand side b. In this situation one is con-

fronted with the question of how to carry over the notion of feasibility,

inherent in linear programming, to a " linear program" whose matrix and

right-hand side are random variables. The various formulations in this

area have been cttrected at different ways of answering this question. The

simplest answer is embodied in the so-called "fat" formulation, charac-

terised by the following reasoning: The decision maker has to decide on

some vector x of activities before he can observe the values of A and b.

After be has made his choice, he is confronted with particular A and b

and can Bee whether or not x has satisfied the constraints. The difficulty,

though, ia that his prechosen x may not be feasible for the observed A
mad b. What the "fat" formulation prescribes is that one restrict oneself

to the convex set of those x which are feasible no matter what values of A
and b will subsequently be observed. That is, one looks at the intersection

for all A and b of the polyhedra given by the constraints Ax > b, x > 0. The
problem for the decision maker is one of finding the x in this set

S * "
{x| x

> 0, Ax >
b}, the "permanently feasible" set, such that

c*x is minimum.
It is easy to characterize an optimal solution for the "fat" formulation

[8]. If x belongs to S, and is optimal for any particular programming
problem Ax b, x 5= 0, c'x = min for some possible value of A and of b,

then x IB alao optimal for the "fat" formulation. One difficulty with this

formulation is that it may not lead to a decision because this permanently
teasibte set S may be empty. In problems in which the probability distribu-
ttoo of either A or b is defined over the entire real line, that event is

tifcaly. In this case the "fet" formulation is not going to help us even to

the extent of presenting a problem which we can try to solve. But this

formulatloei has been taken and is a point of view marked by extreme pes-
simism, and characterised by the fact that one wants to preserve feasi-

bility no matter what occurs. A variant of this formulation, which may not
preserve feasibility, is the modification of the "fat" formulation requiring
that one oaiy be 100P% sure of being feasible. Then one would look at the
set of Qoaaegative x's such that the probability that Ax ^ b is P and
minimize c'x for x in this set.
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THE "SLACK" FORMULATION

A more realistic statement of the problem is what we may call the

* 'slack" formulation. It involves converting the problem to a two -stage

problem, which can be described roughly as follows: The decision maker

is supposed to choose a nonnegative x, then observe a value of the random

matrix A and the random vector b, and finally compare Ax with b. The

vector x may or may not be feasible. But whether feasible or not, we are

going to allow the decision maker after the fact to make another decision

y to compensate for any discrepancies between Ax and b, based on his

original decision x and the later-observed A and b, but at a penalty cost.

The linear inventory problem is an example of this kind. Here x is the

amount of inventory which the storekeeper must have on hand, b is the

later-to-be-observed random demand, A is a nonrandom matrix of relevant

technology coefficients, and y is the second -stage decision, embodying two

kinds of activities. If the demand exceeds the inventory, the storekeeper

must go out on the open market and at a penalty cost buy goods to take care

of the excess of demand over supply. If the inventory exceeds the demand,

then he will have to scrap the excess at a penalty, reflecting the loss to

him due to not having made a better choice of x. This is a more realistic

way of looking at the problem than the *'fat" solution, in that it keeps the

decision maker in business after he has made his choice of x and the ran-

dom variables have been observed. The constraints for the two -stage prob-

lem are given by

Ax + By = b

(We include, in the n2-vector y, enough slack so that the inequality con-

straints Ax ^ b are equalities.) Typically the m x n2 matrix B is going

to be a matrix of zeros and plus or minus ones. We require that x and y

be nonnegative.
The objective function for this two-stage problem is constructed as fol-

lows. Let f be the nonrandom penalty cost vector for the second-stage

decision vector y. For given A, b, and x, we find the best second-stage

decision, that is, the y which is optimal for

By = b - Ax

y 2:0

f
r

y = min

Now, assuming that the utility of the objective function is linear, the appro-

priate objective for the two-stage problem is c'x * E mm f y.

It is also assumed that for every possible x and (A,b) there exists a y

which will compensate for any discrepancy between Ax and b, given that

one has made the decision x and observed the particular (A, b}. Rather

than viewing this as an assumption, it may be taken as a definition of the

domain of the vectors x which are admissible for consideration in mini-
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mizfag this objective function. This "slack" formulation, it should be

noted, reduces to the "fat" formulation in case any component of f is in-

finite -in case it costs so much to compensate for certain types of discrep-

ancies that one does not want to do so and therefore wants to be perma-

nently feasible in the first stage. The above assumption, then, is the

counterpart of the assumption in the "fat" formulation that S be nonempty.

Work on the solution of the "slack 7 ' formulation of the problem has

been restricted to the case where only b is random. The case where A is

also raadom is much harder. One direction of effort has been the search

for a certainty equivalent, that is, a nonrandom vector with which one can

replace the random vector b so that the solution of the resulting nonrandom

problem will also be the solution of the two -stage problem. It is easy to

see in simple examples that the expected value of b is not always a cer-

tainty equivalent, but there are some situations under which it is. One

such circumstance is as follows: Let C<b,x) = c'x + minf ?

y. It is shown

in {7] that if C(b,x) has the form
y

C(b,x) =
Aj(x)

+ A2(b)
+ A3(x)b

then replacing b by its expected value and solving that nonstochastic prob-

lem will yield the solution of the two -stage problem. An example is a

function which is quadratic in both x and b. Further, when the components
of the vector b are each independent and have uniform distributions over

some finite range, then the part of the function EC(b,x) which is essential

in the minimization is under fairly wide circumstances going to be of this

quadratic nature [ll, and the expected value solution will be the solution of

this problem.

CHANCE CONSTRAINTS

Another formulation of the problem is as a "chance -constrained" pro-

gram. One looks at each of the constraining equations of the original

problem

Ax s=b

x 2=0

cf
x min

and specifies for each constraint a probability with which one wants this

constraint to be achieved-whence the name "chance -constrained." Now,
subject to these probabilistic constraints, one wishes to minimize c'x.

THIS is reminiscent of the aforementioned variant of the "fat" formulation,

except tfcat one is here explicit about the probabilities of each possibU in-

feasifoility.

Tbe difference between the chance-constrained formulation and the
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"slack" formulation is that in the latter the specific contingency plans of

the decision maker for each possible infeasibility are explicitly spelled

out, as are the explicit costs for all the possible infeasibilities, whereas

in the former these explicit costs of the various types of infeasibility are

reflected in the probabilities associated with each of the constraints. If a

violation of a particular constraint is going to be costly, in the "slack"

formulation one would have to think hard about what the actual costs of the

specific contingency plan under infeasibility would be, whereas in the

chance-constrained formulation one might say: If violation of this con-

straint is going to be very costly, I want to be 99% sure of satisfying this

constraint.

SOLVING TWO-STAGE PROBLEMS

Aside from the search for certainty equivalents for the two -stage

problem, there has been some research on obtaining algorithms for mini-

mizing EC(b,x). This work is contained in [4J, based on the following con-

siderations. Part of the two -stage problem is the second-stage problem,

the problem that the decision maker has once he has made the initial de-

cision x and observed the random vector b. This problem has the form:

By = b Ax

y >0

f
T

y = min

Now for this problem, for given b and x, there is an optimal set of prices,

or dual variables, 7f(b,x). It turns out that one way of characterizing the

solution of the two -stage problem is in terms of the expected optimal

price of the second-stage problem.
More specifically, the following three results are what led to the algo-

rithms of [4].

I. Suppose x is the optimal first-stage decision, i.e., it minimizes

EC(b,x) and satisfied the constraints, and let x
t
be feasible. Then

[C
T

-Eir'fax^AJx ^ [c
f -EFOvqHxi

that is, given any other feasible vector x
t , the optimum x for the two-

stage problem provides a smaller value than does x
t
for the linear form

[c
r -E^ r

(b,Xi)A]x.

This gives an inkling into a way of proceeding. One would hope to gen-

erate linear forms based on a particular choice of x
t
and an evaluation of

the expected optimal price for the second-stage problem given x
t , and

then determine whether there exists a vector which makes the above-

mentioned linear form smaller than when evaluated at x
t

,

H. EC(b,x) is convex in x. In other words, the "slack" formulation of

the problem is in reality a recasting of the problem as a convex program-

ming problem. Unfortunately the function EC(b,x), though convex, is not
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necessarily differentiate everywhere in the interior of the region of defi-

nltion of x, so one cannot just take derivatives and set them equal to zero

in order to find solutions. On the other hand, one can construct the sup-

ports to this convex function in terms of the expected optimal prices for

the second-stage problem.

HI. The plane given by [c
f - E* '

(b,xt)A]x * Eir^b.XjJb is a support to

E(b,x) at x x
t

. That is, the term c
f - Eif

f

(b,Xi)A behaves as the gra-
dient of this convex function at Xj.

What we have is a combination of two results: one a result about the

convexity of C(b,x) and a characterization of the support planes, and the

other a necessary condition for optimality of x. Using these in conjunction,

algorithms for minimizing this convex function can be developed. These

are given in some detail in [4].

Another direction of effort has been in determining optimizing algo-
rithms for the case in which the vector b takes on only a finite number of

possible values. In that case, the problem can be written out in full as the

following large linear programming problem:

Ax + Byt
=

bi

Ax + By2
=

bj

Ax + ByN
= DN

c'x +
Pl f

f

yi
+ Ptf 'yj + ' + PNf

T

yN = bN

where the p's are now the probabilities of the various b's. In this format,
one solves not just for optimal x, but also for the whole set of optimal con-

tingency plans, ylt . . . , yN , whereas in the formulation as a convex pro-
gramming problem one is only interested in determining the optimum
first-stage decision. (The reason for this is that the decision maker is not

directly interested in obtaining the entire set of contingency plans. The
decision in the second stage depends only on the value of b that is ob-
served, as well as on his first-stage decision x, and so the decision maker
has a simple task. He doesn't care about all the possible situations that

might have arisen. Bat in this way of setting up the finite problem one ob-
tains ail the contingency plans ylf . . . , yjsf, as well as the first-stage op-
timal decision.) The dual of this large scale program can be seen to be in
suitable form for use of the decomposition algorithm [5], so that, though
the linear program is a large-scale program, it is now feasible to handle
it oe a computer.

OTAUTY THEOEEMS

Aao*feer direction of work in this area has been in obtaining duality
theorems for the "slack" formulation of the problem. We briefly sketch
wfaa* fa** been done in W. I*t D -

(A,B), e' =
(c'.f '), |'<b)

=
<x',y'(b)), and

be the distribution function of b. Let {^(b)} denote a collection of
{ft*, ladexed on b, where all the members {(b) of a collection
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{|(b)} have the same first n
t components. The primal problem then

becomes:

| <b)'
2= all b

JV|(b) djn(b) =min.

One can then write out the dual problem:

D?

6(b) ^e

6(b)
>

Jb
T

d(b) djit(b) =max.

Consider any particular collection (|(b)} now as the tabulation of a

function of b. Let {6(b)} be a collection of dual vectors 6{b>, indexed on

b, and view any particular collection now also as the tabulation of a func-

tion <5 of b. Assume that the functions and 6 are measurable and square

integrable with respect top, and that the squared length of b is measur-
able and integrable with respect to

JA
. Then the Lagrangian for the problem

is

One then obtains the usual kind of result, that

if and only if and 6 are optimal for the primal and dual problems, re-

spectively. Now these problems are not the original primal and dual

problems, but have been restricted to those involving and 6 which are

measurable and square integrable functions of b and for which the addi-

tional assumption is made that, roughly speaking, the distribution of b

have finite variance. These certainly seem to be reasonable restrictions to

place on any problems which will occur in practice,

RELATED WORK

We will finally describe briefly the work of Tintner and his school [10].

They are not directly concerned with the problem of decision making
under risk. Rather, they are interested in such questions of the form:

What is the distribution or at least what are the expected value and vari-

anceof the objective function if one were to "wait-and-see" the value of

the random A and b, and then solve that nonrandom problem? Explicit

analytic results for this problem would be quite useful for the "slack"
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formulation, for they might enable one to find an analytic expression of

E min f *y as a function of x. However, their work has shown that analytic

expressions for particular distributions are hard to come by.
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A PRIMAL-DUAL ALGORITHM FOR CONVEX PROGRAMMING

Robert Wilson

ABSTRACT

This paper develops an algorithm for exact solution of a broad class of

practical convex programming problems, including, for example, stochastic

linear programming with convex losses, and quadratic programming. The

algorithm finds a vector x* yielding the minimal value of f(x)
= c'x + g(Ax)

within a bounded set of linear constraints, x ^ and Bx ^ b, where b and

c are vectors, A and B are matrices, and g(-) is a convex, continuously

differentiable function of the components of a = Ax. Since A might include

the identity as a submatrix, g( ) could be a function of x directly.

The Kuhn-Tucker conditions for a solution are analyzed to identify a

natural dual problem for which the feasible subspace is a convex poly-

hedron. A mapping between the dual and primal spaces, used together with

iterations of the ordinary simplex method enable one to proceed to the so-

lution. Cycling in the simplex algorithm between two vertices of the dual

feasible subspace identifies a nonvertex solution, and in this case a simple

parametric technique suffices to yield the solution immediately. The

method is illustrated by solving a stochastic linear programming problem.

The algorithm takes its easiest form when g(
-

) is a separable function

of the components of a s Ax, due to resulting simplicities in the mapping

process. When g( )
= the algorithm reduces to the simplex method

applied to linear programming.
Extending the analysis, it is shown that the method is applicable also to

sequential convex programming problems. Although the numerical task

now becomes burdensome, the method is illustrated on a sequential

stochastic linear programming problem involving inventories (or back-

orders) carried over from period to period.

Ill





Characterizations by Chance -consfrained Programming

6. L Thompson

W. W. Cooper

A. Charnes

It is useful to think of the models referring to stochastic programming,
linear programming under "risk" (it should be, rather than "uncertainty"),
chance-constrained programming, etc., as originating in the problem:

Max CTX Min wTb

Ax ^ b wTA 2: CT

x 5: w ^

which has the well-known features of duality. The problems arise, of

course, when the vectors b and c, possibly the matrix A also, involve

random variations. It is necessary to decide what is to be understood as
the problem to be solved before asking how the problem is going to be
solved. The direction we have taken is something like the following:

First, let us set down one example of the intended class of problems.
Suppose we want to maximize an expected value, e.g.

Max E (cTx)

subject to chance constraints. These conditions are that the probability
that certain inequalities are satisfied is at least a. This is only a partial

prescription. We also require that the variables, the quantities x, arise

from some class of decision rules which might depend on the A's, the c's

and the b's, where A =
(ay), bT =

(bj, . . .b^), CT =
(c^ . . . cn). Thus our

chance -constraints and decision rules may be written:

P{Ax <
b} 2= a

x = D(A, c, b)

We are not merely trying to find mixed strategies. We are rather inter-

ested in determining decision rules which will tell us assuming that this

is a problem that marches forward in time what to do at each emerging
stage; not what we should do with a certain probability, as in the case of a
mixed strategy in game theory, or in the case of a stochastic model of

Markov process type* where we determine conditional (transition) proba-
bilities of various actions. To fix tlae ideas one might keep in mind, say,

113
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scheduling the production of heating oil to meet the emerging random de-
mands through the season as well as to meet whatever other constraints
are relevant on storage and transportation.

The terminology we use overlaps with that of others. The meanings
have gotten mixed up as is to be expected. Two terms arise from the for-
mulation above. The first is "deterministic equivalent"; by this we mean
a problem not involving any random variables which when solved will give
us optimal decision rules to use. And we talk of the "certainty equivalent'*
as being this set of optimal decision rules, because having these, we know
with certainty what we are to do in any specific case.

How does the so-called linear programming under uncertainty of Dantzig,
Madansky, et. al., relate to chance-constrained programming? Much of
their work is concerned with the so-called two-stage instance of linear

programming under uncertainty. Referring to our chance-constrained
formulation, their variables and here we include their (second stage)
penalty variables-are those that have c's attached to them. Then with
these, you must restrict to the special case in which the afs are all 1 in
order to have linear programming under uncertainty. This is true whether
it is two-stage or k-stage. Further, the concept of decision rules and their
optimal determination is absent in any explicit sense in the published work
of this "l.p.u.u." group except in the two stage case, to which we shall
return.

We have however been able to get some characterizations of optimal
classes of decision rules for general l.p.u.u. by restricting our formulation
to ai * l. For example, in the case of analyticity of the decision rules in
the random variables it turns out that the class of linear rules is sufficient
to consider. And piecewise analyticity would yield piecewise linear rules.
For the general case (o^ x i) we have been able to make a certain amount
of progress in finding deterministic equivalents. We have looked at this
chiefly, but not exclusively, in terms of linear decision rules,

where D is a matrix. If in a dynamic problem, the components of x with
larger subscripts represent later times, D may have a triangular or a
block triangular structure. But there are cases when D does not have
such a structure. Also, if forecasts of some of the random variables are
included in the decision rules, a forecast could appear as a random variable
which is available with (perhaps) smaller variance at certain times alongtbe pathway than the random variable available at an earlier stage.

I any case, if we look at this class of linear decision rules it is clear
tbat in order to do something of a general nature with deterministic equiv-alents we must rely on a class of distributions for which the algebra is

i

8

a S ^ y
-T

VeGie
f

' SUCh " CiaSS (su^ested bv Charnes and Ben-israel)8 tfeat of mixtures of normal distributions. This class has the property0*t a linear combination of random variables which are governed by a
(muitivariate joint) mixture of normal distributions is again governed by
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such a mixture, and one can specify the corresponding means and covari-
ances in a fairly reasonable manner. Further, with mixtures of normal
distributions it is possible to approximate distributions of fairly arbitrary
shapes U -ness and all that sort of thing can be had. Thus one can build up
more general theory through approximation by mixtures of this type.

In this linear case, there is one more point of content. The case of two-

stage linear programming under uncertainty has a case in which both aj
= 1 (for all i) and x =

Iy where y does not depend on b. In other words x

is a vector of parameters; the decision rule degenerates so that there are
no terms involving the random variables b. We call this the zero**1 order
linear decision rule. For the more general case with cq * 1, Ben-Israel
and Charnes have given a dual theorem. For that case, the left-hand side
in each chance constraint is a number, it isn't a random variable. But the

probability of a random variable with a known distribution being greater
than or equal to some particular number, of course specifies a fractile and
leads immediately out of a chance constraint into a constraint involving the

corresponding fractile of the distribution. This result holds also for de-

pendent, not just independent, random variables.

Three types of functionals for chance -constrained models have come up
in connection with various problems in the real, or conceptual real, world.

One of these (pointed out already) is that where the functional is the

expected value. We call this the E type. Another type (the V type) is that

in which as for example, in the work of Markowitz on portfolio selection

and investment something like a variance measure of risk is minimized.
This could be written Min E (c?x - cTx )

2
. Finally the goal might be to

maximize the probability that at least a certain level of the functional is

achieved, again subject to chance constraints and the choice of the decision

rule from a given class. Call this the P type.

There is still another class of problem which has come into the social

science literature through the notion (due to H. A. Simon) of "satisficing"
rather than optimizing. But it too can be specified in a certain way in an
extremal or optimizing manner.

What do these problems look like for the case in which we have a linear

decision rule? It turns out that in this case, when the distributions are

mixtures of normal distributions we can get a deterministic equivalent.

The results are more general but this level of generality will do. The

components of b and c may be correlated. There is one more condition:

if the distributions are symmetric, then we require aj ^ 1/2 for all i. If

this isn't the case then the deterministic equivalent is not a convex pro-

gramming problem. But it is interesting that then you really would not

consider such a chance -constraint as a policy constraint, or as very much
of a requirement since it would not hold at least 50% of the time . When the

hypothesis is satisfied (the usual case) the problem is convex and the de-

terministic constraints will turn out to be at most quadratic. The quadratic
character arises from the covariances of the components of the random
vectors involved.

Incidentally, we have said "convex" programming problem for each

functional type. That is not true directly for the P type. It leads to a model
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involving programming over a convex set, but the functional is a linear

fractional one. We have shown how to reduce this to a model with a linear

objective, one extra constraint, and one more variable, so it is true that at
most a second transformation converts all three types to convex program-
ming models with at most quadratic constraints as their deterministic

equivalents.

For example, let us write down the deterministic equivalent for the V
type. It will be:

Min E[c
TDb - cTx ]

2

subject to -
aTjQ^b

-
Vi

> -^
and -

K^.E[bi
- a? Db]

2 +
vf
^ with Vi ^0

Solving this problem we would get D and thus would have the certainty
equivalent; that is, we would be able to specify our action since the corre-
sponding x components would be precisely determined as specific events
developed which gave particular values to the b.

Similar results hold for the other types of models; the same sort of
structures arise. It follows from the above expected value form of the
chance constraints that the quadratic character of the equivalent con-
straints comes essentially from the variances or covariances involved. At
the very worst, to deal directly with distributions other than mixtures of
normal distributions, it is only necessary to determine quantities such as
K?. These may come from a method of parametric variation or from things
like Chebychev's inequality. This would yield values of K2

which would be
higher foan necessary in order that these chance -constraints hold.

Let us proceed now to something which is a good deal more specialWe ve done some work on extension of the critical path problem to one in-
volving uncertainty in the times of completion of each task in the network
of required tasks. Here, consider a network with a starting node, a finishingnode and various other nodes . A unitamount is sent in which is required to go
through the network and come out at the finish node in correspondence to
total completion of all the tasks implied by all the links. Recall that in this
formulation one searches for the chain of maximal length in the network

22!?7n
'Timi2e

2jtjXj ' Where ^ iS the time on the 3
th link > *1 ^eamount of How there subject to the incidence conditions and unidirectional

Ilow,

Xj
2=0

ThU of course is associated with a dual problem:

Uiaj subject to 2 ujey
s

tj
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Here all the a's except two will be zero. One of these is 1 and the other is

-1.

If you look for the moment at the deterministic case in this form, and

you look for the obvious directed sub-dual method (see Chames and

Cooper, "Mathematical Methods and Industrial Applications of Linear

Programming," Volume n), it turns out that it's possible to solve it in one

pass through. And the method that you get in this manner turns out to be

one which Dijkstra published in Numerische Mathematik, Volume I, 1959.

This method seems to be an improvement over previous solution methods.

It's rather interesting that his ingenious method which is based purely on

graph considerations is identical with one you get from simply a routine

examination of the problem and construction of an obvious directed sub-dual

algorithm in the dual.

In the dual, Min Si^ai subject to Si^ey
>

tj,
the ui may be considered

virtual potentials at the nodes. Their optimal values can be interpreted as

"early start times" for their following tasks. And it is from this side, too,

that we can take this problem up into chance-constrained form, where we

replace the deterministic constraints above with the probability that these

happen is respectively at least
/3j. E.g. the constraints become

P(2iUiy
>

tj) -Py Here the
tj

are random variables with known distri-

butions, and for simplicity we consider zero order linear decision rules

for the ui's ("two -stage" in the linear programming under uncertainty

terminology; note this is not l.p.u.u. since the
j3j

are not necessarily 1) i.e.

we take the u^'s as parameters to be solved for. Now then we can do some-

thing like minimize the expected value of the functional, or we can minimize

the probability that the time taken for completion is more than a certain

amount. Or we can maximize the probability that the time is less than a

certain amount for completion. Any one of these criteria would give us a

perfectly valid chance-constrained zero order model.

To show the relevance of this to PERT procedure, let us suppose, for

example, that the t's are independent with distribution functions Fj. Then

the chance -constraints can be inverted immediately into the fractile form,

S ^ij * F

Taking the E form for the functional, it remains as Z^a^ since the ui are

not random variables.

Now we have a dual problem:

Max
FJ

1

subject to J^ ij
x

j

= a
i

and x
j

This is of the same form as the original deterministic critical path formu-

lation with the FT1

(j3j) replacing the (fixed) times for task completions.
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PERT arises for special discrete (3 point) distributions and with replace-
ment of the random times by their expected value. But this corresponds
here to the &\ x 1/2. You may form your own conclusions as to the protec-
tion afforded by this level of

/3j
in chance constraints.

Aside from the above considerations, this model has other interesting

aspects. For example, we have obtained the (Tintner) variety of stochastic

programming solution for some cases. When one uses exponential distri-

butions then the distribution of the maximum of two random variables and
other necessary distributions turn out to be easy to determine. The inte-

grations involved can be carried out and for some simple examples we can

actually get the distribution for the minimum total completion time. Al-

though the mode of individual task times is at zero, the total completion
time distribution is very flat and small near zero. Further it is often

multi -modal! This is at variance with certain (fallacious) central limit
theorem usages.
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PROGRAMMING WITH STANDARD ERRORS IN THE
CONSTRAINTS AND THE OBJECTIVE

S. M . Sinha

ABSTRACT

This paper deals with a linear programming problem, where the coeffi-

cients of the objective, the constraint inequalities and the available quanti-

ties are random variables. The appropriate formulation under the situation

is then to consider that our activities should be such that with a certain

preassigned high probability, the total quantities required for each item

should not exceed the available quantities and at the same time guarantee
a maximum objective with a preassigned high probability. With the assump-
tion that at least the means, variances and covariances of these random

variables are known, our formulation reduces the stochastic linear pro-

gramming problem to the case of the following convex programming prob-
lem:

Max DTX -
(X

T

BX) 1/2

subject to AjX + (X'B^ 1^ ^ ty, X ==

where D, Ai, X are (n x 1)

and B, B* are (n x n)

symmetric positive semi -definite matrices

(i
=

1, 2, . . . , m) (D

It has been shown that in a particular case, where only the coefficients of

the objective are random variables, the problem can be stated as

MaxDTX-(XT

BX) V2

subject to AX ^ b, X ^

where b is a (m x 1)

and A is a (m x n) matrix,

which can be solved by the available algorithms for quadratic programming

It is also noted that if all the correlation coefficients are unity, (1) reduces

to a linear programming problem with known coefficients.
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INEQUALITIES FOR STOCHASTIC NONLINEAR
PROGRAMMING PROBLEMS

0. L, Mangosarian and J. B. Rosen

ABSTRACT

The inequalities given by Albert Madansky (Management Science, Vol. 6,

1960, p. 200) have been generalized to a class of nonlinear programming

problems via the duality theorems of nonlinear programming* In particular,

the constraints considered are of the type g(x) + h{y) s: b where the compo-

nents of the vectors g and h are nonlinear concave functions of their argu-

ments and satisfy some further restrictions. The right-hand side b is

subject to a random variation with an expected value Eb. It is desired to

minimize the expected value of the convex objective function <p(x) +*(y)

subject to the constraints. If y{x,b) denotes min(<0(x) + *(y)J subject to the

constraints, then under certain restrictions the following inequalities hold

Ey(b, x(Eb)) ^minEy(b,x) 2:Eminy(b,x) 2: miny(Eb,x),
X XX

where x(Eb) denotes the solution of miny(Eb,x). It is also shown that the
x

function miny(x,b) is a convex, continuous function of b and that the some-
x

times-sharper upper bound to E miny(b,x) given on p. 201 of Madansky also
x

holds if b is defined over a bounded rectangle and has independent elements.
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Compacf Basis Triangular/zafion for the Simplex Metfiocf

George B. Dantzig

Alex Orden was the first to point out that the inverse of the basis in the

simplex method serves no function except as a means for obtaining the

representation of the vector entering the basis and for determining the

new price vector. For this purpose one of the many forms of "substitute

inverses" (such as the well known product form of the inverse) would do

just as well and in fact may have certain advantages in computation.

Harry Markowitz was interested in developing, for a sparse matrix, a

substitute inverse with as few nonzero entries as possible. He suggested
several ways to do this approximately. For example, the basis could be

reduced to triangular form by successively selecting for pivot position that

row and that column whose product of nonzero entries (excluding the pivot)

is minimum. He also pointed out that, for bases whose nonzeros appear in

a band on a staircase about the diagonal, proper selection of pivots could

result in a compact substitute inverse with no more nonzeros than the

original basis.

We shall adopt Markowitz 's suggestion. However, instead of recording

the successive transformations of one basis to the next in product form,

we shall show that it is efficient to generate each substitute inverse in

turn from its predecessor. The substitute inverse remains compact, of

fixed size. Thus "reinversions" are unnecessary (except in so far as they

are needed to restore loss of accuracy due to cumulative round -off error).

The procedure which we shall give can be applied to a general m x m
basis without special structure. As such, it is probably competitive with

the standard product form, for it may have all of its advantages and none

of its disadvantages. With certain matrix structures, moreover, it appears

to be particularly attractive.

We -shall focus our remarks on staircase structures. The reader will

find no difficulty in finding an equally efficient way to compact block-

angular structures. Letting By be a submatrix of the basis, a basis B
with staircase structure has, for example, the form:

fThis research has been partially supported by the Office of Naval Re-

search under Contract Nonr-222(83) and the National Science Foundation

Grant No. G21034 with the University of California, Reproduction in whole

or in part is permitted for any purpose of the United States Government.
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(1)

In (2), the marks x, *, and <g) indicate the staircase pattern of nonzero

entries in the basis-matrix B. The Ps is some column of coefficients not

in the basis. The asterisks along the diagonal mark the successive pivot

positions. It is assumed (and this need not be true) that the basis can be

reduced to triangular form by pivoting successively on the lower right-

hand element of each submatrix formed by deleting the preceding pivot row

and column. Each pivot operation consists in using the assumed nonzero

diagonal term to eliminate the column variable from all nonzero terms
above the diagonal only. Hie symbol indicates the resulting position of

zero coefficients above the diagonal.

x *
CK)

xx*
XXX

B =

x *

XX*

ps
=

rop)

x

X

X

X
*"

(enter)

(2)

Let T be fee resulting triangularized matrix; it has the form (3) . Note

particularly that the pattern of nonzeros in T is precisely the same as the

pattern of nonzeros on and below the main diagonal of the original basis B
and that Pj, the transform of Ps under the same row operations, may

nonzeros in its leading components.

*

x *

XX*
XXX*

X *

XX
fdrotf

X

X

X

X

x

X

(enter)

(3)
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The sequence of operations on rows by which T is obtained from B is

equivalent to multiplying B on the left by a succession of elementary

matrices so that

./. EmB (4)

Here Em = E represents an elementary matrix corresponding to a pivot

in row 6. Thus the first pivot operation is the same as multiplying B on

the left by

P56

1

(5)

where pS6
is selected so that row 6, when multiplied by p^ and added to

row 5, will cause the element (5,6) of the matrix to vanish. Since no elim-

inations are required in column 5, E 5 is an identity matrix. Next, E4 will

be similar to E6 except with one nonzero entry Ps4 for element (3,4) and

E3 will have at most two nonzero entries above the diagonal p^, pjj, cor-

responding to the factors required to eliminate elements (1,3) and (2,3)

from the matrix using row 3. Similarly E 2 will have an entry p12, and Ej

will be an identity matrix. Since each elementary matrix Ei is an identity

matrix except for nonzero entries above the diagonal of column i, we may,

for purposes of compact recording, simply list side by side the entries in

column 1 of E
lf

in column 2 of E 2 , etc. We shall refer to this typical

product form record of the transformations as the E -structure. For our

example

E- structure =

P12

1 P23

1 (6)

Note again that the pattern of nonzeros in the E -structure (excluding the

units on the diagonal) is precisely the same as the pattern of nonzeros
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above the main diagonal of the original basis B. Thus the statement in

product form of the nonzero coefficients in the transformations Ej neces-

sary to reduce a basis to triangular form T and the record of nonzeros in

T have as compact a representation as the original basis.

We give the formulas for the determination of the set of simplex multi-

pliers (or pricing vector) ?r and the representation Ps of the vector Ps
entering the basis, when Ej and T are known. Let y be the vector of co-

efficients of the cost form for the basic variables, then by definition

*B=y (7)

If now we define ff* by the relation

**T=y (8)

then, it is easy to see, by (4), that

T i*E
t
E2 . . . Em (9)

Because T is triangular, ir* can be directly computed from (8) and TT from
(91 by applying to T* the transformations E lf E 2 , ... in turn on the right.

Having obtained *, we can by the usual "pricing out" procedure deter-
mine the vector Ps to enter the basis by

*PS = Min
TPj

<
(10)

By definition, the representation Ps of Ps in terms of the basis satisfies

BPS = PS (11)

If now we define P* by the relation

P = EiE2 ...EmP8 (12)

then, it is again easy to see, by (4) and (11), that

Tl*s=P (13)

Halation (12) allows us to compute Pj, and because T is triangular, Ps
is computed by direct solution of (13).

Given Ps and the basic feasible solution, the usual rules are next applied
to determine the vector Pr to drop from the basis and to determine the
basic feasible solution for the next iteration. We shall omit these steps
assuming they are known to the reader.

Our problem now becomes one of "up-dating" our substitute inverse.
Tfeis of course could be done by succession of pivot operations above the
diagonal such as we described earlier. But this is not very efficient com-
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putationally.
We shall show instead an efficient procedure for easily modi-

fying the E -structure and T matrix of one iteration to obtain those of the

Let us assume in our example [see (2)] that the vector Ps entering the

basis, if entered in its proper position in the staircase array, would be

located, say, between either vectors P4 and P5 of the basis {or vectors

P and P4),
and let us suppose that vector P

t
is to be dropped. Starting

with the columns of B and Ps after they have been transformed by the row

operations E
4
E 2 . . . Em , namely with T and P| as shown in <3>, our ob-

jective is to triangularize the matrix formed by deleting the first column

and introducing Pg say, between columns 4 and 5 (actually between col-

umns 3 and 4 would be less work). The row operations that accomplish

this are to create zeros in the first three rows of P| column by succes-

sively adding first a multiple of row 2 to row 1, next a multiple of row 3 to

row 2, and then a multiple of row 4 to row 3. We shall denote these single-

row transformations by E\, E|, and Ej. For the present we have assumed

above that the second, third and fourth components of P| are nonvanishing

(this need not be the case). The results of these operations are shown in

(14) where * indicates the elements of the previous diagonal and D those

of the new diagonal.

New T =

* a
x *

X X

(14)

Drop
column

Enter new
column here

The relationship between the new T and the new B may be written

(New T) = EjEi E| E t
E 2

E
3
E4 E5

E s (New B) U5)

If, however, the column to be dropped were j
= 4 (instead of 5

= 1) , it

would be necessary to eliminate the D element in column 3 and then &e

ones in column 2 by additional transformations of the type Ej , say t,,

E|, in this case

(New T) =E^IlE|EiE|E 1 EjE3 E4 E 5
E 6 (New B)

We have shown that the new T can be obtained by applying to the pre-
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vioua product of the EI a succession of row operations of the form
EJ"

1

where, in general, we have denoted by E^ an elementary matrix corre-

sponding to adding a multiple of row i to row k. Our objective, however,

ha* not been accomplished until we have shown how to obtain easily the

new T directly from the new B by a succession of new pivot operations

*. This is easy to accomplish if we observe the following rules:

I. If E[ and E{ are two elementary matrices representing adding a

multiple of row i to other rows, then their product EjEj can be replaced

by an elementary matrix of the same type, say, E*. For example

i-i
II. "Near commutativity" of adjacent-indexed matrices Ep and E^

holds; thus the product EJ"
1

Ej
can be replaced by Ej^Ei. For example

"1

P|4

1 J

323

1 1 P34

1

in. Nonadjaeent-indexed matrices can be commuted; thus

E|-<Ek
= E

kEf-> lfk<I-l

For our example let us denote the new Ej by E*, so that we are inter-
ested in obtaining the relation

(New T) - E* E? E* Ej E* E (New B)

by applying the above rules to (15). In this case

E? * E
t (the identity)

E? =E|E 2

particularly ibat the formation of each E*, from a computational point
of view, consists esseatiaily of multiplying most of the elements of column
I
-

I of Ej_| by a constant and adding it to the corresponding elements of
column i of Ej.

The process described above of reducing to triangular form the matrix
formed by dropping a column of T and inserting P^ was based on the
assumption that certain coefficients of Pg were nonzero. If, for example,
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the second component is zero but the first component is not, it would not be

possible to use a row operation E\ to cause the first component of P| to

vanish.

Let us suppose that the position of column Ps in the new basis is k

columns from the left (we assume that pivoting is done by starting always
with the lower right-hand element of each submatrix).

Let the column being dropped from the basis be r ^ k. In the process
of computation of P| by (12), we obtain the vector

P's
=EkE k44 .-.EmPs

Now Pg must have its first nonzero component for some index h ^ k

since the new B is nonsingular. We assume for the moment that the k"1

component is not zero. Accordingly, starting with P|, the elimination of

its first nonzero component with index s
t
can be effected by using its

second nonzero component with index 82, etc., until its nonzero component
with index s

t
= k is used. This corresponds to row operations of the form

ESl followed by E 2
, etc. The remaining components with indices

s2 s3

k, k+1, . . . , m are unaffected by the above operations and hence remain

the same as those of P|, Thus the result is the same, as far as columns

P^, P^, . . . , Pm are concerned, as if triangularization had been effected

directly using these columns. If Sj
+ 1 s

2
= A > 0, it will be necessary to

permute cyclically certain of the rows by relabeling rows

s
lt B!

+ 1, . . . , s2
- 1 as rows s 2

-
1, s

it s
4
+ 1, . . . , s2

- 2. In a similar

manner, rows s 2 , s2
+ 1, . . . , s3 1 are permuted if s 2

+ 1 s3 > 0, etc.

Allowing such permutations, it is no longer necessary to assume above

that the k*k component of P| (or PS) was not zero.

It is important to note that such permutations would have been required

if direct triangularization of all columns had been effected initially. More-

over, as far as staircase-structured systems are concerned, these permu-
tations would not have affected the below -diagonal -staircase-form of T or

the above-diagonal-staircase -form of the E -structure because, if direct

eliminations were used, the eliminations and row interchanges would have

been confined only to rows where the components of Ps are nonzero.

Let us now tumour attention to the column Pr to be dropped from the

basis. Suppose first r < k. Deletion of the corresponding column of T
followed by the necessary eliminations to restore triangularity discussed

earlier will also require permutations if the indicated pivot position along
the diagonal has a zero coefficient. For example, a two-cycle permutation
will be required in order to lower to the diagonal the aonzero coefficient

just above the diagonal. If r ^ k, it appears to be necessary first to drop
the column corresponding to Pr from T and to retriangularize columns

k, k+1, . . . , r-1 (omitting r), and next, to insert the column corresponding
to Ps by performing the eliminations described above to P.

Since, in general, row permutations are required to obtain the triangular

arrangement in standard form, it is necessary to replace (4) by
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T = E
t
E 2 ... EmJB (4

T

)

where J represents a permutation matrix. Each new cyclic permutation

C introduced in the process of elimination to a new triangular form can be

accounted lor by appropriately relabeling the row designations of coeffi-

cients in E| and J.

Finally, it is necessary to restate the rules given earlier for up-dating

the substitute inverse when elementary matrices of the type Et, where

I <
i, appear on the left instead of

EJ"
1 discussed earlier. In this case

the rules are:

If: E?E. = E-E. where i < i and where, letting p^ be the |,i compo-
i f f I

of E*, the I
th column of E| is formed by multiplying by -p^ the

corresponding coefficients in column I of E| with the exception of rows 1

and I. For row l, the coefficient is pj, and for row i, the coefficient is

unity,

Hi :
JtLjLrJUl

~~ Hi JtL 5, II I *^ ^ K

IV: I|Eq
=
Eql| if I < q <

i, where i is the same 1 as that which gen-
erated Ef in If. Note that the commutativity of the matrices holds because

If has a zero coefficient in column i for row q and Eq has a zero coeffi-

cient in column q for row i.



The Simp/ex Method Using Pseudo-basic Variables for

Sfrucfurecf Linear Programming Problems

E. M. L Beale

A procedure is described for solving linear programming problems that

consist of separate subproblems with a few linking variables that occur in

all (or several) subproblems. This is the simplex method, organized so

that the advantages of the special structure of the problem are preserved.

1. INTRODUCTION

Dantzig and Wolfe [2] have described a "decomposition principle" for

solving linear programming problems consisting of a set of separate sub-

problems except for a few "linking equations" containing variables that

occur in all (or several) subproblems. This paper presents a method of

solving the dual problem, i.e., one consisting of separate subproblems ex-

cept for a few linking variables that occur in all (or several) subproblems.
Problems of this sort arise in many contexts. For example, they arise

when one is scheduling operations over several time-periods; and also in

2 -stage linear programming under uncertainty when the random variables

have discrete distributions.

Of course, by the duality theorem, the linking variables problem and

the linking equations problem can be transformed into one another. But,

although it was inspired by Dantzig and Wolfe's decomposition principle,

this work is in fact more closely related to Dantzig' s work on block

triangularity fl]. Dantzig there proposed the use of the simplex method

with an "artificial basis B" and a "true basis B." The true basis

consists of the coefficients of the basic variables in the present trial

solution, and the artificial basis differs from this in at most^a few

columns and is "square block triangular." The inverse ofJ3 can then be

stored compactly, and the work is carried out in terms of B" 1 and a

tPart of this work was done at the symposium on Combinatorial Prob-
lems sponsored by the RAND Corporation from July 10 to August IS, 1961.

I am grateful for helpful comments from G- B. Dantzig, . J. Hoffman,
W. Orchard-Hays and D. M. Smith. Any views expressed in this paper are

those of the author. They should not be interpreted as reflecting the views
of The RAND Corporation or the official opinion or policy of any of its gov-
ernmental or private research sponsors. This paper appeared in print

previously as RAND Corporation Paper P-2405, August 15, 1961.
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matrix rj defining the columns of B not in B in terms of the columns of

B.

The present work proceeds similarly. But a more specialized problem

has been considered, with the result that the lay-out becomes con-

siderably neater. It seems likely that the proposed algorithm will be

more efficient for these problems than that derived from the decompo-
sition principle, since this algorithm follows the simplex method, and

includes plausible rules for choosing the nonbasic variables to be intro-

duced into the trial solution.

The algorithm is motivated in Section 2, described algebraically in

Section 3, and illustrated by an annotated small-scale numerical example
in Section 4. Rules for choosing pivotal columns and rows are presented

in Section 5. These rules do not affect the theoretical properties of the

algorithm, but they may be vital to its practical efficiency. Finally,

some general remarks about solving linear programming problems with

special structure are offered in Section 6.

For ease of exposition, the various stages of the algorithm are written

out in explicit equation form in the first part of the paper, and the

numerical example is given in the detached coefficient form. In practice

there Is no difficulty about using the inverse matrix method for the sub-

problems. But it may be best to store the coefficients of the linking

variables in explicit tableau form, since they are used extensively and are

subject to both row and column operations. (They correspond to Dantzig's

essential columns of TJ, which he also visualized as being stored ex-

plicitly.) fe this respect the algorithm is less compact than that derived

from the decomposition principle when the linking coefficients are

sparse since these linking coefficients can conveniently be manipulated

through the inverse matrix.

2. MOTIVATION

The essential idea of this method is that the linking variables should

be regarded as parameters. It is obvious that if these parameters are

given specific numerical values, then it is a straightforward matter to

solve the subproblems to optimize the objective function for these

parameter values. It then "only" remains to see whether we can do even
better by changing the parameters. If these were originally given arbi-

trary values, then It is almost certain that the solution can be improved
by either increasing or decreasing the value of one parameter, keeping
the ethers constant. Because the problem is linear, this situation will

persist until some basic variable becomes zero. If one were using the

ordinary simplex method, one would then make this variable nonbasic, in

place of the parameter. But we cannot do this without spoiling the struc-
ture of t!*e problem, so we do not do It. Instead, we make a trans-
formatioo of parameters, so that if we subsequently change one of the
other parameters we do not change this zero-valued basic variable. I call
thia a "pseudo-basic" variable, since it appears in the tableau as a basic
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variable but is really a nonbasic variable from the point of view of the

rationale of the simplex method.

The resulting process can therefore be regarded as the simplex
method, organized in such a way that some nonbasic variables remain
on the left-hand sides of the equations so as to avoid spoiling the struc-

ture of the problem. They correspond to variables in the artificial basis

but not in the true basis in Dantzig's block triangular scheme.

3. ALGEBRAIC DESCRIPTION OF THE ALGORITHM

The problem to be solved can be represented as follows: Fiod non-

negative vectors 9, x($, 1=1, , . . , L, so as to minimize

i (1)

subject to the constraints

T <0) g = b tf>

T + A x - b <=!, ...,L)

We refer to the components of 9 as parameters.
To start the algorithm, we express these constraints in "solved form,

so that they read

3=1

p

E tijl *)
+S aiki xk

5=1 *

C -ct+cjflj + ckl xkl (2)

5=1 * i

where the variables on the left-hand sides are all distinct from the

variables on the right-hand sides. The 0| and x^ may be artificial

variables, in which case the objective function will contain an overriding
term representing the sum of the infeasibilities. But this introduces no

new principle or complication. When an artificial variable or parameter
becomes nonbasic, it may of course be dropped from the problem.

It is natural to start by giving the parameters some plausible values,

and solving the subproblems for these parameter values. One can, of

course, start with all the parameters equal to zero, in which case one has

a genuine basic solution to the problem. But these will often be very un-

realistic values, leaving a long way further to go to the optimum. And one
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may have studied the subproblems separately, with the result that one has

a fair idea about what these parameters should be.

Let our plausible values be

#j
- Of

j
(J

=
1, . . . , P)

Then we define p new parameters <j by the equations

write these p equations at the top of the tableau, and substitute for
0j

throughout the remaining equations .

Since our "plausible values" of <j
are all zero, this means that the

constant terms involved in solving the subproblems for these plausible

parameter values are gathered together in the first column of the tableau.

But these additional p equations play a central role in the algorithm, and
we would have written them in even if our "plausible values" of ot\ had
all been taken as zero.

After having solved the subproblems for these parameter values, we
will have a tableau of the following form:

C =c
fl +E cj*j

+ Z)W*k (3)

ji k a

where all cj^ 2: 0. The coefficients and variables occurring on the right-
hand sides of (3) will of course not be numerically equal to those in (2),

and the first group of equations (for 9$ will be p more in number than

they were in (2).

The next stage of the algorithm amounts to solving the linear pro-
gramming problem defined by (3), with the restriction that the nonbasic
variables xj^ must remain equal to zero. This is done by the simplex
method usiiig the extended dual tableau.

Ttie extended dual tableau contains the definitions of all variables, in-

eluding the aoabasic ones, in terms of the nonbasic variables. It therefore
includes a permutation matrix amongst its rows. But here the nonbasic
variables must be regarded as new transformed parameters, and not
kJaatified with the corresponding x|, since they are really equal to

*!
- aikl Xfc|

V

There is also a complication in that this stage starts off from a nonbasic
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solution. But this is met by first taking each of the original <: in turn,

and either increasing or decreasing it (according to the sign of its co-

efficient in the current expression for C) until some basic variable becomes

equal to zero. We then make this variable pseudo-basic, introducing an

associated parameter defined by the first p + 1 terms of the expression
for this pseudo-basic variable into the nonbasic set. Once each

#j
has

been processed in this way we always have p pseudo-basic variables

(amongst the 0^ and x^), each associated with some parameter. There

will then be the correct number of genuine basic variables, since p
additional variables were added to the left-hand sides of the equations in

the transformation from (2) to (3).

Note that a new parameter is introduced into the nonbasic set at each

iteration. Nevertheless, the tableau does not grow longer because these

parameters are not sign-restricted, and they can be dropped as soon as

they cease to be nonbasic. In fact, if one looks only at the tableau and not

the names of the nonbasic variables, one is simply doing the simplex
method in the extended dual tableau, as pointed out earlier.

Eventually we will obtain a tableau like (3) with all
Cj

> 0. This implies
that C cannot be further reduced by varying the values of the basic and

pseudo-basic variables, keeping the genuine nonbasic variables, i.e., the

xkjfcr equal to zero. Following the usual procedure in the simplex method,

we must then consider whether it would be profitable to increase some
nonbasic variable xj^, keeping the pseudo-basic variables and the other

nonbasic variables equal to zero.

So far, each operation has been a very simple one. We have been

working exclusively with the first p + 1 columns of the tableau, the re-

maining columns being simply copied from one tableau to the next except

while we were solving the subprobleins for the initial plausible values of

the parameters, when we only needed to work with the subproblems in-

dividually. But now we have to pay a modest price for this simplification.

When considering the genuine nonbasic variables, we find that the

process of computing the effect of a unit increase in such a variable is

somewhat more complicated than usual (unless one is using the product
form of the inverse, in which case this is already a fairly complicated

operation). Then, if any increase is necessary, up to 3 changes of

variables may be required. One involves only the subproblem concerned,

the second (which may not be needed) involves only the coefficients of

one parameter, and the last involves only the constant terms. In a com-

puter program these stages may be combined, but for ease of exposition

they are here presented separately.

To find the unit effect of increasing some nonbasic variable x^| we

must find the coefficient c^ of this variable in the expression for C in

terms of the pseudo-basic and nonbasic variables. This must be derived

from the tableau represented by (3), where C is expressed in terms of the

parameters and nonbasic variables, by substituting for the parameters in

terms of the pseudo-basic and nonbasic variables.

Now if the variable x^ is pseudo-basic, the expression for it in (3) will

be of the form
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a
ikl

xkl
V

so that the parameter <p^)
can be represented as

= x ii
~ aikl xk

l<

and hence

where summation ranges over all i for which x# is pseudo-basic, and

is the parameter associated with it.

If, and only if, cjt < can C be reduced by increasing xj^ and keeping
all other nonbasic and pseudo-basic variables equal to zero. If there are
several negative c|, the algorithm, like the original simplex method,
does not depend for its theoretical properties on which one is chosen.

Discussion of suitable selection rules is therefore deferred until

Section 5.

So let us suppose that we have found some nonbasic variable xj^ such

that Cfci
< 0, and that we wish to increase xfc|. Now it is just possible that

there will be no pseudo-basic variable x^ in the same subproblem such
that aifci *Q. Then we can perform a regular simplex step, i.e., pivotal

operation, within the subproblem. This will increase x^ immediately,
making it a genuine basic variable, and making some previously genuine
basic variable nonbasic.

But the usual situation will be to find some pseudo-basic variable x^ in

this subproblem such that a^ *0. Then we cannot increase x^ directly
without changing the value of xj|, which we do not want to do. We there-
fore have to perform a preliminary pivotal operation within the subproblem
to make xfc| pseudo-basic in place of some existing pseudo-basic
variable

x^|
in this subproblem. If there are several such pseudo-basic

variables, then again the algorithm theoretically does not depend on
which one is chosen, and further discussion is deferred until Section 5.

At this stage it is desirable to study the formulas in detail. We denote
the nonbasic variable we ultimately wish to increase by xs . The pseudo-
basic variable to be made nonbasic is denoted by x

rj , and the other pseudo-
baste variables In the same subproblem, if any, are denoted generically by
*&. Let the parameters associated with the pseudo-basic variables x

rjEa* xy be $(r)
and $$$ . Let x^ denote some other basic variable in the

same subproblem, fy some other parameter, and xj^ some other non-
basic variable in the same subproblem.

Then tha tableau reads, in part,

xri
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tyi^j
+ aisjpca| + ay

C = CQ
+ cr < r)

+ Ch0h + c #j
+ cs&st + ckjRcl (7)

And we have

4 = csl~ cr arsi~E ch ahs* < <>> arsl "^ (

h

After the pivotal operation this part of the tableau reads

+
P*rl

- ParkXk|

C =c + (cr~Pcs|)<f>(r) +0^^) +GJ^J
+ Pcsjpri +

Cfapcfei (9)

where

P =

ahk
= ahkl

" Park4ahsl.

aik
* aik

"" Parklaisi*

ck
= ck

Now, if there are any other pseudo-basic variables Xj^ in this sub-

problem with a^ki * 0, we must "clean up" the coefficients of
<fyr)

in the

expressions for these variables. Otherwise when we change the value of

^(r)
to c*ianSe xsl we wi^ also

So we write

and substitute throughout (9) for $(h) in terms of
^>jr j

and
<^(h).

We can

do this for all pseudo-basic variables
X|jj

in the subproblem in one

operation. It affects only the column of coefficients of 4>/r \- We add

Pahsl times tlle column of coefficients of
$(h),

and the tableau then

reads

xsl
* " p

*><r)
* **&

" park xkl

xht
~ * <h)

*
P^bsl^rf

*
**k*Xfc*

xu - bu +
<tirf

- PalS| ^S P^hfll
1^ *(r)

*
tttl ^

f

(h)
*
*!)!*]

+
P*ialxrt

4
*ikl*k*

h

Pa^cjj) 4><r)
* ch 4'<h)

+c
j*j

+
^sl^rf

+ ck*kf
* (ID

Now at last we can increase Xg| by increasing $(rj
if ars| (and

hence P) is negative, or by decreasing $(r)
if ars| is positive, {Since

the coefficient of $(r)
in the expression for C in (11) is simply

"-
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from (8>, this change must be profitable if we calculated c|| correctly in

the first instance.]

We now resume the process of optimizing the problem conditional on

keeping all genuine nonbasic variables equal to zero.

The algorithm is now complete, in that we have seen how to improve the

trial solution by changing a pseudo-basic variable, or by changing a non-

basic variable. If no such change is profitable then we know we have an

optimal solution, just as we would if we had carried out our simplex

calculations in the standard way.

Of course it is not essential to find the very best solution with a given

set of basic and pseudo-basic variables before examining the possibility

of introducing some nonbasic variable. Indeed the following sort of scheme

might work out best in practice.

1. After solving the subproblems for the original "plausible values" for

the parameters, eliminate each of the original <j
in turn from the nonbasic

set. We then have a genuine basic trial solution.

2. If possible, introduce some nonbasic variable from the first sub-

problem.
3. If possible, introduce some pseudo -basic variable.

4. If possible, introduce some nonbasic variable from the second sub-

problem.
And so on.

4. A NUMERICAL EXAMPLE

For the benefit of those who, like the present author, prefer numbers

to formulas, I now present a minature scale numerical example.
Minimize

C = - 3i - 202
-

0j
-r

2x<! + xsl
+ xsl

+ x42
^ X 52 +5 62 ,

subject to the constraints 0^
s 0, xy

^ 0, and

xn = 2 -
flj
-

2fl2
+ 20

3
-r x4l

+ xsl
+ x61

+
QS -x42

+ x52
-f 2x62

2
4- x42

- x 52
* x62

This problem consists of two 3x3 subproblems with three linking
variables. In fact the tableau is barely sparse enough to justify using a

special method, but the problem serves to illustrate the technique.
Let us suppose that B

i
=

2
=

^3
= 1 are "plausible values" for the

parameters. Then we start by writing the tableau in the form
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Note that all this tableau except the first column has in effect simply
been copied from the previous tableau. Similar situations occur throughout
the algorithm, but the tableau is nevertheless presented in full at each

stage to make it easier to follow.

The parameters $j
have been given superfixes to distinguish them from

their successors in the nonbasic set. For practical purposes these super-
fixes are just decorations.

The problem of solving the subproblems conditional on keeping the

0i
= is a standard exercise in linear programming. In the example this

is already achieved. We therefore proceed to investigate changes in the

parameters .

At the moment we do not have a basic trial solution, since we have 8

variables at nonzero levels (plus one accidental zero), and a basic solution

should have only 6. So we proceed to increase or decrease each $4 in turn

until we obtain a "pseudo-basic" variable with a trial value of zero on the

right-hand side of some equation. We do this so as not to increase C at

any stage.

Since the coefficient of 0? in the expression for C is negative, we in-

crease <$. Comparing coefficients of
<j>i

with the constant terms in the

usual way, we see that this remains possible until $\
=

1, when both xlt

and x32 become zero. We arbitrarily select x tl from these to be the new

"pseudo-basic" variable. We then introduce a new parameter $j, defined

by the expression for x41 without the genuine nonbasic variables, and

substitute for throughout. We then have the tableau

j Q
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An asterisk has been placed against xn to indicate that it is a

peeudo-basic variable. This tableau illustrates the purpose of the trans-

formation of parameters. In the present trial solution x^ =
0, and we

want to be sure thai it will not immediately become negative when we vary

some other parameter.
We now consider the parameter <?. This has a positive coefficient in

the current expression for C, so we decrease it. We can do this until x2 i

becomes zero, and hence we introduce the new parameter $2 defined by

the expression for x21 without the genuine nonbasic variables, and

substitute for $| throughout. We then have the tableau

X51 X52
X62

We now increase <p\ until x^ becomes zero, introduce the new param-
eter 4>J defined by the expression for x32 without the genuine nonbasic

variables, and substitute for 0f throughout. We then have the tableau

X81 Xi2 X62

We now consider whether any nonbasic variable from the first sub-

problem can usefully be increased. To illustrate the process of computing
the cjg

w express C completely in terms of the pseudo-basic and non-
basic variables, though in practice only the coefficients of x41, xsl and xe i

would be calculated at this point. We have
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+ 2x41 + x5i
+ xsl

+ x*2 + x52
+ 5xtt37

c = --r

X6l)

+ 5.,

2xsi

So it is profitable to increase x51 . But there are 2 pseudo-basic

variables this subproblem, and we cannot make x51 basic f <

^therefore pivot between x51 and XM) to make x51 pseudo-bas 1C . This

produces the following tableau.

XS1

-2/3
2/9

-1/9
-1

-4/3
-4/9

-1/3

2/3

-1/3

-1/3

2/3

This affets only the column of coefficients of

tableau

and we have the
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We are at last in a position to increase x51 , by decreasing < 2 . We can

continue to do this until Bl vanishes. Since the new pseudo-basic variable

IB a parameter, and not a variable in a subproblem, we could make it the

new parameter. But the notation is more uniform if we can give it a new

name $\. We then have the tableau

X61 X52

Since the coefficients of the parameters in the expression for C are all

nonnegative, we cannot usefully increase any pseudo-basic variable. We
therefore look at the nonbasic variables in the second subproblem. We
find that their coefficients in the expression for C in terms of the pseudo-

basic and nonbasic variables are given by

~ x $2
- 2

So we can profitably increase x42 . But we must first make x42 pseudo-
basic in place of x^. This produces the following tableau.

01 02 03 X41 X21 X 61 X
32

X52 X62

Since there is no other pseudo-basic variable in the second sub-

problem, we can immediately proceed to increase x^ by decreasing
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d,
1

. We can do this until x22 becomes equal to zero. Then we introduce

the new parameter $3, and have the tableau

I 2 J.2 j2 -V _ _ V_. V^., YayK Yr* )C*

We now find that we can profitably increase <frj,
and hence the pseudo-

basic variable xu . We can do this until x12 becomes equal to zero. So

we introduce the new parameter $f, and write

We now find that no pseudo-basic or nonbasic variable can profitably

be increased, to fact we have

T
^ X61

*

11

-2-*
x22

3x62 )

2 2 2

So we have the optimum solution, given by

+ x21
- x6i

- -x32
- 2x52

~ -
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*l
s p ***<>* *!'!

xu -
y,

x21
- 0, x31

= 17, x41
= 0, X51

= 10, x =

9
x 12

= 0, x22
- 0, Xtf

= 0, x42
= -, xS2

= 0, x62
=

5. RULES FOR CHOOSING PIVOTAL COLUMNS AND ROWS

A fair amount of attention has recently been given to the problem of

choosing the pivotal column in the simplex method. This is particularly

important in large problems, to which the algorithm presented here may
hav to be applied. ft is therefore of interest to consider whether any

effective special rule for this can be devised, based on the special struc-

ture of the problem. It turns out that there is one important special case

where there is aa obviously best choice of nonbasic variable to be in-

creased. And this special case suggests a plausible rule that can be

applied generally.

We consider the situation where

(1) there is only one pseudo-basic variable x
rjg

in the subproblem

concerned,

(2) the coefficient C(r )
of the associated parameter $(r )

in the ex-

pression for C is nonnegative, so xr| itself cannot usefully be increased,

and

(3) all the cj^ are nonnegative, so that we have an optimum tableau for

the subproblem given the parameter values.

Now it is likely that the next new pseudo-basic variable will not be in

this subproblem, in which case the c& for this subproblem will simply
be the corresponding Cfc. So we want to keep the cj^ all nonnegative when

we make xr nonbasic. This means that we should use the dual simplex
method to choose the pivotal column, i.e., we should choose the nonbasic

variable Xgj such that ars| > 0, and

cal m min*

*rkl >

We now show that in this case the rule is equivalent to the following
rule:

Choose the nonbasic variable Xg| such that c|| < D, and

csl r max /W\
csl

~
cki

< \P&/ (13 >
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To prove this, let ak
=
Cki/a^. Then (12) says thai we should pick

the smallest positive a^. But (13) tells us to maximize

ckl

ckl ckf
~ c

(r)
arkl *

from amongst those columns for which c| < 0, i.e., for which
< ok <

C(r). The maximum (i.e., least negative) value of (13) is there-
fore obtained by taking the smallest positive a^. So (13) always picks the
same column as (12), if any such nonbasic variable can profitably be in-

creased at all.

Formula (13) is advocated for general use on the following grounds:
(1) ft is easy to apply, even using the product form of inverse for the

subproblems, since it involves only pricing out one row, the cj^ row, in

addition to the cfcf which are essential in any case.

(2) It gives the best answer in the only situation where there is an ob-
vious best answer.

(3) It is nondimensional.

(4) ft has the advantage over other similar rules that it will give

precedence to a column in which c^ and cfa are both negative. This

seems desirable because a column with a negative c^| is unsatisfactory
in any circumstances. Insignificantly negative values of e| must of

course be rejected. This can perhaps best be achieved by modifying (13)

to read

/ \
s _ max /ckl

|

for some small positive . The rule is then no longer strictly non-

dimensional; but the also serves the useful purpose of selecting large

negative values of c^ when there are no pseudo-basic variables in the

subproblem, in which case c^
= c| for all k.

Having chosen the pivotal column, we must have a rule for choosing the

pivotal row when the subproblem contains more than one pseudo-basic

variable. Our special case unfortunately throws no light on this problem,
since there is then only one possible pivotal row. But the following pro-
cedure seems sensible:

Choose the pivotal row, i.e., pseudo basic variable xr| to be made non-

basic, from among the pseudo-basic variables in the subproblem so as to

maximize
c^r) |

ars| |,
where <{r )

is the parameter associated with xr|,

and ars| is chosen to have the same sign as cs| if possible.

The merits of this rule are:

(1) ft is easy to apply.

(2) It is nondimensional.

(3) ft favors large pivots (i.e., large values of |ars|j), and also large

values of
C{r)

the latter implying that the pseudo-basic variable being
made nonbasic was a very unprofitable one to introduce at a positive level.
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(4) In the new expression for C in terms of the parameters and nonbasic

variables, the coefficient of the new nonbasic variable given by (11) as

Cg|/ars| is made positive if possible. (This is always possible if

esj > 0. If cs| < it might not be.)

6. THE IMPORTANCE OF SPECIAL STRUCTURE

Many people, and in particular George Dantzig, have stressed the

importance of developing special methods for exploiting special matrix

structure in linear programming problems. In Ref. 1, Dantzig suggests

that the general simplex method may not be practical for systems con-

taining many more than 100 equations. We are now talking about solving

systems about ten times this size, but this only increases the importance
of special methods, since really large problems are almost bound to

have structure that can be taken advantage of.

ft seems likely that these special methods will have to be based on

the general philosophy first illustrated in the revised simplex method that

one should work with a compact formulation of the problem containing

enough information to enable one to compute fairly easily, the quantities

one needs, ratherthan carry around all the quantities that one might con-

ceivably need in a more or less explicit form. I hope I have succeeded in

presenting the present algorithm as a natural and straightforward applica-
tion of this philosophy.
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Dual and Paramefric Methods in Decomposition

Jean M. Abodie

A. C Williams

1. INTRODUCTION

The decomposition algorithm of Dantzig and Wolfe for the treatment of

large linear programs [1], [2], may be briefly described as follows: (i)

the number of rows in a linear program is reduced at the expense of intro-

ducing (in general) a very large number of unknowns; then, (ii) the simplex
algorithm is modified by the introduction of a "generalized pricing opera-
tion" so as to render the new problem (the "extremal problem '1 amenable
to practical solution in spite of the large number of unknowns. The algo-
rithm is basically a primal method. We show here that by introducing a

different vector selection method, we are able to formulate an algorithm
which is still a decomposition algorithm, but which is basically a dual

method. In addition, this vector selection method also allows certain

parametric linear programs to be solved by decomposition.
These techniques can easily be incorporated into any general decompo-

sition computer code, thus making possible important post-optimal para-
metric studies, as well as allowing flexibility of choice in the method of

solution of the nonparametric problem. In this latter connection, we re-
mark that dual feasible solutions are sometimes more easily come by than
are primal feasible solutions.

2. DUAL DECOMPOSITION FORMULATION

We consider the linear programming problem

Ax=a (l.a)

Bx = b (l.b)

x ^ (l.c)

min fx (l.d)

where A is an m
t
x n matrix, B is an m 2 x n matrix, a and b are re-

spectively m l
and m 2 dimensional column vectors, f is an n dimensional

149
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row vector, and x is the n dimensional column vector of unknowns.

In order to treat (1) by decomposition, we let *, . . . ,

p be all the

basic (or extreme) solutions to Bx =
b, x ^ 0, and we let

rj

1

, . . . , 77^ be a

complete set of generators for the solutions to Bx =
0, x ^ 0. If we now in-

troduce the uifcnowns Xp , p =
1, . . - , P; Mq> 3 =

1> Q then the linear

program of (1) is equivalent to

n =a (2.a)

S X
p

= 1 (2.b)

P=l

Xp
2t 0, Mq

* (2.c)

p $
min 2 <QP > *p

+ S WN <2 -*
p=l q=4

in the sense that if (Xp^) is optimal for (2), then

(2 -e)

p=l <pt

is optimal for (1), and further; if x is optimal for (1), then for some

(AJUiq), optimal for (2), x can be written in the form (2.e). The replace-
ment of the linear program (1) by the linear program (2) is thus step (i) of

the Dantzig-Wolfe method. Instead of step (ii), we intend to accomplish the

same result by modifying Lemke's dual simplex method [3J.

In connection with a remark made in the introduction, we may observe
that if z is the minimum value for fx subject to Bx =

b, x 2= 0, then the

vector (0, . . . , 0, z*> is immediately a dual feasible solution for (2). Note,

however, that the presence of a zero column in B could easily cause fx to

fail to have such a minimum. Of course, in any case, if fx has no minimum
on Bx * b, x 2: 0, some kind of "Phase I" must be used,

In order to solve the linear program (2) by the dual simplex method, we
assume that we have, at each iteration: (i) a basic solution (A.,ju), i.e. a
basic solution to the constraints (2 .a) and (2.b), [but which may not satisfy
(2.c)}, such that the corresponding dual solution Or,p)

=
fr

1
, , . . , ?r

m
, p) is

feasible, and (ii) an inverse matrix, i.e. the inverse of the matrix whose
columns are the columns corresponding to the various A.p,Mq of the given
basic solution. This matrix has dimension {m t

+ 1) x (n^ +1). Let the i
tn

row of the inverse be denoted by (u it Wi) (u
1

., . . . , uP1 , Wi).

Let us review briefly and without proof the steps required for linear

programming with the dual simplex method. Let it be required to solve

Ax * a, x ss 0, min fx



DUAL AND PARAMETRIC METHODS IN DECOMPOSITION 151

As above, we assume at each iteration, (i) that we have a basic solution to

Ax = a, (but x ^ may not be satisfied) such that the corresponding dual

solution -K is feasible, i.e. *A ^ f; and (ii) that we have an inverse matrix

with rows denoted by U[. The current basic solution x is then given by
a = Ua. Now, if every component of the basic solution x = a is nonnegative

(i.e. the current primal solution is feasible) then the current primal solu-

tion is optimal. But if there is some component, say xr * ar , which is

negative, then the transform of the row r may be used as a "pivot row."
The selection of the column to enter the basis is as follows. Let the col-

umns of A be written a1

, . . . , a
m

. Call a column ai admissible if

Upa-i
< 0. If there are no admissible columns, there is no solution to the

constraints Ax =
a, x ^ 0. Suppose then, that the admissible set of columns

is not empty. Then an admissible column aJ, for which the ratio

UyaJ (3)

is a minimum over all admissible columns, is selected for the basis. This

vector is then introduced into the basis; a new inverse, a new primal, and

a new dual solution are computed. The next iteration then commences.

Turning now to the linear program of the form given by (2), we see that

difficulties will arise in the selection of the admissible vector for which

the ratio (3) is a minimum over all admissible vectors. This is so because

in the decomposition method the columns of the linear program (2) are not

explicit, and further, they are in general so very numerous as to make
their explicit calculation out of the question. Now the decomposition
method for linear programming is a modification of the simplex method

whereby linear programs of the type (2) may be solved without having all

the columns calculated explicitly. In fact, in the simplex method the only

difficulty encountered by not having explicit columns is that of selecting the

vector to enter the basis. The Dantzig-Wolfe decomposition method, then,

gives an algorithm in terms of a linear "subproblem" whereby the selec-

tion can be made. This process may be described as a generalized pricing

operation.
The situation here is similar. The only difficulty in the present dual de-

composition algorithm is encountered in the selection of a vector for the

basis, and we overcome this difficulty by developing a selection algorithm
which does not require the vectors to be explicit.

Let us see what has to be done. Suppose the pivot row r has been se-

lected. Then the ratio (3) for columns of the type A^P is given by

urA$P + wr (4)

and for columns of the type Ayfl that ratio is given by
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The problem which we are considering is thus reduced to the problem of

finding that {P or ifi from among the , 77
for which the denominators of

(4) and (5) are negative and for which the ratio (4) or (5) is a minimum over

such {, T|.
We note, also that the numerators of these ratios are nonpositive,

since (T Fp) is feasible.

The determination of the correct vector or
77 according to the above

criterion is the "subproblem" which has to be solved at each iteration

using the current values of the dual variables in (4) and (5). In Section 4

of this paper we give an algorithm, in terms of linear programming, for

the solution of this nonlinear program. Of course, once this generalized
vector selection step has been taken, the calculation continues exactly as

in the dual simplex method.

Before spelling out the selection algorithm, however, we shall show
that certain parametric linear programming problems also reduce to this

case.

3. PABAMETRIC LINEAR PROGRAMMING

We consider two parametric linear programming (PLP) problems to be
solved by fee decomposition method.

The first of these is that of finding the optimal solution x(0) as a func-
tion of the parameter & for the parametric linear program

Ax = a + 0a, Bx =
b, x >

0, min fx

Again, we consider the linear program (2), where in (2.a) we replace a by
a + 01.

We assume that an optimal basic solution (xV) for =
(initially

=
0) has been found, and that as a by-product of the calculation we have

also found an optimal dual solution fr,p) and the basis inverse. We now
wish to compute an optimal solution for all >

j?
for which such solutions

exist.

The steps required for this type of PLP problem with the simplex
method will now be reviewed. Suppose we have a basic optimal solution
for

Ax a + #a, x 0, min fx

for some # - 0. Let the rows of the inverse U of the basis be denoted by
uj. Let * be the optimal dual solution and let a = Ua, and a = Ua. Now if

every element of the vector a is nonnegative, we have that x(0) = a + Bo.

for all a . But if there are some elements of a which are negative, we
define

~
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Then x(6) - a + Ba. for ^ B ^0. In this case a change of basis is re-

quired in order to compute x(0) for & > 0. Row r is chosen as the pivot

row, and as before we consider the admissible columns ai, i.e., those

columns for which u^J < 0. If there are no admissible columns, there

are no solutions to the constraints for 6 > Q. If there are any admissible

columns, then we choose that admissible column which minimizes the ratio

given by (3).

Clearly, then, the parametric linear program problem by decomposition,

i.e., for a program of the type (2), is similarly reduced to the problem of

selecting a vector for which the ratio (4 or (5) is a minimum, subject to

the constraint that the denominator be negative. The algorithm of Section

4 is again applicable.

The second parametric linear programming problem is

Ax =
a, Bx =

b, x 0, min (f + 0f)x

which we reformulate again in the form (2) . We assume that an optimal

solution (X4x) is available for 0=0, also an optimal dual solution Or,p)

and the basis inverse. Let (,p) be the U -transform of the vector whose

elements are the elements of (fjPji^) corresponding to the basis elements

(A.p4tq).
Now the vector to enter the basis [so as to compute x e

(0) for > OJ

is that vector for which

QrA-f) g +p (irA
-

f )q

(fA -
f) {

+ p <*A -
f)i)

is a minimum over the set of all such vectors for which the denominator

is negative. (If the denominator is nonnegative for all $P and all rft, then

the current solution is optimal for all B ^ .) The problem is again re-

duced to the previous ones.

4. THE GENERALIZED VECTOR SELECTION ALGORITHM

In the preceding sections we reformulated linear programming problems

by decomposition, and considered the task of solving the resulting extremal

linear program by the dual method, or of finding optimal solutions as a

function of a linear parameter either in the cost row or in the inhomoge-

neous part of the extremal constraints. We showed that each of these

problems is reduced to a succession of problems of the following type.

Let I
1

,

2
, . . . ,

p be all the basic solutions to Bx =
b, x s 0. Let

Tj

1

, . . . , 77^ be a complete set of generators for the solutions to Bx =
0,

x ^ 0. Assume that the solution set is not empty. Let c and d be given

vectors (they stand respectively for A -
f and urA of 4 and 5 above), and

let p and w be given numbers. Assume that for each basic solution
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and that for each generator

cifi
^ q =

1, . . . , Q

Define an admissible basic solution as a basic solution which satisfies
d * w < and an admissible generator as a generator which satisfies

drj
< 0. Define the admissible set S as the union of the set of admissible

basic solutions and the set of admissible generators. Call the members of
the admissible set the admissible vectors. On the admissible set we define
the real valued function

w

For any v S we may call v(v) the value of v. Note that v(v)
> for

all v S.

Problem

It is required to find an admissible vector for which the value is a min-
imum over the set of admissible vectors, or else to determine that the ad-
missible set is empty.
We now give an algorithm in terms of a succession of linear programs

for the solution of this problem. The algorithm is independent of the
method used for the solution of the individual linear programs, subject
only to the following condition. Whatever method is used must find an op-
timal basic solution (in case the optimal is not unique), or in the case of
the objective function not bounded, a solution to Bx =

0, x > from some
finite set of generators. The simplex method has these properties, but the
decomposition method does not have the first property. These assumptions
may obviously be relaxed for specific algorithms.

When the simplex method is used, however, certain modifications of the
algorithm are possible. These modifications allow the calculations to be
et out la a "tableau" format and, in addition, appear to reduce the amount

ol calculation required.

Very briefly, the general algorithm consists of constructing a sequence
of admissible vectors such that the sequence {^(vt)} of their values is

monotone strictly decreasing. Since the vt are drawn from a finite set,
termination is thereby assured. We then show that the terminal vector is
the wctor sought. If for some t the value ^v1

)
= is attained, the calcu-

lation is terminated forthwith, since there can be no admissible vector with
value less then zero,

Tbe Algorithm

(The numbers in parentheses refer to proofs which appear directly fol-
lowing the description of the algorithm.)
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Step 1. Consider the linear program Bx = b, x 0, min dx + w.

Case 1. We find an optimal basic solution . Then every generator
satisfies drj

^ 0, i.e. there is no admissible generator.
Subcase A. For an optimal basic solution, we have d + w == 0.

Then there is no admissible basic solution, i.e. the admissible set is

empty.
Subcase B. For an optimal basic solution, we have d + w < 0.

Then take v 1 =
, and put

.
t .

dv1 + w

If
i/j

=
0, v1

is optimal. If v
{
> 0, go to step 3.

Case 2. We find that there is no vector which minimizes dx + w, i.e.,

we find a vector which satisfies
17
^ 0, BTJ

-
0, ch)

< 0. Set v 1 =
rj
and put

If vi
=

0, v1
is optimal. If i/

t
> 0, go to Step 2.

Step 2. Consider the linear program Bx =
b, x ^ 0, min v^(dx

+ w)
~
(ex + p).

Case 1. We find a vector
7?
^ such that BTJ

=
0, vtdrj

~
CTJ

< 0. Then
TJ

is admissible (1). Set vu =
77

and define

Then ptfi
<

"t (2)- If ^t^i
= vt

*4
is optimal. If j>t+i

> return to step 2.

Case 2. We find an optimal basic solution 5. Then the value of the ad-

missible generator vt (the last admissible vector computed) has a value

which is minimum over the set of admissible generators (3).

Subcase A. For | an optimal basic solution,

j/t(d| + w)
~

(c|
+

p) 5:

is satisfied. Then the admissible vector v4 is optimal (4) .

Subcase B. For an optimal basic solution,

*t{d| + w)
-

(eg
+

p)
<

is satisfied. Then 4 is an admissible basic solution (5). Set

vt*i =
^ ancj ^t
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Then UM < vt (6). If pt+i
=

0, vUi is optimal. If z/t+i
> 0, go to Step 3.

Step 3. Consider the linear program Bx =
b, x ^ 0, min ^t(dx + w)

-
(ex"-** p) .

This problem now always has a minimal vector (7). Let be an optimal
basic solution. Then, since v1 (the last admissible vector calculated) is

feasible, we have

i*t(d{
+ w)

-
(c +

p)
<

i;t(dvt
+ w)

~
(cv* + p)

But by definition of vt the right-hand side of this inequality is zero.

Case 1. v
t(d

+ w)
-

(c|
+

p)
< 0. Then 5 is an admissible basic solu-

tion (5). Set vt+i =
4 and put

+ w

Then vt+1
< vt (6). If n+i

=
0, vt<fl is optimal. If ^+1

> 0, return to Step 3.

2. PtW| + w)
-

(c^ -^p)
= 0. Then the admissible basic solution

is optimal (8).

<1) Since CTJ
^ for every generator and since yt

> 0> the result drj
<

follows immediately.
(2) From ptdq

-
CTJ

< and drj
< we have

CTJ _=

(3) Since Bx -
b, x >

0, min i/t(dx + w)
-

(ex +
p) has a minimum solution,

we have that every generator 77 satisfies

~
CJJ

^

Therefore every admissible generator 77' satisfies

*$- *n

(4) Every basic solution { satisfies

since that condition is satisfied by an optimal basic solution. There
fore, for every admissible basic solution |

r

, we have
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Thus the value v^ of the admissible vector v* is minimal over the set

of admissible basic vectors as well as over the set of admissible

generators.

(5) Since c + p ^ for all basic solutions and since yt
> 0, the result

d| + w < follows immediately.

(6) From i/t(d
+ w)

-
(c|

+
p)

< and d{
+ w < we have

pr =
IJ+, ,

d + w dvt+i + w

(7) Suppose there were no minimum vector for this linear program. Then

there is a generator 77 such that

vfln
-

crj
< (7)

But then dj]
< (I/v$ 07 =s 0, i.e., such a generator is admissible.

Now if Step 3 was entered from Step 1, Case 1, Subcase B there can

be no admissible generators, so there is a contradiction.

If step 3 was entered from Step 2, Case 2, Subcase B, or from 3, then

we know that Bx =
b, x ^ 0, min yt-i (dx +w)-(cs +w) (where i^-i

>
*t)

has a minimum vector i.e., every generator must satisfy

~
CT

?
~

But (7), d?7
< 0, vt <

vt-i yield

which is again a contradiction.

(8) Precisely the argument of (3) shows that ^ is minimal over the set of

admissible generators. Then precisely the argument of (4) shows that

v^ is optimal.

Discussion

The problem of optimizing a given function subject to constraints is

often solved in two parts. In the first part it is determined whether or not

there are any solutions to the constraints, and if there are, such a solution

is produced. In the second part, then, new solutions are successively cal-

culated, each with a more nearly optimal value than the preceding one. In

the above algorithm Step 1 is such a first part its purpose being to deter-

mine whether or not there are any admissible vectors and, if there are,

to produce one. Steps 2 and 3 are then the second part operation, in that

at each step a new admissible vector with value less than the preceding one

is calculated.

The algorithm requires that on each step either we optimize or we

produce the generator which shows that there is no minimum. Actually,
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however, once any admissible vector has been found (not necessarily a
minimum as required by Step 1), the operations of Steps 2 and 3 may be
commenced immediately, and once these operations are commenced there
is no need to run the indicated linear programs to optimal in fact, if the

simplex method is used, it is the usual case that only a single simplex
iteration need be done to reduce the value of i/.

The underlying principle is this. At any point in the algorithm we may
replace the current admissible vector by an admissible vector whose value
is not greater, provided that at the same time the current value i/t is also
replaced by the value of the new admissible vector. We note in this connec-
tion that in Step 2 the monotonicity of {j/t } does not depend on what the pre-
vious admissible vector was, but depends only on the number v in the cur-
rent objective function. In Step 3, there can be no admissible generator with
value not greater than that of the current admissible vector. Thus the re-
placement can only be by an admissible basic solution. But here the mono-
tonicity of {*>} depends only on the feasibility of the previous admissible
vector, and the number v^

Therefore, when the simplex method is used, the algorithm may be
modified as follows. After each simplex iteration if we obtain a new ad-
missible basic vector with value not greater than the previous value (as we
must in Step 3, and as we may in Step 2), the new vector and the new value
are used immediately in the next simplex iteration. Clearly, any method
for resolving degeneracy for the simplex method can be used here.
Finally, we remark that the necessary calculations are conveniently done
by forming rows for c and d, adjoining them to the B matrix, and carrying
out transformations on them along with the other rows of B.
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Convex Parfifion Programming

J. B. Rosen

1. INTRODUCTION

There are a number of important types of mathematical programming
problems which lead naturally to a block diagonal structure for the con-

straint coefficient matrix. One kind of problem which may have this

structure is a multiple plant or refinery model where each plant or re-

finery is represented by a different block, the blocks being coupled by raw
material allocation and product distribution. Another type of problem lead-

ing to a block diagonal structure is a dynamic model with storage, where
each block represents a single time period with storage between successive

time periods as the coupling between blocks. A large block diagonal struc-

ture may also arise from a stochastic programming problem where the

constraint right-hand side vector is specified as a random vector selected

from a finite set with known probabilities [4j.

In all of these cases the complete problem can be represented as a

number of smaller problems tied together by coupling equations, coupling
variables or both. The first proposal specifically taking advantage of this

structure for linear problems was the decomposition principle of Dantzig
and Wolfe [3j.

The partition programming method for the solution of convex problems
with a block diagonal structure [8] is applicable to the nonlinear problem
when the blocks are coupled by a set of coupling variables, denoted by an

s-dimensional vector y. This structure is shown in Fig. 1, where a prob-
lem with t blocks is illustrated. A formal statement of the complete prob-
lem is given by (2.1) in the next section. In this paper we will consider the

multiblock problem with the structure shown in Fig. 1, which we will call

the dual form. The right-hand side vector for each block, bjty),

i
=

1, , . . , t is assumed to be a convex vector function of the vector y.

For the special case where the b<y) are linear in y we have a com-

pletely linear multiblock problem. For this linear case the corresponding

primal problem is a multiblock problem with coupling constraints in the

form normally considered for the decomposition algorithm. The solution

of such linear multiblock problems by partition programming in both the

primal and dual form has previously been presented [91 and will be de-

scribed in a separate paper. A similar approach for the linear problem in

the dual form has been developed independently by Beale [2] .

159
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m2

Fig. 1. Complete problem, -blocks.

The partition programming algorithm is based largely on the fact that
for any fixed value of y, the complete problem (2.1) reduces to a set of
I relatively small linear subproblems, each of which can be solved
independently of the others. These I subproblems (called Problem I) are

min
fc"[

x
{ \ A[ Xj

Furthermore, it is shown by Theorem 1 that

(1.1)

is=1

is a convex function of y. A global minimum of the complete problem (2.1)
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is therefore given by the minimum of the convex function *<y). For a spe-
cific feasible value y = y , the optimal solution of each of the linear sub-

problems (1.1) gives a vector xi , the value ^(yo), and a nonsingular
basis A[ and corresponding vector b|(y) such that A.]*xi

-
bi<y fi

) and

A7* Ci 2- 0. We can now reduce the complete problem to one "in the y-space

only by (temporarily) requiring that each vector xj be given by

AjXi
= b j(y), i

=
1, ...,*. We can then explicitly formulate an

s-dimensional convex problem in the y-space, which we call Problem II.

problem II has a convex objective function and linear constraints and

can be solved by the gradient projection method for which an efficient

computer program is available [10].

It is shown by Theorem 2 that we can recognize the Kuhn-Tucker

conditions for the complete problem optimum in terms of the optimum
Problem I and H solutions. If *(y ) is not a minimum, then Problem II

will either give a new feasible value of y =
yj with *(y t ) < *<yo), or will

show how to make a basis change in one or more of the subproblems
(1.1) so that such a value y t can be found. The iteration procedure is

then continued by solving Problem I with the new value y - y^ The

solution of Problem II in each iteration is a convergent (but not

necessarily finite) procedure, and it is shown in Theorem 3 that only a

finite number of iterations are required. The justification for the

linearization of constraints in Problem II is given by Theorem 4.

In Section 4, the gradient projection algorithm is summarized. K is

also shown there that the general convex programming problem (min-

imize a convex function in a convex region) can be put in the form (2.1) by

introducing appropriate linear slack variables. The way in which linear

equalities can be handled is also described there. The partition pro-

gramming algorithm is described in detail for the multiblock convex

problem in the Appendix.
The partition programming algorithm has been coded for the IBM 7090

computer and used successfully to solve a number of linear and nonlinear

problems, including a nonlinear multi-refinery model. This computational

experience is described elsewhere [11]. Two aspects of this algorithm

should be emphasized. First, that the size of the subproblems remains the

same throughout the iterative solution, and in fact that it is never necessary

to solve a single problem with more than m variables, where

m = max{mi, s}. Second, that since a feasible solution is obtained at each

cycle the optimization may be terminated before the global minimum has

been reached, and still give an improved feasible vector.

With certain obvious exceptions we use capital Roman letters for

matrices, lower case Roman letters for vectors and Greek letters for

scalars. A subscript normally denotes the corresponding block, except

on y where it denotes a specific vector.

2. OPTIMALITY CONDITIONS FOR COMPLETE PROBLEM

A general convex problem will now be stated in the form suitable for

optimization by the partition programming algorithm. The problem is
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shown in Fig, 1 and consists of linear submatrices A^ and correspond-

ing vectors x^, i = !,,..,!> with a block diagonal structure. These sub-
matrices are coupled through the single coupling vector y, in the following
sense: the right hand side of each constraint is a convex function of the

vector y. The constraints for the complete problem may therefore depend
in a nonlinear way on y, but for any fixed value of y each submatrix is

linear and independent. The objective function to be minimized is a
linear function of all the vectors x^, and the minimum is to be obtained

over all vectors Xi, y, which satisfy the constraints. The complete
i-block problem may therefore be staged as follows:

1* I
T 1

min \J^ c]xi Aj x
{ >bi(y), i 1, . .., i\ (2.1)

* *

where the b[(y) are differentiate convex vector functions of the

s-dimensional vector y. Each A^ is a constant matrix with dimensions

(mjxkj). Each e^ is a constant m^ -dimensional vector, and the super-
script (T * denotes the transpose. A vector inequality means that the in-

equality applies to every component of the vector. These vectors and
matrices have the appropriate dimensions shown in Fig. 1.

The assumption that bj(y) is a convex function of y means that each

component of the vector bj(y) is a convex function of y. This includes the

special cases where some or all components of bj are constant and where
some or all components of b[ depend linearly on y. For the completely
linear case we have

biW^bi-Dfr. 1=1. --..I (2.2)

where the D^ are constant matrices with the dimensions Qqxs). It is
also assumed that the minimum given by (2.1) is bounded. The problem
is stated in the form of inequalities so that there will be at least as many
inequalities (including aonnegativity) as variables in each block, Iq

>
raj,

i* 1, . . . , 1. For a completely linear problem this is the natural structure
for the dual problem. The partition programming optimization algorithm to
be described In this section is based on this dual structure.

As a matter of convenience certain additional assumptions will be made
about the system of inequalities or constraints in (2.1). Any nonnegativity
requirements on the components of the Xj or y vectors are assumed to be
included as part of tbe corresponding matrix A? and bi(y) vector. Note
that for constraints which involve only xi variables the corresponding right
baad side is coastant, and for constraints in only the y variables the cor-
responding rows of the A]* matrix are zero. Finally, two feasibility as-
sumptions are made. First, that there exist feasible points (jq,y) which
are interior to all nonlinear constraints, that is, points (x^y) which
satisfy Aj X| *b|(y), i = 1, ...,!, with a strict inequality for every non-
linear compoaent of the bi(y). This assumption insures the satisfaction of
tbe Kiifaa-Tiicker constraint qualification [3]. Second, that those constraints
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which are completely linear (linear in y as well as the x^> determine a

bounded region. This can always be accomplished by imposing suitable

upper and lower bounds on each component of the vectors y and x^. A
vector y for which there exist vectors X} i - 1, . . . , I, such that Aj x^

sbi(y)> i - 1 -.* will be called a feasible vector y. It is also as-

sumed that a feasible vector y = y is known. Provided it exists, such a

vector y can be found by a "feasibility solution 1 * which reduces to zero

a penalty on each constraint violation.

An important structural aspect of the problem in this dual form should

be emphasized, since it is basic to the partition programming algorithm.

For any fixed value of y, the complete problem (2.1) reduces to a set of I

relatively small linear subproblems, each of which can be solved in-

dependently of the others. These t subproblems are given by (1.1). The

objective function *(y) for the complete problem considered as a

function of y is given by (1.2), so that the original problem (2.1) is now

equivalent to the minimization problem min *(y) where y is chosen from

T
the set of all values which satisfy Aj xj >b|(y), i 1, . . . , 1, for some

vectors x^. We will now prove a theorem from which it will follow di-

rectly that (y) is a convex function of y.

Theorem 1

Let b(y) be a convex vector function of the vector y. Then

<p(y)
= mm{c

T
x|A

T
x >b(y)} (2.3)

x

is a convex function of y. Furthermore, the region of definition of cp (y)

is convex.

Proof

We consider two feasible values y i
and y2 of the vector y. Since

they are feasible, there exist vectors xj and x2 such that

min {C
TX

|
ATx ^

x

<p (y2)
= min {C

TX
|
ATx > b(y2) }

= c
T
x2 (2.4)

For any scalar X, < X < 1, we define y =Xy t
+

(1 ~X)y2 , and b s Xb(yj)

+ (1- A)b(y2).
Since b(y) is convex, b(y) <b and it follows that in the

x-space the convex feasible region ATx >b(y) is not smaller than the

region ATx >b. Hence

min {C
TX

1
ATx >b(y}} ^ min {C

TX
|
ATx >b}

x x

Now
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* min{cTx|A
Tx >1

< min{cTxiA
Tx >i

x

4 <1-A)X2)

4 (l-

which proves the convexity of <p(y). The second inequality follows from

the fact that Ax
t
4 (1

-
X)x2 is a feasible solution of ATx >b. This can be

seen directly from (2.4).

To show that the region of definition of <p(y) is convex we show that if

y t
and y2 are feasible, then y = Xyi 4 (1 -X)y2 , <X <1, is also

feasible. Since Ji and y2 are feasible, there exist vectors Xj and x2 such

that A1^ ^bfrt) and ATx2 ^b(y2). Then for x = \x
i
4 (1 -X)x2 , we have

AT x srb>b(y), Q.E.D.
This theorem applies directly to the function 3^ (y) defined by (1.1) for

the I subproblems, so that each of the functions *j (y), i = 1, . . . , i is

convex. The sum of convex functions is also convex, so that *(y) as given

by (1.2) is convex. An alternate proof of Theorem 1 can also be given

based on a known result [1, 6] that <p is a convex function of the right-

hand side vector b.

The original multiblock problem (2.1) has been restated as min *{y)

over the relatively small number of variables in the y vector. Since

*(y) is convex, it is only necessary to find a minimum of ^(y) to solve

the original problem, since any minimum is also a global minimum. This

remark is, unfortunately, deceptively simple, since even the evaluation

of *(y) over a coarse grid of, say, 10 points in each dimension of the

s -dimensional y-space would require 10
s

linear programming solutions

of each of the t subproblems (1.1). Furthermore, appropriate constraints

in the y-space are required to insure that only feasible values of y are

considered.

A practical way in which we can use the convexity of V(y) to solve the

complete problem is based on the following remarks. For a specified

value, say y = yfl ,
the solution of the k*h subproblem (1.1) gives not only

the corresponding vector xfc>0 and function *k(y ) but also the partial

derivatives
SS'jc&^/dyj, j

* 1, . . . s, where they exist. These
derivatives are readily obtained from the subproblem optimal shadow

prices and the partial derivatives
db/8yj. They are valid in the y-space

region containing yt for which the optimal basis at y remains optimal.
Furthermore, as long as the same basis is maintained the vector x^ is

given as an explicit function of y, so that all the constraints can be rep-
resented explicitly in the y-space. With this information a minimiza-
tion over y in a region containing ye can be carried out. For each such

y-space minimization, only a single linear programming solution of each
of the I subproblems is now required. As will be shown in the next section,

this sequence of minimizations gives the desired global minimum, where
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b(y)

m
Fig. 2. Single block convex problem.

the Kuhn-Tucker conditions [5] for the complete problem are satisfied.

Since the complete problem is solved by solving a sequence of sub-

problems it is essential that we be able to determine from the subproblem
solutions when the Kuhn-Tucker conditions for the complete problem are

satisfied. In order to simplify the discussion we consider only a single

x-block, so that = 1. The multiblock case is discussed at the end of this

section. We therefore consider a single block problem in x and y (see

Fig. 2).

min{cTx|A
T
x>b(y)} (2.5)

Corresponding to this is the convex function <p(y) given by (2.3), We con-

sider a value y = y and let Xg be the corresponding solution of the follow-

ing linear equation.

Problem I

min {c
T
x[A

Tx>b(y )}' C
TXO (2.6)

We will now obtain necessary and sufficient conditions that the point

(X ,y ) is a minimum point for the complete problem (2.5). These condi-

tions will be given in terms of quantities obtained from the solution of

two subproblems: Problem I above, ai>d Problem II below.

The Kuhn-Tucker conditions that x gives a minimum for Problem I

are that ATx >b(y )> and that there exists a vector r > 0, such that

rT lA
Tx -b(y )]

=

Ar = c (2.7)
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Furthermore, by a basic theorem of linear programming there is an

(mxm) nonsingular matrix A , whose columns are selected from the

columns of A, such that all the nonzero components of r are included in

the m-vector

(2.8)

We let b(y) denote the m components of b(y) which correspond to the

rows of~AT . The corresponding rows of ATx 2:b(y ) are satisfied as

equalities, so that

(2.9)

We also denote the columns of A which are not in A by the matrix B, and

the corresponding components of b(y) by e(y). This partition of the com-

plete problem (2.5) is shown in Fig. 3, where it is assumed for purposes of

illustration that AT consists of the last m rows of AT. We also define the

mx{k-m) matrix

A-B

and the (sxfc) matrix of partial derivatives (negative Jacobian)

Dfr> -\T i - 1, s, ] 1, . ... k

(2.10)

(2.11)

The matrix D(y) is also partitioned into two parts, a (sxm) matrix D (y)

corresponding to b(y) and a sx(k-m) matrix E(y) corresponding to e(y).

In terms of these quantities we formulate the second problem.

Problem II

k-m

A T

X e(y )

Xfl
*

S.

m
Fig. 3, Problem I optimal basis.
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min {r
T
b(y) !(y -y )

T
[E(y )

~
D(y )Q]=>e(y ) -QT b(y )} (2.12)

This gives the complete problem (2.5) in terms of the y variables only, by

making the assumption that the m active constraints given by (2.9) de-

termine the dependence of x on y,

x= (A-'Fbfcr) (2.13)

The nonlinear constraints of (2.5) have also been linearized about the

point y = yo- The objective function of Problem II is seen to be equal to

CTX by using (2.8) and (2.13). It follows directly from the convexity of

b(y) and the nonnegativity of r , that
r_

Tb (y) is a convex function of y.

Problem II consists therefore of the minimization of a convex function sub-

ject to linear constraints.

The Kuhn-Tucker conditions for Problem II at y * yfi
are that yft

is

feasible, that is

QTb(y )-e(y ) =>0 (2,14)

and that a vector v s: exists such that

vT[Q
T
b(y )-e(y )]

= (2.15)

[E(y ) -D(y >Q]v = -D(y )r (2.16)

The last relation follows from the fact that -D(y )r is the gradient of

rTb (y) at y = y .

In terms of the partition of the original matrix A into A and B, the

optimally conditions for the complete problem (2.5) at (x^y^) are the

feasibility requirements

ATxc -b(y )
= (2-

BTx -e(y8)>0 (2-

and that nonnegative vectors u and v exist, such that

D (y )u 4 E(y )v = <2 -

The relation between the subproblem optimal solutions and the com-

plete problem optimal is given by Theorem 2,
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Theorem 2

3>t 3Cfl> as given by (2.6), be the optimal solution to Problem I cor-

responding to y ft
. Then necessary and sufficient conditions that (x ,y ) be

the optimum of the complete problem are that y is the optimal solution

to Problem II and that the vector u, given by

ur-Qv, (2.22)

ia nonnegative, where v is the shadow price vector at the Problem II

optimum.

Proof

We first prove sufficiency by showing that (2.17) through (2.21) follow

from the optimally of x and the relations (2.15), (2.16), (2.22) and

u 5rO. Since x$ is the optimal solution to Problem I the relation (2.9) holds

as well as AT x$ 5rb(y ). The feasibility requirements (2.17) and (2.18)

follow directly. The relation (2.19) is shown to be equivalent to (2.15) by

using (2.9) and (2.10). From (2.22) we have

Au + AQv = A r

This, together with (2.8) and (2.10) gives (2.20). Also from (2.22) we have

D(yo)u -f D(y )Qv ~D(y )r =

Thia, together with (2.16) gives (2.21). The vector v is nonnegative since

it is the optimal shadow price vector for Problem II. This completes the

sufficiency proof.

To show necessity we assume (2.17) through (2.21) for nonnegative
vectors u and v, and show that y is the optimal solution of Problem II

and that (2.22) holds. The two relations (2.14) and (2.15) for Problem II

follow directly from (2.18) and (2.19), respectively, by the use of (2.9)

and (2.10). The relation (2.16) is obtained by multiplying (2.20) by
-D(yfi) A"

1

, adding to (2.21), and using (2.8) and (2.10). Finally (2.22) is

obtained by multiplying (2.20) by AT1
, and using (2.8) and (2.10). Q.E.D.

Corollary

A sufficient condition that (Xo,y ) is optimal for the complete problem
& that y is an interior (unconstrained) minimum for Problem n.

Proof

The Problem II shadow price vector v is zero if y is an interior

minimum, since there are no active constraints at the minimum. By
(23) we have r>0. Therefore by (2.22), u>0, and (x ,y ) is the

complete problem minimum. Q.E.D.
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The theorem is basic to the solution of the complete problem by the

partition programming algorithm in the following way. The linear

Problem I is first solved by any dual method for y ye . Either a dual

simplex method or the gradient projection method is suitable. The

optimal vector X(j, the optimal basis A, its inverse A""
1 and corresponding

shadow price vector r are then available. The partial derivative matrix

D(y ) its partitions D(y ) and E(y ) and the matrix Q as given by (2.10)

are also computed. With these quantities we obtain the linear constraints

and convex objective function for Problem n as given by (2.12). This prob-
lem is solved by means of the linear constraint version of gradient pro-

jection for which an efficient computational program is available JlO). The

optimal value y = y i and corresponding shadow price vector v are obtained

by gradient projection as described in Theorem 5 in Section 4. If y 4 ye ,

and u as given by (2.22) is nonnegative, the point (x^,yft)
is the desired

optimal solution of the complete problem by Theorem 2. On the other

hand, with an arbitrary starting value yfl
, it will generally be the case

that these conditions will not be satisfied, so that (x$,y ) is not the complete

problem optimal. In that case we will show that a new value of y can be

found which decreases *(y). This is discussed in the next section.

In order to keep the presentation above from becoming too unwieldy we
have considered the case with only a single block of inequalities, that is

with i = 1. In general, of course, we will wish to solve multiblock prob-
lems, so that it is essential that we be able to recognize the optimum for

the complete multiblock problem in terms of each of the 1 Problem I

solutions and the single Problem II solution. It can be shown that Theorem
2 can be generalized to the multiblock case, ensuring that the partition

programming algorithm is valid for the general problem. In the multiblock

case the form of Problem I for each block is given by (1.1), for a fixed

value of y. The way in which Problem II is defined for the multiblock case

is described in Section 4. It is shown there how the information available

from each of the I Problem I optimal solutions is used to form a single

Problem II in the s-dimensional y-space. The number of constraints in

Problem n will depend on the number of blocks and the number of con-

straints in each block, but the number of variables in Problem II is always
the same as the number of y variables in the complete problem. Since

computational time is determined primarily by the problem dimensionality

(gradient projection being a dual algorithm), the time required to solve

Problem II depends primarily on s and only in a secondary way on the

number of blocks.

3. ITERATIVE SOLUTION

We will describe the iterative solution of Problems I and II by which the

complete problem is solved. For simplicity we again consider the case

1=1, with only a single x-block as given by (2.5) and sbown in Fig. 2.

The actual multiblock algorithm is given in the next section, a&d it can
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be shown that the results given here are also valid for the multiblock

problem (2.1).

An important aspect of the iterative procedure is the possibility of

alternate optimal bases in Problem I. There may be alternate optimal

bases corresponding to a point (xo,y ) when ATx >b(y ), with at least

m-M of these inequalities satisfied as equalities. If there exists more than

one nonsingular (mxm) matrix AT with rows selected from the set of

equalities, such that A"1 c 2:0, then each such matrix corresponds to an

alternate optimal basis. The particular optimal basis which is selected in

Problem I will depend on the solution method and the choice of initial basis

or starting value of x. There are, of course, only a finite number of

possible alternate optimal bases.

We can now summarize the iterative solution procedure in terms of a

typical cycle, the j
th cycle. At the start of the j

tn
cycle we have a

feasible vector yj,
and corresponding value <p(yp of the convex function

<p(y} as given by (2.3). The corresponding linear Problem I is solved,

giving the vector Xj, optimal basis A, and shadow price vector r ^0.

The corresponding Problem n, with a convex objective function and linear

constraints, is formulated and its global minimum obtained. This gives a

feasible and optimal vector yj+ i the value of the objective function

#(yj+i>
*&& fck corresponding Problem II shadow price vector v. Note

that the solution of the convex Problem II is not necessarily a finite pro-
cedure* The feasibility of yj+i follows from the fact that it satisfies

QTb(yj+i)
~" e

(yj+i) 5:0, as shown by Theorem 4. If yj + 1
=

yj and u as

given by (2.22) is nonnegative, we have the desired optimal solution to the

complete problem. If yj+i
=

yj
and u has at least one negative com-

ponent, we formulate and solve Problem II for each alternate Problem I

basis corresponding to
yj.

If <p(yj+i)
<

<p(yj),
we go on to the next cycle

with y =
yj +1

.

Theorem 3

This iterative procedure will find the complete problem minimum in a

finite number of cycles.

Proof

ft follows from (2.3) that the desired convex function <p(y) is given by
^(y) = bT(y) A^c, where A is some Problem I optimal basis, whose choice

depends on y. Each Problem H corresponds to a minimization over the

feasible y-space for a particular selection of such an optimal basis. For
each such election the minimum over the feasible y-space is obtained. If

w consider the jth cycle, we start with
yj and obtain the optimal vector

Xj
*
(A-^bfrj) which satisfies BT

Xj
>e

(yj),
or using (2.10),

*<?)) ~Q
T
b<yj) ^0, so that

yj
is feasible for Problem n. ft follows that

tbe optimal vector yj +1 , for Problem H, satisfies
<??(yj +1) ^<p(yj).

The
desired function $>(yh Ui the neighborhood of

yj, is given by at least one
of the alternate Problem I optimal bases. Trying each of these in turn, we
will find a basis for which either the complete problem optimum conditions
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are satisfied [in which case
<p(yj)

is the complete problem minimum], or a

value yj+i
will be found such that

(pfyj + i)
<

<^(yj).
In this latter case, the

basis which gives yj+ t
must be different from the basis chosen in any

previous cycle. This is a consequence of the fact that each function

#(yi) i = 0, . . . , j is the minimum for the optimal basis selected in that

cycle, and <p(yj+i)
< #(yi) i = 0, . . . , j. Since there are only a finite

number of possible Problem I bases, the number of cycles is finite. Q.E.D.
Two points related to this iterative solution should be emphasized. The

first is that even when alternate optimal bases exist it is only necessary to

solve Problem II for a relatively small number of these bases (often only

one or two) in order to obtain a decrease in the objective function. A

specific selection procedure is used to choose an alternate optimal basis

and modify the inverse A""
1

by a single change of basis to get the desired

new basis inverse. The selection is based on the most negative component
of the vector u, and is described in the partition programming algorithm in

the next section. The second point is that for a nonlinear vector b(y) the

Problem II will usually also be nonlinear and must be solved by a con-

vergent (but in general not finite) procedure. The gradient projection

method is very well suited to this purpose and is used in the way described

in the next section. Any other method suitable for minimizing a convex

function subject to linear constraints could also be used.

The justification for the constraint linearization in Problem H is based

on the following theorem which shows that if y is not the optimal solution

to the linearized Problem II, then a new feasible vector y can be found such

that q?(y)
< <p(y )- We again consider the single x-block problem given by

(2.5), the convex function <p(y) given by (2.3) and Problems I and II given

by (2.6) and (2.12).

Theorem 4

Let the optimal vector yj for Problem II be such that

rTb(y!) <r
T
b(y ) (3.1)

Then if

h(y) = QTb(y)-e(y) (3.2)

is convex, we have

For h(y) not necessarily convex, let Om be the scalar solution of the one-

dimensional maximization

0, *$*l} (3.4)

Then for m > 0, and y y% 4 m(yt ~y) we have <p(y} <
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Proof

It follows from (2,10) and (3.2) that a vector y and the corresponding

value of x (A"
1
)

1
"*) <y) are feasible for the complete problem (2.5) if, and

only if, h(y) 2:0. Since x = (A'Vbfyo) is the optimal vector for Problem I

with y * y t we have h(y ) ^0, and r
T
b(y )

=
<?<y ). For h(y) convex

h<y) s h(y ) + (y
-

yo)
T
[E(y )

- D (y )Ql (3.5)

since by (2.11) and (3.2), the Jacobian of h(y) at y is [E(y ) -D(y )Ql.

Since yj is feasible for Problem II, we have that the right-hand side of

(3.5) is nonnegative. Therefore, h(yj) ^0. It follows that xj = (A^^bty
and yi are feasible for the complete problem, with c^Xj = rTb (y t). The

minimum solution ^(y,) for y = y t
must therefore satisfy <p(y t) ^rjbf

which gives (3.3).

From (3.4) we have h(y) 5:0, for y = y + m(yi ~yo>- Tne correspond-

ing value of CTX is rTb(y), so that q>(y) ^rTb(y). Since r
T
b(y) is

convex

r
T
b{y) s r

Tb (ye ) + m [ r
Tb (yj)

- rTb (y )l <
r_

Tb (y ) (3.6)

for em > 0. Then, <p(y) ^rTb(y )
< rTb (y )

=
<p(y ). Q.E.D.

For a completely linear problem, where b(y) is linear, it should be

noted that the Problem II constraints are identical to those for the com-

plete problem, ft follows that for the linear problem we always have

<P<VI)
= T

b(yi) < (p(yo) whenever r
T
b(y!) <

r_

T
b(y ).

On the basis of Theorem 4, we observe that all points (Xj,yj)
obtained

during the iterative procedure are feasible. Thus the procedure may be

terminated at any cycle with a new feasible point which gives a lower

value of the objective function than the starting point,

4. COMPUTATIONAL ALGORITHM

The computational program for partition programming uses the gradient

projection (GP) method to solve both the completely linear Problem I and

the linear constraint, convex function, Problem II. We will summarize the

use of GP to solve a linear constraint problem by considering

b} (4.1)

wbare p(x) is a differentiate convex function of the m-dimensional vector

x with the gradient g(x), A is an m by k matrix and b is a k-dimensional
vector .

Theorem 5

Let x$ satisfy A7^ b. If x$ satisfies the Kuhn-Tucker conditions for
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the problem (3.1) then GP will demonstrate this fact by finding a k-dimen-

sional vector r 2=0, such that Ar =
gffy) and r T [Ax$

- b]
= 0. The q, q ^m,

non~zero components of r are given by the vector

r = A-*g(Xo) 5:0 (4.2)

where the k by q matrix A consists of a set of Q linearly Independent

columns of A which are selected by GP, and A"* g f ATAr*A Further*

more, the matrix A is such that x = (A~* )
T b where b consists of the q

components of b corresponding to the selected columns of A (or rows of

ATjT
If the point x does not satisfy the Kuhn-Tucker conditions then GP will

find another feasible point which satisfies these conditions, along with the

corresponding matrix A, its pseudoinverse A""* and the nonnegaiive

vector T.

The proof that GP will recognize the optimum (first paragraph of

theorem) has been given by Mangasarian [7]. The convergence to the

optimum (second paragraph of theorem) has been proved in Part I of the

GP paper [10].

The way in which the GP optimization of appropriate subproblems is

used to achieve an iterative solution of the complete multibiock problem

(2.1) is given in the Appendix to this paper. It is assumed that an initial

feasible vector y is known.

We now show how the general convex problem of minimizing a convex

function subject to convex constraints can be put in the form (2.1). We
consider the convex problem in the form

min{*(y)lXi(y) <0, i = 1, . . . , q} (4.3)

We introduce q -t 1 slack variables x
t , i = 1, . . . , q 4 1. Then an

equivalent problem in the form (2,1) is given by

min x
q+i

(y), i* 1 q

i B 1, . ... q

*(y> (4.4)

If there are linear equalities in the xi and y they can also be handled

without difficulty. If such equalities occur in the i
th block they are handled

by always including in the Problem I optimal basis A those rows of A^

which correspond to the equality constraints.
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APPENDIX

Partition Programming Algorithm

1. An optimal solution to each of the linear subproblems (1.1) with

y * y , is obtained using GP or an LP algorithm. This gives ^(VQ), the

optimal vector xic and basis Aj for each subproblem, i = 1, ...,. The

basis Aj consists of m^ linearly independent columns selected by GP
from the original matrix A}. The corresponding optimal shadow price

vector is given by

i" A"2

Ci 2:0

The columns of A[ which are not in A
j
are denoted by B. The mi com-

ponents of b[(y) which correspond to the optimal basis A
[
will be denoted

by a vector b j(y)
and the remaining (kj

-
m^) components by a vector

6j(y). The complete problem objective function is then given by

2. A convex problem in the y variables with linearized constraints is

now formed, as follows. For each block, the matrices D<y ), i * 1, ..,!,

are calculated as given by (2.11) for the single block case. Each matrix

D|(ye ) is partitioned into Dj(y ) and Ej(yo) corresponding to the vectors

b|(yo)
and e(yo). A matrix Qj is also obtained for each block according to

We now have the convex Problem II, with s variables and

linear constraints

)> 1-1. ....1}

where *(y) s^ r
i
b

{
(y), and hjty)

s
Qj b .(y)

-
e^), i 1, ...,.

3. Problem II is solved by GP, as summarized in Theorem 5 giving an

optimal vector y y if
and the corresponding value of the objective

foactioa *&*). Since yt is feasible for Problem II and

I

E C

we have

(Al)
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The solution also gives the shadow price vector v ^ 0, with no more than

s positive components. We let V| be the vector whose (kj
-
m^) com-

ponents are the components of v corresponding to the i
tjl submatrix Aj.

We define

u
i
= Li ~Qi v

i'
i = 1> ....

4. There are four possibilities:

a. yi
- Yo ancl U| 0, i = 1 . . . . By Theorem 2 the complete problem

optimal vector is (x 10 , x20 , ..., Xo,y ) and *,(yo) is tn desired minimum

value of the objective function. The shadow prices for the complete prob-

lem (one for each constraint) are given according to the submatrix in

which the constraint occurs. For the i
th submatrix, the vector m gives

the shadow prices for the m[ constraints corresponding to Aj. The vector

vj gives the shadow prices for the remaining (lq
-
mj) constraints,

b. yi = YO and at least one negative component of u^ for at least one

submatrix. For each submatrix we choose the most negative component

of Uj, if any. The corresponding row of AJ is replaced with a row of B[
for which the corresponding component of Vj is positive. This gives a new

nonsingular basis Aj . There will be at least one such selection from B[
for which Aj C

A
^S7 that is, A.J is an optimal basis for the i**

1 sub-

matrix Problem I. Using thislbasis we form a new Problem II and continue

the iteration with (3) above.

c. jKyt)
< *(y ) and 11^) > 0, i

a
1, ... I. We have *(yt )

<
J^t), so

that *(yi) < *(y ) by (Al). This will always be the case for the completely

linear problem where bj(y) is given by (2.2). We continue the iteration

with (2) above with y 4 replacing yfl
.

d. Jrtyj)
< *(y ft) and at least one of the inequalities h^) =0,

i = 1, . . . , I, not satisfied. Let

yi))
s <> i* 1. .... 1}

For Bm > 0, and y - y + ^m{yi -yt) we
have_*(y )

< *<y) by Theorem 4.

We continue the iteration with (2) above with y replacing yf . If m = 0, we

must have at least one component, say hy(y)
the j

th component of the

vector hi(y), such that hy(ye ) 0, and hy^) < 0. The correspooding row

of B^ is exchanged with an appropriate row of A
t
to give a new optimal

basis A]\ Using this new basis we form a new Problem II, and continue

the iteration with (3) above.

This takes into account the possible alternatives during a cycle. A

typical cycle starts with a feasible vector y , and ends with a feasible

vector yt with *(yi) < *(y ) as given by 4e, or a feasible vector y with

*(y )
< *(yo) as given by 4d. As shown in Theorem 3, after a finite number

of such cycles the conditions of 4a will be satisfied and the complete prob-

lem optimum has been obtained.
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Experiments in Linear Programming

Philip Wolfe

Leola Cutler

INTRODUCTION

There are many ways to solve linear programming problems. The

earliest of these, Dantzig's "simplex method" [2], is the most widely

used, and no equally effective alternative is available. Many variations

of the original simplex method have been proposed in the last few years.

Computational experience seems to us the only way to properly compare
the computational efficiencies of these variations; their behavior depends

so strongly on features of the process which cannot be known in advance

that a priori estimates of their effectiveness inspire little confidence. The

purpose of the work reported here has been to compare some of the out-

standing variations with each other in their work on actual linear pro-

gramming problems, and to set some bench marks against which other

procedures may be measured.
Under the title of ' 'SCEMP" Standardized Computational Experiments

in Mathematical Programming this work originated in 1960 at a meeting

of the Linear Programming Committee of the SHARE organization, when

it was suggested that some of the flexible linear programming routines

then forthcoming might serve the task of evaluating the alternative pro-

cedures that had been discussed there. The Committee maintains a file of

test problems from which those used here were selected; they are de-

scribed in detail in the next section. A set of statistic -collecting routines,

modelled on an all-in-core, FORTRAN-coded linear programming routine

for the IBM 704 and 7090 [12], was coded and served as the basis for the

computer routines used in the present tests. (The routines and the output

of the tests have been retained and can be made available, but the routines

are not recommended for general purposes.)

The nature of the output of these routines has been given in detail

elsewhere [13]. Briefly, it consists in the following quantities for each

simplex method iteration: the amount of infeasibility; the current value

of the objective; the pivot row and column; the determinant of the basis;

the number of product-form transformation entries; the number of

arithmetic operations performed in each of several major subdivisions of

fThis research was sponsored by U.S. Air Force Project RAND. It

does not necessarily reflect the views or opinions of the Air Force.
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an iteration; and the number of nonzero elements in certain arrays of

interest. (The terms used here are defined in Sections 3 and 8.) At the

end of a problem the complete solutions are given as well as the

"errors' 5 the extent to which the final solution fails of being both primal
and dual feasible. All solutions obtained have been checked with those ob-

tained by other routines on the same problems, and the statistic -collecting

features have been checked in detail for most of the runs by hand calcula-

tion of a small problem [10].

The experimental data are organized by "runs," each of which consists

in the solution of an entire set of test problems by means of a routine em-

bodying a particular algorithm variation. Of the 47 runs done so far in the

SCEMP project, 29 furnish the data used in this report; the others bear on

matters not discussed here. Two kinds of data pertaining to a run have

been used in this report: we consider the number of simplex method itera-

tions, or changes of basis, required to reach a certain end either the

first feasible solution or the optimal solution of the problem in Sections

4-7; and we discuss the total number of arithmetic operations required in

Sections 8 and 9. The Appendix lists the raw data from which the figures

presented in the sequel have been calculated.

Since the point of most of these experiments has been to compare
alternative methods, the following general format has been used for the

results. The appropriate data (e.g., number of iterations) for a particular
run are chosen as a base. In order to compare another run with the base,
the corresponding datum obtained in the comparison run for each of the

test problems is divided by the corresponding datum for the base run; the

resulting ratio is the proportion in which the measure has been reduced by
use of the compared procedure. For example, suppose that Algorithm I

took 20 iterations to solve problem ID and 30 to solve problem 2A; and
that Algorithm II took 14 and 24 iterations, respectively. Choosing
Algorithm I as the base, the comparative results would be given as in

Table 1-1.

Table 1-1

ALGORITHM II COMPARED WITH ALGORITHM I

Problem ID 2A avg. c.v.

Alg. II .70 .80 .75 .07

Note that usually the average of the ratios is given, as well as their co-
efficient of variation (the standard deviation divided by the average) . The
problems will be listed in order of their numbers of constraints. The ratios
all have equal weights in the averaging, but the average could be viewed as
an average of the data of the compared run weighted by the reciprocals of
the corresponding data of the base run. For this reason, the average is a
somewhat fairer measure when the data of the base are larger than those
of the compared run. Owing to the arithmetic of averaging, if II were



EXPERIMENTS IN LINEAR PROGRAMMING 179

chosen as the base and I as the compared run, the resulting average would
be greater than the reciprocal of that of 1-1.

Some gaps appear in the tables that follow. The largest problem cannot
be run on the routines using the standard form of the simplex method, and
two other problems were omitted from some "feasible solution" runs be-
cause they had starting feasible solutions.

A good deal of special terminology is used in describing the computa-
tions. Special terms are usually defined in context at their first ap-
pearance, which is signaled by underlining. Most of them are introduced
in Sections 3 and 8. While the terms "method" and "procedure" are used

interchangeably in a very general way, we use the term algorithm to refer
to any particular version of the simplex method which chooses the pivot
column and the pivot row in a particular manner, regardless of the way in

which the data used in making the choice are obtained. Thus Sections 3 to 7

study only algorithms and the data principally iteration counts associated
with them, while the remaining sections study, in part, different methods
of performing the same algorithm.

We are indebted to many people for assistance with SCEMP. Marvin

Shapiro and Richard Clasen at RAND did a substantial part of the computer
programming. Many members of the SHARE Linear Programming Project,

notably David M. Smith and L. Wheaton Smith, offered valuable advice.

Much of the computing labor was defrayed through generous donations of

time by C-E-I-R, Inc., Esso Research and Engineering Co., Phillips
Petroleum Co., Shell Oil Co., Socony-Mobil Oil Co., and Standard Oil Co.

of California.

2. THE PROBLEMS

The linear programming problems on which our experiments were con-
ducted were drawn from the file of thirteen problems maintained by the

Test Problems and Experiments Committee of the SHARE Linear Pro-

gramming Project. The problems, submitted by various members of the

Committee in 1959 and 1960, were all used as production problems in their

businesses; the majority arose in oil refining studies. None were es-

pecially constructed for test purposes, or thought "pathological." The

original problems are available through the Committee.

Four of the problems were not used here. Problem 1C is too small, 4A
is too large, and 3A and 3B had awkward input features. Thus our work
was done with the nine problems of Table 2-1.

Throughout this report the problems are listed in the order of their

numbers of constraints. In Table 2-1, the "name" identifies a problem in

the Committee's files. All the problems are formulated as problems of

minimizing a linear objective function under linear equality constraints.

The objective functions are entered as rows of data, as are the constraints;

some problems have several alternative objective functions, so that there

are always one or more "additional rows." In our runs the highest
numbered objective row was used and the remainder ignored.
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Table 2-1

THE TEST PROBLEMS

Name ID 2A IE 1A 5A 1G IF 2B IB

Number of

constraints: M 27 30 31 33 34 48 66 96 117

Number of additional

rows: K 128111131
Number of variables 45 103 106 64 78 102 135 162 253

Number of entries 252 811 855 245 391 462 644 897 1210

The "number of variables" includes all the variables of the problem
but no "artificial" variables. The "number of entries" is the number of

nonzero quantities appearing among the constraints and objectives. Some
further data regarding starting bases for the problems are given in

Section 4.

3. TERMINOLOGY

In order to describe the algorithms studied, we develop here some of the

terminology connected with the simplex method. It is not intended to dis-

cuss the procedure itself, which is done in many standard works [5, 6].

The discussion in this section is entirely in terms of the standard form of

the simplex method; the other forms are dealt with in Section 8.

Let a linear programming problem have N variables x
lf

. . . , XN and M
equation constraints. At any stage in the simplex method solution there is

defined a basis, which is a set of M basic variables, say xj t
, . . . , xj^; let

the remaining variables be
XJM+I , . . ., XJN . The current tableau is the set

of coefficients of the linear equations

+ "-+aI, N_M x
JN

=
bl

X
JM + aMi X

JM+1
+ ' * ' + aM,N-M

which are uniquely defined by the current basis and the requirement that

this set be equivalent to the linear equations defining the original problem.
We say that the basic variable

xj i occupies position i in the basis for
1 =

1, ..., M.
It is further supposed that the objective function to be minimized is ex-

pressed at this time in terms of the nonbasic variables as
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the coefficients
Cj

are the reduced costs. (The quantities ay and
Cj

de-
fined here commonly carry a superior bar to indicate that they change in

each iteration; we omit the bar.) The basic solution of the equations above

is obtained by setting all nonbasic variables to zero, giving the basic

variables the values Xj 1
= b t , etc., and the objective the value z .

In a single iteration of the simplex method a pivot column J (where

JM+J is tlie m(*ex of a nonbasic variable) and a pivot row I of the tableau

are chosen, and the roles of the basic variable occupying position I and

the nonbasic variable associated with column J are interchanged, new
data of the form of the equations above being obtained by pivoting on the

entry ay of the tableau. The value of the objective changes by the amount
cJb!/aU-

Some M variables must be chosen as the starting basis for the pro-
cedure. If not all these variables belong to those of the original problem,
the remainder are artificial. Each instance of a basic variable whose

current value is negative, or of an artificial variable whose value is not

zero, is an infeasibility. A basic solution having no infeasibilities is

feasible. When it is necessary to adjoin artificial variables in order to

have a starting basis, we always adjoin for each a column of coefficients

of the form [0, .... 1, .... 0] to the original problem, the single "1" of

the column lying in a row corresponding to an otherwise unoccupied

position of the basis. When there are infeasibilities, a separate objective

function involving them is defined, and it is required that this infeasibility

objective be minimized. The process of minimizing that objective is

Phase One; the subsequent minimization of the proper objective, once a

feasible solution is obtained, is Phase Two.

In the sequel we refer to the ordinary simplex method, by which we
mean the simplex method as most commonly presented, except that we
extend the usual procedure for the choice of pivot row to that of the

"composite algorithm" [3].

In Phase Two the procedure is quite ordinary. A pivot column J is

chosen so that cj is minimal (if all are nonnegative, the current solution is

optimal) . Then the pivot row I is chosen so that after pivoting the current

solution will still be nonnegative: I is the i which minimizes bi/ay for

all au > 0. If bj = degeneracy should happen, then I is chosen as the

1 maximizing a^j among all i for which b^
= 0. (This rule is not known to

prevent "cycling," but is very effective in practice [15].)

In Phase One the objective is defined as the sum of the infeasibilities:

2
{xj |xj

< or
Xj artificial}. The reduced cost for the nonbasic variable

j is then 2 {ay | t>i
<

}
- I {ay |

bi > and position i artificial }. The

pivot column J is chosen for minimal reduced cost, and the pivot row I

so that no variable nonnegative in the current solution becomes negative

after pivoting: I is the i which achieves the smaller of the two ratios

Mini {bi/au Ibj, a^j
> 0}, Maxi {bi/aij | b^ aij < 0}. A somewhat more

complicated rule is needed for degeneracy. In the absence of negative b^
the pivot-row rule operates just as in Phase Two.
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4. STARTING BASES

The basis with which a problem is started naturally has a great in-

fluence on the number of iterations required to solve it. In practice one
often attempts to guess a starting basis which will be as nearly feasible
and optimal as possible; a sophisticated routine will make good use of

such a guess even if the basis is incomplete, infeasible, or singular. The
three methods studied here do not, of course, make any use of special in-
formation about the problem; they assume complete ignorance, and may
be used with any problem.

N basis: When no starting basis is specified, a full set of M artificial

variables is adjoined to the problem and constitutes the starting basis.
S basis: By singleton we mean a variable having only one nonzero entry,

and that positive, in the equations of the initial tableau. An S basis is a

starting basis consisting of a maximal set of singletons, with artificial
variables used as necessary for the unfilled positions. (The computational
cost of pivoting on singletons is almost nothing, and feasibility is improved
if all the original right-hand sides are nonnegative.)

F basis: A full basis was produced by this procedure: first, an S basis
was chosen; subsequently, each column of the tableau was examined, and
pivoted into the basis if it had a nonzero entry corresponding to any unfilled
position. The only basis positions left unfilled by this procedure are those
corresponding to redundant constraints. Naturally, the resulting basis is
not likely to be primal or dual feasible. Other procedures for obtaining a
full basis have been tried but not yet fully evaluated; they do not seem to
offer much advantage over the above.

Table 4-1 describes the bases resulting from the use of procedures S
and F. All the data are proportions, the number of variables in a given
category being divided by the number of constraints in the problem. The
last two lines constitute the proportion of infeasibilities in the starting
basis. Note, however, that artificial variables initially at zero level tend
to become nonzero before they are eliminated, so that for an S basis the
total number of artificials is the better measure of infeasibility.

Table 4-1

STARTING BASIS CHARACTERISTICS

Problem ID 2A IE 1A 5A 1G IF 2B IB

(S basis)

Singletons used .19 .87 .19 .30 1.00 .90 .65 .86 29
Positive artificials .81 .00 .19 .70 .00 .10 .35 .05 .*60
Zero artificials .00 .13 .61 .00 .00 .00 .00 .'08 !ll

(F basis)

Negative variables .41 .00 .42 .30 .00 .23 .26 .10 .46
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Note that the proportion of infeasibilities in the F basis runs a little more
than half the proportion in the S basis. We view this as accounting for the

advantage, to be seen below, of the F basis over the S basis.

We are mainly interested in the number of simplex method iterations

required to obtain the first feasible solution after the starting basis has

been constructed. (In Section 9 the effect of the work required to produce
the starting basis, as included in the total work to solve the problem, is

considered.) Bases N and S have been used with two algorithms: the

ordinary procedure and the "ratio pricing" procedure, described in

Section 6. The results are summarized in Table 4-2. The first line

compares basis S (run 21) with basis N (run 5, used as the base), for the

ordinary algorithm; the second line compares basis S (run 6) with basis N
(run 8, used as base) for the ratio pricing algorithm. The ratios thus rep-
resent the proportion in which the number of iterations in Phase One is

decreased by using an S basis rather than an N basis.

Table 4-2

S BASIS COMPARED TO N BASIS FOR TWO ALGORITHMS

Problem ID 2A IE 1A 5A 1G IF 2B IB avg.

Ordinary alg. .89 .00 .69 .61 .00 .51 .42 .83 .50

Ratio pricing .86 .01 .85 .82 .00 .40 .58 .83 .54

Evidently use of an S basis entails, on the average, a saving of about 48%
in the number of iterations required for Phase One.

Comparison of bases S and F has been made in each of three algo-

rithms, with the number of iterations for basis S taken as the base data:

the ordinary algorithm (runs 21 and 39, respectively); the sequential pro-
cedure (runs 31 and 36); and the least-infeasibility procedure (runs 33

and 37). The last two procedures are discussed in Section 6. Table 4-3

summarizes these, omitting problems 2A and 5A because their starting S

and F bases are feasible.

Table 4-3

F BASIS COMPARED TO S BASIS

Problem ID IE 1A 1G IF 2B IB avg.

The over-all average of these proportions is 0.76, predicting a saving of

in use of an F basis rather than an S basis.
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We conclude that in the absence of other knowledge of the problem, an

F basis should be used. Some linear programming routines [1] make it

possible to use a mixed procedure, entering a known partial basis and sub-

sequently completing It in an arbitrary manner.
WT

e may try to predict the number of iterations Phase One requires

using the ordinary algorithm. Each entry in Table 4-4 is obtained by

averaging, for all problems, the number of iterations taken using the basis

N, S, or F divided by one of three possible measures of problem difficulty

the number, M, of constraints, the number of nonsingletons, or the number
of infeasibilities in an F basis. Thus, for example, the number of itera-

tions required using an S basis is expected to be 0.78 M. The coefficients

of variation are given in parentheses. It is disappointing that the number
of constraints is a better basis for prediction than the more informative

measures.

Table 4-4

PHASE ONE ITERATIONS VERSUS MEASURES OF
PROBLEM DIFFICULTY

Measure

Number of Number of negatives
M nonsingletons in F basis

N 1.69 (.3)

F .56 (.6) 2.07 (1.1) 2.12 (.8)

5. THE FEASIBLE SOLUTION

In general Phase One, the task of obtaining a first feasible solution, is

accomplished by employing the simplex method to minimize some measure
of the infeasibility of a solution. The five procedures studied here employ
four different measures of infeasibility. In all of them the measure con-
stitutes an objective function whose reduced costs are calculated so that
the choice of pivot column can be made by the ordinary rule. In all but
the "extended composite" algorithm the ordinary rule of pivot row se-
lection is used.

The ordinary procedure is described in Section 3.

The extended composite procedure [14] differs from the ordinary in
choice of pivot row. After the pivot column has been chosen in the

ordinary way, the pivot row is selected so that the sum of infeasibilities
after pivoting will be minimized; variables are allowed to change sign
freely. Thus I is defined by =

bj/ajj, where minimizes
2?i {| bi

- a
itF |

j
bi
-

ay is infeasible }.

In the sequential procedure, the infeasibility is corrected one component
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at a time, in order. At any iteration, let i be the least i for which some

bj is infeasible, and xr the corresponding variable. The objective for

minimization is defined as xr if position i is artificial and biQ
is pos-

itive, or as -xr if biQ
is negative. (The reduced cost for column j will

then be just ai or -a^..) During the procedure, row i will be made

feasible, feasibility on the previous rows being preserved.
The least-infeasibility procedure is like the sequential, except that at

each iteration the index IQ is taken so that xr is minimal among all in-

feasible variables; the index may increase or decrease.
The fudge procedure, but not its name, is due to Gass [5, pp. 120-125].

A problem having negative solution values is augmented by a single
artificial variable and subjected to a transformation yielding nonnegative
solutions for the augmented problem. Specifically, the tableau is augmented
by a column containing the entry -1 in each row having b^

< and zeros
elsewhere; and the desired tableau is obtained by pivoting on the Ith entry
of the added column, where bj

=
mini b[. Subsequently the sum of all the

artificial variables is minimized using the ordinary algorithm; when it has
been reduced to zero, a feasible solution is at hand. (Of course other

means of getting feasible could be used once the negativity has been re-

moved.)
Table 5-1 lists the runs done using these five procedures, indicated at

the left. The starting basis used is listed at the top.

Table 5-1

FEASIBLE SOLUTION RUNS

N S F

Ordinary algorithm 5 21 39

Extended composite algorithm (5) (21) 38

Sequential algorithm 31 36

Least-infeasibility algorithm 33 37

Fudge procedure (5) (21) 32

Runs indicated in parentheses were not done, since the same results would

have been obtained as in the run whose number is given.

Tables 5-2 and 5-3 give the results for these procedures, for bases S

and F, relative to the ordinary procedure. The last line of each table is

the proportion of infeasibilities in the starting basis for each problem.

The amount of infeasibility does not seem to affect the relative ef-

ficiencies of these methods much, although it does affect the total work

done, as the data for runs 21, 31, and 37 in the Appendix, or those of

Table 4-4, show.

The results pretty well establish the ordinary procedure as superior
in getting feasible. Its objective is responsible, since the minimization

algorithm is the same in all the runs. It seems that by moving in a direc-
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Table 5-2

PHASE ONE, S BASIS, RELATIVE TO ORDINARY ALGORITHM

Problem ID IE 1A 1G IF 2B IB avg.

Sequential .96 .94 1.52 1.00 .98 .97 1.04 1.06

Least-infeasibility 1.08 1.03 1.36 1.05 1.24 1.12 .94 1.12

Proportion infeas. .81 .19 .70 .10 .35 .05 .60

Table 5-3

PHASE ONE, F BASIS, RELATIVE TO ORDINARY ALGORITHM

Problem ID IE 1A 1G IF 2B IB avg.

Extended composite 1.00 1.08 1.42 .65 1.00 1.04 1.01 1.03

Sequential 1.12 1.33 1.17 1.50 2.00 1.51 1.08 1.39

Least-infeas. 1.12 1.37 1.00 1.47 2.00 1.51 1.39 1.41

Fudge 1.25 1.08 1.25 1.00 2.00 1.34 1.01 1.27

Proportion infeas. .41 .42 .30 .23 .26 .10 .46

tion tending to minimize the sum of all the infeasibilities we give more

chance to a number of infeasibilities to leave, while the sequential and

least -feasible procedures, concentrating on a single variable at a time,

are too single-minded. Since several negative infeasibilities can be re-

moved in one iteration, while only one artificial variable can, it is

reasonable that the difference is more decisive for F bases than for S

bases.

The extended composite procedure is somewhat disappointing. It might
work better if, at the expense of considerably more calculation, the pivot

column were chosen by the same criterion as is the pivot row.

6. THE OPTIMAL SOLUTION

Of greatest interest to the ordinary user is the amount of work required
to solve a complete problem. In this section six algorithms are compared
in the number of iterations required to obtain an optimal solution. All but

one of these are designed to handle artificial variables; for them, the

ordinary Phase One objective the sum of all infeasibilities is used; this

was found most efficient in Section 5. Unless otherwise noted, each pro-
cedure uses the same method for minimizing its objective in Phase One as
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it does in Phase Two, only the definition of the objective changing between
the phases. Similarly, each procedure (except the "symmetric") uses the

ordinary choice of pivot row. They differ primarily in the manner of

choosing the pivot column.

The ordinary procedure was described in Section 3.

The po s itive-no rmalized procedures (PN1 and PN2) can be viewed as

representative of those proposals which aim at eliminating the effects of

bad scaling of the problem data by dividing the reduced costs, used in

choosing the pivot column, by some combination of the coefficients ay.
The first of the two considered here, proposed by Dickson and Frederick

[4], uses the formula
dj

=
c| /(cj

+ ^ i ay
2
), where

ay
is the "positive

part" of ay, choosing the pivot column as that j for which
dj

is maximal
for

Cj
< 0. The procedure PN2 is essentially this, using instead the

formula
dj

=
c| /Sj ay

2
, which gives the same result.

The PN1 procedure employs the slightly simpler formula
dj

=
GJ/SJ a~,

with the pivot column chosen for minimal
dj

.

The greatest-change procedure was described long ago, but has been
little used. That column is chosen which, after pivoting, will give the

greatest decrease in the value of the objective; it is the j which minimizes
the expression

Cj mini ft^/ay | ay
>

} for the change of the objective.

The ratio -pricing procedure was suggested informally by Markowitz
some time ago. It differs from the ordinary procedure only in Phase One.

Letting Wj
be the reduced cost for the infeasibility objective then, and

cj

be the reduced cost for the proper objective, the pivot column j is chosen
so as to maximize GJ/WJ for Wj

< 0; we obtain the largest possible im-

provement in the proper objective per unit change of infeasibility. It may
be viewed as an application of parametric linear programming [5]: defining

0* at each iteration as the largest < such that
Cj

+ 0Wj s:0 for all Wj
< 0,

the pivot column is chosen so as to increase $*. Evidently when <* be-
comes sufficiently large we have all

Wj
>

0, and Phase One is ended. It

turns out that almost all
Cj

are then nonnegative, too, so that Phase Two is

quite short. The aim of the procedure is to obtain a first feasible solution

which is nearly optimal; the data of the Appendix for run 6 show that it

does this well.

The symmetric procedure of Talacko [9] is employed only with a full

basis; it may take either "primal" or "dual" simplex method steps. For
one iteration: Among those columns with negative reduced costs, and those

rows whose basic variables are nonnegative, a potential pivot is de-

termined using the greatest -change procedure as described above; and

among columns with positive reduced costs and rows with negative

variables, a potential pivot is determined using the dual of the greatest -

change procedure (for which the greatest increase of the objective is

sought). That pivot is used for which the magnitude of the objective change
is greater. If a step of the first kind is taken, all nonnegative basic

variables stay nonnegative; if of the second kind, all nonnegative reduced

costs stay nonnegative. The procedure does not always terminate in a

solution of the problem [11, p. 10]; but it did for the test problems.
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Table 6-1 compares all these, taking the ordinary procedure as the

base (run 21).

Table 6-1

ALGORITHMS AND BASES COMPARED WITH ORDINARY, S BASIS

Problem ID 2A IE 1A 5A 1G IF 2B IB avg. c.v.

Singleton basis

PNl-runlO .76 .80 .96 1.00 .73 .66 .84 .82 .82 .1

PN2-runl4 .83 .82 .98 .93 .76 .73 .66 .90 .83 .1

Greatest-

change
run 15 .70 1.10 1.23 .76 .86 .65 .73 1.21 .91 .2

Ratio-

pricing
run 6 .59 1.62 1.42 .81 .95 .82 .55 1.35 1.01 .4

Full basis

Ordinary
run 39 .63 1.24 .92 .52 1.00 1.21 .45 .76 .76 .83 .3

Symmetric
run 40 .43 .82 1.53 .45 .84 .74 .49 .73 .75 .4

Greatest-

change
run 41 .39 .82 .68 .55 .84 .94 .38 .90 .27 .64 .4

(Note: If problem IB is eliminated from 39 and 41, the averages are
.84, .69.)

Of the runs with singleton basis, the positive-normalized procedures
are outstanding, and over-all the greatest-change procedure with full
basis is best. Unfortunately the positive-normalized procedures have not
yet been tried with full bases; they might perform even better. Inciden-
tally, the data of the Appendix show that, with the natural exception of

ratio-pricing, the differences among the procedures are reflected in
Phase One in about the same way as in the entire process.

The data of Table 6-1 allow the symmetric and greatest-change pro-
cedures to be compared directly with the ordinary procedure with full
basis. Using run 39 as base, the averages and coefficients of variation
obtained are: symmetric algorithm, .92, .3; greatest-change algorithm,
.78, .3. The relative efficiencies of these procedures are not changed much
by calculating them from the different base run.

It is of considerable interest to find some means of predicting the work
needed for a problem about which little is known. In Table 4-4 it was
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found that the number M of constraints was the best guide of those

studied to the number of iterations for Phase One; we shall use it also in

connection with the total iterations required. Table 6-2 thus lists the

number of iterations required to solve each of the problems using the

ordinary algorithm divided by M. It would appear that rule of "2M
iterations" from folklore is fairly good when a singleton basis is used.

Table 6-2

ITERATIONS/CONSTRAINTS FOR ORDINARY, S BASIS (RUN 21)

Problem ID 2A IE 1A 5A 1G IF 2B IB avg. c.v.

2.001.67 1.71 1.27 1.09 1.29 1.83 1.18 3.33 1.71 .4

The corresponding data for the algorithms of Table 6-1 can be found by

multiplying the entries of Table 6-2 by those of Table 6-1. The averages
thus obtained appear in Table 6-3.

Table 6-3

SUMMARY OF ITERATIONS/CONSTRAINTS

Algorithm Run Average C.V.

Singleton basis

Ordinary 21 1.71 A

PN1 10 1.24 ,2

PN2 14 1.24 .2

Greatest-change 15 1.36 .3

Ratio pricing 6 1.50 .4

Full basis

Ordinary 39 1.39 .4

Symmetric 40 1.13 .5

Greatest-change 41 .98 .2

A more detailed examination of the data seems to show that the de-

pendence of the number of iterations on M could be better expressed by a

formula of the form a Mb
, where b is slightly less than one, but this is

not clear. Using a singleton basis an estimate of between M and 3M
iterations will almost always be correct.
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7. SUBOPTIMIZATION

Versions of suboptimization have been used for some time in linear pro-

gramming routines bothered by small core size, but the advantages of a

version of it for routines for which core size is no particular handicap

were first exploited by D. M. Smith [9]. As used here, the course of the

solution of a problem consists of a number of passes, at the beginning of

each of which some number L of nonbasic columns is selected as a set of

candidates for pivoting (those having the L minimal reduced costs are

chosen). During the pass no other nonbasic columns are considered;

simplex method iterations are performed using the selected columns until

the objective has been minimized on that subset. (A basic column which

becomes nonbasic during the pass is not futher considered.)

The number L of candidates is an important parameter; values of 2, 3,

5, and 8 were used here. During a pass, any of the various means of

selecting a pivot column discussed previously might be used in minimizing
the objective on the candidates. Three were tried here: the ordinary pro-
cedure of minimal reduced cost; the greatest-change procedure; and the

procedure PN1.

Both the number of iterations and the number of passes required to

solve a problem are of interest. In the table below, the numbers required
are all compared with the number of iterations used by the ordinary

simplex method (run 21), which would be the number of passes for any of

the algorithms for L = 1, Only the averages and coefficients of variation

are given for these runs; the individual data fluctuate considerably less

than in most of our experiments. An interesting feature of the raw data

not reflected in the averages is that the greatest-change procedure com-
monly requires fewer iterations under suboptimization than does the

ordinary procedure without it, which is generally not the case for the

other methods.

Table 7-1

SUBOPTIMIZATION RUNS COMPARED TO ORDINARY ALGORITHM

Iterations Passes
Run Algorithm L average c.v. average c,v.

22 ordinary 2 1.15 .2 .72 .2

27 "
3 1.28 .2 .60 .2

28 TT 5 1.26 .2 .45 .2

29 "
8 1.31 .3 .37 .4

23 greatest-change 2 1.07 .2 .72 .2

24 "
3 1.08 .2 .59 .2

25 "
5 1.08 .3 .45 .3

26 "
8 1.13 .3 .40 .3

42 PN1 2 1.15 .1 .72 .2

43 "
3 1.22 .2 .58 .2
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The term "pass" arises from the fact that it is only necessary to con-
sult the data for the entire problem once during a pass; the data which have
to be retained for the subsequent suboptimization are much fewer. This
fact makes it particularly valuable in product form routines and those

which use tapes extensively. (The three main forms of the simplex method
are discussed in Section 8.) The significance of the statistics above de-

pends on the form of routine used. In the product form, the total work
done depends largely on the number of passes; in the standard form, on the

number of iterations; and the explicit form is intermediate. Thus sub-

optimization is of value in the product form even for all-in-core routines,

but not in the standard form. Three production linear programming
routines now use it in the manner described. They are all product form
routines, one using the ordinary algorithm with L = 2 [1], another the

greatest-change algorithm with L = 2 [9], and the third has options for

either algorithm and any L up to 5 [7],

8. OPERATIONS AND FORMS

So far we have been concerned only with the number of iterations re-

quired to solve a problem. A better guide to the computational efficiency

of a procedure is the number of floating-point arithmetic operations per-
formedthe work which must be done no matter how the algorithm is im-

plemented. While logic and bookkeeping time are usually appreciable, and

vary between different algorithms and different forms of the simplex
method, it is precisely in such nonarithmetic work that computers and

programming systems differ the most. Having programmed each of the

procedures studied here as economically as we could from the stand-

point of arithmetic, we feel that the results on arithmetic work come
close to a machine-independent measure of efficiency.

Although it would be possible to count separately each elementary

operation, it turns out that there are only three combinations of elementary

floating-point operations used significantly often in each of the major
subdivisions of an iteration: addition and multiplication; division and sub-

traction; and addition alone. Each of the following three groups is thus

called one operation:

1 floating add and 1 floating multiply (17.4)

1 floating divide and 1 floating add (19.4)

3 floating adds (19.2)

The average number of 7090 cycles taken by each combination is given in

parentheses. While some error is made in considering all these equivalent,

it is very small, because the first combination accounts for almost all of

the calculations. In all cases (except for a portion of the reverse-trans-

formation calculation in the product form) an operation is counted only

when both operands are nonzero.

There are many ways of calculating the data required for the steps of

the simplex method. In all of them the data used in the ordinary pro-
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eedure are obtained, but in different ways. The three main forms of the

method are described below in outline; the details may be found in the

literature [5, 6]. In considering the number of operations performed in

one iteration in any form it is convenient to have a priori estimates in

terms of M (the number of constraints), N (the current number of

variables), and M + K (the total number of rows of data). In the formulas

below, factors of proportionality between zero and one reflect the fact

that operations involving zero data are not counted; the quantities of order

smaller than M2 are disregarded.

The standard form is done just as the ordinary procedure is described

in section 3. Pivoting in the tableau is most of the work [requiring

0!(M+K)(N-M) operations].

Both forms of the "revised simplex method" calculate needed items of

the tableau by multiplying parts of the original matrix A by parts of the

inverse, the inverse of the (M + K) -order matrix consisting of the basic

columns of A. The reduced costs are obtained by multiplying A by the

prices, that row of the inverse corresponding to the objective row of A

[02(M + K)(N -M) operations]; the selected pivot column of the tableau is

obtained by multiplying the appropriate column of A by the inverse (the

number of operations required for this and the remaining steps differs for

the two forms); the pivot row is selected as usual; and pivoting is done

both in the inverse and the current solution.

In the explicit form, or the "revised simplex method with explicit form

of the inverse," the inverse is a square M + K-order matrix, all of which

is pivoted in at each iteration. Pivoting requires 04(M + K)
2

operations,

and the prior multiplication for the pivot column requires 3(M + K)
2

operations.

In the product form, or the "revised simplex method with product form

of the inverse," the inverse is maintained as a sequence of transforma-

tions, each of which, having at most M + K nonzero entries, constitutes

the nontrivial portion of the pivot column of the tableau as of some pre-

vious iteration. Applied appropriately, these transformations accomplish

the work of matrix multiplication required by the revised simplex method.

In a pivot step these data are not altered but are augmented by one more

transformation. Their total number is generally somewhat less than

(M + K)
2

, and most, but not all, of them are used once in obtaining the

prices [05(M + K)
2
operations] and the pivot column [06(M + K)

2
operations].

The number of accumulated transformations is periodically reduced by
"reinversions," the reconstruction of a product-form inverse from A in

a minimal sequence of pivots. The routines used here reinvert auto-

matically at those points they determine will minimize the total operation
count for the calculation.

In summary, the formulas of Table 8-1 indicate the dependence of the

number of operations per iteration on problem size.

It is beyond the scope of this study to discuss the factors of these

formulas in detail. They will be used instead as guides to the scaling of

our operation counts. Since for our problems N is closely proportional
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Table 8-1

NUMBER OF OPERATIONS PER ITERATION

Standard form e
i (M + K) (N

-
M)

Explicit form
2 (M + K) (N

-
M) +

3 (M + K)
2 +

4 (M + K)
2

Product form
2 (M + K) (N

-
M) +

5 (M + K)
2 +

6 (M + K)
2

to M (N/M ranges from 1.67 to 3.43, averaging 2.31 with coefficient of

variation 0.27), each of the formulas has, approximately, (M + K)
2 as a

common factor. Thus comparative data for the three forms can be ob-

tained as follows: for each problem, divide the total number of operations

required to solve it by the number of iterations, and divide the result by

(M + K)
2

. The data of Table 8-2 were obtained in that way; for all forms,

the ordinary simplex algorithm was used, and an S basis.

Table 8 -2

OPERATIONS PER ITERATION/(M + K)
2

Problem ID 2A IE 1A 5A 1G IF 2B IB avg. c.v.

Standard form

(run 12) .88 3.00 2.11 .44 1.28 .79 .76 .59 1.23 .7

Explicit form

(run 21) .71 .95 .77 .49 .54 .31 .38 .29 .67 .57 A

Product form

(run 56) .56 1.00 .54 .32 .45 .27 .25 .14 .26 .42 A

The decrease of the ratios with size of problem is noteworthy; it is

probably due to the decrease of the proportion of nonzero matrix entries.

Table 8-3 makes a more direct comparison of these data, using the ex-

plicit form run as a base. Note that the relative efficiency of the product

form tends to increase with the size of problem, owing, we think, to its

greater ability to take advantage of the lower density of nonzeros.

Table 8 -3

STANDARD AND PRODUCT COMPARED WITH EXPLICIT FORM

Problem ID 2A IE 1A 5A 1G IF 2B IB avg. c.v.

Standard form 1.28 4.67 3.03 .83 2.30 2.57 2.04 2.63 2.42 .4

Product form .82 1.05 .74 .64 .79 .86 .67 .45 .43 .71 .3
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9. ALGORITHMS COMPARED BY OPERATIONS

The algorithms of Section 6 may finally be compared in the total number

of operations they require to solve a problem. In Table 9-1 they are all

compared with the ordinary algorithm in explicit form (run 21). With the

exception of that procedure, each algorithm given has been run in that

form of the simplex method best suited to it; the ratio-pricing and the

greatest-change (with F basis) procedures are omitted because they were

not.

Table 9-1

VARIOUS ALGORITHMS COMPARED WITH ORDINARY, EXPLICIT

Problem ID 2A IE 1A 5A 1G IF 2B IB avg. c.v.

Singleton basis

PN1 standard; .75 2.14 2.42 .67 1.54 1.21 1.32 1.37 1.43 .4

run 10

PN2 -standard; 1.07 2.53 2.84 .53 1.79 1.52 1.18 1.82 1.66 .4

run 14

Greatest-

change
standard;

run 15 1.15 3.66 3.72 .33 2.37 .99 1.66 2.36 2.03 .6

Ordinary -

product
run 56 .82 1.05 .74 .64 .79 .86 .67 .45 .43 .71 .3

Full basis

Symmetric
standard;

run 40 .57 4.80 6.04 .47 2.81 2.64 1.01 1.42 2.47 .8

Ordinary -

Product

run 55 .63 1.48 .81 .44 .89 .86 .25 .37 .38 .68 .5

We think that these figures constitute the best over-all assessment of

these alternative algorithms from the point of view of calculation needed.

The product form of the ordinary algorithm seems definitely superior,

with use of a full basis probably being worthwhile for the larger prob-
lems.

We may try to predict the operation count for an unknown problem of

given size. In Table 9-2, the counts of run 21 have been scaled in a manner
intended to eliminate most of the influence of the size of the problem.

Using the factor (M + K)
2 as in Table 8-2 to scale the count per iteration,
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and the factor M as in Table 6-3 to scale the number of iterations, we ob-

tain the quotients of Table 9-2. The corresponding quotients for the other

runs can be obtained by multiplying those of Table 9-1 by these numbers;

the averages and coefficients of variation for those ratios are given in

Table 9-3.

Table 9-2

OPERATIONS/M(M +K)
2 FOR ORDINARY EXPLICIT

Problem ID 2A IE 1A 5A 1G IF 2B IB avg. c.v.

1.42 1.58 1.32 .62 .59 .40 .70 .34 2.22 1.02 .6

Table 9-3

OPERATIONS/M(M + K)
2 FOR OTHER RUNS

Algorithm Form Basis Run Average C.V.

PN1 standard S 10 1.36 .8

PN2 standard S 14 1.59 .9

greatest-change standard S 15 2.04 1.0

ordinary product S 56 .73 .6

symmetric standard F 40 2.57 1.2

ordinary product F 55 .73 .9

Since in practice K is usually 1, we can say that around M3
operations

are required to solve a linear programming problem. A rough minimum
for problems of no more than some 100 constraints is 0.3M3

, and 2M3
is

a rough maximum for smaller problems. A count of more than 3M 3

indicates an uncommonly hard problem or a rather poor algorithm.

10. CONCLUSION

Three kinds of data have been used above: iterations, operations, and

passes. We have come to the view that iterations alone is the least in-

formative: on the one hand, the operation count measures the total work

of a routine, and on the other passes measure the amount of data handled.

Of course, except for those of Section 7, suboptimization is not used in any

of the routines studied, so that in general the number of passes is equal to

the number of iterations, which is the number we usually cite.

The results of Section 4 show that use of a full basis will reduce the

iterations taken in Phase One. (In Section 9, however, we found that it is

of little value in reducing the operation count for the most efficient pro-
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cedure,) It appears that there is no excuse for using an entirely artificial

basis.

In Section 5 we failed to find any measure of infeasibility with which to

conduct Phase One which works better than the ordinary measurethe sum
of all the ^feasibilities.

The results of Section 6 show the positive-normalized procedures best

in terms of iteration count, and that the full basis is good for the over-

all problem. The first conclusion is consistent with the interesting re-

sults of Kuhn and Quandt [8], who have experimented with several pivot-

column selection procedures on a large number of randomly generated
linear programming problems of special type having up to 25 constraints.

In the only place where their results can be matched with ours, we agree
in ordering these procedures in increasing effectiveness in iteration

count: ordinary, greatest-change, and positive-normalized. Our data sug-
gest M and 3M as bounds for the number of iterations to solve a problem
starting from a singleton basis.

The extent to which suboptimization will be of value in a routine depends
considerably on how its data-handling is organized. Section 7 shows that it

can be used with little harm and under some circumstances with benefit to

the total computational labor.

The comparison of operations per iteration in Section 8 shows pretty

definitely that the order of the three main forms of the simplex method in

increasing efficiency is: standard, explicit, product. The fact that those

algorithms which are better than the ordinary in iterations need data which
are conveniently obtained only in the standard form makes them less at-

tractive from the point of view of operation count; Section 9 shows that the

ordinary algorithm in product form leads the rest. There are other con-
siderations, however, for general uses of a linear programming routine,
which are hard to evaluate properly but which argue for the standard
form: in that form most of the data needed for the usual postoptimal
analyses reduced costs, etc. are immediately available and need not be
especially calculated.

An important fact about the product form, whose detailed study is beyond
the scope of this report, is that the product-form inverse is extremely
compact for problems of low density. This fact has considerable bearing
on the choice of a routine for larger problems. SHARE problem 4A, having
245 constraints, can be solved with an all-in-core routine [1] for the
IBM 7090, which has 32,768 words of core. A similar routine using the
explicit form would require 75,000 words, and using the standard form,
118,000 words.

At this time we feel that a product-form routine employing the ordinaryor the greatest-change algorithm with suboptimization, with option for
using a full basis, will pull together the best features of the procedures we
have studied so far.

It may seem disappointing that our results have not allowed a more
decisive ordering of the proposals studied. In part, of course, this is
due to our having selected the more promising possibilites from a largernumber of candidates; but it may also be the case that, as linear pro-
gramming is presently understood, it is not possible to do a great deal
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better than some of these procedures do. A linear programming method

has two parts: find the optimal basis, and calculate the optimal solution.

If the optimal basis were known, it would still in the general case require

some 1/3M3
operations to solve the linear equations thus identified (al-

though a product-form method would do much better for problems, like

ours, having a low density of data). Since some of our procedures do the

whole job in about M 3
operations, there does not seem to be an enormous

amount of room for improvement.

APPENDIX

The SCEMP Runs and Data

Nature of Run

(Note: These abbreviations are used; for bases: None, Singleton, Full;

for forms of the simplex method: Standard, Explicit, Product.)

Starting

Run basis Form Algorithm

5 N P Ordinary
6 S E Ratio -pricing

8 N E Ratio -pricing

10 S S Positive-normalized 1

12 S S Ordinary
14 S S Positive-normalized 2

15 S S Greatest change

21 S E Ordinary

22 S S Ordinary with suboptimization; L = 2

27 S S Ordinary with suboptimization; L = 3

28 S S Ordinary with suboptimization; L = 5

29 S S Ordinary with suboptimization; L = 8

23 S S Greatest-change with subopt.; L = 2

24 S S Greatest-change with subopt.; L = 3

25 S S Greatest-change with subopt.; L = 5

26 S S Greatest-change with subopt.; L = 8

31 S E Sequential Phase One

32 F E Fudge Phase One

33 S E Least-infeasibility Phase One

36 F E Sequential Phase One

37 F E Least-infeasibility Phase One

38 F E Extended composite Phase One

39 F E Ordinary
40 F S Symmetric
41 F E Greatest change
42 S S PN1 with suboptimization; L = 2

43 S S PN1 with suboptimization; L = 3

55 F P Ordinary
56 S P Ordinary
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(These abbreviations are used: pi, iterations in Phase One; p2, total

iteration count to solve problem; pa, number of passes to solve problem;

op, total operation count to solve problem, where "K" stands for "000".)
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Parametric Linear Programming

Robert L Graves

As it is ordinarily discussed, parametric linear programming is con-

cerned with two problems. In both of them it is desired to find the solution

to a linear programming problem as a function of a parameter which

enters the problem linearly. These problems are discussed in Refs. 1

and 2. There are two natural extensions which are investigated in

Refs. 3, 4, and 5. Carpentier and Saaty discuss the problem when the

parameter enters in a nonlinear manner. Simons gives some character-

ization of the solution when the parameter is a vector. Here the former

problem is discussed and an analysis is given for polynomial functions.

Naturally in this particular situation a more complete characterization of

the solution can be given than is possible for more general nonlinear

functions. Neither Ref. 3 nor 4 exhibits a complete constructive solution.

THE RESULTS IN THE LINEAR CASES

The situation in the two problems which arise when the parameter enters

linearly is summed up in two theorems. In the following A denotes an m
by n matrix (n>nn), c an n-vector, b an m -vector, x an n-vector, u an

m-vector, and y a scalar.

Theorem 1: Consider the linear programming problem

f(y)
= max (c

+ yc t)x

x >0

and its dual problem

f(y)
= min bu

uA -
(c + ycj)

= d + yda
^

Then the solutions, x and u, and the value, f, can be characterized as

follows:

a. There exists a finite connected set (possibly empty) of closed

201
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intervals, [yo^Yil (some of which may be points) on which the problem
has a solution. The set of intervals may include (-^yj and

[yo>) as well. Outside the set of intervals, the problem has no

solution.

b. On each interval the components of x are constants.

c. On each interval the components of u are linear functions of y.

d. On each interval f is a linear function of y.

e. The function f is convex.

Theorem 2: Consider the linear programming problem

f(y)
= max ex

Ax - b + yb t

x >0

and its dual problem

f(y)
= min (b + yb t )

u

uA - c = d >

Then the solutions, x and u, and the value, f, can be characterized as in

Theorem 1 by exchanging x and u and replacing f by -f .

Of equal importance is the fact that constructive methods exist which
allow numerical solutions to be exhibited explicitly. The method which
accompanies Theorem 1 is a variant of the primal simplex method while
that for Theorem 2 is conveniently stated as a variant of the dual simplex
method .

THE POLYNOMIAL CASE

The problem considered here is

f(y)
= max (c + yc t

+ + ySCg)x
= max c(y)x (1)

Ax = b + yb t
+ - - + y

hbh
=

b(y) {2)

x^O
(3)

and its dual

f(y) = min (b + yb t
+ - - - + y

hbh ) u = min b(y)u (4)

uA > c + yCl + + ygCg
=

c(y) (5)

Relation 5 may be written

uA-c(y) =
d(y)

>
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The facts about the solution are contained in Theorem 3.

Theorem 3: There are solutions, x and u, and a value, f, of the

problem defined by (l)-(5) which can be characterized as follows:

a. There exists a finite (but not necessarily connected) set of

intervals Iy ,yi] (some of which may be points) in which the

problem has a solution. The set of intervals may include (-^yj
and fro*

00
) as well. Outside the set of intervals the problem has no

solution.

b. On each interval the components of x are polynomials in y of

degree at most h.

c . On each interval the components of u and d are polynomials in

y of degree at most g.

d. On each interval f is a polynomial in y of degree at most gh.

Proof: Let B be an arbitrary m x m submatrix of A. Consider the

equations

Bx =
b(y)

uB =
c(y)

where x and c" are m-vectors whose components are defined by ex-

traction from the relation of B to A.

If B is non-singular, then the equations have a unique solution and

clearly the components of x and u are polynomials in y of the desired

degree. There is, at most, a finite number of half open infinite and

closed finite intervals (which may be points) in which

uA >c(y)

x >0

are also satisfied since the finite set of polynomials have only a finite

number of roots. In these intervals, the dual theorem asserts that a

solution to the linear programming problem exists and the value of f(y)

is given by the common value of b(y)u and c(y)x. This is a polynomial
of degree at most gh.

If B is of rank r < m, either the matrix [B jb(y)] has rank r for

every y or it has rank r for a discrete set of y or it has rank r for

no value of y. In the last case, there is no solution, x, associated

with B. In the first case, there are solutions to Bx =
b(y) which are

polynomials of degree h in y. In the second case there are solutions

for a set of discrete values of y. If the same analysis is made for the

matrix [B
T

|cT(y)], it follows that the pair of equations have solutions of

the desired polynomial form for every y or they have solutions for a

discrete set of values of y. In either case, the same conclusions which

were demonstrated when B is non-singular are true.
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If there is any solution to the linear programming problem for a given
value of y, there is a basic solution. Each basic solution arises from
some matrix B of the sort just described. There are finitely many
such matrices; hence there is only a finite number of intervals and

points for which different polynomial representations of the solution

exist. This concludes the proof.

A constructive method is probably of greater interest than the proof
given above. The facts which will be needed in the proof that the con-
structive method is finite are that the number of submatrices, B, is

finite and that the polynomial components of x, and uA c(y)
=

d(y) have

only a finite number of zeros. Before the algorithm is given a small
numerical example will be examined.

An Example

Consider the problem

f(y)
= max ~4(y-4)(y-9)x 3

x
lf
x

2 , xs
>

This problem can be solved by exhibiting all of the bases with their
tableaus and finding, for each of them, the intervals in which the
associated solution is optimal. These tableaus are

ds(y)

bi(y)

bj(y)

bi(y)~b2(y)

bj(y)

d-2)

(1-3)

bi(y)

-b 2 (y))
(2-3)

The formulas for the various polynomials are:
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=
7(y-5)(y-6)

b t (y) -b2 (y)
=

10(y-3)(y-8)

=
4(y-4)(y-9)

The intervals in which the various bases are optimal are easily obtained.

Basis Intervals in which solution is optimal

1-2 [1,4] and [9,10]

1-3 [8,9]

2-3 [4,5] and [6,8]

In this example there are no isolated points which yield optimal
solutions. Such examples are easy to construct. For let ds (y)

=
1,

b2 (y)
=
-(l-y)

2
(3-y)

2
, and b t (y)

= 1. Then basis (1-2) yields optimal
solutions for y = 1 and 3 and the other bases yield no optimal solutions.

These solutions are degenerate and suggest that special care must be
taken to handle this particular kind of degeneracy in the constructive

method now to be given.

The Algorithm

The algorithms associated with conventional parametric programming
are variants of the simplex method and can be paraphrased as follows.

Suppose that an optimal basic solution is available for y = y . Increase y
to a value yj where y has the property that the solution is not optimal
when y =

y^
+ 6 for > 0. If no such value y$ exists, then the process

terminates and the current solution is optimal for y ^yo If yi can be

found, then perform simplex iterations until a solution is found which is

optimal at yt
+ for some (small) > 0. The solution is optimal in

ly^Yil- Then replace y by y A and repeat the process. If no such solution

can be found for y t
+ e then the process terminates and there is no

optimal solution for y > yj.

The path to be followed here is very much the same. The differences

are that it is necessary to use both the primal and dual algorithms, it is

necessary to "jump over" certain intervals, and the cases in which a

basic solution is optimal in an interval must be distinguished from those

in which a solution is optimal at an isolated point.

The algorithm finds (when possible) solutions which are "strongly

optimal."
Definition: A function, p, is strongly nonnegative at a point, y , if it

vanishes identically in some interval containing y or if at y its first

nonvanishing derivative (including the zeroth derivative) is positive. This

is written p(y ) +>0. The fact that p(y ) +>0 but p does not vanish

identically in any interval containing y is denoted by p(y )
+> 0.

Definition: A solution to the linear programming problem given by
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DUAL

x-order

f

d-order
Feasible

,Infeasible

FIND

FIND

S~+> FEASIBLE\JiJ
\ ATyt J^\

Fig. 1

(l)-(5) is strongly optimal at y if the components of x(y) and d(y) are

strongly nonnegative there.

It is clear that p(y )
+^ implies that p(y) ^ in some interval

[y ,yi]. Further the relation +> is an order relation which may be

substituted for the usual one in the simplex algorithms. Actually both

this relation and the conventional lexicographic ordering are used in

certain of the simplex steps to follow.

The principal steps of the algorithm are exhibited in the flow chart

shown in Fig. 1. The following paragraphs give a detailed commentary on

the flow chart and a proof that the algorithm it embodies does yield a

strongly optimal solution when one exists, an optimal solution when one
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exists, and suitable signals when no optimal solution exists. It is also
shown that the entire process is finite.

At the heart of the method are the two versions of the dual simplex
method (I and III) and the two versions of the primal simplex method
(II and IV). When any of them is used, a basic solution is available and
the problem is modified as necessary to insure that only a finite number
of simplex steps is required. The differences between the methods arise
from the order relationship used. The descriptions are as follows:

I. The nonbasic components of d (i.e., the
dj

associated with non-
basic variables) are set equal to one. This gives a basic solution

which is dual feasible. Then the standard dual simplex algorithm
is employed with lexicographic ordering in an attempt to find a
feasible solution to the given problem.

E. When this algorithm is used either a feasible or a strongly
feasible basic solution is available. The standard primal simplex
algorithm is used with lexicographic ordering in an attempt to find

an optimal solution to the given problem.
III. This algorithm is used when a basic feasible solution is available

which may be dual infeasible, dual feasible or strongly dual

feasible. In practice it would be desirable to distinguish these

cases. It is not logically necessary and, as in I, the nonbasic com-
ponents of d are set equal to one to insure that the problem is

dual feasible. Then the dual simplex algorithm is used with the

usual lexicographic order relationship for the dual variables and

the strong lexicographic order relationship for the primal
variables in an attempt to find a strongly feasible solution to the

given problem.
IV. This algorithm is used when an optimal and strongly feasible

basic solution is available. The primal algorithm is used with

the strong lexicographic order relationship for both primal and

dual variables in an attempt to find a strongly optimal solution

to the given problem.
The over-all strategy is to have algorithms I and E determine the

isolated points at which optimal solutions exist while using III and IV

to find the solutions which are (strongly) optimal in nondegenerate
intervals. We now turn to the other parts of the flow chart whose purpose
is to determine the intervals. In the boxes in the chart which have the

label "Find yj," one of the following tasks is to be performed. If the

current basis is optimal for the current value of y , then it is necessary
to find a value of yj >y for which the basis is not strongly optimal. If,

at y , the current basis contains the information which shows that no

optimal (or strongly optimal) solution exists, then it is necessary to find

a value of yj >y for which there may be an optimal solution.

In each of these cases it is necessary to find the smallest root of a set

of polynomials in some half interval. In conventional parametric pro-

gramming one finds the smallest root of a set of linear functions in a

half interval.
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We now follow the algorithm in detail. (The complete algorithm as

given examines values of y greater than y . An obvious redefinition of

strong ordering allows values of y less than y to be treated.) To

initiate the calculation, a value of y and a basic solution are selected

and algorithm I is executed.

If algorithm I terminates with a feasible solution to the given problem,

then proceed to algorithm II. If it does not, then for some row, r, br(y )
<

and all entries in the transformed row of A are nonnegative. Choose y t
so

that y i
> y , br (yi>

= and br (y) < for y <y < yt
. There is no feasible

solution in the interval {y yi) and algorithm I must be used again with

y t replacing y . If br (y) < for y > y , then there is no feasible

solution in {yOJ ).

The value of "{" is either "[" or "(". It is assigned one of these

values at several points in the flow chart; initially it has the value "["

The intervals in which optimal solutions do not exist are open. However,

one of these intervals may arise as the union of several subintervals .

Evidently some of these subintervals must be closed on the left and the

value of "{" is chosen in such a manner that this assignment of open or

closed on the left is accomplished.

Algorithm H terminates either with an optimal solution or with a

signal that an unbounded solution exists. If an optimal solution is

found then choose y t
as the smallest value of y > y for which either

bj(y) <+ or
dj(y)

<+ 0. If yj cannot be determined then the current

solution is optimal in fro,
00

) . Otherwise, it is optimal in ty yi] and if

y < y i
it is strongly optimal in [y<),yi). If b^tyi) <+ 0, then replace y by

y t and proceed to algorithm HI; otherwise replace y by y t and go to

algorithm IV. If algorithm II does not produce an optimal solution, then

for some column s, ds(y ) < 0, and all elements in the transformed

column of A are nonpositive. Choose y t
as the smallest value of

y >y so that either ds (yi)
= or bi(yi) <+ for some i. There is no

optimal solution in {yoyi). If bi(yj) <+ 0, then replace y by yj and

then go to algorithm III. (Note that it is possible that y t
= y ). Otherwise

replace y by yt
and return to algorithm II. (In this case it is necessary

that yi >yQ.) If yj cannot be so chosen, then there is no optimal solution

in {yo).
The choices upon the termination of algorithm El are precisely the

same as those in algorithm I. Similarly the choices upon the termination
of algorithm IV are the same as those in algorithm n. The difference be-
tween II and IV is that when yt

is chosen in IV, it is always true that

Yi > Yo- (& is quite easy to verify that y t
= y is impossible because all

basic solutions which are considered are optimal and strongly feasible.)
To prove that the entire process is finite it is sufficient to show that

as successive values of y i are determined, yi = y cannot arise in-

definitely, since it is known that each subalgorithm is finite and the

possible values of y t are the zeroes of a finite set of polynomials. The
cases where y t

= y is possible arise upon the completion of algorithm n
when the path is directed to algorithm III or to algorithm IV. In the latter

path we reach a point where y i
> y . In the former path, we either reach
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such a point on the completion of algorithm III or we are directed back
again to algorithm II. Upon emerging from algorithm H this time, we
either go to algorithm IV or return to algorithm n still again via the

path which ensures that y^ > y .

Comments on the Computation

When the simplex algorithms HI and IV are used it is necessary to

have the derivatives of components of d and x evaluated at a point, y .

If the derivatives (at y ) associated with one basis are known then to

calculate the derivatives (at y ) associated with subsequent bases one

simply uses the ordinary simplex transformations. The derivatives

(at y ) associated with a basis and a new value of y are probably most

easily calculated by multiplying the derivatives of the original quantities

by the basis inverse.

To calculate the values of yj it is necessary to find the smallest root

(in a half interval) of the components of d and x. To do this it is con-
venient to express the components as polynomials. This is probably most

easily done by multiplying the original coefficients by the basis inverse.

Thus we see that two forms are required for the different parts of the

algorithm.

Extensions of the Method

Both theorem 3 and the algorithm can be extended to a wider class of

functions. Functions which form a finite dimensional vector space and for

which the range of the derivative operator is contained in the vector space
are admissible. In order that the algorithm terminate in a finite number of

steps, only intervals (on the parameter axis) in which the functions of the

vector space have a finite number of roots can be considered. Thus finite

Fourier series can be treated over finite intervals which is, of course, no

restriction. In some situations it is desirable to consider costs or re-

quirements which are rational functions in intervals in which no singu-

larities occur. Here one may multiply the relevant set of coefficients

by the least common multiple of their denominators and transform the

problem into one in which the coefficients are polynomials. Then it is

only necessary to divide by this factor to get the results as rational

functions of the parameter.

Applications

One of the most fruitful areas for applications arises in those situations

where the firm faces a market which is not perfectly elastic; that is, in

cases where average price depends on the amounts sold or average cost

depends on the amount purchased. In a linear programming model of a

firm purchasing raw material in the amount Q, at a unit cost of C, it

might be the case that Q = C 1 - 2
. To convert the model to the proper form,

it is necessary to replace Q in the requirements vector by y
6 and C in

the cost vector by y
5

.
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This problem can be handled with the usual simplex method by examin-

ing a number of discrete cases, but the technique given here reveals pre-

cisely the nature of the solution. A very similar situation prevails in

problems related to cash budgeting where the amounts of funds available

as well as the cost coefficients depend on the interest rate. In the first

example one might trace out the value of the functional and select the

value of y (and hence of C) which optimizes. The second example merely
permits a sophisticated sensitivity analysis.

It is possible to "block out" arbitrary open intervals on the parameter
axis simply by adding an equation of the form xn+1 = p(y) where p is a

polynomial which is negative in the blocked out intervals and nonnegative
elsewhere.

At the extreme, it is possible to block out everything but isolated

points. Since the values of the costs and requirements at these points can

be set arbitrarily by choosing the appropriate polynomials properly, a suc-

cession of problems with distinct costs and requirements may be solved.

Needless to say, this approach to discrete programming is not practical
but it does illustrate the generality of the method.
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Compufaf/ona/ Efficiency in Product Form IP Codes
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The superiority of carrying the inverse of the basis in product form for

linear programming algorithms depends on: 1) having a sparse, packed,

original matrix, 2) obtaining as small a number of nonzeros as possible
when reinverting the basis, and 3) using an optimum reinversion fre-

quency. These considerations are important because, when using the

product form, recomputation of tableau entries as they are required is

substituted for the storage and maintenance of a complete, current tableau.

As demonstrated in the SCEMP tests of the SHARE Standard Test Prob-
lems [1] the product form (with optimal reinversion) required fewer

operations than the standard form in all cases where the structural

matrix was comprised of less than 50 per cent nonzero elements.

However, when the standard form is used, more data are available when
the next vector to enter the basis is being chosen. If this information were

profitably employed, it should be possible to reduce the total number of

iterations and, consequently, the number of operations required to solve

a problem. Better digital accuracy would also be maintained. In particular,

it has long been suggested that the vector chosen to enter the basis

should make the greatest possible change in the objective function, rather

than only produce the greatest rate of change. In this volume, an algo-
rithm [2] has been disclosed for obtaining this choice with little increase

in the number of operations required in standard form calculations. On
the other hand, choosing the vector of maximum change when using a

product form code would require such an increase in operations as to be

completely impractical.

Fortunately, a modest step in this direction is applicable to the product

form; in fact, even at the same number of iterations it may reduce the

operation count. A version of this technique has been coded, tested, and

is incorporated in the current SHARE version of LP/90. In this code, the

usual product form algorithm has been modified to select the two vectors

producing the greatest rate of change in the objective (hence the name,

"Double Pricing"), update both vectors, and compute in each case the

extent of the change in objective. Then an iteration is performed with the

better of the two. To date, the number of operations per iteration has been

increased by about 25 percent; however, the vector that was not used is

transformed by the last step as in the standard form. If its rate of change
is still desirable, the second vector is also introduced into the basis

211
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making a "Double" iteration with almost no additional calculation. Since

about 60 to 80 per cent of the second vectors were used in the SHARE
problems, this resulted on the average in only 1.25/1.65 = .76 times the

usual number of operations per iteration.

Having two vectors expressed explicitly in terms of the current basis

has an additional advantage in that it is less expensive to reject a vector

from consideration on this iteration since its replacement may be on

hand. The usual reason for rejecting a vector is that its pivot element is

small enough that digital accuracy might be impaired by the indicated

change of basis. Under these conditions it is better to select another

vector, if possible, to enter the basis.

Another reason for vector rejection is to prevent nonmonotonic be-
havior of the sum of infeasibilities when using an inverse weighting
function to drive out infeasibilities. The usual technique in approaching a

feasible solution has been to select the vector to enter the basis having the

greatest rate of change in the sum of mfeasibility. Although this choice is

guaranteed not to increase the total mfeasibility, in many problems fewer
iterations are required if the criterion for vector selection is the re-
duction in the number of infeasibilities rather than the amount. Such a
choice function is obtained by weighting heavily the rows with the smallest
infeasible value; that is, weighting the rows by the reciprocal of the value.

Using this procedure, it is possible to select a vector which would increase
the total amount of mfeasibility. If it entered the basis without removing an

mfeasibility, cycling would be possible. Using the double pricing procedure,
such vectors are cheaply rejected. The ratio test for the vector to leave
the basis proposed by P. Wolfe [3] (which produces the greatest possible
reduction in infeasibility) is modified to prevent the creation of a new
mfeasibility.

When the second vector is used, the reduced number of iterations ex-
pected as a result of the choice of the first vector is not always achieved.
The comparison runs examined to date range from a 50 per cent reduction
to a 90 per cent increase in the total number of iterations required. An
increase of as much as 25 per cent in the number of iterations could be
tolerated without increasing over-all solution time because of the com-
putational efficiency of Double Pricing. The average effect in the SHARE
test problems was a 10 per cent decrease in the number of iterations.

These efficiency improvements in the number of iterations and the

percentage reduction in operations per iteration are independent of, and
in addition to, control of the build up of nonzero elements in the product
form of the inverse. The original work of H. Markowitzt[4] in this con-
nection formed the basis of the two special techniques used in LP/90: an
optimum reinversion policy, and special pivot choice to reduce the number
of nonzeros generated. As to the first item, the reinversion point is com-

tThe complete Markowitz pivot selection technique was implemented
on the JOHNNIAC in 1955 by one of the authors, but it was so complicated
that no further attempts have been made to code the complete selection
procedure. The JOHNNIAC code was limited to 128 rows and the storage
devices were particularly suitable; it was extremely efficient.
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puted dynamically so as to maintain the average time per iteration (includ-
ing the time for reinversion) at a minimum. This is accomplished by
measuring the elapsed time since the start of the last reinversion on an
on-line clock and computing the gross average time per iteration. If no
control were exercised the average would first diminish, then reach a
minimum, and finally start to increase. When an increase in average time
greater than 1 per cent is detected, and the number of iterations between
inversions is within 25 per cent of the last number, reinversion is

started. With this policy, the time spent in the inversion algorithm was
about 15 per cent of the total computing time (including the time for

reinversion) .

The effect of speeding up the inversion algorithm is two-fold. First,
the total time spent in the inversion algorithm will be reduced, but only
by the square root of the speed ratio, since the more efficient algorithm
will be used with greater frequency. Secondly, the time per iteration

subsequently is also diminished in proportion to the reduction in average
density of the product form. The very simple technique derived from the

Markowitz method for inversion speed is to count the nonzeros in each row of the

basis to be inverted, and to decrement the counts at each step so as to re-
main consistent with the counts of the as-yet-untransformed columns. The
inversion agenda is then: take the next vector hi original order (it is

usually better to have the sparsest columns first), and choose as pivot that

admissible row with least nonzero count /f

Records were kept in the SHARE problems of basic, structural non-
zeros and product form nonzeros both before and after each inversion.

They are summarized in Appendix II. The maximum number of nonzeros
reached was four times the number in the original matrix. Reinversion
reduced the entries in product form to between 0.5 and 1.7 times the nonzeros

in the matrix. These densities correspond to 2-3 times that of the actual

basis inverted. Substituting these values in the approximating formulas

given in Appendix I for the number of operations gives a reasonably
close check with the actual operation counts recorded in the SCEMP test

runs.

The total running time for the 13 SHARE problems (starting from a

feasible basis in IB and IVA) was about 35 minutes on the present dis-

tribution of LP/90 (Version 131) which incorporates all the features

described in this paper. The time was divided as follows:

Iterations 25.0 minutes

Inversions 4.1

Input & System 3.7

Output 2.0

34.8 minutes

tThis particular adaptation of the Markowitz technique was first pub-

lished by Zoutendijk [5]. It was then coded for the IBM 7090 by Larsen

of Esso Research and Engineering [6], based on a design of one of the

authors. This code was released to C-E-I-R for inclusion in the SHARE
version and after certain revisions is now incorporated in LP/90.
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The compute time (iterations and inversions only) on these same prob-
lems with the first delivery of LP/90 (Version 99) was about 85 minutesf

[7], but problem IVA was not completed. We estimate that 10 to 15

minutes more would have been required to reach a solution, so that the

addition of these efficiency improvements has tripled the average speed of

the code on these problems. In our other work, one problem has been

found which ran 10 per cent longer; most problems run in slightly less than

half the original time.

APPENDIX

I. Approximating Formulas for the average number of operations per
iteration:

A. Product Form Single Pricing

Q
Reverse transformations: - T

2m

13

Obtaining reduced costs: Mm

B
Forward transformations :

- T
2m

Total operations: P = 5- (T + M)m
where m = number of rows

B = number of non-slack vectors in basis

T = number of nonzero transformation elements
M = number of nonzero matrix elements
P = number of operations

In the SHARE problems total operations/iteration computed by the
formula above ranged from 1.0 to 3.2 times M with the larger,
sparser, problems having the higher values.

B. Standard Form (nonzero operations only)

Total operations: E = mC

where C = number of nonbasic columns.
E = number of operations.

fAll versions of LP/90 operate with double precision arithmetic. An
intermediate code, Version 103, was distributed to SHARE in October
1961. This version incorporated all features of the present code except
Double Pricing, but owing to clock failure we have no accurate times for
its test runs. We estimate that it lies midway between Versions 99 and
131 in speed.
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In the SHARE problems this formula gave values from 1.1 to

18.6 times M; again the larger problems had the larger values.
The spread of ratios of the formula values (Standard : Product)

was from 1.2 to 3.8 except for the large, sparse 245 row matrix

(Problem IV-A) whose ratio was 5.8. Except for problems m-A,
in-B, and IV-A, the actual ratios of operation counts were computed
from the SCEMP report; these values ranged from 1.05 to 2.9. The
check between calculated and estimated ratios was considered

sufficiently accurate considering the many variables not included.

The trend, as expected, was toward larger ratios in sparse
problems .

C. Product Form Double Pricing

TD

Reverse transformations :
- T
2m
D

Obtaining reduced costs: Mm
Q

Forward transformations : Tm

Total operations: D = (3T/2 + M)m
The increase of BT/2m for double over single pricing is esti-

mated to require only about 25 per cent more operations for a double

iteration than a single, since certain housekeeping and data trans-

mission are not changed.
Thus, total operations per iteration = 1.25/1.65

= 0.76 of the

operations in single pricing if 65 per cent of the second vectors are

used.
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H. Summary of Test Run Results

Problem IA IB 1C ED IE

Description

Rows 34 118 5 27 39

Columns (Structural) 64 225 9 20 100

Matrix Nonzeros (Structural) 245 1210 55 232 830

Average Values

Non unit Vectors in Basis 31 103 5 25 26

Nonbasic Columns 33 150 9 20 80

Basis Nonzeros 135 600 25 150 200
Eta Nonzeros before INVERT 200 3630 - - 1215
Eta Nonzeros after INVERT 135 1700 - - 415

1) 1.4 2.8 - 1.5 1.3

B2

E = (C/M) 3.9 10.6 - 1.8 1.7

E/P Estimate 2.8 3.8 - 1.2 1.3

E/PfromSCEMP 1.2 1.5 1.09 1.0 2.6

LP/90 Iteration to last Opt.

Original Ver. 99 69 181* 8 56 163
SHARE Ver. 103 (Oct. 1961) 62 180* 8 28 168
Modified weighting and row
choice.

SHARE Ver. 131 (May 1962) 54 154* 10 53 169
Double Pricing
Number of Doubles 18 52* 4 18 50

Compute time for Solution, minutes

Original Ver. 99 .47 7.85 .14 .61 3.70
Double price Ver. 131 .24 4.30 .03 .37 2.36

*From supplied feasible starting basis. Numbers in parentheses for
problem IV A were estimated by adding the number of iterations required
in Ver. 131 (40) to go from the last profit value obtained in Ver. 99 to
optimal on Ver. 103.
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II. (Continued)

IF IG IIA IIB IIIA IVA VA TOTAL

*See footnote to first part of table.
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SOME NEW ALGORITHMS FOR LINEAR PROGRAMMING

M. A. Efroymson

ABSTRACT

This paper presents two algorithms which improve the efficiency of the

simplex method.

In addition to the conventional artificial vectors, a set of additional arti-

ficial vectors can be created which are linear combinations of the conven-
tional artificial vectors and a selected group of real vectors. This set of

variables has been named Implied Artificial Vectors since they can be

generated at the time they are required and do not need to be included in

the original matrix. Implied Artificial Vectors are used as an operational
device which can markedly decrease the number of iterations required to

obtain a first feasible solution. Implied Artificial Vectors are used until

feasibility is obtained to maintain positive right-hand side elements for all

restriction rows. Therefore, each iteration pivots on a row with a positive

right-hand side and reduces the amount of infeasibility.

A vector selection based on maximum change in the objective function

usually requires fewer iterations than a selection based on most negative

dj. However, the number of division operations per iteration is increased

by the use of maximum change in objective function since a minimum
ratio calculation is made on all vectors with negative dj.

When the right-
hand elements are maintained at a zero or unit level these divisions opera-
tions can be replaced by a simple comparison operation. A matrix updating

algorithm has been developed which maintains this condition of unity or

zero levels on right-hand sides and requires the same number of multipli-

cation and division operations as the original simplex updating algorithm.
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A FORMULA FOR RANGING THE COST OF LIVING

S. N. Afriat

ABSTRACT

If a consumer's preference scale S is known, then any cost-of-living
measurement has a point-determination. But such a scale S can only be

known empirically to the extent that it is compatible with a scheme ^ of

expenditure data, necessarily finite, say in respect to some n commodities

and some k occasions, giving the price and quantity consumed of each

commodity on each occasion by k pairs of vectors (pr,xr) of order n.

There will be an infinite class Sg: of such scales of the normal type com-

patible with SF, in which case the data is consistent; otherwise
3:

is empty.
For each S Sg: there is a determination prs(s) f r ^e ratio in which ex-

penditure on occasion r must be changed to compensate, according to

preferences in the scale S, for the price-changing from occasion s. With

S ranging in S$, p rs (S) describes a certain set lrs ($). The problem of the

cost of living index can be conceived of as the problem of evaluating the

set Irs^) from the expenditure data F, assumed consistent. It turns out

that this set is an interval, whose limits p^s (3
r

), pj.s(?) can be evaluated.

Let ur
= Pr/er where e r

= Prxr anc* ^et Drs = urxs
"~

* Let W-,$),

where A =
{Xr }, $ =

{<pr} denote any solution of the system of inequalities

Xr > 0, XrDrs > <p s
~

<p r (r s* s)

The consistency condition:

Drs ^ 0, Dst ^ 0, . . . , Dqr ^

impossible for all cycles of distinct elements r, s, t, . . . , q from 1, . . . , k,

is necessary and sufficient for the existence of solutions.

Let

where

otr ^ 0, So:r
= 1
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and let

xa
= Sxrar , <pa

=
Zcp ra r .

Let

pj;s (A,<l>) =min{u
T

rx; (x-xt)
r utAt ^

<p B
-

(pt (t
=

1, . . . , k)}
x

and

prs (A,$) =rnin{u
T

rx0! ; ^Q, ^
<^ s }

Then

pL(SF) =mmp 1

rs (A,^), pj.s (5
:

)
= max p s (A,*)

A,$ A,*

It is noted that pi,s (A,$) is the minimum of a linear function subject to a

system of linear inequalities in which the coefficients are themselves solu-

tions of a further system of inequalities; and then pLs ( $) i s ^ne minimum
of this minimum for all such solutions.



A Stochastic Model for Programming the Supply of a

Strategic Material

Herman Karreman

INTRODUCTION

Strategic materials are materials which a) are essential for the proper
functioning of a country's economy, and b) rely at the same time heavily on

importation for their acquisition. Iron and copper, for instance, are not

strategic materials since the second part of the definition does not apply
to them. But nickel is a strategic material and so is manganese, which is

needed for the production of steel of good quality. As a matter of fact,

much of what will be said in the following applies to this latter material.

Because of the reliance on imports, it will be clear that there is no auto-

matic guarantee that these strategic materials will always be available at

reasonable cost. This applies in particular to the case of " limited" war,
which is understood to be a situation between "cold" war with no overt

hostilities and "total" war. The Korean war, with hostilities confined to a

local area and lasting for several years, is the type of "limited" war that

is here envisaged. In such a situation, it will be difficult to obtain sufficient

quantities of these strategic materials at reasonable cost by importation

only. In fact, prices (including transportation costs and insurance pre-

miums) paid in the last "limited" war period for these imported strategic

materials were in many cases twice the normal ones.

To protect themselves against a repetition of this costly affair, coun-

tries have started to buy, in normal times, extra quantities of these foreign

ores and to stockpile them. However, the amounts of money involved to

provide adequate protection this way are enormous. Even the resources of

the United States have been strained, despite its rich deposits of many es-

sential materials (iron, copper, etc.) and the large amounts of money ap-

propriated for the purchase of extra quantities of strategic materials from

tSecond part of a study made on behalf of the Office of Defense Mobiliza-

tion under Contract Nonr-1858(02) with the Office of Naval Research. Re-

production of this paper in whole or in part is permitted for any purpose of

the United States government.

$1 am indebted to Harlan Mills for many helpful suggestions, in particu-

lar with respect to what is said at the end about the final state of the sys-

tem, and to Stuart Dreyfus for drawing the flow-chart for the first compu-

tation.

223



224 MATHEMATICAL PROGRAMMING

foreign countries. The stockpiles of imported ores, built up in the past by
the U. S. government, will in many cases provide industry with only a frac-

tion of the extra quantities which it will need in a limited war period.

There are, of course, in some instances, deposits of these strategic

materials in the country too. The quality of these domestic ores is on the

average inferior to that of foreign ores, and they must first be upgraded to

meet the standards set by industry. In normal times this makes them more

costly than foreign ores (otherwise, they would have been used in the past).

However, the technology of upgrading the ores of low quality is steadily

improving and domestic ores might turn out to be profitable in a future

period of limited war, when prices of imported minerals will again be high.

Assuming for a moment that we are on the eve of a limited war which

will last for several years, the question then is: Given a small stock of

ore at the beginning of the period, how much has to be imported and how
much has to be produced domestically each year to meet the requirements
of a certain strategic material in the following n years of limited war at

minimum cost?

To answer this question, a model was constructed in which the various

ways of meeting the requirements and the restrictions imposed on them
were formulated. The objective function, being a cost function which had to

be minimized, contained first order as well as many second order terms.
This quadratic programming problem was solved twice, once by the simplex
method, adapted to solve this sort of problem, and once by the gradient
method.! The result obtained from that model showed that more than half

of what was needed on top of the initial stockpile would have to come from
domestic sources. Moreover, the solution appeared to be highly sensitive

to a reduction in the costs of upgrading domestic ore on account of tech-

nological improvements . J

So far, the underlying assumption was that of being on the eve of a
limited war. This assumption was, of course, rather restrictive, since
several other political situations are possible. To make the analysis more
general, a stochastic model has been developed which takes the three pos-
sibilities of "no war," "cold war/' and "limited war" into consideration.
The probabilities of transition from one political situation into another
have been assumed to be those found in the following matrix, P:

tThe first method was developed by Philip Wolfe and the second by Ben
Rosen.

$A description of the model and the results obtained from it can be
found inRef. 1.
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These transition probabilities reflect, of course, certain personal views

of the political situation at the time they were decided upon. Still, they do

not seem unreasonable and would perhaps even hold in the present situa-

tion.

It should be observed here that this matrix P of transition probabilities

is not a doubly stochastic matrix, since the columns do not add up to 1

(the rows do) . The characteristic values and corresponding characteristic

vectors of P are:

A.1
= 1 A-2

= -65 A3
= .40

2,1
=

These 3 characteristic vectors are independent so that the T-matrix

formed by them has a nonzero determinant and an inverse

T = 1 -1

-5

, det T = 30,

_L 20. JL
30 30 30

30^ ~30" 30^

3^3 30^ 30

From this it follows that the matrix T-1P T will have the characteristic

values as diagonal elements and that
liin^

Pn & 0.

The meaning of the latter is that if these probabilities were to remain the

same for an indefinitely long period of time, then the probability of occur-

rence of these three political situations would be:

no war

cold war

limited war

30

20

30

_5^

30

or

1

4

1
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These political situations influence the program in two distinct ways.

First, the requirements will be different; a much larger quantity will be

needed in a period of limited war than in one of no war, while the quantity

needed in a cold war period will lie somewhere in between.

Secondly, the prices at which the imported ores can be obtained will be

dependent on the political situation; prices will be high in a period of

limited war and low in that of no war, with prices in a cold war period

lying between these two extremes.

In addition, these import prices are found to depend on the quantities

of foreign materials which will be purchased by the U.S. This merely

reflects the important role the U.S. plays as buyer of these foreign ores.

In other words, these import prices are a function of the quantities to be

bought, which fact leads to quadratic terms in the objective function, as

well as linear terms, of course.

The same holds for the costs of upgrading the domestic ores. They too

are a function of the quantities which will be upgraded, due to economies

of scale. However, there is this important distinction, that the quadratic

terms in the objective function, resulting from the importation of foreign

ores, have positive coefficients, while those associated with the upgrading

of domestic ores have negative coefficients.

This is also true for the costs of processing the foreign and upgraded

domestic ores into alloys; they too lead to quadratic terms with negative

coefficients in the objective function in addition to linear terms. The same

holds for the costs of constructing the plants designed to upgrade the do-

mestic ores, combined or not with their processing into alloys.

The technological structure underlying the various activities is an es-

sential element in the formulation of the problem. The relationships be-

tween the importation of foreign ores, the upgrading of domestic ores,

the construction of upgrading plants, the storage of foreign and domestic

ores, the processing of these ores into alloys, and the constraints imposed
on each of them found their expression in a model, which will be described

in more detail in the following section.

The problem has been solved by the technique of dynamic programming,
which puts no limitations on the form of the objective function. On the other

hand, this technique can handle discrete quantities only, so that much de-

pends on the fineness of the grid. At the same time, the procedure is very

time-consuming so that the available amount of computer time is crucial.

In this particular case, a rather coarse grid was all that was feasible,

given the limited resources.

The main result is, to a certain extent, a confirmation of the outcome of

the nonstochastic model, namely that a much larger share of the require-
ments should be met by domestic production. Even in the case of a "no
war" situation, the importance of developing domestic resources should

not be entirely overlooked.

Another interesting feature brought out by the analysis is that the sys-
tem has an interesting ergodic property, in the sense that it tends strongly
to a particular final state, of which more will be said later.
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THE MODEL
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The technological structure underlying the model is pictured in the fol-

lowing diagram.

c final products

second stage of production

high-quality ores

y 7 first stage of production

storage production production and

plant construction

Fig. 1

Starting from the top, it can be seen that the final demand for manganese,

the material for which this study was made, consists of two parts, one for

ferro-manganese and one for silico -manganese. Each of these two types of

alloys can be obtained from high-quality ores along conventional lines

(processes 1 and 3) or from medium -quality ore by special treatment

(processes 2 and 4). The high-quality ores, in turn, can be obtained by

importation (process 5) or by upgrading domestic source -material

(process 6). The quantities acquired this way are added to the stockpile,

which, in turn, supplies part of the quantities needed in the production of

alloys. Finally, there are two beneficiation plants in which the low-quality

ores of domestic origin have to be upgraded before they can be further

processed. The problem is to find that combination of stockpiling and con-

struction of plants that will produce at minimum cost the quantities of

alloys needed in the various possible sequences of political situations.
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The formulation of this problem led to the model now to be described.

The notation adopted for it is as much as possible in correspondence with

that of a preceding article on the same subject, but it was necessary to

deviate from that notation at certain points. The following symbols have

been used for:

a) parameters in price and cost functions a, j3, y, 6

b) quantities! required I

c) quantities! to be determined
for each year x, y
for a period of years s, t, u

d) technical coefficients c

e) transition probabilities p

f) indices

individual years i

summation of years j

external states in particular
no war I

cold war II

limited war III

external states in general e, f, g
internal states in general k, I, m
individual processes 1, 2, . . . , 7

summation of processes r

The quantities (x's) that have to be imported or produced domestically
can be found in the diagram along the lines leading upwards from the
circles that represent the corresponding activities. The increases in the

plant capacities (y's) are located at the outer of two concentric circles.

Denoting the required quantities of ferro-manganese in year i by 1 j

and those of silico-manganese by 2 ,i
and looking at the diagram, the fol-

lowing two equalities become evident:

xi,i
+

*2,i
=

1?i i-1, 2, ..., n (1)

X3,i
+

X4,i
=

2ji i=i, 2, ..., n (2)

They simply state that what is required in a particular year also has to
be produced in that year. In other words, there is no place in this model
for a shortage of these alloys, since this would have disastrous conse-
quences. On the other hand, there are also good reasons why no allowance
for stockpiling alloys has been made either. It should, however, be noted
that the requirements are now no longer supposed to be known beforehand,

tin net tons of pure manganese
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as they were in the nonstochastic model, but depend on the sequence of

political situations in the future.

The third equality merely states that what is added to the stockpile in a

certain year plus what was there at the beginning of that year has to be

equal to what is taken out of it in that year, plus what is left over at the

end of that year, which equals the amount at the beginning of the next \
rear.

Si + x
5ji

+x
6)i

=c
1
x
lj i

+ c3 x35 i
+

81+! i
=

1, 2, . .., n (3)

The letters c
t
and c3 denote the quantities of manganese in the form of

(high-quality) ores that are needed to produce 1 N.T. of manganese in the

form of ferro- or silico -manganese. It has been assumed that these tech-

nical coefficients remain the same during the entire period that is covered

by the program.
The fourth and fifth relationship assure that the quantity of ore that can

be upgraded in any year cannot exceed the capacities of the upgrading

plants at the beginning of that year. These capacities, in turn, are equal

to the capacities at the beginning of the previous year, plus what has been

added to them in that previous year:

x
6 ,i ^t^tej-i+ye,!-! i =

l, 2, ...,n (4)

C2x2 ,i
+ C4x4ji ^ u

7)i
= u7jM

+ y 7ju i = 1, 2, . . . , n (5)

te ,i
and u 7 ,i

denote the capacities of the upgrading plants at the beginning

of year i; ye ,i_i
and y 7 ,i_i

stand for increases in these capacities in the

previous year.

As far as the alloy-producing plants are concerned, it can safely be

assumed that their capacities will be large enough to process all the ore

offered to them. Hence, there is no need for another set of constraints.

The same holds for the quantities of domestic ore to be extracted from

the various deposits. Here, too, it can be assumed that these deposits con-

tain sufficient quantities of ore to fill the needs for a good number of years.

Finally, there is the condition that all x and y variables are not allowed

to assume negative values.

xr,i~ r =
1, 2, ..., 6; i

=
1, 2, ..., n (6)

Yr,i
~ r =

6, 7; i =1, 2, ..., n t 7)

In summary, the model consists of 3 equalities and 2 inequalities (be-

sides the 2 just mentioned) involving a total of 8 activities, of which 6 are

related to the actual production of manganese and the other 2 to the con-

struction and expansion of the upgrading plants.

The objective is to select that combination of the x's and y's, one com-

bination for every year, that meets the requirements in all successive

years at minimum -costs. These minimum -costs will depend on the situa-
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tion at the beginning of the first year. Hence, there will be as many cost-

minima as there are initial situations possible.

Each initial situation is characterized by an external and an internal

state of the system. The external state is the political environment, being
one of "no war," of "cold war," or of "limited war," the only three pos-
sibilities considered here. The internal state is determined by the capacity
of each of the two upgrading plants and the quantity of ore in the stockpile

at the beginning of the year.
The activities of a certain year not only have to meet the requirements

of that year, but also transform the internal state of the system at the be-

ginning of that year into a generally different one at the end of it. This

latter state should then be the one that is most favorable from an economic

point of view for meeting the requirements of future years in the light of

what can be expected to happen politically.

Let Me,k,j denote the minimum -costs of a program covering j years,

counting backwards in time, starting from the last year n, with the e!l
external and the k5k internal state at the beginning of year j. Then M

e> k,j
can be defined as :

Me ,k,j
= min C e,k,JU

+
PE Pe,fMf,,j -1 (8)

r ni i
,k,j

= min C e,k,JU
+
PE Pe,fMf,,j -1

1
L f=l J

Here C
e> k,jy stands for the cost of meeting the requirements of the J^L

year (being a function of the particular e^L external state) and transforming
the kill internal state at the beginning of that year into the $*h internal
state at the end of it. Hence, C e,k,i,j

is a function of the 8 activities that

perform this dual function:

e,k,,j
= Z x

r,j
v
r,j

+ yr,J
wrj (9)

r=l

The vrj
variables in this expression stand for the prices of imported

foreign ores, for the unit-cost of upgraded domestic ores, and for the unit-
cost of alloys. The wrj variables denote the cost of constructing or ex-

panding the capacities of the plants by one unit per year.
The price to be paid for a unit of imported ore in any one year i, v5 ^

is first of all a function of x
5j i,

the quantity of ore imported in that year:

V
5,i

=
05X5,1 +05 i =

1, 2, ..., n

It should be remarked at this point that the a -coefficient in this expres-
sion is positive. This is merely a reflection of the dominant position of the
United States as a buyer of large quantities of ore in the foreign markets.
Consequently, the resulting x

5 quadratic terms in the total cost expression
of imported ores all have positive signs.

The price of imported ore is moreover dependent on the political situa-
tion. The reason is that the transportation costs and the insurance pre-
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miums, both of which are incorporated in the import prices, are greatly
affected by the political situation. Hence there are actually 3 price func-
tions for these imported ores, one for each political situation with its own
-coefficient:

no war v|,i
= a

5
x
5>i +/3 5

Z
, i=l, 2, ...,n

cold war v^ = a 5 x5?i
+ p\

l

, i =
1, 2, . . . , n

limited war v"{
= a 5

x
5ji

+ 0|
n

, i =
1, 2, . . . , n

The unit-cost of the upgraded domestic ores as well as that of the

alloys are also functions of their corresponding quantities:

v
i,i

= a
i
x
i,i

+
0i i =

1, 2, . , .
, n

V
3,i =^3X34 +

3 > i =1, 2, ..., n

v
4ji

= a4 x4 ,i
+

/3 4 , i =
1, 2, ..., n

V
6,i

= a
e
X6,i

+
P&> i =

1, 2, . . . ,
n

Contrary to the a -coefficient in the price -function of imported ore, the

a's in these last five expressions all have negative signs! In other words,
the unit-costs will decrease with increases in the produced quantities, due
to economies of scale. Consequently, the resulting quadratic terms in the

corresponding x-variables of the total cost-functions all have negative

signs.

Mention should also be made here of the fact that the expressions for

v
2j j and v

4j i stand for the combined cost of upgrading domestic material

and processing it into alloys. The a - and -coefficients of these two ex-

pressions have been determined on the basis of the technical coefficients

c2 and c4 . They indicate how many units of manganese in the form of up-

graded ore are needed to produce one unit of manganese in the form of

alloys. As in the nonstochastic model, it has been assumed that these tech-

nical coefficients will remain the same during the period under considera-

tion.

The unit-cost for constructing and expanding the upgrading plants in

year i are:

W
6,i

=
76y6,i +6 6

i =1, 2, ..., n

W
7,i

=
r7y7,i

+ 6 7 i =
1, 2, ..., n

As in the case of the unit-cost of the upgraded domestic ores and alloys,

the y- coefficients in these two expressions also have negative signs. Con-

sequently, the resulting quadratic terms in the corresponding y-variables

of the total cost-function have negative signs.
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As for the write-off of these costs, the same depreciation rule has been

adopted as in the nonstochastic model; the entire cost of construction or

expansion is written off in 10 equal installments, starting with the year

following that of construction or expansion. Hence, the total costs are also

dependent on j, the number of years covered by the program, as long as

j ^10.

Turning now to the second part of the right-hand side of equation (8),

this can be written in a more explicit form:

in

PL Pe,fMf,JU-l
f=l

=
p(Pe,iMi4,j-i

+
Pe,iiMn,,j_i

+
Pe.mMin.lj-i) (10)

The various costs of the program will occur in different years and will

have to be put on a common basis, i.e., brought forward to the beginning of

the first year; hence, the discounting factor p. The pe>1 , pe,n, and pe,in
are the probabilities of transition of the particular external state e (which
is one of the three possible external states considered here) at the begin-
ning of year j into the first, second, or third of these external states at the

beginning of the next year, year j
- 1 (the years are being counted backwards

in time).

MM,j-l MiU,j-l and MnU,j-l denote the minimum -cost of a (j
-

1)

years' program starting from the first (no war), second (cold war), or third

(limited war) external state and the jtft internal state, at the beginning of

year j
-

1. It should here be observed that the J$L internal state at the be-

ginning of year j
- 1 is the same as that at the end of the preceding year j

envisaged in expression (9) and implicitly in expression (8). Going back to
the general expression for these minimum -costs, Mf^j.^, we can write
for it:

f m 1
Mf -1

= mmn CU>> J -2
+ P E Pf,gMg,m, j -2 (11)

This formula is similar to (8) given for Me ,k,j
with the exception that

the fth external and lH internal states at the end of year j
= the beginning

of year j
- 1 have been assumed to be replaced by the gk external and

mHL internal states of the end of year j
-

1.

As for the internal states, they are in this model determined by a par-
ticular amount of manganese in the stockpile (s), a particular capacity of
the first upgrading plant (t), and a particular capacity of the second up-
grading plant (u). In other words, there are as many internal states as
there are permissible levels of the stockpile times capacities of the first
plant times capacities of the second plant.

From formula (8) it can be seen that a particular internal state has to
be created at the end of year j which minimizes the cost of that year, plus
the costs which can be expected to occur in the remaining years of the
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program on the basis of the probabilities of transition of external states.

It should be kept in mind that this particular internal state at the end of

year j depends on the internal state k at the beginning of that year, on the

requirements of that year, given the political situation at the beginning of

that year, and the quantities x and y which are ultimately the decisive

elements of the program. The ideas in the last two sentences also apply to

formula (11). How these quantities have been obtained will be discussed in

the next section.

COMPUTATIONS AND RESULTS

The problem as it has been formulated belongs to the class of dynamic

programming problems and has been solved by a recursive procedure
based on the so-called "principle of optimality."t A peculiar feature of

this procedure is that it starts with examining the last year of the program
first, then the year before last, and so on, so that the first year of the pro-

gram enters the computation last. The reason for this is that once the

lowest-cost path has been found between the internal state at the beginning

and that at the end of a period, it remains the lowest-cost path in all sub-

sequent computations involving that particular initial internal state. This

fact permits an enormous saving in the number of paths which have to be

examined in the search for the least expensive one connecting the state of

the system at the beginning of one year with that at the end of another year.f

Still, it is only possible to examine a rather limited number of states

each year this way and the accuracy of the results depends to a great ex-

tent on the fineness of the grid. In this particular example, a mesh of

100,000 N.T. of manganese has been used which is rather coarse. It per-

mits, however, a rather wide range for the quantity of manganese in the

stockpile: from to 2,000,000 N.T. In addition, three different capacities

of each of the two upgrading plants have been taken into account. Conse-

quently, there are 20 x 3 x 3 = 180 different internal states for each of the

three external states. Assuming for a moment that all paths connecting

these internal states are feasible, 3 x ISO
10

paths would have to be exam-

ined for a program covering a 10-year period. However, by making use of

the principle of optimality, this number is reduced to 3 x 10 x ISO
2

= 972,000. Of course, these are upper bounds, since the need of meeting

the requirements eliminates a number of feasible internal states at the end

of each year. Still, these figures give some idea of the amount of work

that is saved by making use of this ''principle of optimality."

Nevertheless, it will be clear that a high-speed electronic computer of

the IBM- 704 class is a prerequisite in performing the amount of work that

remains to be done in applications of this kind. Besides computing the

tFor a description of this principle, the reader is directed to Refs. 2

and 3.

fThe interested reader will find a worked-out example in Ref. 5,

pp. 18-33.
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costs of each permissible path, the computer has been requested to print
out for each internal state at the beginning of a year the cost of the least

expensive path, the corresponding x and y values, and the resulting inter-

nal state at the end of that year. The latter provides first of all a check on
the computations; in addition, it proves to be an important source of infor-

mation, of which more will be said later.

From what has been said before, it will be clear that any n-year pro-
gram will have as many minima as there are different states of the system
at the beginning of that program. In this particular case, there are 3 dif-

ferent external states and 180 different internal states associated with each
one of them. Accordingly, each n-year program has 540 minima and a se-
lection of 540 xn internal states, since the minimum -path corresponding to

each one of these minima runs over n internal states in an n-year program.
The cost-minima of a 10 -year manganese program prove to fluctuate

between $1.378 billion and $1.986 billion, depending on the state of the sys-
tem at the beginning of the program.! It is interesting to note that the dif-

ferences between two neighboring minima in this table indicate how much
extra has to be paid for or how much is saved by the difference in quantity
between the two corresponding initial states. The nature of these differences
is essentially the same as that of the shadowprices in the nonstochastic
model.

The results of the nonstochastic model, designed for a 6 -year period of
limited war, have been compared with those of the stochastic model cover-
ing the same number of years. As one would expect, the costs of the non-
stochastic model are higher than those of the stochastic model, since the
latter also takes into account the possibilities of cold war and no war,
while the former did not.

Also, it has been shown how two different sequences of external states
would affect the minimum cost and the corresponding selection of internal
states of a 4-year program. The same has been done for the first four
years of a ten-year program, after which the two outcomes have been com-
pared. These examples show how one can use the information contained in
the tables of selected internal states to find the best course of action for
every future sequence of external states. To put it differently, these tables
of internal states of minimum -cost programs enable one to make full use
of the information on the political situation as this becomes available in the
course of time.

The tables of selected internal states are, moreover, interesting from
another point of view. To demonstrate this, a 540 x 540 matrix Q will be
used, in which each row and each column denotes one of the 540 possible
states of the system. Figure 2 will make this clear.

This figure shows that, for instance, in the case of no war, an (1,1,19)
internal state at the beginning of the first year will result in an (1,1,18)
internal state at the end of that year. Furthermore, there is a 0.70 chance
that there will still be a no-war situation at the end of the first year, a

tThese cost-minima can be found in Table 5, pp. 35-36, and the corre-
sponding selection of internal states in App. n, pp. 1-27 of Ref. 5.
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Fig. 2

0.20 chance that the no-war situation has changed into cold war, and a

0.10 chance into limited war, according to the earlier-described matrix P

of transition probabilities. Hence, a value of 0.70 will be assigned to the

element designated by (J) , a value of 0.20 to element , and a value of

0.10 to element . It should here be observed that element takes the

same position in block I as element takes in block E and as element

takes in block HI. To take another example, in the case of cold war, an

(0,2,14) internal state at the beginning of the first year will lead to an

(0,2,9) internal state at the end of that year. Hence, a value of 0.05 at ,

of 0.85 at , and of 0.10 at . This process is continued until the

changes in all 540 initial states of the system have found their place in

the Q matrix, each nonzero element having an appropriate probability

value assigned to it. The final result will be a Q matrix with 3 x 540

= 1620 nonzero elements which can be partitioned in 3 identical strips of

540 rows and 180 columns. These nonzero elements indicate, then, how the

states of the system at the beginning of the first year of a ten-year pro-

gram will be transformed into probable states of the system at the begin-

ning of the second year. By probable states is here meant states with a

certain probability of realization assigned to them.

A particular initial state of the system will be represented in this con-

ception by a vector b of length 540 with all elements equal to zero except

one which will have the value of 1. If this vector b is now multiplied by

the matrix Q, then the resulting vector b' will indicate how that particular
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initial state will have been transformed into various states at the beginning
of the second year with a certain probability of appearance attached to each

one of these states.

Now suppose that at the beginning of this second year the policy-maker

again places himself at the start of a new ten-year program and asks him-
self how the situation in which he ended the first time will be further trans-

formed. The answer to this question is given by another multiplication,

this time of the vector bT times the same matrix Q as before. t The out-

come of this second multiplication will be a vector b" representing various

states at the beginning of the second year of the new ten-year program,

again with a certain probability of appearance attached to each one of these

states.

If this process is repeated a number of times, an interesting property
of the system comes to the fore: That is, the probability that one particu-
lar state of the system, namely the one with a (2,2,0) internal state, will

appear becomes larger the more often this process is repeated and ap-
proaches the value of 1, while the probabilities of the other states grad-

ually diminish and tend to 0. This means then that the repetition of a ten-

year program year after year will ultimately lead to a (2,2,0) internal state

of the system and will then remain in that state. This is what is meant by
the technical phrase

"
convergence in policy space."

This property becomes even more interesting when other initial situa-

tions are considered as well. Then it turns out that whatever the initial

situation is, i.e., wherever the value of 1 is located in the original vector

b, the final state of the system will always be the one in which this partic-
ular internal state (2,2,0) has a high probability of appearance. This indi-

cates that the system has an inherent ergodic property, which fact is of

interest in itself.

At this point it should be observed that the same result would have been
obtained if the matrix Q had first been multiplied by itself a number of

times before the vector x matrix multiplication was done. Computing the

powers of Q in ascending order will in the end result in a matrix lim Qn
n ^oo

which will have only nonzero elements in the (2,2,0) columns and zero-
elements everywhere else. The elements of the (n.w.; 2,2,0) column of this

matrix will all have the value of 5/30, those of the (c.w.; 2,2,0) column will

all have the value of 20/30, and those of the (l.w.; 2,2,0) column will all

have the value of 5/30. This conjecture is based on the relationship be-
tween the matrices P and Q on the one hand, and that between lim Pn

and lim Qn on the other hand. It can then be said that a repetition of a

tBecause of the special feature of this problem, it was possible to per-
form this second computation on an IBM 650 equipped with index registers
and able to perform floating -point arithmetic. By making extensive use of
the table -look-up facility, it took this machine about three minutes to carry
out one such multiplication.
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10-year policy year after year will render the system, as it has been de-

scribed here, into an absorbing Markov chain. t

At this point it should be remarked that the (2,2,0) internal state of the

system is the one in. which both plants have their largest admissible capac-

ity and in which the stockpile does not contain any ore at all. This then

stresses the importance of the domestic resources and the value that is to

be attached to the development of the technology by which these low-quality

domestic ores can be made suitable for the production of alloys. Of course,

this conclusion is subject to the assumption that the price-cost relation-

ships between imported and domestically produced ores will not materially

change in favor of the foreign ores. Moreover, this result is subject to the

assumption that the probabilities of transition of the three political situa-

tions will remain the same during the period under consideration.

fFor a description of the properties of an absorbing Markov chain, the

reader is directed to Ref. 4, in particular Chapter XV, Section 6, and Chap-

ter XVI, Sections 1 and 4.
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source in the model. Because of the constraints on water usage, each

hour's operation cannot be considered separately so that the problem in-

volves 16 x 24 = 384 variables.
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An Application of Linear Programming to the Fairing

of Ships' Lines

S. A. Bergcr

W. C Webster

1. INTRODUCTION

When a shipyard contracts to build a ship it is given a small drawing,
called the "lines plan," which describes the geometrical shape of the

ship's hull. This drawing consists of three interrelated curves. One set of

these curves represents the intersection of the hull and a series of horizon-
tal planes parallel to the keel. These cuts are called "waterlines." A ver-
tical set perpendicular to the centerplane is called "stations"; and another
set parallel to the centerplane is called "buttocks." Fig. 1 is the lines plan
of a typical ship.

A naval architect has drawn these curves using a spline a thin, pliable
beam held in place with weights. He insures that these curves are "fair"
or smooth and pleasing to the eye, because he desires the ship's surface

to have this property also. It has been felt that ships so designed will not

suffer from the loss of performance sometimes associated with bumps or
unfairness of the ship's hull.

As it stands, this drawing (Fig. 1), about one-fiftieth or one-hundredth
the size of the full ship, is far too inaccurate for direct use in building a

ship. The full-scale tolerance of about V8-inch cannot be perceived on such

a small drawing. It then becomes the task of the shipj^ard to expand the

scale of this plan. Since these curves have no mathematical definition,

such scaling up is not at all a trivial matter.

The traditional method of attack for this problem is to measure from
the lines plan a sufficient number of points to describe the curves. These

points are laid down, full scale, on a mold loft floor. The loftsman then re-

constructs the lines plan by drawing fair curves through or as close as

possible to these scaled points. During this process any reading errors or

inaccuracies caused by scaling are detected visually and corrected.

The problem we have undertaken is to perform the same task mathe-

matically. In itself, this mathematical lofting would not offer any particular

tThe application of linear programming to curve fitting, as presented

here, is the result of work performed by Todd Shipyards Corporation, Re-

search and Development Group, in partial fulfillment of the U.S. Navy De-

partment's Bureau of Ships Contract NObs-4427, administered by Code 770,

with the joint sponsorship of the U.S. Maritime Administration.
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advantages over the previous manual approach. However, with the advent
of automation, it is imperative that such a mathematical definition exist in

order to use computer-controlled fabricating machines.

2. FAIRNESS CRITERIA

In order to be able to produce a curve which is fair, it is first necessary
to isolate the properties determining fairness. With current practice as

our guide, we find that fair curves must at least:

2-a. Be class C 2
functions. The naval architect insures that the curves

are smooth by using a spline to draw them. Thin beam theory predicts
that these curves will be functions whose second derivative is continuous

everywhere.
2-b. Have no extraneous inflection points. When a naval architect draws

the lines plan he arranges the spline and its constraining weights so that

the curve it assumes is free from bumps. This process is again repeated
in the mold loft. For a curve given by 2-a above, a bump is the occurrence

of two closely spaced inflection points. Since the curves of the lines plan
are drawn by the naval architect and are fair, we must be sure that the

curves which result from the fitting process have only those inflection

points indicated on this drawing.
These two criteria are not sufficient, since it is possible to construct

curves which do satisfy them and which are not pleasing to the eye. How-
ever, experience has indicated that the curve which satisfies 2-a and 2-b,

and which is the best fit to a set of points scaled from a fair curve, is

satisfactory. Here we define "best fit" as the curve whose maximum de-

viation from the given points is a minimum .

3. PRELIMINARY SMOOTHING

The data one obtains from the lines plan usually consists of offsets, that

is, the scaled distances of the waterlines and stations from the centerplane.

These data are prone to certain difficulties. First, the accuracy of the data

is limited by the measuring method. The offsets are read from a drawing
with lines of finite width by a scale of finite precision. Second, since there

are usually at least two hundred points given to describe a ship, it is not at

all unreasonable to assume that some of them might embody large errors

due to reading errors, transcribing errors, etc. Thus these data need not

be exact. There may be a few points that are totally in error and do not

bear any information. Superimposed on all the rest of the points are small,

random errors due to the mensuration. It is crucial that these bad points

be rejected if the naval architect's intentions are to be preserved in the

curve fitting process.
Such errors are now detected in the mold loft when the loftsman notices

that it is impossible to pass a spline through a set of points without pro-

ducing a bump. A similar procedure can be performed numerically.
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We shall assume that:

3-a. The offsets to be examined are, for the most part, reasonable

points and the bad points are not closely spaced.

3-b. The set of points sufficiently describe a ship which was intended to

be fair. Presumably, the points form a matrix of waterlines and stations

faired by the naval architect. Thus it is reasonable to expect to be able to

pass fair curves through, or at least very near, the good points representing
the individual waterlines and stations.

The strategy for detecting bad points involves determining if these

points which were scaled from, and which represent, a fair curve are com-
patible with the fairness criteria. Any incompatibility will be interpreted
as the existence of a bad point. Since continuity of any order cannot be a

property of discrete points the question of compatibility becomes: From
the myriad of class C 2

functions which pass through these points, is it pos-
sible for one of them to be free of bumps?

Consider the three points shown in Fig. 2. By the mean value theorem
there must be some region in the interval from points 1 to 3 in which the

second derivative of any class C 2
function has the same sign as the second

difference computed at point 2. For the points shown the second difference

is negative and there must be at least a region in this interval with negative
second derivative.

If there is a fourth point adjoined to these three such that the second dif-

ference computed at 3 is positive then there must be some region, near 3 in

the interval 2 to 4 which has a positive second derivative. Thus, in the in-

terval 1 to 4 the second derivative must change in sign and there must be
an inflection point. Two consecutive sign changes at three neighboring
points indicates two inflection points. Since this would be the shortest in-

terval in which one could predict the existence of two inflection points, i.e.,

(x 2 ,y2 )

\
\

Fig. 2
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a bump, we must conclude that they contradict our assumptions. It seems
unreasonable to assume that a naval architect would have intended such a
set of points since, if he had desired the curvature to change so often he
would have given more information to describe the shape of the curve in

this region.

Once an inconsistancy is discovered it is an easy matter to locate the
bad point from the pattern of second differences in the neighborhood of this

difficulty. We have written a program which goes through this process of

detecting and locating the bad points. This program adjusts the bad points
so that they become compatible with the other points.

4. CURVE FORMS

There are two possible general approaches to the problem of mathe-

matically fairing a ship's hull. The first method, the analogue of current

manual lofting practice, is to fair all of the waterlines and stations indi-

vidually, and since, in general, the set of waterlines will not be compatible
with the set of stations, to repeat the process in an iterative fashion until

convergence criteria are met. The second method is to treat the problem
directly as a surface fairing problem in three dimensions. The advantage
of the first method as compared to the second is that it reduces the complex
problem of fairing a three-dimensional surface to the conceptually simpler
one of fairing a number of closed curves in a plane. However, this advan-

tage could be partly or completely offset by such difficulties as convergence
of the iteration and lack of fairness of intermediate waterlines and stations.

Putting aside such considerations for a while, let us first consider the prob-
lem of fairing individual waterlines and stations as two-dimensional fairing

problems. The difficulties indicated above, as well as the direct problem of

fairing in three dimensions will be considered in later sections of the paper.
The problem of interpolating between these faired waterlines and stations

(a difficulty which does not exist in fitting a surface) can be solved by a

method given recently by Birkhoff and Garabedian [1].

The first decision one must make in fairing a set of points in a plane in-

volves the selection of the equation to be employed.
In attempting to fit a waterline or station with one analytic expression

certain difficulties arise; these may be traced to the fact that current loft-

ing practice (using splines) makes these contours into segmented analytic

curves, and hence not representable by one analytic function [2]. As indi-

cated earlier, the current practice is to fair waterlines and stations using

a spline. Under small deflections splines assume the shape of a segmented

polynomial of third degree. That is, this curve is a set of cubic equations

joined in such a way that the resulting curve is of class C 2
. The non-

analyticity of this curve allows greater freedom in obtaining acceptable

ship forms. In particular, straight portions being special cubic curves are

easily included in such a curve, and in addition, and most significantly, one

can readily control inflection points on this type curve. Here, the second

derivative varies linearly in the regions between and is continuous at the
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joins. An inflection point occurs in the interval between two adjacent joins
if and only if the second derivative at one join is opposite in sign to the

second derivative at the other. If the joins of the spline curve are taken at
the points where the original data are given and if one constrains the spline
curve to have second derivatives of sign matching the second differences at
these points, then this curve will not have any extraneous inflection points.
Here pre -smoothing prevents any undesired behavior of the second deriv-
atives in the neighborhood of these points and the properties of the spline
curve prevent any difficulties from arising between these points.

For these reasons it was apparent that the spline curve is eminently
well suited for the fitting of fair curves on a ship.

5. LINEAR PROGRAMMING FORMULATION

The formulation of fitting a fair curve to these points is now quite ob-
viously a linear programming problem. Suppose we are given n points
through which we would like to pass a fair curve. The resulting linear

program is given by:

-A. - Y(xi> = ~
yi i = 1, . . . , n (2)

-rr Y"(Xi) ^0 (3)

The Eqs. (1) and (2) constrain the spline curve Y(x) to be within A. of
the given data. The Eq. (3) constrains the second derivative at the ordinates
of the given data to have the same sign as the second difference rj. Mini-
mizing \ produces the best fit according to our definition.

Notice that Eq. (3) is location independent. That is, a curve so fitted is
still fair even if one translates the curve up or down by any amount. This
property allows us to draw the very important conclusion that it is impos-
sible for the process of iterating waterlines and stations to diverge. At
worst the solution can oscillate. However, our experience has shown that
indeed the iteration converges and does so quite rapidly.

In order to solve this linear program one has to represent Y(x) as a
linear function of positive parameters. We have used the representation
for the spline curve suggested by Theilheimer [3] which is:

? ^}
y = a + a

t
x + a2x

2 +
Aj(x

-
Xj) J (4)

where:

<x-Xj)* =(x-xj)
3 ifx >

Xj

(x-xj)*=0 ifx<x
j
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The "plus" notation in the summation permits one to represent this non-

analytic curve with one equation and a minimum of parameters . In order

to make Y(x) a function of positive parameters (to satisfy the requirements

of a linear program), no generality is lost if one lets:

a =
(a

r

-a"), a', a" ^0

In these terms, the linear program becomes

-\ + (a' -a' ') +
(al -a!

T

)Xi
+ (a} -a'2')x

2
. +

(Aj
-
Ap^

-
Xj

)
3 ^

Yi (5)

i-i

-X -
(a'o

-
a'o )

~
(a!

- a" )Xi
-

(a
T

2
- a" )X?

- ^ (Aj

- AV ) fri
- X

j)
^ -y^ (6)

-2r
i(a

t

2
- a'2

T

)
-

6rt 2J <A
j

^

5=1

1=1, ..., n

Equations (5)
-

(7) represent a tableau of

3n equations, 2n + 5 variables

We have done a great amount of work with this formulation and have

found the results very satisfactory. However there are some undesirable

features. First, the tableau is very dense. That is, more than one half of

the possible elements are nonzero. This leads to storage problems with

certain codes. Second, there is no immediate feasible solution. This is not

terribly important but it does first require some time to find a feasible

solution. _. . ...

These two problems can be helped somewhat if one adds inequalities (5)

to (6). This eliminates about half of the nonzero elements but requires the

addition of one slack per point to maintain the sense of the inequalities.

This slightly revised formulation increases the linear program tableau to

(3n + 5) variables.

It is quite clear that even small curve fitting problems become large

linear programs. As a result, several steps were taken to improve

efficiency.

6. IMPROVEMENTS

Duality

As originally noted by Kelly [4], curve fitting tableaus, and this one is

no eXception, tend to have more constraints than variables. Thus it is ad-
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vantageous to use the dual formulation. This is of particular interest since

it is obvious that the corresponding dual problem has an immediate feasible

solution due to the simple cost vector in the primal problem. For our

problems duality thus offers significant advantages.

Representation

Notice that Theilheimer's notation is by no means unique. A spline

curve fitted to n points, of the type previously assumed, has n + 2 degrees

of freedom. In principle one could choose any (n + 2) independent properties

of the curve and these will determine the curve.

Offset Representation

One set of parameters that appears obvious to consider is the final or-

dinates after the fairing is complete. Suppose that the curve Y(x) which is

fitted to the points (x^yi) passes through the points (x^y^) . We can choose

these yj as (n) of the (n + 2) parameters. Obviously they are independent.

The additional two necessary parameters chosen were ala slope at the

initial point x
1?

and a2 , the second derivative at x
4

.

As before we must assure that all the parameters are positive if a linear

programming formulation is to be used. Since we are dealing with curves

which represent a real ship's lines, it is unreasonable to allow any of the

offsets to be negative. (Because ships are symmetric about the center-

plane we need fair only the positive half of the hull.) The requirement

yj
> is not only compatible with linear programming requirements but

also with natural requirements.
In terms of equations (1)

-*
(3), we have:

~\ + y.
<
y . (8)

-X -y. <-y . (9)

-ri Y"(Xi)
< (10)

In this representation, one notices that Eqs. (8) and (9) are considerably

simpler than Theilheimer's representation, Eqs. (5) and (6). However, with

Theilheimer's notation it was possible to write out the counterpart to

Eq. (10), Eq. (7), explicitly. In the above notation this is not as simple to

do. However one can derive a set of recurrence relations which permit the

construction of Y M
(xj).

Equations (8)
*

(10) represent a linear program of (using duality):

n + 5 equations, 3n variables

This is a considerable decrease in the size of tableau required. It is

worth noting that besides being smaller, the tableau formed by (8) (10)

is less dense than (5)
-*

(7) . The conclusion is then that the offset notation
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greatly decreases the tableau size and even more greatly decreases the

nonzero entries required for a problem.

Deviation Representation

Let us consider the case when (n) of the independent variables are the

deviations, <5p from the given ordinates, y^. Thus:

The reasons for going to such a notation are not at all obvious. If one

tries to use these d[ as a basis for a linear program, of the type pre-

viously formulated, it is immediately clear that two variables o\
and 6"

are needed at each point in order that the deviation be unrestricted in sign.

This would, to be sure, undermine the effort to simplify the solution. In-

stead let us consider a slightly different problem. Let us take the 61 as

legitimate linear programming variables, where the d are required to be

equal to or greater than zero. Let us suppose that we subject the spline

curve to the following constraints:

-X+6i^O (12)

-rr Y TT

(Xi)
^0 (13)

Equation (13) is the same as Eq. (3). Equation (12) insures that X is

equal to or greater than any deviation, 61, since all of the 6j are con-

strained to be positive. When one minimizes X subject to (12) and (13) one

determines the spline curve which:

(a) has the minimum, maximum deviation from the given points,

(b) lies wholly above the given points. That is, y^
^

y[.

Clearly this is not the same solution obtained from equations (1)
-
(3).

This solution is denoted by Y(x) and the corresponding values of X and 61

as X and 6i. _
Consider the curve given by translating Y(x) down by X/2. That is:

Y(x) = Y(x) -A/2

Several things can be proved about the curve Y(x) . First, the maximum

deviation of f(x) from the original points is (X/2). This follows immediately

from the fact that the curve^ Y(x), is wholly above the points but is still

within X of them. Second, Y(x) is exactly the curve one would obtain if one

had used Eq. (1) (3). Obviously this curve satisfies Eq. (3). If there were

another curve with a smaller deviation, X, from the points then this curve,

this new curve, translated up by X, would contradict (a) and (b) above. This

not very obvious result means that if we use the deviations from the given

points as (n) of the independent variables, a linear program can be set up

that requires only two constraints per point. One subtracts one half of the

calculated maximum deviation from this curve to get the desired curve.
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This process requires (using duality) :

n + 5 equations, 2n variables

The value of Y"(xi) for this case can, of course, be calculated by the

same recurrence relations as used in the offset notation.

Second Derivative Representation

There is another representation which can match the gains achieved by

the deviation representation and may have some ultimate advantages. This

time let us take Ci, the second derivatives at the points xi, as (n) of the

(n + 2) required variables. For the other two variables let us choose yi

the faired abscissa at x
t
and (a}

-
a") the slope at x

t
.

Again we are faced with the problem of the nonnegative requirement.

However, notice that the sole purpose of (3) is to impose a certain sign,

that of ri, on Y"(xi).
Consider a new set of independent variables GI, given by

Ci = riCi = riY"(xi) (14)

Whenever Cj satisfies Eq. (3), C\ is positive. Thus if Ci are chosen

as independent variables, they can be taken as linear programming vari-

ables and as such obviate the necessity of using Eq. (3) for each point.
It is not necessary to let yt

take on negative values for the reasons dis-

cussed in the development of the offset notation. In this case Eqs. (1) and

(2) become:

-A. + Y(Xi)
^

yi (15)

-\-Y(xi)^-yi (16)

Here again it is difficult to express Y(XJ) in explicit form. However, as

before, recurrence relations can be found from which it is easy to con-
struct Y(xt).

This formulation yields a linear program of (again using duality) :

n + 4 equations, 2n variables

This is then equivalent to the reduction afforded by the deviation

approach.

7. SURFACE

As indicated earlier one could treat the problem of mathematically fair-

ing a ship hull directly as a surface fairing problem in three dimensions.
Such an approach leads to a much more complex mathematical formulation;
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it does, however, completely eliminate the need to apply an iterative scheme

and the consequent problem of convergence is thereby avoided.

Since, according to current practice, individual waterlines and stations

are segmented spline curves, the most natural approach in attempting a

surface fit would be to use the direct analogue of such curves in three di-

mensions, that is, choose a surface equation with the property that the

curves of intersection of the surface with two families of mutually perpen-

dicular planes results in waterlines and stations which are segmented

spline curves. Such a surface would be analytic in the domain bounded by

two successive waterlines and stations; at the boundaries the second deriv-

ative normal to the boundaries must be continuous, along the boundaries of

each small surface element all the derivatives in the direction of the bound-

aries are continuous.

The equation having the properties indicated above can be written

2 n-1 m-1

y(x,z)
= a

ijX
izJ + % AI(X

-
Xi)

3
+ + Bj(z

-
Zj

)
3
+

i,j=o i=i 3=1

i=n-l

where the symbol ( )+ is as defined earlier. This equation represents a

segmented cubic surface over the domain

^ x ^ x

- z - z

The continuity requirements are automatically satisfied by Eq. (17). The

linear programming formulation of this problem then involves requiring

that the deviation at each point of the x-z grid of given points be bounded by

A and that the sign of the curvature in the waterline and station planes agree

with the sign of the corresponding second difference. Apart from the fact

that y is now also a function of z the only substantial difference between

fairing in two or three dimensions using linear programming lies in there

being two curvature constraints in the latter case and only one in the

former. If r,; and s denote the second differences in the x and z direc-

tions respectively evaluated at the point (x^zj)
then the linear programming

formulation of the problem is as follows:

Minimize X subject to the conditions

(18)
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where y(x is zj) represents equation (17) evaluated at the point (x^Zj),
while

yy is the given value of y at this point.

The other representations of splines previously presented can be easily

extended to give a surface representation. However, these representations,

although they offer a savings over the Theilheimer-type surface as they do

with the Theilheimer curve, require a much more complicated procedure
to develop the matrix given by Eq. (18).

8. CONCLUSIONS

Each of the methods presented above has been successfully used in

fairing ships' lines. In general, it is found that the surface representation

requires about two orders of magnitude more time before reaching a solu-

tion than does the iteration procedure. The surface method, however, re-

sults in a solution with a smaller maximum deviation than one obtained by

iterating. Although we can not prove convergence, no difficulty has thus

far arisen in any of our runs using this latter scheme.

Throughout the discussion in this paper we have neglected mention of

certain areas of the ship's hull which do not conform to the general state-

ments made about ships' lines. In particular, there are places where the

second derivative is not continuous. Also, nothing has been said about the

ends of curves, where one cannot calculate second differences to be used

in the linear programming formulation. These difficult areas do require
special attention, but can be effectively included in an over-all linear pro-
gramming ship fairing program.

There is one additional feature of linear programming which enhances
its suitability for this problem. This is concerned with the ability to add
additional constraints to the program without changing the basic formula-
tion. This feature could be particularly useful in introducing such con-
straints as fixed cargo capacity, given beam, etc. That is, it would be pos-
sible for the ship user or naval architect to designate certain parameters
which he wished held fixed in the fairing process; the only limitation, of

course, would be that these constraints be linear.

In conclusion, we feel that linear programming finds an ideal application
in the fairing of ships' lines.

Acknowledgements

We would like to thank Donald Atkins and Richard Tapia of Todd Ship-
yards, San Pedro, for having done much of the programming required in
the present study. We would also like to thank Dr. M. Juncosa of the RAND
Corporation for originally suggesting the use of linear programming in the

ship fairing problem.

REFERENCES

1. Birkhoff, G., and H. L. Garabedian, "Smooth Surface Interpolation,"
J. Math, and Phys., Vol. 39, No. 4, Dec., 1960, pp. 256-268.



LINEAR PROGRAMMING AND THE FAIRING OF SHIPS' LINES 253

Kerwin, J. E., "Polynomial Surface Representation of Arbitrary Ship

Forms," J. Ship Res., Vol. 4, No. 1, June 1960, pp. 12-21.

Theilheimer, F., and W. Starkweather, "The Fairing of Ship Lines on

a High-Speed Computer," David Taylor Model Basin, Appl. Math.

Lab., Report 1474, January 1961.

Kelley, J. E., Jr., "An Application of Linear Programming to Curve

Fitting," Univac Application Res. Center, Tech. Rept., No. 5,

March 31, 1957.





The Simulation of Mu/ti-component Distillation t

E. C De Land

M. B. Wolf

A new method is proposed for the simulation of multicomponent petro-
leum distillation columns. This method takes advantage of the power of

mathematical programming techniques for computing the equilibrium
states of physiochemical processes. The formal procedure was proposed
and developed for other chemical systems, but it is perfectly general,

being able to incorporate changes of phase, external sources or sinks of

mass or energy, and differential equations which describe system dynamics
if they are relatively slow with respect to the chemical dynamics.

Using a theorem of the mathematician Gibbs, a chemical equilibrium

may be defined in terms of the thermodynamic free -energy of each of the

components. At equilibrium, the sum of the free energies will be minimized.

In the present paper a free energy (nonlinear) function is defined and then

minimized under the natural physical (linear) restraints of the system. On
the analog computer chosen because of the ease of representing the sys-
tem dynamics, (nonlinear) heat and mass balance equations the solution

method is by steepest descent. A digital solution has also been devised,

but not yet implemented because the digital program will be much more

comprehensive than the basic idea which is presented here.

1. INTRODUCTION

Several procedures have been devised for the simulation of particular

subsystems in a refinery operation, and in particular, since the advent of

computer technology, practical methods have been developed for modeling

multistage, multicomponent distillation on the computer. Amundsen [2],

Lyster [3], Greenstadt [4], and others have described successful programs
on the digital machine; Marr [5], Worley [6], Rijnsdorp and Maarleveld [7],

Computer Systems, Inc. [8], and others discuss simulations on the analog.

Usually these methods are based upon the equations and techniques devel-

tThis paper is an abridgment of research sponsored by the United

States Air Force under Project RAND and initially reported in RM-3258-
PR. Views or conclusions presented in this paper should not, however, be

interpreted as representing the official opinion or policy of the sponsoring

agency.
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oped formerly for hand calculation. Maar [5] is an exception in that he

proposes a set of partial differential equations for the temperature and

composition profiles of the column as a whole.

We propose, here, to apply a basic notion of thermodynamic equilibrium,

the Gibb's free -energy function, to provide a model for simulation. This

will require that we take full advantage of the high speed, capacity, and

flexibility of the modern computer. There are several advantages, which

we will discuss, to be gained from this method, but principally they arise

from the fact that the method is perfectly general. It is a natural format

for representing the subsidiary chemical reactions and states of a complex

system and for representing classical equilibrium, but also it can be used

to model irreversible thermodynamic processes (deGroot [16], and others)

such as elution, ion exchange, and forcing functions (potentials) of various

kinds. Thus, the method may be used to simulate other elements of the re-

finery. Here, we illustrate an application to multicomponent distillation.

The procedure originates in a paper by White, et al. [9], and has been

applied in biological systems [10], combustion, planet atmospheric studies,

and others. The present application was suggested in an earlier paper [11].

The analog computer results were obtained from research for a master's

thesis by one of the authors [12]. Details of the analog techniques are con-

tained in Reference 13.

2. A FRACTIONAL DISTILLATION COLUMN

It will not be necessary, here, to describe the fractional distillation col-

umn in great detail (see Reference 1). The basic idea is that a homogeneous

input mixture of n components (the Feed) is to be separated into two prin-

cipal fractions, a condensed vapor phase (the Distillate) and a liquid re-

mainder (the Bottoms), with reasonable efficiency and control by means of

a series of m staged distillations. Fig. 1 illustrates a typical distillation

(a Plate) with communication to the plate above and the plate below. The

scalar L^ represents the rate of flow of liquid from the k*h plate with

mole fraction composition vector X^ =
(x^, x^, . . xfcn) and V^, the flow

of vapor from the kth plate of composition Yk =
(yki Yk2* Ykn) Feed,

at rate F and composition Xf, is entered at plate f and we assume either

that the feed has the same temperature, pressure, and composition as Xf
or that it has the same temperature and pressure but a composition which

would produce Xf and Yf at equilibrium.
We assume total condensation of the top plate vapor, having composition

Ym , at rate Vm , some of which, the reflux ratio R = LD/LD + D, is re-

turned to the top plate. Heat at rate Q is entered at plate 1, where also a

Bottoms product L t
= B of composition Xi

=
(xu , x12 , . . . , xin) is withdrawn.

Heat and mass conservation equations may be written over the column
as a whole or over any idealized internal section, e.g., a single plate.

These equations plus the vapor -liquid equilibrium equations completely

specify the operation of an idealized column when the boundary conditions

and physical specifications of the tower are given. The composition of the
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Vapor phase

Fig. 1. A Bubble -cap Plate

product B or D will essentially be a function of Q, m, F, Xf, and R, but

actually many parameters affect the product. In addition, important sources

of error are heat losses, pressure losses due to viscous flow, undesirable

chemical reactions, and the possibility that equilibrium is not attained on

each plate .

A sufficient set of equations for an idealized tower may easily be

written. For example, an analysis may begin by considering the conserva-

tion of mass on the bottom plate. For the bottom plate, from Fig. 1, we

have k =
1, Vk-1

=
0, L^

= B, and Q, not shown, is added. Therefore

(1)L2
= V

t
+ B

or, for each component j,

/rt\

L2x2j

=
Viyij

+
Bxjj

w

Using Hfc and hk for the enthalpies of the vapor and liquid on plate k, we

have

ViHj. + Bhi
= L2h2

+ Q (3)

For the vapor-liquid equilibrium equation we may write

yij =Kj(T, P) Xl]
<4)

where T and P are the temperature and pressure of plate 1 and
Kj

is the

partial-pressure equilibrium constant, a tabulated function. With B, X4 ,

and Q given there are six unknowns so that two additional equations are

required. Two equations which prove to be convenient for machine compu-

tation are derived from the fact that the sum of the mole fractions in a

given phase is 1:
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E x
2j(T2)

= 1 (5)

j

and

Yij(Ti)
= 1 (6)

j

Therefore, since x2j
and

yjj
are functions of plate temperature, for known

volume and pressure the temperatures, required for the computation of H,

h and K, may be obtained implicitly.

This sample set of equations is appropriately modified for other plates
of the tower and, in practice, will be supplemented with subsidiary equations

(relating to heat losses, etc.) as required but which we do not need for the

present purpose. For the present, from equations 1-6, it is plausible that,

given B, Xj, and Q, one may compute the initial conditions for plate 2.

Computing in this manner, matching boundary conditions between each

plate, D and Ym are eventually determined. Then if Ym does not equal the

desired composition XQ, either (a) an iterative procedure is instituted to

correct Ym by varying Q, m, F, Xf, or R or (b) the loop is automatically
closed, i.e., an error term may be fed back and used to correct the given
input parameters until the system considered as a whole is in steady state

and gives the desired output.

3. PREDICTION OF CHEMICAL EQUILIBRIUM

Computer methods, devised for the description of complex chemical

equilibrium, are in terms of the reaction rate equations or the equilibrium
constant algebraic equations or finally in terms of the thermodynamic free

energy of the equilibrium condition which may be obtained by mathematical

programming. At equilibrium, of course, all methods give essentially the
same information, but in addition the last method has a standard format
which is more flexible, yields additional data on the enthalpy of each

species, and can incorporate the so-called irreversible, time-invariant
processes.

For mixtures of a single phase equilibrium, conditions may be pre-
dicted, as described in previous papers [11, 14], by minimizing the (non-
linear) Gibb's free -energy function

F(Y) = RT
} nyj [

Cj
+ In

Vj
] (7)

where

Y =
(yi Y2 yn) the set of mole fraction numbers,

c
j

=
(Fj/RT)

+ In P, standard free energy per mole of the j
th

species,



THE SIMULATION OF MULTI-COMPONENT DISTILLATION 259

n =
SjHj,

total number of moles of all species,

yj
= mole fractions of jth species,

under the (linear) conditions of conservation of mass and that
yj

> for

each j. The right side of Eq. (7) is simply the sum of the Gibb's free

energy of each species. For mixtures of two phases, one phase may be re-

garded as the
" standard state" and the other phase may be computed with

respect to this state. Thus, if F?/RT = in vapor phase, and using z for

either x or y,

F(Z) = RTnj yj [0 + In P + In
y]

]
+ RTn2 Xj [C

j

+ In
Xj] (8)

where

Cj
= (AF?/RT) + In P = AF? /RT, liquid phase,

AF? = change in standard free energy per mole for the j
th

species,

u
is
n2

= total moles in liquid and vapor phase.

For vapor-liquid equilibria, In P = total pressure in atmospheres for the

vapor phase, = for the liquid phase. Alternately, Eq. (8) may be regarded

as the statement of a chemical reaction in either phase, in which case Cj

becomes the free energy of formation of the product species. For the

present distillation:

Thus, for the distillation column, we replace equation (4) by equation (8)

and minimize (8) under the restrictions or conditions

Xj
s: 0, y< 2: o, the output species are not negative (10)

and conservation of mass

Ni
= nii

+ n2i
= total m les of i

tl1
input species

in both phases on a plate (11)

However, since the equilibrium concentrations are independent of the

amount of the total mixture, we may either assume the total moles in

either phase equals a constant, or, from Pv = nRT and the dimensions of

the tower, compute the actual NI- Assuming nt
= 1 and n2

= 1, we may re-

place equation (11) with

</>i
= NI

-
xi

-
yj

=
0, for each i (12)

Chemical reactions may be incorporated and the resulting stoichio-
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metric restrictions [including Eq. (12)] may be organized into a matrix

format by writing, instead of (12)

=0 (13)

where the
a^j

are formula numbers indicating the atoms of species i in

product j. For ideal vapor -liquid equilibrium, all a^
= 1 and the matrix is

diagonal for each phase (z represents either x or y) .

For computational purposes we incorporate the restrictions (12) or (13)

into (8) using Lagrange multipliers and find the min-max of

G(Z, ir)
= F(Z)

-
} Tr^i (14)

under (10), which clearly has the same minimum with respect to z as the

original problem. At equilibrium the vectors Z and TT satisfy (14) and give

respectively the moles (or mole fraction) of each species and the free

energy contribution of each species present. To see this latter definition

of the components of the vector TT, we may consider the first partial deriv-
atives of G, which arise for purposes of computation by the method of

steepest descent.

To compute, either on the analog or the digital computer, we may write

r\/- __
=
Cj

+ In
Zj

-
SajjTTj

=
0, for each j

rv/)

=
<i(z)

=
0, for each i (15)

and
Zj

>
0, all j

and require that these partials be satisfied for all i and j. The first equa-
tion of (15) clearly defines the 74 as in the above paragraph, the second
is the conservation of mass. Detailed procedures for computing a chemical
equilibrium on the digital machine are given in Ref . [9], an example in Ref .

[10]. The analog procedure is given inRefs. [11], [12], and [13]. But, gen-
erally speaking, we can satisfy zero sum equations as in (15) by implicit
computation. In the first two equations of (15) we begin by defining the un-
knowns TT and Z arbitrarily and arrange matters so that if they are in

error, a negative feedback signal forces the system to correct their values.
A certain amount of analysis is required for convergence and stability, but
the idea is not new. Kose [15], in 1956, demonstrated the conditions for

convergence.
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4. DISCUSSION, AN APPLICATION, AND CONCLUSIONS

Reduced to its essential content the suggestion of this paper is to re-

place the computation represented by Eq. (4), Sec. 2 by the procedure of

Sec. 3. But in practice, the remaining equations of Sec. 2 will be altered

and the amount of computation reduced. However, in a feasibility study,

Eq. (4) was replaced by Eqs. (15) and a problem in the stabilization of

natural gasoline was simulated on an analog computer [13]. The feed con-

tained six components and under the conditions of the experiment, the

desired separation was attained with six plates.

Computationally some of the detailed changes involved are:

(a) The
Cj

= In
Kj

are no longer functions of two variables since the

ambient pressure is introduced as an additive term in Eqs. (8) and (14)

(b) Although this is an advantage only on the analog computer, the vari-

able multiplications of Eq. (4) have been replaced by log function genera-

tion.

(c) On the analog, more amplifiers were required than we presume to

be the case forEq. (4).

(d) The computation time for a new equilibrium is usually very short,

a few milliseconds, hence the computed equilibrium is responsive to a con-

tinuously changing parameter, and would continuously follow.

(e) In the usual procedure, Eq. (6) implicitly determines the vapor

temperature along with Eq. (4) from the fact that the total pressure is

equal to the sum of the partial pressures.

The temperature is changed until Eq. (16) is satisfied. This procedure
is still possible and was used in the example problem; however it may be

more convenient to have n and T fixed and determine P as in (12). The

T may be computed from the enthalpy and mass flow rate.

(f ) Chemical reactions may be incorporated with no changes in format;

the matrix of coefficients, a^,
becomes nondiagonal.

(g) Following classical procedures, unequal chemical potentials across

phase boundaries or membranes may be simulated by incrementing

(AF/RT) for the affected species. The (AF?/RT) may thus depend upon

variables other than temperature and pressure, for example, flow rate,

concentration (activity), or electrochemical potential across phase bounda-

ries or membranes. Each of these phenomena have been simulated for

time -invariant, steady-state systems where the activities or potential are

assumed to be parameters.

(h) For these cases, either the analog or digital solution methods have

been found to give stable solutions with good precision.

More generally, this procedure separates the equilibrium computation

from the mass flow. With respect to the temperature and pressure profiles
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of a tower, one could regard the tower as a sequence of equilibria com-

pletely determined at each plate with the over-all heat and mass flow boun-

dary conditions, B, R, F, Xf, and Q, as forcing functions. That is, even

though, for a fixed distillate composition, these functions form a dependent

set; they do determine the pressure and temperature profiles as monotone

"step-like" functions. As such, the column may be regarded as a thermo-

dynamically bounded system open to the environment, the interior deter-

mined by the boundary conditions. Then the usual procedures of partial

differential equations, e.g., relaxation, may be indicated, where the nodes

are determined by equilibrium computation. Practically, this simulation

will be much enhanced if the pressure profile can be assumed. It is still a

conjecture that there will be a unique solution if both the pressure and tem-

perature profiles must be computed, although the conjecture is reasonably
founded on the simpler case of constant pressure.

Finally, the natural extension of the steady-state computation procedure
of Sec. 3 is being considered. This procedure will include all m plates of

the tower in a single conceptual format of restriction equations applying to

a single Gibb's free-energy function for the entire tower. The alternative

was to have a free-energy function and restriction for each plate, the

plates being linked together either by iteration from plate to plate or by a

method from partial difference equations as above. This conceptual format
has not been implemented on the digital computer, but would be constructed

by formal compartmentalization of the matrix ay in a manner similar to

Ref. [10], a compartment for each plate. The difficult analytic problems
are to show that this nonlinear mathematical programming problem is suf-

ficiently determined and that it will converge.

Although a distillation column may ideally be time -invariant, actually it

probably is not. Oscillatory states and transients as well as nonideal

plate conditions are considered more likely. It would be curious to use
this approach to analyze the system as a whole for its intrinsic natural

frequencies and transient response as in Ref. [17]. Also, it would be in-

teresting to know whether the present procedure involving a minimization
could be incorporated into the linear programming routine for product dis-
tribution throughout the refinery.
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OPTIMAL CAPACITY SCHEDULING

Arthur P. Veinott, Jr. and Harvey M. Wagner

ABSTRACT

The purpose of this paper is twofold: (1) to exhibit simple and efficient

algorithms for solving a particular class of optimization problems, and (2)

to demonstrate the wide applicability of this class, which includes, as sig-

nificant models, capacity scheduling, equipment replacement and overhaul,

labor force planning, and multi -commodity warehouse decisions. Of some

importance is the fact that not only do our algorithms assist in solving

generalized versions of these models, but in many cases, such as equip-

ment replacement, they actually improve on computational schemes hereto-

fore proposed for simplified versions. We have tried to avoid confusion

that would be engendered by simultaneously referring to several of the

models, by keeping our exposition in terms of one particular problem,

capacity scheduling; we do, however, turn attention to the other inter-

pretations of the model. The specific capacity scheduling problem is de-

scribed as follows: a decision maker must contract for warehousing ca-

pacity over n time periods, the minimal capacity requirement for each

period being deterministically specified. His economic problem arises

because savings may possibly accrue by his undertaking long-term leasing

or contracting at favorable periods of time, even though such commitments

may necessitate leaving some of the capacity idle during several periods.

Clearly this programming model might also apply to other types of capacity,

such as transport facilities, insurance protection, and leased telephone

lines.
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THE PERSONNEL ASSIGNMENT PROBLEM

David J. Fitch

ABSTRACT

The personnel assignment problem was formulated and in a sense solved

by Brogden in his 1946 Psychometrik paper. He stated the problem as one

of devising a procedure "for maximizing efficiency of selection and assign-
ment when each individual may be eligible for several assignments." This

means assigning men in such a way as to both maximize the sum of the

expected contributions and to meet the required quotas.
The paper (1) points out the fact that the Army has a large problem in

assigning men and has substantial information which could help in making
assignment decisions, and that the absence of a computerized model which
can handle the rather complex situation means that decisions made are

poorer than are necessary, (2) traces the history of the problem, (3) com-
pares the Brogden approach where each iteration is optimal and conver-

gence is toward a feasible solution with the simplex procedure where each

iteration yields a feasible solution and convergence is toward one which is

optimal, (4) outlines Dwyer's contribution for solving for the job constants

needed in the Brogden solution, and (5) describes a program we have

written and which is running on the IBM 1401 for assigning up to 10,000
men with as many as 100 jobs and which is able to solve this size problem
in a very reasonable length of time.
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An Algorithm for Infeger Solutions to Linear Programs
1
"

Ralph E. Gomory

INTRODUCTION

This report describes a method based on G. B. Dantzig's simplex

algorithm for solving linear programming problems in integers. This

method has been outlined before in [3] and [3a] and is closely related to

previous work by Dantzig, Fulkerson, and Johnson [1] and Markowitz and

Manne [2].

A general description of the method is given in Section 1. In Section 2

the main class of inequalities used in the method is derived and shown to

form a group. Section 3 gives a geometrical interpretation of the in-

equalities. In Section 4 some properties of the inequality group are de-

rived. Section 5 discusses briefly ways of choosing particularly effective

inequalities. In Section 6 a variant of the basic inequalities is discussed.

Section 7 contains a description of the lexicographical dual simplex method

used in the finiteness proofs. Section 8 gives two versions of the method

and shows that they obtain the integer answer in a finite number of steps.

Section 9 contains miscellaneous comments including remarks on possible

extensions, programming experience, etc. Section 10 contains a summary
of the procedure and small worked out problems illustrating some of the

results of the preceding sections. The later sections depend only on

Sections 1 and 2, with an occasional reference to the beginning of 4.

The idea of adding inequalities to a linear programming problem to

progress toward an integer solution has already been used in [1] and [2].

Here we show how to add such inequalities automatically, and prove that

by use of a certain class of inequalities the integer solution is actually

attained.

The notation and general approach to the simplex method used

throughout is that of A. W. Tucker. Both A. W. Tucker and E. M. L.

Beale have contributed many valuable suggestions.

1. GENERAL DESCRIPTION

The integer programming problem is the problem of finding non-

negative integers Xj
maximizing

tThis work appeared originally as Princeton-IBM Mathematics Research

Project Technical Report Number 1, November 17, 1958.
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j=n

z =
ao,

+ Z aoJ (<
~X

3
)

j=i

subject to the conditions

J

a

The inequalities above can be replaced by equations involving additional

nonnegative "slack" variables x
if

and, for purposes of exposition, the

whole problem will be enlarged by the addition of a series of trivial re-

lations Xj
=
-l(-Xj) (unit rows). This way all the variables involved are

expressed in terms of the independent (or nonbasic) variables appearing

on the right in the enlarged set

z -
^,0

+ E

3-n

E ai,j(-Xj)
i
= l. ....m

3
= 1

XS
= s = l, ..., n (1-D

Here the 6sj (6s ,j

= 1 if s =j, 6sj
= otherwise) indicate the unit rows.

Whenever it is convenient to have a complete set of unit rows, i.e., a

set with a -1 in every column including the zero-column, we can also

adjoin the trivial equation -1 = -1(1).

Rewriting (1-1) in matrix form gives

with X the m + n + 1 vector with z as first component representing all

the variables, T the n + 1 vector with 1 as first component and other

components -tj representing the variables on the right in Eq. (1-1), and

A the matrix of all constants appearing on the right in (1-1).

To solve the ordinary linear programming problem one applies George

Dantzig's simple algorithm (or the dual algorithm) to Eq. (1-2) and by a

series of pivot steps (which are equivalent to choosing different sets of

nonbasic variables) produces a series of new equations

in which T^ represents the variables that are nonbasic after the k^1

pivot step, and the Ak are transformed into their successors by right
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multiplication by non-singular matrices. (The dual simplex method in this

form is described in more detail in Section 7.)

The solution to the ordinary linear programming problem is obtained
when an Ak is obtained with the special properties

ao.j
^0 j

= 1, . .., n

ai, >0 I = 1, .... n +m (1-3)

the solution then being X = a with ce the first column or column of

constants in Ak .

We can now outline an algorithm for obtaining the solution to the integer

programming problem.
The initial matrix A (we will assume here that it is a matrix of

integers) is transformed by the simplex method into the form (1-3). If

the solution X is not in integers a new equation or equations (each rep-

resenting a new inequality and its slack variable) is added to the set A^.

It will be shown that this inequality is satisfied by any nonnegative integer
solution to (1-2), so that its addition does not eliminate any nonnegative

integer solution to the original problem. Each additional equation intro-

duces a single negative element into the zero column so the enlarged
matrix is not in the form (1-3). The (dual) simplex method is then applied
to the new matrix to bring it back to the desired form. If the new solution

is still non-integer the process is repeated. During this process a new
row can be dropped as soon as its slack variable becomes strictly pos-
itive. It is shown that in a finite number of steps a final matrix A^ r

is

obtained with the following properties

(i) it is of the form (1-3),

(ii) all entries are integers,

(iii) it contains n or less additional rows, all unit rows.

If we disregard the trivial equations represented by the additional unit

rows we have the equations represented by the first n + m + 1 rows

X = AT

where T, the vector of the current nonbasic variables, can include some
of the new slack variables, and X (since the extra rows have been dropped)
is simply the vector of original variables. Just as in the standard simplex

method, a solution is now obtained by setting all variables in T equal to

zero. Because A is an integer matrix and in form (1-3) the solution so

obtained is integer, nonnegative, and maximizes z. Thus it is the solution

to the integer programming^problem.
We will also show that A is a unimodular transform of A and that

if the (readily available) inverse of this transformation is applied to the

extra rows of the final matrix, the resulting rows represent the set of

additional inequalities expressed as all-integer inequalities (or equations)

in the original variables .
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2. THE BASIC INEQUALITIES

We will now proceed to show that each matrix Ak has implicit in it a

class of additional inequalities satisfied by any nonnegative integer
solution to the problem.

In terms of X and Tk the equations of Ak are

X = Ak Tk (2-1)

However, any nonnegative integer solution X', also satisfies the re-

lation

X'sO (modulo 1) (2-2)

where we say that two numbers are equivalent (=) modulo 1 if they differ

by an integer.

From (2-1) and (2-2) we have for T T
, which consists of the nonbasic

variables from the integer solution X T
,

= Ak T f

(modulo 1). (2-3)

This gives a set of equations which T f must satisfy if it is to produce
an integer X r

; however, these are not the only equations that must be
satisfied by T T

. Any integer multiple of an equation of (2-3) produces
another equation satisfied by T T

, and so does any sum of the equations of

(2-3). If we regard any equation as being given by its row vector, we find

a whole class of equations satisfied by T ?
. This class is the module M

generated by the rows of Ak over the integers.
From some of these equations (rows) we will deduce new inequalities.

Suppose that an equation of M

=^ + a
j (~*j) (2-4)

has the property that
aj

> for all j
> 1. Then from this equation an in-

equality can be deduced.

Rewriting (2-4) we have

j=n

*o = ^ tj
i=i

Now the right hand side of this equation is nonnegative since everything
appearing there is nonnegative. It is also equivalent to the left hand side
which can be represented as the sum of an integer n and a nonnegative
fractional part f . Since the right side is nonnegative and differs from the
left by an integer, it must be either f

0> l + f , 2 + f , etc. Consequently
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J=

fo^E a
j*j (2-5)

3=1

This inequality can be expressed in the form of an equation by introducing
the slack s

J=n

s=-f -
aj (-tj) (2-6)

j=l

which is the difference of the two sides of (2-5). The inequality is then

expressed by the requirement that s be nonnegative. Since s is the dif-

ference of two equivalent numbers [the two sides of (2-5)] s is also an

integer.

Equation (2-6) then is a new equation in nonnegative integers which must

be satisfied by the T T of any integer solution and represents a new in-

equality. If f *0, i.e., ao is not an integer, the Tk of the present trial

solution,
tj

=0, 1 <j <n,does not satisfy the new inequality, for these
tj

values, substituted in (2-6), give s a negative value -f . Equation (2-6)

then represents a new equation which could be added to the equations of

Ak . Since s is required to be a nonnegative integer, the new problem is

still a problem hi nonnegative integers.

Since there are many (in fact a countable infinity) of equations in M
satisfying the condition

aj
^ 0, 1 < j <n, a whole family of new inequalities

could be deduced by this reasoning and applied. However we will be able

to do something better. We will replace this large family by a smaller

(finite) family F of inequalities. The inequalities of F will be generated

from Ak in a very simple way, and every inequality of the larger family

will be implied by some inequality of F.

To do this we consider the effect of decreasing by integer amounts the

aj, j
> 1, that appear in (2-4). First of all, changing the

aj by integer

amounts does produce equations satisfied by T T since this change can be

accomplished simply by adding or subtracting the appropriate unit rows of

Ak . (This change is also justifiable directly. Since the
tj

are integers,

this change changes the right hand side only by an integer.) Secondly, any

decrease in the
aj

which leaves them still nonnegative results in a new

inequality. This inequality is just like (2-5) only it involves the new

smaller coefficients. It is easily seen that this new inequality is stronger

and in fact implies (2-5). Any T T

satisfying the new inequality auto-

matically satisfies (2-5).

The strongest possible inequality obtainable from (2-4) by this process

of coefficient reduction is

where the
fj

are the fractional parts of the
aj,

each
aj being represented

as an integer plus some nonnegative fractional part fj
< 1. We will call
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an inequality like (2-7), in which the coefficients cannot be reduced any
more, a reduced inequality.

As before we can represent this inequality by an equation

J=n

s=-f -
f
j (-ty

3=1

and we will let the row vector of fractional parts

(f , fj, f2 , . . . , fn)

stand for either (2-7) or for the equation form of the inequality.

This leads us to consider the mapping J which sends any row vector

of M into the row vector of its fractional parts.
We assert that this sends an equation satisfied by T y into an inequality

satisfied by T T
.

To see this take any equation of M

= ao
+ a

j (~tj)
j=i

and, if there are negative elements among the
aj, j

>
1, make them non-

negative by changing the element by some integer amount. This process
results in a new equation with nonnegative coefficients but with the same
fractional parts. The new equation is of course still satisfied by T ?

. From
this new equation with all nonnegative coefficients, the inequality involving
the fractional parts can be derived just as above. Thus the inequality rep-
resented by the row of fractional parts is a legitimate one satisfied by T ?

.

Furthermore the mapping J sends an equation like (2-4), which does
have nonnegative aj

into the inequality of (2-7), rather than the inequality
(2-5) which is deduced directly from (2-4). Consequently we need only con-
sider the inequalities which are represented by the fractional row vectors.

Any other inequality, such as (2-5) is already implied by its reduced in-

equality which is its image under the mapping J.

Suppose that under J two rows Rj and R2 go into two rows of fractions

F! and F2 . Then J (R t
+ R2) is easily seen to be the row vector

where the components of F are obtained by adding the components of Ft

and F2 modulo 1, i.e., adding them and dropping the integer parts . The

same observation applies to J (nRt) where n is some integer. The result

of the mapping is the vector of fractional parts obtained by taking J (R A) ,

multiplying by n and reducing modulo 1.

Because of this we are able to describe the class of reduced inequalities

in a very simple way. Since all the elements of M are integer combinations

of the rows of Ak , all the reduced inequalities are integer combinations of
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the images of rows of Ak . Hence all reduced inequalities are integer

combinations of the fractional part rows of Ak, addition and multiplica-

tion being interpreted modulo 1.

Under these rules of combination the fractional rows representing the

reduced inequalities form a finitet additive group F, some of whose

properties will be discussed in Section 4. The main result that will be

produced is that under many circumstances F is actually cyclic, all the

inequalities being produced as multiples modulo 1 of a single fractional

row.

Also because of their origin all these inequalities have the following

property: if either they, or their slack equations, are expressed in terms

of the original nonbasic variables, they become all integer inequalities

(or equations). Thus the original problem as expressed in terms of its

original variables is being enlarged by adding more all integer inequalities.

(In actual machine programming so far we have produced the additional

inequality by simply choosing a row of Ak with non-integer constant term

and writing the new equation

by simply taking the fractional parts of that row. If you are doing things in

this simple way it helps noticeably to take the row with the largest frac-

tional f .)

3. A GEOMETRICAL INTERPRETATION

The inequalities such as (2-5) can be given a simple geometrical inter-

pretation. To see this most easily let us suppose that the linear program-

ming problem was given originally in terms of integer inequalities in

which we now designate the variables by Y.

AY<B

We will consider the convex body C that these inequalities cut out in the

space of the variables Y. Confining ourselves to this space makes geo-

metrical interpretation easier. If we assume that no s-variables have yet

been added, the other variables in any solution X are simply the slacks

added in converting the inequalities above into equations. Clearly each of

these slacks is an integer combination of the
yj

.

We are now ready to consider the origin of an inequality like (2-5).

Equation (2-4) was obtained as an integer combination of the equations

represented by the rows of Ak . If X is any solution, (integer or not), each

tF will be finite whenever the matrix A is in integers or has entries

which can be written as integers over some greatest common divisor. See

Section 4.
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right hand side of the equations (the rows of Ak ) equals some variable

Consequently the right hand side of (2-4) satisfies

3=1

where S^niX^ is some linear integer combination of variables x^. Since

each slack among the x^ is an integer combination of the variables
y-j,

we

actually have by substitution

j=n

n
j
v
j

So the right hand side of (2-5) represents a linear integer form L in the

original variables Y.

The trial solution to (2-1) t
j

=
gives a certain X and hence a Y. The

Y, as is well known, is a vertex P of C .

If in Y space we consider the hyperplane L =
a^ (3-1) shows that the

hyperplane passes through P (see Fig. 1) .

If the
aj

of (3-1) are all nonnegative, L takes on its maximum value at

this vertex. Hence it is drawn externally tangent in Fig. 1.

If ao is non-integer, and hence a sum n + f , f > 0, we can push the
L =

ao line (hyperplane) into C as far as the line L = n without cutting off

any lattice points. (These all-integer coordinate points are dots in Fig. 1).
This is because if there were a lattice point between L =

ao and L = n , it

would, since L is an integer form, give an integer value to L. But L has
no integer value between ao and n . Thus L can safely be pushed in and
L <no gives a new inequality. (Unless L has a common factor in its co-
efficients it is actually pushed until it strikes some lattice point some-
where.)

With regard to s-variables it is necessary only to note that from their
construction, they are an integer combination of the variables x

i already
present when they were constructed. Hence they too are integer combina-
tions of the original Yj,

and the geometrical interpretation goes through
unchanged.

Fig.l
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4. THE GROUP OF INEQUALITIES

We already know that the inequalities we need be concerned with are

those formed by integer combinations of the fractional parts of the rows

of Ak . The main part of this section is devoted to showing that under

many circumstances the whole group F of inequalities can be obtained as

multiples modulo 1 of a single row vector.

We will also show that F always contains D or less elements when D

is a number defined below. t

All these conclusions depend on a theorem of A. W. Tucker [6] which

we restate here in the (weaker)form most suitable for our immediate

purposes. Let A be an m f x n f matrix, m r >n r
. Let P" 1 be the inverse

of an n r x n T matrix P consisting of any n T rows of A. Let Ak be given

by

Ak = Ao p-l

Then the theorem asserts that each subdeterminant of Ak is obtained by

multiplying an appropriate subdeterminant of A by IP"
1

),
where |P~ |

indicates the determinant of P"*
1

.

We outline the proof of this theorem. Let be any square submatrix

of Ak . By interchanging rows and adding the appropriate unit rows from

among the complete set of unit rows in Ak , )3
can be enlarged to a square

n T x n T submatrix, /3
T

, with a block on the main diagonal of /3
T
. Since

p consists of n f rows of Ak it is the transform by P" 1 of the square sub-

matrix M(/3
T

) consisting of the corresponding rows of A. Thus we have

F = P- 1 M(0 f
) and taking determinants |/3' |

=
|

P" 1

1 |

M
|

. But /3' consists

only of diagonal 1's and the block p, so
1 18 |

=
|

P" 1
J

j

M
|

as desired.

The P" 1 which transforms our original A into Ak in the simplex

method is the inverse of an n + 1 rowed matrix P consisting of rows

taken from A, so the theorem applies in the case in which we are

interested. Of course our P" 1
is simply the product of the matrices P

i

representing the individual pivot operations? and each of these P^ has

determinant I/Pi where p t
is the pivot element. Consequently, as is well

known,
|

P" 1

1

=
l/piP2 - - - Pk- Clearly Pl p2 P3 Pk =

I
P

I

and since P

is made up from the integer matrix A,
|

P
|

is an integer D.

Similarly any subdeterminant of A is an integer. Consequently

Tucker's theorem, applied here, states that any subdeterminant of A is

of the form m/D, where m is some integer (the value of a subdeterminant

of A), and D is the (integer) product of all preceding pivots.

We will need this property not for Ak itself but rather for the matrix

F(A
k

) whose rows are the fractional parts of the corresponding rows of

Ak . However it is not hard to show that this property does carry over

from Ak to F(A
k
).

tActually it contains exactly D elements (see concluding paragraphs,

this section).

JThis matrix is shown in Section 7.
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To see this we can split Ak into the sum of two matrices U and F 1
.

The rows of F T are all the unit rows of Ak and the fractional parts of the

other rows. The U consists of zeros in the rows corresponding to unit

rows of Ak and contains the integer parts of the other rows. Then

F t = Ak _ u = Ao p -i - u = (A
o -

UP) p-i = AP-I

A is an integer matrix since UP is, and A still contains all the rows of

P unchanged; the addition of UP to A only adds zeros to these rows.

Consequently P" 1
is still the inverse of the (n + 1) x (n + 1) matrix P

made up now from rows of A, and the conditions for Tucker's theorem

are still satisfied. So by the same reasoning as before we have all sub-

determinants of F T are of the form m/D and finally, since the sub-

determinants of F(Ak) are included among those of F T
, we have the same

result for the subdeterminants of F(Ak).

Our problem is to find out something about the row vectors generated

by integer combinations of the rows of F(Ak) (components being combined
modulo 1). We can now recast this problem into a familiar form. Since

the elements of F(Ak ) (1x1 subdeterminants) are of the form m/D,
multiplication by D produces a matrix F of integers. (These integers, of

course, are simply the numerators that appear if all the fractions in Ak
are written in the form m/D.) The subdeterminant property of F(Ak)

translates readily into the following property of F". Every r x r subde-
terminant of F" is divisible by Dr~ 1

.

Combining rows of F(A^) modulo 1 is clearly equivalent to combining
rows of F modulo D, and our problem is to find in the group G whose
elements are all possible vectors with entries from the additive group of

integers modulo D, the subgroup F generated by the rows of F". In order
to apply the standard elementary divisor theorem we will change viewpoint
slightly and regard G as a -module over the integers with the basic

elements

e =
(1, 0, ..., 0)

e
1
=

(0", T, ..., 0)

etc., with 1 the unit of the integers modulo D. Then a row

(m , m^ . . . , mn) of integers represents the element

m e + mi et + - - + mn en

Now to find the submodule F generated by the rows of "F we apply the

elementary divisor theorem (van der Waerden [7]), and find that by choos-

ing new bases in the module G and submodule F we obtain a new matrix
of the form
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El

2

'

whose rows generate the submodule. As is well known, e^ divides

and is the greatest common divisor of all the elements of 7. More
i=r

generally .11 i is the g.c.d. of the (r + 1) x (r + 1) subdeterminants of

- ' *^r

F. Hence II t[ is divisible by Dr
.

i=o

Now let us consider^ special case. Let us suppose that e ' the g.c.d.

of all the elements of F, is a number relatively prime to D. (Unless the

numbers in the original problem had common factors or were arranged
with a good deal of symmetry it seems reasonable to suppose that this g.c.d.

actually will be 1 a good part of the time, so this special case is expected
to be prevalent, and in fact it has been prevalent in the examples done so

far.) Then, since D divides 4 it must divide Cj and hence all suc-

ceeding i-
Since D annihilates every member of G (i.e., Dg = for all

g G) the rows containing t-v i > all represent the zero element of G
and consequently the module F is cyclic and is generated by the single

element g represented in the new basis by ( , 0> 0, . . ., 0).

Of course it is also generated by any multiple ng where n is relatively

prime to D. This result can be restated to refer directly to F regarded
as the group whose elements are rows of fractions of the form m/D.
Here we can say that if an element of F cannot be rewritten as a row of

fractions over some new common denominator smaller than D, then the

multiples of this row (modulo 1) already generate all F.

This property shows up in the example at the end of this paper.
i=Sr

r
By using the fact that II

(
is divisible by Dr we can obtain a more

general statement about the rank of F.

Let p be any prime, let o^p) be the power to which the prime divides

[,
let a(p) be the power to which it divides D. Then since

^
divides

cq(p)
<
ai+i (p)

and the condition which expresses divisibility by Dr
is

i=r _
ceo (P)

+ a i(P>
- r <* (P) <4 " 1)

i=i

If R (p) is the largest i for which
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04 (p) < OL (p)

we have the inequality on the rank R of F,

R < 1 + max R(p) (4-2)
p D

where p D means that only primes dividing D are considered. Clearly
once the index i exceeds max R(p), every prime in D appears in &< to

p D
as high a power as it does in D. Hence these

^ represent the zero

element, and hence (4-2).

Also if Qfo(p) oi (p)> then R(p)
=

0, so we need consider only primes
for which o?o(p)

< <* (P)*

We next get an estimate for R(p) .in terms of aoO?)- From (4-1) and

the definition of R(p), we have for any p D

i=R(p)

R(p) 5(p) ^ <* (P) + E a i(P>
- a o(P>

+ R(P) [(P)
~

1] (4-3)

1=1

Comparing the extreme right and left sides gives

R(p) < a (p) (4-4)

so

R <1 + max a (p) (4-5)

I
pe]

!L 1

|a (p) <ot
(p)J

Or in words, if pj divides to a lower power than it divides D, then
the rank of the submodule is equal or less than one plus the largest of

these powers.
In particular if D has no repeated primes in its factorization the rank

of the submodule is again 1.

In all the cases where F is cyclic, it clearly has D elements or less.

We will next show that this property of having D or less elements holds
whether F is cyclic or not.

The elementary divisor theorem has been used to exhibit F as the
direct sum of cyclic subgroups. If we give each subgroup the index of the

corresponding q, it is obvious that each is annihilated by multiplication
by D/(I, D) where (a, b) is used to indicate the greatest common divisor
of a and b. Consequently each subgroup contains at most D/(I, D)
elements and the total number of elements then is at most

i=r

n
o
D/(i, D)

In this product we need consider only the
i up to the first one that is

divisible by D (call it r), since the ratios are only 1's from that point on.
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Using the notation of the preceding theorem and the division property
of D we have, for any prime p in D

_ i=R(p)

R(p)a(p) ^ ai(p)
1=0

In this range of i the cq (p) are individually less than a(p), while for

i > R(p) we have [by the definition of R(p)] cq > a. Hence

i=r

min (i(p), a(p)) ^ R(p) 5F(p) + (r -R(p)) a(p)
= r a(p) (4-6)

i=o

But the sum on the left is exactly the power to which p appears in

i=r

.11 (i, D). Eq. (4-6), repeated for each prime, then assets that Dr

i=r

divides n (E^ D). Consequently the order of the group F is equal or less

than

i=r D _ Dr+l _ Dr+l _ ^
11 /e r\ i=r -nr

i r=0 wi -'/ TT "* -^ "I

i=0

and hence is D or less.

If, as we have assumed throughout, the original problem contains a set

of unit rows (i.e., it is given as an inequality problem, rather than one in-

volving equations), this result can be improved to show that the order of F

equals D. A derivation of this is sketched here. The transformation P" 1

sets up an isomorphism between the module M(A) generated by the rows

of A over the integers and the module generated by the rows of Ak . The

mapping J of Section 2 then gives a homomorphism of this last module

with the group F of inequalities, and hence a homomorphism of M(A) and

F. Taking into account the nature of the mapping J it follows that the

elements going into zero in this correspondence are those generated by the

rows of A that go into unit rows in Ak . Designating the matrix of these

rows by P, we have F is isomorphic to the factor module M(A)/M(P).
Since A contains a complete set of unit rows, M(A) is simply all the

integer n + 1 vectors. The elementary divisor theorem can now be

applied to show that the number of elements in the factor module, and

hence in F, is
|

P
|

= D. It is assumed here that A also has been enlarged

whenever a new row is added to its transform A . Although this iso-

morphism still holds when there is no set of units in the original problem,

and D is taken to be the product of pivots, the inequality given above is all

that is obtained.
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5. CHOOSING INEQUALITIES

When choosing among desired inequalities certainly the goal is to

choose an inequality in which the ratios f /fi are as large as possible.

Geometrically this is choosing the new inequality whose equality plane

intercepts the tj axes as far as possible from the origin. Since in one in-

equality some of these ratios may be large and some small, there is no

clear-cut comparison among inequalities except in the case where all

ratios from one inequality are greater than all ratios from another. How-

ever there are many criteria which seem sensible that can be used.

First is the one that has been used in actual programming so far.

Choose the largest f in the matrix and use this row. The basis of this

choice is largely an argument from ignorance. If you don't want to bother

to look at the various fj in the rows or generate new fractional rows by
addition or multiplication, you don't know anything about them. Con-

sequently you try to get favorable f /f[ ratios simply by choosing a

large f .

This criterion is certainly subject to improvement in many ways, in-

volving different amounts of work.

This seems to be the crudest possible criterion; at the opposite ex-

treme one can generate a whole series of much better criteria by using
the Euclidean Algorithm. The Euclidean Algorithm explicitly computes the

representation of the greatest common divisor of two integers a and b

as an integer combination of a and b,

(a, b) = ma + nb

and of course the g.c.d. is the smallest positive number that can be rep-
resented in this way.

The Euclidean Algorithm is especially useful when you want to predict
the effect of multiplying a given row (inequality) by an integer. Suppose it

is decided to multiply in such a way that f is transformed into a new
constant term

Q which is as large as possible, but still less than 1. If

f = h/D find the representation of (h, D)

(h, D) = mD + nh

Multiplication by n will then produce f
r =

(h, D) /D, which is the smallest

possible nonzero fj, and, as is easily seen, multiplication by (D
-

n) will

produce 1 - (h, D)/D which is the largest possible fj. If the group F is

cyclic, and the initial row is one of the generators, you will have found in

this way the reduced inequality with largest possible constant term.
This constant reference to a large constant term should not be taken

too seriously. It may well be more important to have a row with small

average fj.

Another approach would be to ask for the inequality with deepest possible
intercept with, for example, the ti axis. This is obtained by computing
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(14, D), where f^
=
hi/D. Clearly fi x (D/(hi, D)) = modulo 1, so if

f x (D/(hi, D)) P^O, the deepest possible intercept is obtained by multiplying

by D/(hi, D). If f x (D/(hi, D)) = 0, then it is not hard to prove that the

deepest intercept is obtained by multiplying through by nj where 14 is

given by

(h^, D) = mi D + Hi hi

This produces the multiple with the smallest nonzero
f[.

The row obtained in this way gives the deepest intercept of all possible

multiples of the original row. Again if the original row was one of the

generators of the group and the group is cyclic, the deepest possible inter-

cept by a reduced inequality has been obtained.

It would be reasonable to choose as ti the variable whose column is

(lexicographically) least negative. This is equivalent to choosing to make

the deepest possible intercept in the axis along which the objective

function decreases most slowly.

Still another approach would be to throw on several or even many new

inequalities and let the simplex method itself do the choosing by its

choice of pivots. In the course of making all the elements in the zero

column nonnegative, pivots will occur in some but not usually all new

rows. Rows in which pivots occur represent inequalities that are used,

while the rows whose constant term goes positive without a pivot in that

row, represent inequalities that have been satisfied as a result of satis-

fying other ones. These rows can be dropped as soon as this occurs.

Although the very crudest sort of criteria have been very successful so

far, it may well be that a criterion of the Euclidean Algorithm type used to

get deep cuts in particular directions will be needed in problems in

which D, and hence the number of reduced inequalities, becomes very

large.

6. SOME ADDITIONAL INEQUALITIES

The reasoning that produced the inequality (2-5) can be summarized

this way. The right hand side is known to be nonnegative, the left hand

side is written as n + f . Since the two differ by an integer, the right

hand side is either f , or 1 + f , etc., and hence is >f . Now if (i) f = 0,

(ii) all the
aj

are strictly > 0, and (iii) the current X is not an integer

solution, a stronger inequality can be deduced. Since f = is assumed,

the inequality would only say

Since all the
aj

are strictly positive, the equality can be obtained only when

all the
t]

are zero. However by assumption (iii) the current X, which is

given by these values of
tj,

is not an integer solution, therefore the
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equality does not hold for the T f of any integer solution and we must

actually have

This inequality can then be improved by reducing the
aj

as in Section 2.

However those
aj

that are integers cannot be reduced to 0, as in Section 2 3

because of the requirement that the coefficients be strictly positive; con-

sequently they are reduced to 1.

This reduction can be carried out systematically as before; the only

differences from the procedure of Section 2 are in dealing with equations

in which the a<j
term is an integer. The final inequalities obtained are

simply these: all members of F having f *0 are obtained just as before,

each member of F having f = is replaced by a new vector having a 1

written wherever a appeared in the original F element. These repre-

sent the new inequalities, and they are easily obtained from F.

It is important to remember that these inequalities can be used only

when the current solution is non-integer. They cannot be used, for ex-

ample, to convert from a noninteger to an integer matrix after an integer

solution (0 column) is obtained. They also do not have the properties

required in either of the two convergence proofs.

It is interesting that by this method we obtain from the zero element of

F the row vector

(1, 1, . . . , 1)

which arises when all the zeros are replaced by ones as prescribed above.

This particular inequality is the one obtained by Dantzig [4] in a very

simple and direct way at a time when only the inequalities described in

Section 2 of this paper were known.

7. LEXICOGRAPHICAL DUAL SIMPLEX METHOD

George Dantzig' s simplex method is the fundamental algorithm on which

this integer algorithm is based. Since the simplex method exists in many
forms and many notations, the particular variant used in these proofs
needs to be described.

In order to facilitate proofs, a lexicographic alf version of the simplex

method is used. This ensures that even in cases of degeneracy the simplex
method still goes through.

In order to facilitate adjoining or dropping equations as required in this

tSee Dantzig, Orden, Wolfe [5].
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algorithm, the dual simplex method (applied to the primal problem) will be

used.f

Let us assume then that the original inequalities of a linear program-

ming problem have been turned into equations as in Eq. (1-1) and that

the unit rows have also been added as in (1-1) . We then have an array in

which aU the variables are expressed in terms of some of them, specif-

ically in terms of the initial collection of nonbasic variables.

Thus the linear programming problem is to maximize

3=n

z =
a-0'0

+ Z/ a-o.j ("tj)
3=1

subject to

j=n

3=n

a
m+n,o

+ S a
m+n,j <-$ (7-1)

3=1

and the condition that all variables be nonnegative. It is to the above

array which includes the unit rows that we will apply the lexicographical

dual simplex method. We will refer to all coefficients on the right in

Eq. (7-1) as the ay .

The fundamental operation used is pivoting or Gaussian elimination on

rows. Here this means that an element ^ j
is designated as pivot ele-

ment. Then the i^ equation is used to express
tj

in terms of xi and the

tj> 3 *3o- Tnis expression is then substituted for
tj Q

wherever
tj

appears

on the right hand side of the Eqs. (7-1). The result is to make x
io

non-

basic in place of t? while t- becomes a basic variable. The effect on the

matrix A, whose elements are the
a^j

is simply this: the j column

aj fl

is replaced by (-l/ai ,]
) aj

then the appropriate multiples, a
lflj,

of this new column are added to the other columns so that in the resulting

matrix A1
the a- * elements are zero except for

a| j
which is -1. In

other words A1
, the matrix whose coefficients express all the variables x

i

in terms of the new nonbasic set th is simply

fit is also possible to dualize the problem and use the primal method

on the dual problem. This has the advantage that new variables (columns)

rather than new equations (rows) are added during the computation, and

this is easier in the usual simplex machine codes. See Markowitz and

Manne [2],
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Ao p -i

where the (n + 1) x (n + 1) matrix P~*

\

\

io3o ^'Jo
1

1

1

(7-2)

is the negative of the inverse of the (n + 1) x (n + 1) matrix consisting of

the i row of A and all the unit rows except the one involving
tj fl

.

The dual simplex method consists of a succession of such pivot steps,

resulting in a sequence of matrices Ak . With each Ak is associated a

"trial solution" obtained by setting the current aonbasic variables t
k

equal to zero, and then choosing the current basic variables, the x^ to

satisfy the equations, i.e.,

xk -akx
i

~ a
i,o

The matrix and trial solution are usually said to be "dual feasible" if the

a^j, j *0 are all nonnegative. They are feasible (or primal feasible) if all

the ai, , i ^0 are nonnegative. If Ak is both primal and dual feasible,

the associated trial solution is the solution to the linear programming
problem, since the primal feasible property makes the x^ values non-

negative and, since

J=

z =
ao,o

+
ao

with all
ao,j nonnegative, z =

a^ is the largest possible value of z.

We will depart from this nomenclature in one way due to the fact that

a lexicographical method is being used. We will say that a column vector

p is (lexicographically) positive (/5 > 0) if the first nonzero entry of /3,

counting from the top down, is positive. Negative is defined similarly. A
column vector p is greater than another column vector /?' if p

-
{P > 0,

Using positive and negative for columns in this sense we will say that

a matrix is dual feasible if all columns
aj, j

* 0, are positive. This notion

coincides with the meaning of dual feasible given above except when some
of the elements of the top row are zero.

We will assume throughout that our starting matrices A are such that

they can be led into dual feasible form by a succession of pivot steps.

(This is always the case if, for example, the convex body cut out by the

original inequalities is bounded.) It is also worth noting that, since the
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transforming matrices P""
1 are nonsingular and A, because of the unit

rows, is of maximal rank, no all zero columns can appear in any Ak .

Once a dual feasible form is achieved, the dual simplex method proceeds
to obtain the solution in the following way: choose some row i (i ^0)
with aj[0>0 negative. Then consider the columns aj for which (1/ai j) o?j

is negative, and select from these that column which is the least negative.

Then pivot on 3-i ,j
- It is easily verified that this pivot step results in a

new matrix A T in which the columns are still positive and since

(a negative vector) has been added to a , it follows that a r < a .

A succession of such steps results in a succession of strictly decreasing

Q!Q
. There can only be a finite number of these since there are only a finite

number of possible sets of nonbasic variables, and any choice uniquely
u

determines an a . Consequently the process must stop. This can happen
Tr

either if there are no negative elements in the current QJ
O , or if there

is a negative a^ but no negative columns (l/ai
j)
oiK in the first case

the solution has been obtained, in the second it is easily seen that the

negative value a^ is the largest value that the variable x*
rt
can attain,

IQ>

and consequently no solution in nonnegative numbers exists.

8. FINITENESS PROOFS

In these proofs we will use the lexicographical dual simplex method

described in Section 7. It is not implied that this simplex method need

be used in practice or that it is necessary to the proof. It is simply that

its use in the proof has reduced the original rather long and tedious proofs

to relatively simple ones.

Let us assume then that we have obtained a (lexicographically) dual

feasible solution, and that in all succeeding pivot steps we choose pivot

elements in accordance with the lexicographical dual simplex method.
k+1

After each pivot then we obtain a new "trial solution" a which is

strictly lexicographically smaller than its predecessor Qf .

We will also assume that some lower bound is known for the value of

z. That is we assume it is known that if an integer solution exists, it gives
a z -value s: some known (possibly large negative) M. This is always the

case if we are dealing with a bounded convex body.

First Method of Proof

Let us assume that we adopt the following procedure. Proceed with the

simplex method until an optimal solution is obtained; if this solution

a? =
(a , a 0> ...,

am+n ,
) is not in integers, let a^ be the first

noninteger component. Then introduce the new equation
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and adjoin it to the bottom of the existing set. (We know from Section 2

that any nonnegative integer solution of the original set of equations

satisfies the new set and gives the new variable s a nonnegative integer

value.)

We now apply the dual simplex method to obtain a new feasible max-

imum, for the HEf ,
term has introduced a negative element into the

zero column. This new application of the simplex method either gives a

new optimal solution or indicates that no feasible solution exists. In this

second case we know that no solution to the original problem exists in

integers. In the first case if the new maximum is still noninteger, we re

peat the process. If remaximization is always possible we will show that

an integer solution is attained in a finite number of repetitions.

Let us suppose the contrary. Then the process would produce an in-

finite sequence of trial solutions

We will consider only the first m + n + 1 components of these trial solu-

tions. Since the trial solutions are monotone decreasing; the successive

first components ao, are also monotone decreasing, since we assume that

z has a lower bound M, so do the ao, or else clearly no integer solution

exists. Let n
,

be the largest integer such that n
,o ao,o f r a^ k. We

will first show that a^
= no>o for all k > some k .

From the definition of n
,

it follows that after a certain point the a^o
k k

can all be written as n
,

+ f
Q,Q

with f
jf,o

< 1. A finite number of pivot

steps after this point is reached, anew maximum must be obtained. If k T

k r

is the index at this point and f 0>0 is not zero, our procedure will select the

fractional parts of the 0-row to form the new equation

k'_
j=n ^

s ~
*o,o 2_* ^o,j (~~ty

The dual simplex method next selects a pivot element from this new
row. If the j column is selected, the new value of z after the pivot is

k T

Since all the
a^j

are nonnegative at an optimum point we have

k' ,k'
^Jo

- fHo
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and hence

k T +l k r k 1

ao,o - ao,o 1 0,0
~ n

o,o

^
so for k equal or greater than k T + 1, a^o

= n
0>0

.

Since the first component is now fixed at n0)0 , the second components
of the trial solutions are now monotone decreasing and bounded from be-

low by zero for k > k 1 + 1. (If the component fell below zero, reoptimiza-
tion would then fail to be possible.)

We can now repeat word for word the argument given above for the

first component by simply changing the first subscript from to 1. This

shows that the second component attains and remains at some integer
k Tt

value. The only point that requires any explanation is the reason why a
lsi

1 Tt

should be nonnegative. aj is nonnegative because the first entry in the J

column is 0, and, since the column itself is (lexicographically) positive,

the second element, which is of? , could not be negative. The top element
IrTT

is 0, because otherwise the pivot step would actually strictly decrease a^Q

below its already attained minimum value n
0)0

.

Just as above then we can conclude that the second component attains

some integer value and then remains at it. This argument is then repeated

for all the original m + n + 1 variables. This gives the integer solution.

What has been shown of course is that an integer -column ot^ is

eventually attained. To obtain an all-integer matrix you simply con-

tinue. Take any row of the matrix that still contains fractions, and use

the fractional parts as a new relation as before. Of course now the f term

will be zero. Consequently the next pivot step will leave all the values in

the zero column unchanged and we are still at the same optimum point and

in optimal form. If fractions still remain anywhere, the process is re-

peated. Since the D number which forms the denominator of all the

fractions (as discussed in Section 4) is the product of all pivots, and

these pivot elements are now all proper fractions,
|

D
|
constantly de-

creases. Since
|

D
|

is an integer and * 0, either |D| becomes 1, or

else the process stops because the matrix has no fractions in it. Actually

these two cases coincide; if the matrix is all integer, |

D
|

is necessarily

1. To see this remember that the transforming matrix P" 1 has de-

terminant 1/D. The inverse of this transformation (i.e., P) sends n + 1

rows of Ak into the unit rows of A. Hence P is the (negative) inverse of

of a square submatrix of Ak . If Ak is all integer, this implies that the

determinant of P is 1/D 2 where D2 , the determinant of the square matrix

in question, is an integer. Since the determinant of P also equals D, it

follows that D = D2
= 1. Hence the final matrix is related to the initial

one by a unimodular transformation.

The procedure given above can be greatly modified without changing

the proof. For example it is not necessary to choose the new equation at

each optimum point by the rule given above. If this rule of choice is ap-

plied every tenth time or every hundredth time the proof still goes through
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and you are free to add any new relation or relations whatsoever at all the
other optimum points. Another way to relax the choice restriction is to

use, instead of the fractional parts of the i row, any multiple m of the
row of fractional parts that has the property mf^ < 1. This new relation

provides a stronger inequality and is easily seen to have the same effect

on the next trial solution as does the inequality used in the proof.
This proof, as well as the next one, goes through unchanged if the row

representing a new variable (s variable) is dropped as soon as the s vari-
able involved becomes positive, or more exactly, as soon as the s variable
leaves the nonbasic set and becomes basic. Dropping such a row does not
affect the lexicographical positiveness of any column as this is determined
by the topmost element, and a column with nothing but zeros above the
s-row cannot occur (see Section 7).

Since there can be at most n nonbasic s variables, the number of addi-
tional rows need never exceed n * 1.

Dropping the extra inequality is allowable, of course, as only the

original inequalities need be satisfied to give a solution.

Second Method of Proof

This proof will show the finiteness of a different sort of process, one
in which there is no distinct repetition of optimization, new relation, re-
optimization, etc., but rather a process in which (at least up to a certain
point) the adding of new equations and pivot steps of the dual simplex
method can be interspersed at random.

If it is assumed that the first step is to obtain a dual feasible matrix,
the remaining choices to be made in carrying out the algorithm can be
summarized in this way.

If the matrix is both nonoptimal and contains fractions, one can either
make a step of the dual simplex method, or first choose and add some re-
duced inequality, and then make a pivot in the row of the new inequality.
If the matrix is in integers but not optimal, one must make some step of
the dual simplex method. If the matrix is optimal but not all in integers,
one must choose some new reduced inequality, add it, and pivot on its row.
If the matrix is in integers and optimal, the problem ends and no further
steps are made.

The sequence of choices results in a sequence of trial solutions. In
order to have an infinite sequence of trial solutions ajf, let us assume
that after an integer optimal matrix is achieved, the corresponding trial
solution is simply repeated in the sequence from that point on.

In the following, Dk indicates the value of D after the kth pivot.We can now assert that if an integer solution exists, any way of making
the above choices which ensures that lim inf

|

D*
|

< QQ will actually attain"
k-^oo

the solution (in fact an integer optimal matrix) in a finite number of steps.
An example of such a procedure would be to make all the choices quite

freely until
|

Dk
|
rises above some predetermined value N (if it ever

does). With |D |
^1 the matrix can not be all integer (this is easy to
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prove) so it is possible to add a new relation. Add any new relation and

pivot on its row thus producing a new Dk+l with
|

Dk+1
1

= f
|

Dk
|

with f

the pivot element (of course |

f
|

< 1) . If Dk+1 is still greater than N

repeat the process. Eventually the D value will decrease below N and

then choices can be made quite freely again. Clearly this process provides

a lim inf
|

Dk
|

< N < .

k--oo

To proceed with the proof, let us suppose that we have a procedure

which guarantees a sequence of matrices with lim inf
|

Dk
|

< a . Since the
k oo

Dk are integers, there is a value M which is attained by Dk for an

infinity of values of k. If we denote these k by k^, then we have a de-

creasing subsequence of trial solutions

> a

and all entries in these vectors are of the form m/M with m integer.

Since we assume the existence of an integer solution, the first components

are bounded from below, decrease, and hence have a limit point. Since

they are all rational numbers with denominator M, they can have a limit

point only if they reach some final value and then repeat it. Consequently

the first component attains and remains at some fixed value for kj

greater than some fixed ko. The second component must be monotone

decreasing from this point on. It is > since a negative value would

imply that the problem now has no feasible solutions (further dual

simplex steps can only make it more negative), which would in turn imply

that the original problem has no integer solution, contrary to assumption.

Consequently the second component has a limit value which it too attains.

This argument is repeated for all components, so finally the ao
1 reach

some final vector a which is then repeated. The only step of the algo-

rithm which does not cause a strict decrease in the a is the addition

of a reduced inequality with f = followed by a pivot on this row. A

finite sequence of these steps will produce an integer matrix. Since

there is no further decrease in a at any later step, this must be an

integer optimal matrix. This ends the proof.

Unlike the first proof this one assumes that an integer solution exists

and shows that the process finds that solution in a finite number of steps.

The first proof either found a solution or else showed that none existed.

If the second procedure is applied just as described to a problem not

having an integer solution, this fact is not guaranteed to become apparent

in any obvious way. This situation can be remedied if the procedure

adopted provides for some periodic reoptimization (obtaining a primal

feasible solution). Then at any point the impossibility of reoptimization

indicates nonexistence of a solution.

A particularly intriguing procedure of this type was suggested by

E ML Beale and stimulated the search for the above finiteness proof .

In this procedure N is taken to be 1; thus the matrix is constantly being

returned to all integer form.
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9. MISCELLANEOUS COMMENTS

Computational Experience

This is largely limited to small problems. Many small problems,

similar to those in Section 10, have been done by hand with very en-

couraging results. The method was programmed on an E101 computer

and the results, again on small problems, were also encouraging. During

a stay at RAND a FORTRAN I program [8] was written for the RAND 704.

Since only single precision arithmetic was available in FORTRAN I, the

method was programmed exactly, numerators and the denominator (D)

being stored separately. (This happens to be very easy to do in these

integer problems, and is shown in one example in Section 10.) This

numerical approach avoids dealing with round-off error. However it has

the drawback that the program fails if some of the numbers involved get

too large and overflow. Eight problems were run with the following

results:

E 5 5 7 7 12 12 15 15

P6469 8 13420

Here E is the number of inequalities in the original linear programming

problem, and P is the number of pivots required after reaching the orig-

inal noninteger maximum by the simplex method. The number of variables

involved in the inequalities was approximately the same as the number of

inequalities in each case. Of course the number of variables was later

approximately doubled when the inequalities were turned into equations

by the addition of slack variables.

This experimental program involved the crudest possible criterion (the

max fi>0 criterion) and added inequalities one at a time. Only small D
numbers (in the hundreds at most) were encountered in these eight prob-

lems . One other fifteen inequality problem failed when the run ended in an

overflow.

Some Direct Extensions

Extension of the method to the case where there are equations in the

original problem in place of inequalities is straightforward. So is the ex-

tension to the case where some of the variables are unrestricted in sign.

Also the inequalities of Section 2 are still valid if the starting matrix is

not a matrix of integers, as no use was made of this face in Section 2. The

main point of having all integer inequalities was to assure that the slack

variables are integers. If this is assumed separately, or if the problem is

an equation problem with no slacks, the integer matrix is not needed.

An example of a' problem in which some of the variables are un-

restricted in sign is the problem of finding the greatest common divisor

of 2 (or more) integers aj. Of course the g.c.d. is the smallest nonzero
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integer that can be expressed as an integer combination of the numbers
involved. Hence it is the solution to the problem.

minimize z =
ajXj + + anxn subject to z > 1

The x
t
are integers and the only variable restricted in sign is the slack

introduced by the inequality. If the method of this report is applied here

it solves the problem by doing the Euclidean Algorithm, There are various

forms of the Euclidean Algorithm and they correspond to the various ways
the method can be applied when unrestricted variables are present.

An example of a problem involving only unrestricted variables is the

problem of solving a set of linear diophantine equations, i.e., of obtaining
all integer solutions to a set of linear equations with no maximum prob-
lem and no restriction in sign on the variables involved. The method of

this report also solves this problem in a very simple and rapid way.
It is interesting that in this last application the method is still suc-

cessful (for purely algebraic reasons) even though there are no sign re-

stricted variables present, and hence an interpretation in terms of ad-

ditional inequalities, or cutting off parts of a convex body, is completely

inapplicable.

In a different direction is the question of solving not one integer pro-

gramming problem, but a family of such problems. Here we can make use

of the fact that the final matrix is a unimodular transform of the original

one, for if an integer change is made in the right hand sides of the original

inequality, the result on the final matrix is also an integer change. If the

right hand sides are decreased by an integer step, the various extra in-

equalities deduced during the computation are still valid; thus the s

variables are still required to be nonnegative. The effect of such a de-

crease on the final matrix is merely to add certain of the columns to the

zero column. If the elements of the zero column remain nonnegative, the

solution to the new problem has been obtained. If some go negative, some
additional steps are required. This is entirely analagous to the usual

notion of parametric programming.

The Mixed Problem

This is the problem in which some, but not all, of the variables in-

volved are required to be integers. This is not a direct extension. How-
ever extensions to this case have been made, first by Beale [9] and later,

more directly, by Gomory [10] . Both methods are almost completely com-

putationally untested.

Finiteness Proofs

Although much work remains to be done on the material in all sections

of this report, the situation seems especially unsatisfactory in Section 8.

The finiteness proofs given there allow a good deal of choice, especially

if the choices of inequality that they dictate are made only occasionally*
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However there is no proof that if the choices described in Section 5 are

made all the time, the integer answer will be obtained; yet these choices

seem to be the desirable ones from the point of view of making rapid

progress and have been used on the machine programs. Actually in all

problems done so far, any method involving the reduced inequalities has

worked. It would be desirable to know whether or not this is true in general.

Applications

Examples of combinatorial problems reducible to integer programming

problems were given by Dantzig [11], In another direction the fact that

nonconvex problems are reducible to (usually mixed) integer programming

problems has been known at RAND for some time. A device involving a

nonconvex objective function was given by Markowitz and Manne [2], and

the subject is first treated systematically by Dantzig [12] in a paper con-

taining many interesting applications I

Round-off Error

Most of the method does not appear to pose problems of round-off error

very different from those encountered in the usual simplex method. It

seems that the round-off problems arising in those features that are dif-

ferent from the simplex method can be overcome.

10. EXAMPLES

In these examples we will not require a lexicographical simplex method.

We will follow A. W. Tucker in using a "condensed" form and so will not

include unit rows (see the examples).
The simplex rule for choice of pivot element in both primal and dual

methods can be summarized as follows: if the problem is primal [dual]

feasible, i.e., a^o ^0, i > 1
[ao,j

^0, j
> 1], choose a column j [a row i ]

with first element
a^j [ai , ] negative. From among the positive [negative]

elements in this column [row] select the one for which the ratio

ai,o/ai,Jo tao>j/aioj] attains its least absolute value. This is the pivot element

element a
i()

, JQ
.

The effect of pivoting on pivot element aj. ,j
can be summarized as

follows: a new array is obtained in which the variables at the end of the i

row and top of the j column have been exchanged, and in which the new
coefficients

a[ j
are given by

a
i,j

= a
i,j

- a
i ,j

a
i,j

/aio>Jo
* *** I *Jo

aUo
= 1/a

io>3o
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When by a succession of pivots an array is obtained which is both

primal and dual feasible (and hence optimal), a new equation (or equations)

representing a new inequality is added. This equation is simply

j=l
J

where the
fj

are the fractional parts from some row and the
tj

are the

current nonbasic variables, or are the fractional parts obtained by com-

bining (modulo 1) several of the fractional part rows, or multiplying a

row by an integer. For rules of choice see Section 5. Here by fractional

part f of an element a, we mean the number obtained if an element a is

written as n + f with n an integer and <f < 1.

After such an equation is added, the array is not primal feasible, so

further steps of the simplex method (usually the dual method) are made
until the array is again optimal. This process is then repeated until an

integer answer (integer column of constants) or an all integer matrix

(whichever is desired) is obtained.

S variables can be dropped whenever they emerge from the nonbasic

set, and of course many variations on the above procedure are possible.
In order to have a fixed procedure for these examples, inequalities will

be added one at a time and the fractional parts of some chosen row in the

matrix will be used directly. The row will be chosen as follows: select

the column with the smallest entry in the top row (min a^j, j
> 1). Then

select the row having the smallest fractional part in that column. (An all

integer row is not considered.) This choice of row is an attempt to get a

deep "cut" in the direction of least rapid decrease of z. The row used is

marked by an arrow in each case.

The pivot element is marked by an asterisk.

The entire inequality group will be listed for some arrays.

Example 1.

Maximize z

Subject to:

?q
+ 5x2

+ x
3

Xi
+ 2x2

< 10

Xi + 4x2
< 11

3xj + 3x2
+x

3
< 13

Introduce slack variables xt , x2 , x3

Starting array, primal feasible.
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1 -Xi

=4X1=4

X2
=

X3
=

|D|=4x2-=10

|D I
=10. Optimal

Solution:

X2
= ,A

'10'

Inequality Group F:

1/10 (3, 9, 3, 0) (8, 4, 8, 0)
* x

s
=

x2 s (6, 8, 6, 0) (1, 3, 1, 0)

x3 = (9, 7, 9, 0) (4, 2, 4, 0)

(2, 6, 2, 0) (7, 1, 7, 0)
*

(5, 5, 5, 0) (0, 0, 0, 0)

In the original coordinates the inequality

inequality:

10

becomes the new integer

(11 " Xl
~

or

+ 3x2
< 8
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1 -X -Si

|D |

= 7. Optimal

Integer solution is:

z = 19 X
A
= 2

x2
= 2 xs

= 1

F: ~ (0, 1, 4, 0) (0, 5, 6, 0)

(0, 2, 1, 0) (0, 6, 3, 0)

(0, 3, 5, 0) (0, 0, 0, 0)

(0, 4, 2, 0)

I

D
I

=1. Integer matrix

1 -8, -si

Example 2.

Maximize z =

Subject to:

-x2

- 2x2
^ 3

X2

z =

1 -x
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1 -a

-
(0, 1, 1)

(0, 2, 2)

(0, 0, 0)

z =

|D|=3

Solution:

Z ~ 4
7

|D| =7. Optimal

,6l-

F: -
(6, 1, 2) (2, 5, 3)

(5, 2, 4) (1, 6, 5)

(4, 3, 6) (0, 0, 0)

(3, 4, 1)

z =

|D I
=2. Dual feasible

-
(0, 1, 1)

(0, 0, 0)
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-X2

z =

|D |

=4. Optimal

F: 7 (3, 1, 1)

(2, 2, 2)

(1, 3, 3)

(0, 0, 0)

X2
=

1 -s,

|D I

= 1. Optimal

Integer Matrix

Solution:

z=l x t
= 1 x2

= 2

Example 3.

This problem illustrates one way of doing these computations in

integers throughout. Each ay is written as Ay/|D[ with Ay (the

numerator) an integer. Since the common D is known, only the Ay are

written in each array. The rules for pivot choice are the same as before

and the Ay can be used in place of the ay as only ratios are involved.

Pivoting on AiQ ,j produces new Ay and a new D* as follows:

l

Dt
|

=
|Aio ,j |

A
i ,J

A
lj

j "Jo

the plus sign being used if Ai ,j
is positive, the minus if it is negative.

Since all 2 x 2 subdeterminants of the array of Ay are divisible by D,

the division involved in getting Ay always produces an integer.
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Maximize z =

Subject to :

+ 2x2 + 3x3
+ x4

+ x5

+ 4x3
+ 2x4 + x5

< 41

+ 3x2 + x 3
- 4x4

- xs
< 47

Primal Feasible

X2

z =

1 Xj X2 X X4

z =

1 -x

|D |

=6. Optimal

Solution:

z = 106~ x t
= x2

= 43
t

xs
= x4

=
2o| x5

=

z =

X2
=

-x2 -x
a

-x
5

-x

F: - (3, 3, 4, 0, 1, 5) (0, 0, 4, 0, 4, 2)

(0, 0, 2, 0, 2, 4) (3, 3, 2, 0, 5, 1)

(3, 3, 0, 0, 3, 3) (0, 0, 0, 0, 0, 0)

Additional inequalities:

-
(6, 6, 2, 6, 2, 4) (6, 6, 4, 6, 4, 2) (6, 6, 6, 6, 6, 6)
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1 -X! -x2 -x
3 -Sj -Xi

106 30511
19 -1-223 -2

42 1-132-1
3 340-65

JD |

= 1. Optimal z =

Integer Matrix x4
=

z = 106 x
i
= x2

= 42 X2
=

x3
= x4

= 19 x5
= 3 Xs

=
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Integer Quadratic Programming t

Hans P. Kunzi

Werner Oettli

1. INTRODUCTION

A number of procedures for solving both quadratic programming prob-
lems and integer programming problems now exist [1, 2, 3, 5]. Here we
consider the combined problem. That is, we add to the ordinary constraints

of a quadratic programming problem the requirement that the variables be

integers. An approach to the general nonlinear-integral problem has been

suggested by Kelly [4]. The procedure given here is designed to take ad-

vantage of the special properties enjoyed by problems with a convex quad-
ratic objective function and linear constraints.

The problem in the form we shall consider it is:

minimize Q(x) =pTx+ (l/2)x'Cx

subject to Ax ^ b
x 22: o

x has integral components (1-1)

In the above, p is a given n-vector, b is a given m -vector, x is an n-vector

to be determined, C is an n by n positive definite matrix, and A is an m
by n matrix. Transposes are denoted by primes. It is assumed that the

set of all points x satisfying the constraints is bounded.

2. THE GEOMETRICAL INTERPRETATION

It is convenient to describe the process geometrically and illustrate it

in two dimensions. Suppose that the constraint set is the (convex) poly-

hedron shown in Fig. 1. The point x is the center of the family of ellip-

soids, Q(x) = constant; that is the point at which Q(x) assumes its free

(unconstrained) minimum. The problem is to find the smallest ellipsoid

which passes through a lattice point lying in the polygon.

This will be done by solving a sequence of mixed integer problems. We
should caution, however, that the objective function in these mixed integer

fWe are indebted to R. L. Graves for a number of improvements in the

present version.

303
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Fig. 1

problems is not itself required to be an integer so that our procedure
yields only approximate solutions with present techniques for mixed

integer problems.
To continue with the description, we first determine x^ the point at

which the smallest ellipsoid, Q(x)
= constant, just touches the polygon.

Since C is positive definite, Q is strictly convex and this point is unique.
A next natural step would be to dilate the ellipsoid, Q(x)

=
Qtej), relative to

x until it first passes through an integer point of the polygonal domain.
The iteration procedure we propose to adopt instead consists in the dilation
not of this ellipsoid but rather of a polyhedral approximation of it. At step
k, this polyhedron, Pk , has k faces which are tangent to the ellipsoid. At
the first step, P

i
has one face. The polyhedron, then, is dilated until it

meets a lattice point of the given polygonal domain. The "stretching
parameter," A., in terms of which the dilation is expressed, determines a
unique ellipsoid, say Q(A.), which is, of course, tangent to the dilated poly-
hedron, Pk(\). Let xfc.i (at the first step this is x2 ) be the lattice point en-
countered upon dilating Pk . Now x and x^ determine a line which meets
the ellipsoid Q(x) =

Q(XJ) in a point. Call this point x k+1 . We now construct
the line (more generally a hyperplane), which is tangent to the ellipsoid at

Xfc+i, and use this line to form a new approximating polyhedron, Pk+1 , which
has k + 1 faces.

Now if xfc+i
=

xfc+i, then the problem has been solved. This is true be-
cause the tangent polyhedron in which the ellipsoid is imbedded has passed
through no lattice points in the dilation process, and hence the ellipsoid it-
self certainly hasn't. Otherwise the new polyhedron, Pk+1 , is properly con-
tained in Pk , We now repeat the process by dilating Pk+1 to obtain a lattice

point xk+2 . The procedure terminates in an optimal solution when a lattice

point appears for the second time because the point can be reached only by
the hyperplane which touched it before and this point lies on the dilated
ellipsoid.
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3. THE ALGEBRAIC TREATMENT

Here we shall give a more formal presentation and exhibit explicitly the

sequence of steps. The problem we wish to solve has the same solutions

(the solution need not be unique) as the following problem.

minimize \

subject to Ax ^b
x 2:

x integral

t
T

(x
- x )

^ At' (x
- x ) (3 -1)

The last inequality is to hold for all x such that Q(x)
=
Q(y) where y is the

(unique) solution to

minimize Q(x)

subject to Ax ^ b

x 2:0

The value of the t which is associated with an & is given by

t = p + Cx

To prove that a solution, x, to (1-1) is indeed a solution to (3-1), and to

facilitate the exposition of the constructive procedure, we need the following

sequence of lemmas. In them x denotes the free minimum of Q(x). We

suppose it to be outside the constraint set. It is elementary to show that

x =-C"1

p.

Lemma 1. t'(x
- x )

=
2[Q(x)

-
Q(x )]

Proof: t' (x
- x )

=
(p

T + x
r

C)(x
- x )

Now Cx = -p and Q(x )
=
(l/2)p

fx and these substitutions give the desired

result.

Definition: Given a vector xa , let

Ma = KQ(y)
-

(

and

xa =x

Lemma 2. Q(xa)
=
Q(y). (That is xa lies on the undilated ellipsoid.)

Proof: Q(xa)
= Q((l ""Ma)xo

+ Maxa>
= (l-Ma)Q(xo)
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Lemma 3. Given a vector xa , the problem
maximize t

f

(xa
- x )

subject to Q(x)
=
Q(y)

has the solution x = xa .

Proof: t' (xa -x )
= Q(xa)

+ Q(x)
-
2Q(x )

-
(1/2) (xa -x)' C(xa ~x)

The only variable part of this expression involves the quadratic form C.

This form assumes a minimum value when & - xa , and hence its negative
is a maximum there.

This shows that for a proposed solution to (3-1), say xa , we need only

verify one "t" inequality, namely for x =xa since the left side of the re-

lation assumes its greatest value for this value of x and the right side is a

constant.

Lemma 4. Let xfc, M) ^e a solution to (3-1).

Then \b

Proof: b
- x

o
=
Mb<xb

" xo>

- x )
=

jitb4(xb
"~ x )

~ x )
=
A-btb^b

~~ x
o) -

The last equality is true because the left side assumes its largest value for

x = xb anc* ^b * s a minimum .

Theorem. Let a solution to (1-1) be denoted by xa . Let

^a =
[4(xa

~"
Xo)]/[ta(xa

- x )]. Then xa , A.a is a solution to (3-1). Conversely,
let xb, \b be a solution to (3-1). Then xb is a solution to (1-1).

Proof: Given xa and A.a , the hypothesis and lemma 3 yield
ta(xa

- x )
= Aata(xa

-
xo)

r(xa -x ) <\atf (x-x )

Hence xa , \a is a solution to (3-1). Given Xb, Ab we must have \b =
^SL be-

cause Aa is a solution to (3-1). Using lemma 4, it is easy to show that

Q(xb)
=

(1 -X^) Q(XQ)

A similar expression can be written for Q(xa). Since Q(xb)
=

Q(y) and A.b
=
^a> Q(xb) = Q(xa). This completes the proof.

Turning now to the constructive procedure, the first step is to find the
location of the free minimum of Q(x). As indicated before this is

Then x
t is the solution to the quadratic programming problem

minimize Q(x) = p
Tx + (l/2)x

T Cx
subject to Ax ^b

x ^
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Then set x
t
=x

t
.

We wish to determine a sequence of integer-valued x^ which satisfy

Axfc ^ b and lie on the dilations of hyperplanes tangent to the ellipsoid,

Q(x)
=

Q(xi), and an accompanying sequence of &k which lie on the ellipsoid

and on the line joining xfc to x .

The general step in the procedure can be expressed as follows. Given

the points xj
and

&j
for 1 <

j
<

k, solve the mixed integer problem

minimize X

subject to Ax ^b
t-(x

- x )
^

Xt](xj
-x ); (j

=
1, 2, . . . , k)

x >
0, X ^

x integral, X arbitrary

In this problem, tj
is the gradient vector given by

tj

= p +
Cxj

If we let

Ofj
=

tj(Xj
-X )

Then the problem can be expressed more succinctly as

minimize X

subject to Ax =s b

(tjx ~/3j)/aj
^ \; (j

=
1, 2, . . . , k)

x ^ 0, X ^
x integral, X arbitrary

If the solution to this problem is denoted by x^, Xfc+1 , then xfc+i is given

by

x
o

-Q(x ))/(Q(xk+i)
~

Now if we find a vector, xm , and scalar, Xm , satisfying merely the one

additional "t" constraint

tTm(xm ~ x
o)
- ^mtTm(xm - xo)

then lemma 3 insures that we have a solution because all of the other "t"

constraints will be satisfied. Such a solution will be available if at some

stage xm = xk for m > k, because xm satisfies the earlier kto relation
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t'ktem
" xo)

and xm = &k ^m =
*k (ordinarily A.m > \k) There are only a finite number

of integer points to consider, since the constraint set is bounded. Thus at

some stage Xm =
x^. The only reason for choosing xt

as the solution to

the noninteger problem is to ensure that an integral point in the constraint

set will be found in the process of moving the tangent hyperplane from x
t .

It is perfectly possible to start with an integral point in the constraint set.

It is worth observing that this procedure adds additional constraints or

cutting planes just as ordinary integer programming does. (In the end only
one of them is needed.) Thus the dual method can be used as it is in ordi-

nary integer programming.
There are serious approximation problems since this is a mixed integer

problem with a nonintegral objective function. For the mixed integer finite -

ness proofs to apply, it is necessary to replace the functional by NX (say
N = 1000) and require that NX be an integer. Then the procedures of

either Gomory or Dinkelbach can be applied.
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ON DIAGONALIZATION METHODS IN INTEGER PROGRAMMING

Richard Van Slyke and Roger Wets

ABSTRACT

An important area for improvement in existing integer programming
codes is in the easy generation of efficient cutting hyperplanes; here we
approach this problem using a triangular canonical form. First an algo-
rithm is given based on Gomory's all-integer integer programming algo-
rithm, which constitutes a first step in this direction. This procedure is a

practical analog of a deepest cut method discussed in the second part.

Finally, a brief outline and flow diagram for the algorithm are given and
illustrated.

We assume that we have at hand an integer program where all the co-
efficients and constant terms are integers. The functional is to be maxi-
mized. The problem can be written in a parametric form due to Tucker:

Maximize x subject to
Xj integer, 3

=
0, . . . , n; Xj

^ 0,

j
=

1, . . . , n; and

x = b + C t +
Cltt

+ ...+ cktfc

i
= b

t
+ a10t

+ auti
+

. . . + alktk

xm = km + amot + amlt!
+ . . . + amktk (1)

Then a simple transformation is made to the following equivalent problem

Maximize x where
Xj

^ 0, (j
=

1, . . . , n); and
Xj

are integers

(j
=

0, . . . , n) subject to

x =b - t

*i
=

*>i
+ a10t

-
tj .

x2
=

bg + a20t +

bn + anoto
+ am 1! + an2t2 + + ank+1tk+1 (2)
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Because the columns of (2) are ordered lexicographically, ''efficient

cuts" can be easily found.

A simplified variant of Gomory's all-integer integer programming algo-
rithm leads to the solution in a finite number of iterations.



An Accelerated Euclidean Algorithm for Integer

Linear Programming

Glenn T. Martin

THE PROBLEM

Many optimization problems may be formulated as linear programming

problems in which the solution variables must take on integer values.

Development of linear programming into a routine mathematical tool

has intensified the search for associated computational procedures to

handle the integer programming problem. Until recently, however, prog-

ress has been meager both in the area of mathematical theory and in the

area of application. But in 1958, R. E. Gomory [1] proposed a rigorous

solution procedure which was shown to converge in a finite number of

steps. Later he proposed a modification of this method as an "all-integer

algorithm" [2], Both these techniques make use of the simplex procedure

and apply principles of the Euclidean Algorithm [3] . In each case a set of

suitable "cutting planes" is applied to the system in such a way that non-

integer solutions are occluded and the desired integer solution ultimately

found.

Both of Gomory's techniques have met with limited success in applica-

tion. Nonetheless, many computational difficulties have been encountered

even on very small problems. Larger problems very modest by normal

linear programming standards often persistently refuse to converge. It

seems, therefore, that a means to accelerate convergence is necessary if

reasonably complex problems are to be routinely solved.

An Accelerated Euclidean Algorithm has been investigated as a means

of reducing computational effort involved in solving integer linear pro-

gramming problems. The procedure is a direct extension of Gomory' s

original proposal. The technique will be illustrated and modifications

to the earlier technique pointed out by use of a small example.

Example Problem

Minimize

z = -2x
t

- 3x2

Subj ect to

311
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2Xi + 5x 2
^ 8

3xj
+ 2x2

< 9 (2)

and

x
t , x2

=
0, 1, 2, . . . (3)

The variables x3 and x4 are added as slack variables and the array shown

in Fig. 1. The identity columns are omitted and basis vectors are indicated

by row identification.

Procedure

A. Apply the (composite) simplex algorithm to (1) and (2). If (3) is met

the desired solution has been attained; otherwise

B. Apply the Accelerated Euclidean Algorithm, steps Bl to B7, until an

integer solution is attained, then reapply the simplex algorithm as in

step A. Thus:

1. Select a noninteger row vector, p, from the set.

2. Abstract the "Gomory" restraint, s, from p. This is the positive

fractional components of the elements of p.

3. Determine k, the dual simplex pivot column for the row, s.

4. Compute p
f
, the Gaussian transform of s on p only (contrast to

earlier procedure which transformed the entire set).

5. Continue to abstract S T restraints and transform p
T until the k

component of p
r becomes integer. Note that the index, k, as de-

termined in step B3 is retained throughout this process. A special

algorithm has been devised for carrying out this step. (This also

contrasts to the earlier procedure.)
6. Using the original restraint, p, and its final form, p

Tt
, perform a

"reverse inversion," i.e., a reverse Gaussian transformation, to

find the "consolidated restraint," r, which generates p
TT from p.

7. Append r to the entire set and perform the indicated Gaussian
transformation. Iterate this process beginning with step Bl until

an all-integer solution is attained. Then return to the simplex
algorithm (step A).

Accordingly, in our example, the simplex algorithm [4, 5] is applied and
the resulting optimal-feasible solution displayed in Fig. 2. D is the de-

INITIAL MATRIX

b ^ xj

z 23
X

3 8 2 5 |D|=1
x4 9 3 2

Fig. 1
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SIMPLEX SOLUTION 1

IP I

=

p = x
t , k = x3

Fig. 2

terminant of the matrix, the product of all pivot elements. Since the

solution is not integer, a noninteger row, called p, having the largest
fractional component in b is selected. The modulo one components are

extracted and appended as s, however, the only use made of this row at

this time is to select k, the simplex dual method pivot column [6].

Now p is subjected to accelerated reduction via the following algorithm.

(Primes refer to the next subsequent stage of numbers.)

a
p

=Ip +a+/|D|

a
pk

= a*/ |D | (definition)

V = I
p

Since ( |

D T

|

-
a*)/ |

D
|

= an integer, it is convenient to split the p com-

ponents, ap , into integers, Ip , and positive fractional components, a
p/ 1

D
[,

and operate simply on the latter, splitting out any integers generated and

adding to the other integers. Finally, when
apk

becomes integer the

residual components are added to form the transformed row, p". This

process is tabulated in Fig. 3. The p" is result of applying five Gomory
restraint stages to p.

ACCELERATED REDUCTION 1

|D
T

|

- a* (k) FRACTIONS INTEGERS
D D; |

DP 1

1 Xg b X4 b X4

11 9 1/9 -2/9 7/9 5/9 2

9 7 1/7 -2/7 7/7 5/7 2

7 5 1/5 -2/5 05/5 30
5 3 1/3 -2/3 00 3131 1/1-200 31

b 2:4X3

p" = 3 1 -2

Fig. 3
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Now we do a "reverse inversion" step; thus,

ar
=
(ap-ap")

ark/apk

This operation is summarized in Fig. 4. The resulting restraint and

its application to the system is shown in Fig. 5. Since this is integer, we

return to the simplex procedure.
The process of integerization rendered the solution nonoptimal; there-

fore, a new simplex solution is generated in Fig. 6. This is noninteger, so

we select a p row, extract s and determine k (in this case we have de-

liberately violated the criteria of selecting the largest fractional com-

ponent of b) .

Figure 7 shows the accelerated reduction, and Fig. 8 shows the reverse

inversion step for the new restraint. Its addition to the system and the

result is displayed in Fig. 9. Since this satisfies both the simplex and the

integer requirements, the final solution has been obtained.

REVERSE INVERSION 1

(k)

b X4 Xg

p
= 29/11 5/11 -2/11

p" = 3 1 -2*

p-p" =^4/n -6/11
r

*

=-2/11 -3/11 -1/11

Fig. 4

APPLICATION OF r 1

b X4 Xg

z -6 1 -5

Z I -I 4
x

3
2 3* -11

Fig. 5
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SIMPLEX SOLUTION 2

x
l

p = x
lf
k = x

3

Fig. 6

ACCELERATED REDUCTION 2

|
D T

|

- a* FRACTIONS INTEGERS

|D | |D_
f

|
|

ED'
|

x4 b s b s^

3 2 1/2 -1/2 1/2 2/2 2 1

2 1 1/1 -1 1/1 22

Fig. 7

REVERSE INVERSION 2

Reduction of Positive a*

It is noted that in the accelerated reduction step, fractional components

are always interpreted modulo one at each stage. The signs of

(
|

D f

|

-
a*) / 1

DD 1

1

and of fractions must be algebraically maintained. Any

negative fractions are interpreted modulo one and the resulting negative

integer added to the integer component. Fig. 10 illustrates this with

positive a*.

DISCUSSION

It is evident that the strongest "cutting plane'
' available from a

particular row with a particular pivot column is likely to represent a
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APPLICATION OF r 2

ID'

2

X2

ACCELERATED REDUCTION WITH POSITIVE a*

b 3q xg

p
= 11/4 1/4 7/4*

|D
T

|- a*
(k) FRACTIONS INTEGERS

iDl |D_
f

l |DD
T

| Xg b Xi b x^

4 3 -1/3 7/3 -3/3 -1/3 2

2/3 1 -1
3 1 -2/1 7/1 0-4 1-1

b x
i

x2

Fig. 10

complex multiple-sum of the restraints immediately apparent in a non-

integer system. Since the original procedures for choosing a restraint

primarily examined only those fairly readily apparent, obviously the

prospect of a "good" choice was quite remote.
In selecting a noninteger row, we simply take the row containing the

largest available fractional component of interest. It is not clear that this

is necessary or even helpful with the Accelerated Euclidean Algorithm,
i.e., a random choice may do as well, or better. We simply don't know.

The procedure used here operates much like the previous technique,
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however, (a) restraints are applied only to one row until the pivot column

element becomes integer, with later application to the entire set, and

(b) this process of applying restraints is allowed to destroy optimally as

well as feasibility. Thus a composite simplex algorithm is essential to

effective use of the new procedure.

Computing Experience

We have solved only a handful of problems via this algorithm. We can

report however that for small problems which we easily solved by earlier

methods, the new procedure has proved much more efficient in all cases.

Perhaps 75 per cent of the
"
integeriz ing" iterations were typically saved

(although this is not necessarily meaningful because of possible non-

representative problems). More importantly, problems which we found

impossible to handle with earlier procedures have generally yielded to

the new technique provided digital difficulties could be avoided. In this

category is a 54 x 442 system which is the largest problem we have

attacked.

CONCLUSION

The Accelerated Euclidean Algorithm seems to offer computational ad-

vantages over earlier Euclidean methods for integer linear programming.

However, more comprehensive experience is needed before a thorough

evaluation of this early promise can be made.
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Flows In Networks

D. R. Fulkerson

This survey will summarize, in a very brief way, that part of linear

programming theory encompassed by the phrase "transportation prob-
lems" or "network flow problems." The latter name better describes the

mathematical content of the subject and is less committed to one domain of

application. This paper will not say too much about applications, but will

instead stress some of the more important notions and theorems in this

subject.
Before getting into some of these concepts and theorems, a word should

be said about the history of network flow problems. Just where the subject

may properly be said to have started depends on how much latitude is

allowed in interpreting the phrase "flows in networks." Certain static

minimal cost transportation models were independently formulated and
studied by Hitchcock [13], Kantorovitch [15, 16] and Koopmans [18] in the

1940's. A few years later, when linear programming began to make itself

known as an organized discipline, G. B. Dantzig showed how his simplex
method could be simplified and made more effective for this class of prob-
lems [1]. It would not be inaccurate to say that the subject really began
with the work of these men on the very practical problem of transporting a

commodity from certain points of supply to other points of demand in a way
to minimize shipping cost. However, dismissing the formulational and

applied aspects of the topic, and with the advantages of hindsight, one can

go back a few years earlier to work of P. Hall on set representatives [12],

or Konig, Egervary and Menger [17] on linear graphs, and relate this

work in pure mathematics to the practically oriented subject of flows

in networks also. One can even go further back to the Maxwell-Kirchoff

theory of electrical networks, although this is not a linear problem, and

say the subject began there. Actually, the earliest reference I know of

to work that can be regarded as in this area is a paper by Monge in 1781.

So much for history. We now turn to some of the main concepts and

theorems about network flows.

BASIC CONCEPTS

Figure 1 shows a network and introduces some notation. The six

circles in the figure are called nodes. They are indexed by i, i running

319
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,
6^

7y

Nodes i
,

i =
I
, ,

n

Arcs i j (from i to j) , i, j
-

I, ,
n

Arc copocities c
\ j

>

Fig. 1

from 1 to n. In addition there are directed arcs, denoted by ordered

pairs (i, j), to be interpreted "from i to j," i and j running from 1 to n.

There are also arc capacities, nonnegative numbers denoted by c^ . For

instance, the arc (1,2) has capacity 7; the arc (2,4) has capacity 6. Capac-

ity simply means an upper bound on the amount of flow that can take

place in an arc in the direction of its orientation in some steady state

situation. For instance, 8 units per unit time can pass from 3 to 5.

It turns out that it really doesn't make any difference, for most flow

problems, whether oriented arcs or unoriented arcs are assumed. In

some problems it does make a real difference, but we'll assume directed

arcs uless otherwise stated.

Figure 2 shows a flow through the network from the node 1 on the left

3,3 8,5

Flow f from 1 (source) to n (sink) of volue v

(v

i = 1

i=2,-,n-1
-v i = n

(2) 0<f u <
Cij

Problem : construct flow from source to sink of maximal value

Fig. 2
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8,7/

I
SOUI

sourc

From (I) and (2),

Cut separoting source and sink: partition L,L of

nodes with source in L, sink in L

i in L

j in L
iinL
j in L .

Fig. 3

to node 6 on the right. This flow is an assignment of numbers to the

arcs of the network here shown by the second number on each arc such

that for any intermediate node (here, nodes 2, 3, 4, 5), conservation

holds, that is, flow-in equals flow-out. For example, at node 2 there are

4 units coming in and 3+1 = 4 units going out. Because of the conservation

condition at nodes 2, 3, 4 and 5, the net flow of 7 units out of node 1 is

equal to the net flow of 7 units into node 6. In general, Eqs. (1) describe a

flow f =
(fy)

from source to sink of value v, that is, v units get through

the network. In addition there are capacity constraints and nonnegativity

requirements (2).

Given this formulation, a very natural problem that suggests itself is:

Push as much as possible through the network. That is, maximize the

variable v subject to the equations (1) and inequalities (2). This is probably

the most fundamental problem about flows in networks, and we shall

state some of the basic theorems about this problem. But in order to do

this, the notions illustrated in Figs. 3 and 4 are needed.

Figure 3 introduces the notion of a cut in a network. The nodes of the

network are split into two sets L and IT, one of which contains the source

and the other the sink. This division is called a cut separating source and

sink. If the flow equations are added up over the nodes in the source-set of

a cut, then the inequalities (2) yield the result shown in Fig. 3. The value

v of a flow f is equal to the net flow across any cut, and is hence bounded

above by the capacity of the cut. We shall see in a moment that equality

holds (i.e., the upper bound is achieved) for some flow and some cut.

Figure 4 illustrates one way of increasing the value of a flow; namely,

by using what might be called a flow-augmenting path, shown by the dotted

arcs, which form a path from source to sink. Some arcs are traversed
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7,4 +

with their orientation, some against their orientation, in going from
source to sink. In order for a path to be flow-augment ing, we want the

property that for the forward arcs (those traversed with their orientation),
the arc flow is less than capacity, whereas for the reverse arcs of the

path (those traversed against their orientation), the arc flow is positive.
Thus if the flow is changed by adding e > to the flow in forward arcs of

the path and subtracting e from the flow in reverse arcs, a new flow is ob-
tained whose value is units greater than the old flow. The largest value
for in Fig. 4 is e = 2 (the bind coming on the reverse arc), so the new
flow has value 9. it turns out that it suffices to look for flow augmenting
paths in order to maximize flow through a network [3].

Figure 5 shows the flow that is obtained if the change e = 2 is made
along the flow-augmenting path in Fig. 4. Now observe the cut shown by
the wavy line. Every arc that goes from source-side to sink-side in this
cut is carrying flow at capacity. On the other hand, any arc that comes
back across the cut in the wrong way carries no flow. Hence equality
holds in the inequality of Fig. 3, and this flow is consequently maximal,
while the cut is minimal. This illustrates the most fundamental theorem
about maximal flow.

6,5

8,7
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THEOREMS ON MAXIMAL FLOWS

There are several important theorems about maximal flow. The first,

shown in Fig. 6, says that the situation illustrated in Fig. 5 is general.
One of the several proofs [3] of this theorem yields the other two

theorems of Fig. 6 as corollaries. The content of the construction theorem

is: To force more through a network, it suffices to look for a path that

augments the present flow. To make a real construction out of this, some

good way of searching for a flow-augmenting path is needed. There are

such ways, combinatorial in nature, that are quite good computationally.
The integrity theorem follows from the construction theorem, since if

all arc capacities are integers, and the initial flow is integral, then the

flow change e made along a path will be an integer, yielding a new integral

flow. Of course, more fundamentally, the integrity theorem follows from

the fact that the constraint matrix of this linear program has the total uni-

modularity property: Every subdeterminant has value +1, 1, or 0. But it

is not necessary to look at determinants in order to prove the theorem. It

drops out of the proof of the max-flow min-cut theorem, as does the con-

struction theorem.

MULTI-COMMODITY FLOWS

We've been talking about a flow of a single commodity from source to

sink. A multi-commodity flow problem [2, 4] is illustrated in Fig. 7.

There are several sources, indicated by the s's, and several sinks, indi-

cated by the t's, with a pairing between sources and sinks. Source 1 ships

to sink 1; source 2 ships to sink 2; source 3 ships to sink 3, but the three

simultaneous flows share capacities on arcs. This problem doesn't have

the nice simple features that the single-commodity problem has. A hint

that this is so can be gotten by looking at the examples in Fig. 7. Suppose

each arc has unit capacity in the left network, for instance, and it is de-

sired to force as much as possible through the network in this multi-

commodity fashion. With integer flows, the best one can do is a flow of

Max-flow min-cut theorem: for any network, the maximal

flow value from source to sink is equal to the minimal

cut capacity of all cuts separating source and sink

Construction theorem: a flow f is maximal if and only i-f

there is no f-augmenting path

Integrity theorem : if all arc capacities are integers,

there is an integral maximal flow

Fig. 6
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MULTI-COMMODITY FLOW PROBLEMS

Fig. 7

value 1, since a 1-unit flow of each commodity blocks flow for the other

two commodities. On the other hand, using fractions, one can send a half-

unit of each commodity, giving a total How of 3/2. The right network has

the same features as the left, but for the undirected case.

SOME COMBINATORIAL THEOREMS

Consider the single-commodity problem shown in Fig. 8. Suppose sup-

plies of a commodity are available at certain points in a network, and de-

mands are made at other points. In the network shown (ignoring the dotted

FEASIBILITY OF SUPPLIES AND DEMANDS

_4
74<

\

/
/
8

(<QI

,
i in S

=
,

! in R

< -bt ,
I in T

(2) 0< f u
< c

tj

Fig. 8
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arcs), the supplies are 7 units at node 1, 2 units at node 2, and the de-

mands are 1 unit at node 7, 8 units at node 8. When can the demands be

satisfied from the supplies ? This question was asked and answered by Gale

several years ago [10] . The idea is to convert this problem to a maximal

flow problem by adding a first fictitious node the source node and

another fictitious node the sink node and putting in the dotted arcs as

indicated. Now interpret the supplies and demands as capacities of these

arcs in the obvious way, and ask: Can 9 units be moved from source to

sink? If they can, clearly both sink arcs are saturated and the demands are

satisfied. So the question can always be answered by solving a maximal

flow problem. If this analysis is extended a bit further, an interesting

theorem drops out of this situation, as illustrated in Fig. 9.

The necessity of the condition in the supply-demand theorem is ob-

vious and there's no interest there. The sufficiency is not obvious and is

quite interesting. To paraphrase iti Select any subset of the demand nodes

and ask whether enough can be put into that subset to meet the sum of the

demands over the subset without worrying where the flows go individually.

If this can be done for all subsets of demand nodes, then the supply-

demand constraints are feasible. This is a nice generalization of a well-

known theorem in combinatorial mathematics due to P. Hall, which has to

do with systems of distinct representatives for sets [1 2] . This theorem is

stated at the bottom of the figure. To interpret it a different way, one might

think of the sets as being jobs, and the elements as men, with the object

being to assign men to jobs. The men are qualified only for certain jobs.

For example, man 1 is qualified for jobs a, b and c, etc. Then ask if it is

possible to supply men to these jobs, one man to each job and no man

doing more than one job, when given such a configuration . Hall's theorem

Supply-demand theorem: the supply-demand constraints (2) and

(3) are feasible if and only if, for every subset T' c T

of demand nodes, there is a flow (depending on T
7

) that

meets the aggregate demand over T' without violating the

supply limitations at nodes of S

Distinct representatives theorem: given a

family of n subsets of some set, there

is a system of distinct representatives

for this family if and only if every k

of the subsets collectively contain at

least k distinct elements, k =
l, ,n

Fig. 9
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(Conjugate sequence )6633220

54443 1 1

Existence theorem for (0,1) -matrix having specified row and

column sums. There is an m by n (0,1 ) -matrix having row

sums a-
t ,

I = !,*-, m,and column sums
bj , j

=
I, ,

n
,

if

k k

b. <and only if

Here ^ > b2
> - > b n

Fig. 10

says: Take any subset of the jobs (such as indicated by the dotted oval in

the figure) and examine all of the men who are qualified for some job in

that subset; if there are enough men (that is, k men if k jobs were
singled out) who are qualified for some job in the subset, and if this is

true for all subsets of jobs, then one can indeed assign men to jobs. Here
it is not possible because the dotted subset of these jobs leads back to

only two men. Again, of course, the necessity is obvious. The sufficiency
is the interesting part.

To prove Hall's theorem from the supply-demand theorem, the

integrity theorem mentioned previously is needed in order to single out
an integral flow. That's one of the uses of the integrity theorem; it pro-
vides a flow approach to many combinatorial problems.

Another combinatorial problem that can be solved using flows is illus-

trated in Fig. 10. It may not be the easiest way to solve it, but it is a
mechanical way. That is one of the advantages of using flows on such a

problem: If the problem can be formulated in terms of flows, then little

subsequent imagination is required. The problem here is to construct a

(0,l)-matrix having stipulated row and column sums. Of course, if just a

nonnegative matrix is required rather than a (0,1) -matrix, the conditions
are simple: the total of the row sums must equal the total of the column
sums. But for a (0,1) -matrix, the situation is not that simple. The
theorem, due to Ryser [21] and Gale [10], says the following. First,

arrange the columns in monotone decreasing order. Now take the row
sums and represent them by dots placed as far to the left as possible.
Count the dots in the columns: 6, 6, 3, 3, 2, 2, 0. This sequence is con-
jugate to the row-sum sequence, that is, the two sequences are conjugate
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X

327

Circulotion theorem: there is a flow f satisfying the constraints

(fij-fji) =0, all no'des i,

<
It]

<
fij

< c^, all arcs ij ,

if and only if, for every subset X of nodes,

I llj
< I Cij

iinX iinX

jinX jinX

Fig. 11

partitions of the same integer. In the figure, the conjugate sequence is

denoted by a*. Such a (0,1) -matrix exists if and only if the partial sums of

the column-sum sequence are dominated by the partial sums of the row-

conjugate sequence. Here there is a (0,1) -matrix having the given row and

column sums.

There is a very simple rule for constructing such a matrix. Simply

take any column and put its 1's in the rows having the biggest sums,

MINIMAL COST FLOWS

Problem : given capacities

and unit costs Oij,

construct a flow from

source to sink of value

v that minimizes the

flow cost G
ij

f
ij

Construction theorem : let f be a minimal cost flow of value v.

Then the flow f' obtained from f by adding C >0 to the

flow in forward arcs of a minimal cost f-augmenting path,

and subtracting from the flow in reverse arcs of this

path, is a minimal cost flow of value v + e

Fig. 12
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delete the column, reduce the appropriate row sums, and repeat the

procedure in the reduced problem. This rule will construct such a matrix

if there is one, and will lead to trouble otherwise. If this rule is applied

by first selecting the column having smallest sum, then next smallest, and

so on, the resulting matrix has some rather remarkable properties [9],

Figure 11 shows another interesting feasibility theorem due to Hoffman

[14], which is concerned not with flows from source to sink but rather with

circulations. Assume flow in equals flow out at every node, and put a

lower bound on flow in each arc, denoted by ly here, as well as an upper
bound, and ask: When can you satisfy these constraints ? The resulting

theorem is one of Hall-type. The constraints are feasible if and only if, for

every subset X of nodes, the sum of the lower bounds on arcs pointing into

X does not exceed the sum of capacities on arcs pointing out of X. Again
this theorem can be proved using the max-flow min-cut theorem.

It should be remarked that the integrity theorem holds for the feasibility
situations that have been presented; that is, if the given data are integers,
and if there is a feasible flow, then there is an integral feasible flow.

MINIMAL COST FLOWS

Another important problem concerning single-commodity flows is the

minimal cost flow problem. In Fig. 12, a network is given with arc

capacities and a source and sink. Also a cost per unit flow for each arc is

given. (The second number of each pair in the figure is the cost, the first

number is the capacity, and the circled number the flow.) Then ask: How
can v units be sent from source to sink at minimal cost ? (The figure
shows a minimal cost flow with v =

5.) Perhaps the most basic theorem
about this problem is the construction theorem stated in the figure . Take
f, which is assumed to be a minimal cost flow of a certain value. Look for
a flow augmenting path with respect to f that has the least path cost of all

flow-augmenting paths with respect to f. The path cost here (the dotted

path) is obtained by summing the costs for forward arcs, and subtracting
the sum of costs for reverse arcs. The path shown has cost 10. If you
alter the flow along a minimal cost flow-augmenting path, then the new
flow is a minimal cost flow corresponding to the new flow value. So to

solve minimal cost flow problems, all that is needed, assuming the

process has been started, is a routine for searching out a minimal cost
flow -augmenting path with respect to a given flow. There are very
efficient combinatorial methods for doing this. And starting the process
is no problem if all arc costs are nonnegative.

There are many applications of minimal cost flows. Conspicuous
among them are the Hitchcock problem and PERT -scheduling problems.
Another application to maximal dynamic flows is described in [6] . Sup-
pose a network is given where each arc of the network has a capacity and
also has a traversal time. The object is to send as much through the net-
work as possible in a given time interval. If capacities are constant over
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time, there's a very simple way of doing this as a minimal cost flow

problem.

MULTITERMINAL FLOWS

Figures 13 and 14 get into another area that has been explored pri-

marily by Gomory and Hu [11]. Here the concern is with multiterminal

flows; this to be distinguished from the multicommodity flows mentioned

earlier, in the sense that, while attention will be focused on many flows,

MULTI-TERMINAL FLOWS

3
V3>1

s.6

Problems:

(a) Let v r denote the maximal flow value between i and j.

Determine the flow value function v =
(vij) efficiently.

(b) What are conditions on a given v=(v ij )
in order that

it come from a network?

Fig. 13

(a)

(b)

A symmetric, nonnegative v
(v^-)

is realizable as the

flow value function of an undirected network

if and only if the "triangle" inequality

Vg
> min (vik ,

v
kj )

holds for all i, j ,
k

Fig. 14
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we shall not be dealing with simultaneous flows. Instead, questions are

asked about all pairs of nodes taken as source and sink for a given net-

work. The results here are for undirected networks, and are very pretty.

Gomory and Hu considered several problems. One is this: Suppose we

let vy denote the maximal flow value between nodes i and j . How do you

determine the flow value function v in an efficient manner ? Clearly,

v =
(vy)

can be determined by solving n(n
-

l)/2 single-terminal flow

problems, but it is possible to do a whole lot better.

The second problem is this: Given v =
(vy),

when is v the flow value

function of some network ?

Let's look at (b) first. It says: A symmetric, nonnegative v is

realizable as the flow value function of an undirected network if and only

if a kind of "triangle'
'

inequality holds: For any triple of nodes i, j and k,

then vy must be greater than or equal to the minimum of (V&, v^j).
This

triangle inequality puts very severe limitations on functions v that are

realizable. Among other things, it implies that, numerically, v can take

on at most (n
-

1) distinct values if n is the number of nodes in the

network.

We turn now to (a) . The intent here is that any network is flow-

equivalent to a tree. An equivalent tree for the example is shown. For

instance, suppose you ask yourself: What's the maximal flow between

1 and 4 in this network ? Go to the equivalent tree and proceed from

1 to 4 by the unique path joining them, and take the minimum of the

numbers you encounter here 6 and that's the maximal flow value.

The number 6 is the capacity of the cut separating 1 and 3 from 2, 4, 5, 6

(or the cut separating 1, 2, 3, 5 from 4 and 6) in the original network.

Thus there are only (n 1 ) cuts that are relevant in solving the multi-

terminal maximal flow problem for all pairs of nodes, and each of these

is represented by an arc of the equivalent tree. Moreover, such a cut-

tree can be constructed by solving precisely (n
-

1) single-terminal

maximal flow problems, as described in [11].

This survey of basic concepts and results about flows in networks has

necessarily omitted everything in the way of detail and also has not even

mentioned much substantial work in this field, I hope that it has at least

imparted some knowledge and feeling for the subject.
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MULTI-COMMODITY NETWORK FLOWSt

T. C. Hu

ABSTRACT

A network is a set of nodes Nj connected by branches with nonnegative

branch capacities by which indicates the maximum amount of flow that can

pass through the branch from NI to
Nj.

Given all by, there is a maximum
flow f(i;j) from Nj to Nj using all branches. The max flow min cut theorem

of Ford and Fulkerson [1] is to find the maximum flow of one commodity.

The present paper deals with simultaneous flows of two commodities in a

network.

Let f(k;k
r

) be the value of the kth flow from Nfc to Ntf . Let c(k;k') be the

capacity of a minimum cut separating N^ and NkT
; c(l

-
2; l

r - 21

) be the

capacity of a minimum cut with NlfN2 in one component and N1r,N2 t in the

other component; c(l
-

2' ; l
f -

2) be the capacity of a minimum cut with

N!,N2
f in one component and N^ ,N2 in the other component.

Under the assumption that by
=

bji,
the two flows are feasible if and

only if

f(2;2
T

) <c(2;2
T

)

f(l;l
f

)
+ f(2;2

f

)
^ min [c(l -2; l'

- 2
T

), c(l -2T

; 1
T

-2)]

and

maxf(l;l
T

)
+ f(2;2

T

)
= min [c(l

-
2; 1' -2'), c(l -2 T

; 1
T

-2)].

An algorithm similar to the labeling method for constructing the two

flows is obtained.
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TRANSPORTATION PROBLEMS WITH DISTRIBUTED LOAM

M. D. Mcllroy

ABSTRACT

Let F be a distribution of load over a space X; let d(x
- x ) be the cost

of servicing a load at x from a source at x ; and let x
i?

i = 1, 2, . . . , n, be

given locations of n sources. We seek an optimal assignment of load to

sources, according to distributions $[, minimizing

i X

subject to the constraints that all loads in any set S are served

and that the capacity of source x^ is limited by

f
J

An optimal solution consists in a set of exclusive and exhaustive regions

Ri which form the supports of $i. Points on the boundary between Rj and

Rj satisfy

d(x Xj)
-
d(x -Xj)

= const

(In particular, with cost proportional to distance, each source serves a

simply connected region whose boundaries are hyperbolas.)

The regions are characterized by linear programming dual "potentials,"

YI, which determine the boundary loci according to

d(x-xi) -d(x-
Xj

) =Vi-Vj

In terms of potentials, the problem of finding the n distributions $1 is

equivalent to finding n numbers Vi (from which regions RI follow by the

preceding formula) such that

335
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f dF === Mi
J
*i

with the complementary slackness condition that strict inequality in the

first formula is accompanied by equality in the second.

Due to their geometrical simplicity, distributed transportation problems
often admit rough-and-ready solution techniques. Such methods based on

our duality theory are discussed.



LEAST COST ESTIMATING AND SCHEDULING
WITH LIMITED RESOURCES

C. F. Fey

ABSTRACT

J. E. Kelley and F. D. Fulkerson developed algorithms for determining

least cost project schedules for projects composed of many activities which

must be performed in certain sequences. They assume that unlimited re-

sources are available.

In practice, only a limited amount of scarce resources is available at

any given moment. This paper describes an algorithm for generating least

cost project schedules when the available resources are limited. An algo-

rithm for one limited resource is developed in detail.

The algorithm requires a project defined by a network of activities, the

cost-time relationship for each activity, and the amount of scarce resources

available at any time. Given that the project must be completed in a certain

time, schedules are determined which minimize the project cost under the

constraints imposed by the scarce resource. A series of these minimum

cost schedules is generated, each differing from its predecessor by the

time allotted to the project. The set of schedules spans all feasible project

durations .
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MATHEMATICAL PROGRAMMING SOLUTION OF TRAVELING
SALESMAN EXAMPLES

Frederick Bock

ABSTRACT

A mathematical problem which he designated the messenger problem

(Botenproblem) was stated by Karl Menger [1] on February 5, 1930, at a

mathematical colloquium in Vienna as follows (in translation) :

We designate as the Messenger Problem (since this problem is en-

countered by every postal messenger, as well as by many travelers)

the task of finding, for a finite number of points whose pairwise dis-

tances are known, the shortest path connecting the points. This prob-
lem is naturally always solvable by making a finite number of trials.

Rules are not known which would reduce the number of trials below

the number of permutations of the given points. The rule, that one

should first go from the starting point to the nearest point, then to

the point nearest this, etc., does not in general result in the shortest

path.

Renamed the traveling salesman problem, this problem in various versions

has received much attention in recent years because of both theoretical

interest and practical importance. However, the methods so far proposed

lack in power and elegance as compared with algorithms for related prob-

lems such as the assignment problem and the minimum tree problem.

Mathematical programming solutions have been obtained for more than

30 examples of the following traveling salesman problem, including all

examples found in the literature: Given an n x n matrix of nonnegative

integers cy (some of which may be arbitrarily large), find values xy that

minimize

and satisfy

1. Primary constraints

a. Matrix constraint

ijS

b. Line constraints

i. Row constraints

339
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xy
^ 1 = b

t
i S (3)

JeS

ii. Column constraints

E xij^ 1=bj
jS (4)

iS

c. Submatrix constraints

x ^nk -l=bk kQ (5)

d. Boolean constraints

Xij{0,l} ijS (6)

2. Secondary constraint

E a
ij
x
ij -^ (7)

1,JS

S denotes the set of matrix indices, {l, 2, . . . , n}. Sk denotes a proper
subset of S having nk elements. Q is the set of indices over which k ranges,

i.e., {1, 2, . . ., (2
n
-2)}. The secondary constraint (7) is a linear inequality

implied by the nonlinear (Boolean) constraints (6) in conjunction with the

linear constraints (2) -(5). A secondary constraint is required in some

examples to eliminate fractional solutions in the x^ that satisfy all primary
linear constraints and yield a smaller value of z than does any integer
solution. Nonnegative integer values of the ay and b2 of the secondary
constraint are developed as necessary in the solution of particular examples;

initially they are zero valued.

The dual problem is: For values of bj, ty, bj,
bk, fy, and ay as defined

above in connection with an n x n matrix of data
cy,

find values u
t , u^, Uj,

uk, and u2 that maximize

w =
uibj

+ E u
i
b
i
+ S u

j
b
j

+ E ukbk + *2b2 (8)

ieS jeS keQ

and satisfy

u
t
+

Ui
+

Uj
+ a

ijk
uk

+
aijU2

^
cy ij S (9)

The coefficients
ayk

have the value 1 if i,j Sk and otherwise 0. Add
auxiliary integer variables ylf yi? yj, yk, y2 , and vy to the left sides of

constraints (2), (3), (4), (5), (7), and (9) respectively to measure infeas-

bility and slack and to convert inequalities to equations. Restrict u
t
to be

a nonnegative integer, uj, Uj,
uk, and u2 to be nonpositive integers. In any
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optimum feasible solution yj
=
y^

=
y*

=
y2

=
0, yk 0, vy

^ 0, uy = vx =

for all subscripts, and z = w.

The method developed for this problem is an extension of the Hungarian
method for the assignment problem [2, 3]; the latter is defined by (l)-(6)

above with the omission of submatrix constraints (5). The present method
has three phases and throughout shares these characteristics with the

Hungarian method: it is dual feasible, primal feasible in the Boolean con-

straints, and all integer; at each iteration there is exhaustive search,
limited to those cells ij with

vy
=

0, resulting in a maximal set of xy
= 1

compatible with respect to the constraints being enforced, and a minimal
cover defined by unit changes in the u's, except u

lf with 2x - n = ZAu. The
cover is then applied with maximum multiplicity, permitting a correspond-
ing increase in u

t
and a strict increase in w. The search and revaluation

are iterated until demonstration of infeasibility, attainment of the desired

solution, or (as at present) termination of the phase.
Phase 1. By (5) make cy arbitrarily large for i

=
j. Comply with (3),

(4), (6). Find the minimum assignment by the Hungarian method. Covers
consist of lines only. Terminate with (2) -(6), but not (5), satisfied. At

most, nonzero weights ul9 n 1 of u^, and n 1 of
Uj

are necessary.
Phase 2. Change one xy from 1 to in each subcycle resulting from

phase 1. Comply with (3) -(6). Covers consist of lines and submatrices;
the latter may occur in a negative sense (relaxation of u^) as well as in a

positive sense. Weighted submatrices are always pairwise disjoint or con-

tained one in the other. Terminate with (3) -(6) but not (2) satisfied. The lat-

ter cannot be satisfied because there is no minimal cover consisting of

lines and submatrices and there is a fractional solution better than any

integer solution. At most, nonzero weights 14, n 1 of
u^,

n 1 of a,-, and

n 3 of u^ are necessary.
Phase 3. Form increments to the secondary constraint (7) by making

Aay the sum of (1 if vy
=

0) plus (1 for each submatrix k such that ayk
= 1 and ufc < 0), and Afy the sum of xy for i,j S plus the sum of b^ for

k Q and u^ < 0. Comply with (3) -(7). Covers consist of increments to the

secondary constraint together with relaxation of nonzero ufc. At most,

3n - 3 nonzero weights in all are necessary, i.e., uls n
- 1 of uj,

n - 1 of

Uj,
n 3 of uk, and u

2
.
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NETWORK ALGORITHMS FOR COMBINATORIAL AND DISCRETE
VARIABLE OPTIMIZATION PROBLEMS

John W. Suurballe

ABSTRACT

A mathematical technique which shows considerable potential for repre-
senting and solving discrete variable problems uses the concept of a
directed network and the shortest path through it. The many applications
of this method are not yet widely known; it is the purpose of this paper to

present some results in shortest and K^ shortest route algorithms, and

illustrate their application by obtaining algorithms for several well-known

optimization problems of current interest in industry and operations re-

search. These are the traveling salesman, assignment, and more complex,
related problems; a combinatorial wiring problem; a job-shop scheduling

problem; and problems of system construction for maximum economy.
Informally, the "shortest route in a network' '

problem is as follows:

There is given a collection of nodes, and directed branches between pairs

of nodes, forming a network or maze. In some way appropriate to the prob-

lem, an origin node A and destination node B are given, and we are con-

cerned with the various paths from A to B, observing always the "one-

way" rule specified by the arrows. Each branch in the network has a dis-

tance associated with it, and the distance along a path from A to B is the

sum of distances of all branches used in that path. The shortest route

problem is one of finding (efficiently) the path or paths from A to B with

minimal distance.

Historically, the idea and method of finding the shortest route in a net-

work was first presented as an application of linear programming to dis-

crete extremem problems by G. B. Dantzig in 1956. Since Dantzig's paper,

several more efficient algorithms have been developed for finding shortest

routes .

Our network representations of the above combinatorial problems can

be divided into two types. In the first type we have an "exact" representa-

tionexact in the sense that every path in the network is one of the accept-

able alternatives in the problem, every alternative is a path in the network,

and the sum of distances along a network path is exactly the cost associated

with the corresponding alternative.

Using a node -ordering property of our particular networks, a shortest

route algorithm is developed and applied to obtain the following results:

1. Network algorithms for the wiring problem, and the assignment

problem, using an N-cube model.
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2. The optimum location of relay points (or supply points) in a given
discrete set of potential locations, for a communication (supply)

system with interrelated choice constraints.

The network algorithms result in neat tabular arrangements in which

addition, subtraction, and comparison are the only numerical operations.
In the second of our two types of network representation, a problem is

not represented exactly but is imbedded in a network and represented

inexactly in the sense that all acceptable alternatives are network paths,
but not all network paths are acceptable alternatives. In these problems
the shortest route algorithms must' include additional constraints which

automatically rejects unwanted network paths when they turn out to be

optimal. To solve this problem generally, some new results in shortest
route algorithms are developed. This material is applied, along with cer-
tain network representations, to get the following results:

1. Algorithm for Kth Shortest Routes in a Network.
2. Network algorithms for the traveling salesman, assignment, and

related problems. The traveling salesman algorithm provides a neat

example and is given in detail.

3. Network algorithms for the job-shop scheduling problem, allowing
set-up times for both jobs and machines, which depend in general on
the order of operation. This application is more difficult, and only
sketched.

Some refinements and general comments on the network algorithms are
given.
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Pivot step, 4, 17-18, 139

Polar set, 28

Positive definite, 101, 303

Positive semi-definite, 63, 72, 101

Primal-dual algorithm, 24

Problems, critical path, 116-118,

337

inventory, 105, 111

personnel assignment, 267

transportation, 319, 335-336

traveling salesman, 339-341, 343

two-stage, 105-108, 115

Projected gradient (See Gradient)

Pseudo-basic variable, 133-148

Quadratic function, 101

Quadratic programming, 55, 104,

111, 121, 224, 303-308

simplex methods, 72-73

Quadratic programs, 63, 65, 68

Reduced cost, 77, 93, 181

Reduced gradient, 76-77

Risk, 103, 104

(See also Uncertainty)

SCEMP, 177, 211

Self-dual, 63

Separable functions, 79, 89, 111

Separable programming, 77-80

local, 89-100

Simplex method (algorithm), 1,9,

12, 17-26, 72-73, 90-91, 192,

205, 219

Simplex method,

cycling, 21, 111, 181, 212

iteration, 181

primal-dual, 20

mutual, 17-26

revised, 148

explicit, 192

product form, 125, 192, 211-218

Singleton, 182

Stochastic constraints, 104

Stochastic objective function, 103-

104

Stochastic programming, 111, 113,

121, 123, 159, 223-237

Tableau, 180

Transformation, unimodular, 40-43,

271, 289, 293, 323

Transportation problem, 319, 335-

336

Traveling salesman problem, 339-

341, 343

Tree, 46

Triangular matrices, 126-128, 133

Triangularization, 125-132, 133

Triangulation, 96-97

cubical, 97-98

Two-stage problems, 105-108, 115

Uncertainty, 103-110, 114, 133

decision rules, 114

Unimodular dual linear systems, 7

Unimodular sets, 39-53

maximal, 45, 46, 52

totally, 45

Unimodular transformation, 40-43,

271, 289, 293, 323

Variables, artificial, 135, 181, 219

basic, 17, 136-140, 180

nonbasic, 17

pseudo-basic, 133-148
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