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Abstract

These notes are intended to complement the material in an intermedi-
ate microeconomic theory course. In particular, they provide a rigorous
discussion of optimality conditions for functions of one and several vari-
ables, including minimization of a convex (or maximization of a concave)
function subject to a linear constraint. In the case of a function of a sin-
gle variable, the notes should help the reader go somewhat beyond the
standard treatment, which typically deals only with interior solutions and
functions that are twice di¤erentiable. The notes should be accessible
to somone with a good basic background in univariate and multivariate
di¤erential and integral calculus.

[Preliminary Draft - Do Not Quote]

Preamble. The mathematical concept of convexity (along with the mirror
concept of concavity) plays an important role in economic theory. These notes
are intended to complement the material in an intermediate microeconomic the-
ory course. The standard calculus treatment of optimization ("�rst- and second-
order conditions") is justi�ed in Corollary 14 and Propositions 16 and 17. The
"method of Lagrange" for optimization subject to a linear constraint is justi�ed
in Proposition 19 and the subsequent remarks. However, the notes should help
the reader go somewhat beyond the standard treatment, which typically deals
only with interior solutions and functions that are twice di¤erentiable.
The notes should be accessible to someone with a good basic background in

univariate and multivariate di¤erential and integral calculus. Proofs of proposi-
tions that are very easy are omitted. On the other hand, the proofs of some of
the propositions require a more advanced background, such as is usually covered
in a course in "real analysis;" those propositions are indicated with an asterisk,
and the proofs are also omitted. For a more advanced treatment of convexity
see, for example, H. L. Royden, Real Analysis, Prentice Hall, Englewood Cli¤s,
NJ, 1988, 2nd ed.
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1 Functions of One Variable

1.1 Properties of Convex and Concave Functions

This section deals with real-valued functions of a real variable, de�ned on a
�nite interval, a half-line, or the entire real line. A function is convex if for any
numbers x; y; t, such that 0 � t � 1,

f [ty + (1� t)x] � tf(y) + (1� t)f(x): (1)

(See Fig. 1a.) The point ty + (1 � t)x is said to be a convex combination of
the points x and y . A function is said to be strictly convex if the inequality in
(1) is strict for 0 < t < 1. (Fig. 1b.) A function f is (strictly) concave if (�f)
is (strictly) convex. (Fig. 1c.) In what follows, properties of concave functions
that follow immediately from properties of convex functions will be omitted. A
function that is both convex and concave is linear.

Proposition 1 If f1; :::; fN are convex, and b1; :::; bN are nonnegative numbers,
then f =

P
n bnfn is convex.

Proposition 2 If f is convex, and c is any number, then the set of points x
such that f(x) � c is either empty, a point, an interval, a half-line or the whole
line.

Proposition 3 If f is convex, x1; :::; xN ; are any numbers, and t1; :::; tN ; are
any nonegative numbers such that

P
n tn = 1, then

f

 X
n

tnxn

!
�
X
n

tnf(xn): (2)

Proof. The proof is by induction. The proposition is trivially true for
N = 1, and by the de�nition of convexity it is true for N = 2: Suppose it is true
for N � K. I shall show that it is then true for N = K + 1. Let

c =
KX
1

tn; bn =
tn
c
;

then, noting that 1� c = tK+1, and using the convexity of f ,

f

 
K+1X
1

tnxn

!
= f

 
c
KX
1

bnxn + tK+1xK+1

!
:

� cf

 
KX
1

bnxn

!
+ tK+1f (xK+1) :

By the induction hypothesis,

f

 
KX
1

bnxn

!
�

KX
1

bnf (xn) ;
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and hence

cf

 
KX
1

bnxn

!
+ tK+1f (xK+1) � c

KX
1

bnf (xn) + tK+1f (xK+1)

=
K+1X
1

tnf(xn);

which completes the proof.
For a function f , de�ne the left-hand derivative, f�(x); at a point x by

f�(x) = lim
h!0
h�0

f(x+ h)� f(x)
h

: (3)

Similarly, de�ne the right-hand derivative, f+(x); at a point x by

f+(x) = lim
h!0
h�0

f(x+ h)� f(x)
h

: (4)

If the left- and right-hand derivatives are equal to each other at a point, then
their common value is the derivative of f at the point, and one says that the
function is di¤erentiable there. Recall that a set is countable if it can be put
into one-to-one correspondence with the integers.

Proposition 4 (*) If a function is convex on an open interval (a; b), then it
is continuous there. Its left- and right-hand derivatives exist at each point of
(a; b), and are equal to each other except on a countable set.

For an example of a convex function that is not di¤erentiable at every point,
consider N linear functions, fn, with di¤erent slopes, and let

f(x) = max
n
ffn(x)g ;

then f is convex and piece-wise linear, and is not di¤erentiable at the "kinks"
where di¤erent "pieces" join. (Fig. 2.)

Proposition 5 If a function is convex on an open interval (a; b), then (1) its
left- and right-hand derivatives are each monotone nondecreasing functions in
that interval, (2) at each point the left-hand derivative does not exceed the right-
hand derivative, and (3) x < z implies f+(x) � f�(z).

Proof. The proof is based on the following lemma.

Lemma 6 Let x < y < z be three points in (a; b); then

f(y)� f(x)
y � x � f(z)� f(x)

z � x � f(z)� f(y)
z � y : (5)
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Proof of Lemma. We may write y as a convex combination of x and z as
follows:

y =

�
y � x
z � x

�
z +

�
z � y
z � x

�
x: (6)

By the convexity of f ,

f(y) �
�
y � x
z � x

�
f(z) +

�
z � y
z � x

�
f(x) =

(y � x)f(z) + (z � y)f(x)
z � x ;

so

f(y)� f(x) � (y � x)[f(z)� f(x)]
z � x ;

f(y)� f(x)
y � x � f(z)� f(x)

z � x ;

which veri�es the �rst inequality. A symmetric calculation veri�es the second
inequality, and completes the proof of the Lemma.
To complete the proof of the proposition, �rst let y ! x; then the �rst

inequality in the Lemma implies that

f+(x) � f(z)� f(x)
z � x :

Similarly, letting y ! z we get

f�(z) � f(z)� f(x)
z � x :

[Cf. the de�nitions (3) and (4).] Hence

f+(x) � f�(z); (7)

which proves part (3) of the conclusion. Next, letting x! y and z ! y we get

f�(y) � f+(y):

Since this last holds for any point in (a; b), it also holds at z, so that

f�(z) � f+(z);

which veri�es part (2) of the conclusion of the theorem. Putting this last to-
gether with (7), we have

f+(x) � f+(z):
A symmetric argument shows that

f�(x) � f�(z);

which completes the proof of the theorem.
The last proposition shows that if a di¤erentiable function is convex on an

interval, then its derivative is nondecreasing. The converse is also true.

4



Proposition 7 If a function f is di¤erentiable on the interior of an interval,
and its derivative is nondecreasing, then it is convex there.

Corollary 8 If a function is twice di¤erentiable on the interior of an inter-
val, then it is convex there if and only if its second derivative is nonnegative.
Furthermore, if its second derivative is strictly positive on the interior of the
interval, then the function is strictly convex there.

Proof of the Proposition. Let x < z be two points in the interior of the
interval, let t be a number such that 0 < t < 1, and let

y = tz + (1� t)x:

As in (6) we may write

y =

�
y � x
z � x

�
z +

�
z � y
z � x

�
x: (8)

Since f is di¤erentiable and nondecreasing,

f(y)� f(x) =
Z y

x

f 0(s)ds �
Z y

x

f 0(y)ds = f 0(y)(y � x);

so
f(y)� f(x)
y � x � f 0(y): (9)

Similarly,

f(z)� f(y) =
Z z

y

f 0(s)ds �
Z z

y

f 0(y)ds = f 0(y)(z � y);

and so
f(z)� f(y)
z � y � f 0(y): (10)

Hence, by (9) and (10),

f(y)� f(x)
y � x � f(z)� f(y)

z � y :

Multiplying the last inequality by (y � x)(z � y), and simplifying the resulting
inequality, we get

(z � x)f(y) � (y � x)f(z) + (z � y)f(x);

f(y) �
�
y � x
z � x

�
f(z) +

�
z � y
z � x

�
f(x);

which last, by (6), can be rewritten in the form,

f [tz + (1� t)x] � tf(z) + (1� t)f(x);
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thus completing the proof of the proposition.
The proof of the corollary is left as an exercise for the reader. Note, however,

that the second derivative of a function can be zero at a point in the interior
of an interval, and yet the function can be strictly convex in the interval. An
example is provided by the function de�ned by f(x) = x4, which is strictly
convex on the whole real line, and yet f 00(0) = 0.

1.2 Application to Risk Aversion

De�ne a lottery to be a random variable whose outcomes ("payo¤s") are amounts
of money. A lottery, say X, is determined by

X = [x1; :::; xN ; p1; :::; pN ];

where N is a positive integer, x1; :::; xN are the possible payo¤s, and

pn = PrfX = xng; n = 1; :::; N:

The expected payo¤ is

EX =
NX
n=1

pnxn: (11)

According to a well-known theory of decision-making under uncertainty, if
a person is "rational," then her preferences among lotteries can be represented
(scaled) by a function u, such that she prefers lottery X to lottery X 0 if and
only if

Eu(X) =
NX
n=1

pnu(xn) >
NX
n=1

p0nu(x
0
n) = Eu(X

0):

The mathematical expectation, Eu(X), is called the expected utility of the lottery
X.
A special case of a lottery is one in which the person receives a �xed payo¤,

say y, for sure. The person is said to be averse to risk (or risk-averse) if she
would prefer receiving the amount of money EX for sure to receiving the actual
lottery X. This will happen if

u(EX) > Eu(X);

or

u

 
NX
n=1

pnxn

!
>

NX
n=1

pnu(xn): (12)

Since the probabilities pn are nonnegative and their sum is 1, we see that risk-
aversion is equivalent to the condition that the utility function u be strictly
concave.
[Questions: If the person�s utility function is linear, then one says that

the person is risk-neutral. Why is this an apt description? What behavior is
exhibited by a person whose utility function is strictly convex?]
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1.3 Application to Optimization

In this subsection we characterize where a convex function attains a minimum
on a closed interval, S = [a; b], with a and b �nite, and a < b. Some of the results
will carry over immediately to the case of maximizing a concave function. It
will also be easy to extend the results to the cases in which S is a half-line or
the whole real line. These extensions will be left to the reader. Henceforth,
S = [a; b].
A fundamental proposition of real analysis implies that a convex function

does attain a minimum on S.

Proposition 9 (*). If a function is continuous on S, then it attains a mini-
mum at a point in S.

This Proposition , together with Proposition 4, imply the following corollary.

Corollary 10 If a function is convex on S, and continuous at the endpoints of
S, then it attains a minimum at a point in S.

We now characterize those points at which a convex function attains a min-
imum on S. In general, a convex function may attain a minimum at more than
one point. However, it follows from Proposition 2 that the set of all such points
forms an interval (possibly consisting of a single point.)

Proposition 11 If f is convex on S, and continuous at the endpoints of S,
then it attains a minimum at a point y in S if and only if y satis�es one of the
following three conditions:

(i) a < y < b and f�(y) � 0 � f+(y);
(ii) y = a and 0 � f+(y);
(iii) y = b and f�(y) � 0:

Proposition 11 is illustrated in Figures 3(i), 3(ii), and 3(iii).
The following corollaries are an immediate consequence of the Proposition

and Proposition 5, and are stated without proof.

Corollary 12 If, in addtion to the hypotheses of the Propositon, f is di¤eren-
tiable, then (i) reduces to

(i0) a < y < b and f 0(y) = 0:

Corollary 13 If, in addtion to the hypotheses of Propositon 11, f is strictly
convex, then the minimizing point y is unique.

Proof of the Proposition. First consider the case in which a < y < b. If
y satis�es (i), then by Proposition 5,

for all x < y; f�(x) � 0 and f+(x) � 0;
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hence, f(x) is nonincreasing in x and f(x) � f(y) for x < y. A symmetric
argument shows that f(z) � f(y) for z > y. Hence y minimizes f on S.
Conversely, suppose that y minimizes f on S, and a < y < b. If f+(y) < 0,
then there exists a z such that:

z < b;

f(z)� f(y)
z � y < 0;

and hence
f(z) < f(y);

and so y does not minimize f on S. A symmetric argument shows that if
f�(y) > 0, then y does not minimize f on S, either. This completes the proof
for case (i).
Similar, but one-sided, arguments can be applied to cases (ii) and (iii), com-

pleting the proof of Proposition 11.
A further corollary deals with the case in which f is twice-di¤erentiable, i.e.,

its second derivative is continuous on the interior of S. This corollary provides
the justi�cation for the so-called "�rst-order" and "second-order" conditions for
a minimum.

Corollary 14 Suppose that, in addition to the hypotheses of Proposition 11, f
satis�es the following four conditions:

(i) f 00 is continuous on (a; b);

(ii) a < y < b;

(iii) f 0(y) = 0;

(iv) f 00(y) > 0;

then there exist numbers c; d such that

a < c < y < d < b;

y is the unique minimizer of f on [c; d]:

If, in addition, f 00(x) > 0 on all of (a; b), then y is the unique minimizer of f
on [a; b].

Proof of Corollary. Since f 00(y) > 0 and f 00 is continuous, there exist
numbers c; d such that

a < c < y < d < b;

f 00(x) > 0 for c < x < d:

Hence, by Corollary 13, y is the unique minimizer of f on [c; d]. If f 00(x) > 0 on
all of (a; b), then take c = a; d = b, which completes the proof of the Corollary.

In the preceding corollary, f(y) is sometimes called a local minimum.
Of course, if f is not convex everywhere in S, there may be more than one local
minimum, and they need not have the same value.
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2 Functions of Severable Variables

2.1 Convex Sets and Functions

In this section, some of the results of the previous section are extended to the
case of functions of several variables. These results are applied to some prob-
lems in the theory of consumer preferences and the theory of cost minimization
subject to constraints. In addition to the mathematics used in the previous
section, we shall use some very elementary ideas from linear algebra.

Recall that N -dimensional Euclidean space, denoted by RN , is the set
of vectors x = (x1; :::; xN ), where the coordinates, xn, are real numbers. In this
notation, R = R1 is the real line. What follows is a summary of some elementary
properties of RN . If x and y are in RN , and c is in R, then de�ne x + y to be
the vector with coordinates (xn+ yn), and cx to be the vector with coordinates
cxn. The distance between x and y in RN is de�ned by

kx� yk =
sX

n

(xn � yn)2:

The (open) ball with center x and radius r > 0 is de�ned by

B(x; r) =
�
yjy 2 RN ; kx� yk < r

	
:

A subset S of RN is said to be open if for every point x in S there exists a
number r > 0 such that B(x; r) is entirely contained in S.
A subset S of RN is convex if for any vectors x; y; in RN , and any number

t, such that 0 � t � 1,
ty + (1� t)x 2 S:

In the rest of this section, the set S will be assumed to be open and convex, unless
something is said to the contrary. Note that in the real line, this amounts to
assuming that S is an open interval, �nite or in�nite.
A (real-valued) function f on S is convex if, for any vectors x; y; in S, and

any number t, such that 0 � t � 1,

f [ty + (1� t)x] � tf(y) + (1� t)f(x): (13)

Note that this last inequality looks the same as (1) in Section 1, except that x
and y are in RN , not just R1. Propositions 1 and 3 of Section 3 remain true in
this more general setting, and Proposition 2 takes the form:

Proposition 15 If f is convex, and c is any number, then the set of points x
such that f(x) � c is a (possibly empty) convex set.

The proof is essentially the same as for Proposition 2, and is omitted.
Many of the other propositions in Section 1.1 have analogues in RN . How-

ever, a serious treatment of those topics is beyond the scope of these Notes.
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Henceforth, unless otherwise noted, it will be assumed that the functions
being considered have continuous second-order partial derivatives on the set S.
The following proposition is an analogue of Corollary 8 in Section 1.1. It

will not be used in these notes, but it is stated without proof for the sake of
completeness, because it has many applications in economic theory and econo-
metrics. A symmetric N � N matrix Q = ((qmn)) is said to be nonnegative
semi-de�nite if for any vector x = (x1; :::; xN ) in RN ,X

m;n

qmnxmxn � 0:

In addition, Q is said to be positive de�nite if the preceding inequality is strict
for any x 6= 0. For a function f de�ned on S, de�ne Q(x) to be the matrix of
its second partial derivatives evaluated at the vector x, i.e., using a standard (if
ambiguous) notation, it is the matrix with elements

fmn(x) =
@2f

@xm@xn
:

Note that "f is twice di¤erentiable on S" means that the functions fmn(x) are
continuous on S.

Proposition 16 (*) If f is twice di¤erentiable on S, then f is convex if and
only if the matrix Q(x) is nonnegative semi-de�nite at every point x of S. Fur-
thermore, if Q(x) is everywhere positive de�nite then f is strictly convex.

2.2 Application to Optimization

Our �rst result is an analogue of Corollary 12 in Section 1.3. Recall that the
set S is open and convex, and that we are restricting attention to functions f
that are twice di¤erentiable. Denote the partial derivative of f with respect to
its mth argument by fm, i.e.

fm(x) =
@f

@xm
:

Proposition 17 If f is convex, then y minimizes f on S if and only if fm(y) =
0 for each m = 1; :::; N .

Lemma 18 Fix z in S, and let T denote the set of all t such that tz+ (1� t)y
is in S. For t 2 T , de�ne

g(t) = f [tz + (1� t)y]; (14)

then g is convex.
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Proof of Lemma. Note that, since S is open and convex, T is an open in-
terval (possibly in�nite). Let t1 and t2 be in T , and let �1 and �2 be nonnegative
numbers such that their sum is 1. Let

x = (�1t1 + �2t2)z + (1� �1t1 � �2t2)y;

then
g(�1t1 + �2t2) = f(x):

One easily veri�es that

x = �1[t1z + (1� t1)y] + �2[t2z + (1� t2)y]:

Hence, since f is convex,

f(x) � �1f [t1z + (1� t1)y] + �2f [t2z + (1� t2)y]
= �1g(t1) + �2g(t2);

which completes the proof of the Lemma.
To complete the proof of the Proposition, note that

g0(t) =
X
m

fm[tz + (1� t)y]:

The rest of the proof now follows from a straightforward application of Corollary
12.
I now turn to the problem of minimizing a convex function f on S subject

to a linear constraint. (Two examples from microeconomic theory are presented
in subsequent subsections.) Let L be a linear function on S, given by

L(x) =
X
n

bnxn; (15)

where at least one of the coe¢ cients, bn, is di¤erent from zero. We wish to
characterize the vectors y that minimize f(x) subject to the constraint that

L(x) =
X
n

bnxn = c; (16)

where c is any given number such that at least one vector in S satis�es the
constraint. Denote by K the set of points in S that satisfy the constraint. Note
that K is convex (an easy exercise), and since we have assumed that it is not
empty, and S is open, it contains more than one point. A vector that minimizes
f on K will be called optimal.

Proposition 19 y is optimal if and only if there is a number � such that

fn(y) = �bn for n = 1; :::; N: (17)
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Proof. Let y be in K. If y maximizes f on S (not just on K), then by the
previous proposition we may take � = 0. Conversely, if � = 0 then (again using
the previous proposition) y maximizes f on S, and hence on K. Hence, without
loss of generality we may suppose that y does not maximize f on S.
If necessary, renumber the coordinates so that bN 6= 0. Solve the constraint

for xN so that

xN =

�
1

bN

� 
c�

N�1X
n=1

bnxn

!
; (18)

and de�ne

g(x1; :::; xN�1) = f

"
x1; :::; xN�1;

�
1

bN

� 
c�

N�1X
n=1

bnxn

!
:

#

Let
S0 = f(x1; :::; xN�1) : for some xN ; (x1; :::; xN�1; xN ) 2 Sg ;

then S0 is open in RN�1, and g is convex and twice di¤erentiable in S0. The
�rst derivatives of g are given by

gn (x1; :::; xN�1) = fn(x)�
�
bn
bN

�
fN (x); n = 1; :::; N � 1;

where it is understood that in these last equations, xN is given by (18). The
proof is now completed by applying the previous proposition, and taking

� =
fN (x)

bN
:

Remark 1. The optimal vector y and the number � both depend, in prin-
ciple, on the parameter c of the constraint equation. In this context, � has an
interesting interpretation. With a slight abuse of notation, rewrite the optimal-
ity condition of Proposition 19 as

fn[y(c)] = �(c)bn for n = 1; :::; N:

The minimum of the function f on the constraint set K is then

F (c) = f [y(c)]:

If the yn are di¤erentiable with respect to c, then the derivative of F with
respect to c is

F 0(c) =
X
n

fn[y(c)]y
0
n(c)

=
X
n

�(c)bny
0
n(c)

= �(c)
X
n

bny
0
n(c):
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Now note that di¤erentiating both sides of the constraint equation (16) with
respect to c yields X

n

bny
0
n(c) = 1;

and so we have the result:

Corollary 20
F 0(c) = �(c): (19)

Thus �(c) gives us the approximate rate at which a "small change " in the
constant c changes the minimum value of the function f .
Remark 2. De�ne the function L by

L(y) = f(y)� �[L(y)� c]:

Setting the derivatives of L with respect to the coordinates of y equal to zero
gives us the optimality conditions of the proposition, and setting the derivative
with respect to � equal to zero gives us the constraint equation. This recipe is
called the "method of Lagrange," and in this context � is called the "Lagrange
multiplier." The preceding discussion gives a set of conditions under which the
recipe gives the right answer.
Remark 3. Note that bn is the partial derivative of the constraint function

L. This suggest how Proposition 19 can be generalized to cover the case of
nonlinear functions L that satisfy certain regularity conditions.

2.3 Application to Cost Minimization

Suppose that a �rm has several plants that can produce the same commodity
(e.g., electricity). The cost of producing a quantity xn in plant n is C(xn), so
the total cost of producing the vector of outputs x = (x1; :::; xN ) is

C(x) =
X
n

Cn(xn):

The �rm wants to produce a total quantity q at minimum cost. Hence it wants
to �nd a vector x that minimizes C(x) subject to the constraint thatX

n

xn = q:

Of course, the output of each plant must be nonnegative. We consider here the
case in which at an optimum the output of every �rm is strictly positive. Thus
take S to be the set de�ned by the strict inequalities:

xn > 0; n = 1; :::; N:

Assume that each cost function Cn is nonnegatve, twice di¤erentiable, strictly
increasing, and strictly convex. It follows that C has the same properties.
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Note that, if we assume further that C 0n(0) = 0, then it is an easy exercise to
show that, at the optimum, the output of every plant will be strictly positive.
Applying Proposition 19, one immediately gets the optimality condition:

C 0n(yn) = �; n = 1; :::; N:

The derivative C 0n(yn) is called the marginal cost for plant n, so the optimality
condition can be paraphrased: "The total quantity q should be allocated to the
plants so as to equalize their marginal costs." From Corollary 20, the value of
the Lagrangean multiplier, �, at the optimum is equal to the derivative of the
minimum total cost with respect to the required quantity of total output.
[The reader should consider how the optimality conditions would be modi�ed

if at the optimum some plants have zero output. Note that this could happen
without the assumption that, for each plant, C 0n(0) = 0. The reader should also
consider the case in which each plant has a �xed capacity, i.e., an upper bound
on output.]
Example. Let

Cn(xn) = cnx
2
n;

then

C 0n(xn) = 2cnxn;

C 0n(0) = 0;

and so at an optimal y,

2cnyn = �;

yn =
�

2cn
;

q =
X
n

yn =
��
2

�X
n

1

cn
;

� =
2qP
n

1
cn

:

2.4 Application to Consumer Choice

Suppose that a consumer must choose a vector x of consumption (in a given
period) subject to an expenditure constraint and nonnegativity constraints,X

n

pnxn � y;

xn � 0; n = 1; :::; N;

where pn is the price of commodity n, and y is the maxiumum feasible expen-
diture. Let u(x) denote the consumer�s utility from consuming the vector x,
and suppose that the consumer is not satiated in the constraint set, so that she
will spend up to the limit y. Assume that the utility function is concave and
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twice di¤erentiable, so that �u is convex. Suppose, also, that the maximum
will occur at a point at which the consumption of every commodity is strictly
positive. (Every commodity is a "necessity.") Thus we can take S to be the set
de�ned by the strict inequalities:

xn > 0; n = 1; :::; N;

and the consumer�s problem is to minimize �u(x) on S subject to the linear
constraint, X

n

pnxn = y:

Applying Proposition 19, we get the condition that

un(x) = �pn for n = 1; :::; N;

or, for all m;n,
um(x)

un(x)
=
pm
pn
:

The ratio um(x)=un(x) is called the "marginal rate of substition," i.e., it is
the (in�nitesimal) rate at which the consumer can substitute commodity m for
commodity n, keeping her utility constant. Hence the optimality condition can
be paraphrased: "for any two commodities, the marginal rate of substitution
equals the price ratio."
Finally, the reader should consider how the optimality conditions would be

modi�ed if at the optimal consumption vector the consumption of one or more
commodities would be zero.
Exercise. Analyze the example in which

u(x) =
X
n

an lnxn;

where the parameters an are strictlly positive.
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Fig. 1b. A strictly convex function 

Fig. 1c. A strictly concave function 



 

Fig. 2. A piecewise-linear convex function 
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