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When Jacob Marschak died on July 27, 1977, he had just finished organizing the program of
the annual meetings of the American Economic Association, a task tha_t was his official duty as
Preside.nbE!ect of the Association. Marschak’s election to the presidengy of the AEA
symbolized, in a sense, a reconfirmation by mainstream economists that Marschak was a bona
fide member of the.profession. It may seem to some that no such reconfirmation was needed.
After all, Marschak’s doctoral degreé was in economics {Heide!berg,. 1922), he had been a

professor of economics in the United States since 1940, he was a charter member of the

Econometric Society (and its President in 1946), and he was a member of the Cowles

Commission for Research in Economics from 1943 to 1960.and its Director from 1943 to 1948.

Nevertheless, on many occasions during the 1950s and 1960s I heard economists question
whether Marschak had not actually left economics for other disciplines, such.as psychology,
information science, or some other part of that dimly perceived (and disapproved?) region
somcﬁmes called "behavioral science”. During this period, Marschak’s research and writing did,
in fact, frequently take him beyond the boundaries of then-standard economics. It may also be
true that he did his most lcreative and original work during this period. Fortunately, the
boundaries of standard economics are somewhat flexible, and one .can now see the discipline

moving to include and develop Marschak’s significant contributions to behavioral science.

A few remarks on Marschak’s intellectual biography may help put hié research on decision
and organization in a useful perspective. The first phase of his research career included his
empirical work on different export industries, done. for the Institut fiir Seeverkehr und
Weltwirtschaft at the {Jniversity of Kiel, his systematic work on capital theory (with Walter

Lederer), and his pioneering paper on the new middle class, During the second 'phase of his



research career, Marschak wrote extensively on theoretical and statistical aspects of demand
analysis, a field in which he was a pioneer. In 1939 he moved to the United States, and during
the first dozen years he was an active participant in the econometric revolution that is
commonly associated with the Cowles Commniission for Research in Fconomics. This revolution
was nurtured at an early and crucial stage by the seminar on econometric methods and results
that Marschak organizéd at the National Bureau of Economic Research, while he was on the
faculty of the New School for Secial Research. The'intensive. contacts fostered in this-semi.nar
led, in particular, t.o three fundamental papers on Vthe statistical estimation of systems of
simultaneous equations, by Haavelmo (1943), Mann and Wald (1943), and Marschak and
Andrews (1944). Two further publication landmarks in this movement ‘wcre the Celwies
Commission monographs No. 10 and No. 14 to which Marschak contributed the opening

chapters (Marschak, 1950a, 1953).

Toward 1950 Marschak focused his resgarch more sharply and systematically on economic
decision making in the face of uncertainty. Subsequently, this led to important contributions to
behayiora;l science in the wider. sense, which I shall describe in é moment. Develdpments in
these new directions were encouraged, not only by the lively intellectual atﬁosphére of tﬁé
Cowles Commissidn, but also by an interdisciplinary seminar on the behavioral sciences, which
included }ﬁmes G. i;diilér, Ralph Gerard, Anatel Rapoport, and others assdciated with the new
Committee on the Behavioral Sciences at the University of Chicago. Later, while at the
University of California at Los Angeles, Marschak was for over 15 years.the léader of the

Interdisciplinary Collogquium on Mathematics in the Behavioral Sciences.

Two other topics c;n which Marschak worked presaged his later research on decision and
organization. First, he was for a number of years interested in fhe demand for xﬁoney, and
through his work and that of others the idea evolved that this deﬁand could be better
understood in the context of a more general theory of the joint demand for \_rarious assets
(Marschak, 1938, 1949, 1950b). Furthermore, since the ultimate values of assets ar.c rarely _

known with certainty at the time they are acquired, such a general theory needed to be based



on a more systematic theory of decision in the face of uncertainty than was then available.

A second topic was the subject of his first scientific publication, a contribution to the debate
on the efficiency, or even viability, of socialism. A central issue in that debate was whether the
centralization of economic authority in a socialist state was compatible with the decentralization

of information necessary in a complex economy.

From 1950 on, Marschak’s research and writing was concerned with the general area of
decision, information and organization. More specifically, one can identify at least three topics
to which he made substantial contributions: (1) stochastic decision, (2) the economic value of

information, and (3} the theory of teams.

STOCHASTIC DECISION

In a series of articles (Marschak, 1959, 1964; Marschak & Block, 1960; Marschak &
Davidson, 1959; Marschak, Becker, & DeGroot, 1963a, 1963b, 1963c, 1964), Marschak
proposed and elaborated the theory of stochastic decision and reported on a number of
expeﬁments. This work had its roots in the theory of rational economic choice or utility theory

and in certain theories of psychological measurement.

Marschak developed a framework for describing the behavior of economic decision makers
who are approximately rational or consistent, or whose consistency of behavior canncﬁ be
exactly verified through observation because of the observe;’s inability to control or identify all
of the relevant factors in thé decision making situation. Within this framework, Marschak and
his collaborators explored the implications of various assumptions about stochastic decision, and
the logical relationships among the newer theories and some of the older theories of

psychologists concerning discrimination and response.

It had long been recognized that economic decision makers do not exhibit exact consistency
in their detailed choices. Economists were and remain loth to abandon the general framework

of rational decision making that has appeared to be so fruitful in the analysis of the economic



system as a whole. Marschak’s theory provided theoretical models that could be used for
econometric studies of individual choice behavior and were connected in a coherent way with
the general hypothesis of economic rationality. I shall illustrate some of these ideas in the

context of a formal model.

Suppose that an economic agent is faced with a succession of pairs of alternatives, under
approximately identical conditions, with each pair drawn from the same set, say 4. On each
successive "trial" the agemt must choose one of the two alternatives in the pair. Any one
alternative in the set 4 may, and typically will, appear in more than one pair of the sequence of
pairs. The standard economic theory of choice would postulate that the agent’s successive
choices would be predicted by a "preference ordering” on the set 4, or (withou;‘\.essentiai toss of
generality) by a "utility function” on A4, say u, as follows: # is a real-valued function on 4 such
that, whenever the agent must choose between the alternatives x and y from A, he will choose
x if u(x) exceeds u(y), and will choose y if u(y) exceeds u(x). In the special case in which
u{x) = u(y), the theory makes no definite prediction, although it typically is supposed that the
actual choice will be "random” in this case, perhaps influenced by unobserved minor
circumstances that vary unsystematically ("randomly") from one choice situation to the next. If
1 (x) strictly exceeds u(y), we say that the agent {strictly) prefers x to y, and if u(x) = u(y)
we say that the agent is indifferent between the two alternatives. This preference ordering
clearly has the property of transitivity, namely, if x is preferred to y, and y is preferred to z,

then x is preferred to z. Similarly, the relation of indifference is also transitive. [ shall call this

the theory of deterministic choice.

Consider now a sequence (x,,y,) of alternatives, all drawn from the set 4, and suppose that
every possible pair from the set 4 appears in at least one pair of the sequence. On the basis of
the choices made by the agent we could divide the set of all pairs into two groups, (1) the set P
of all pairs (x,y) such that x is always chosen in preference to y, and (2) the set of all pairs

4

(x’,y") such that — when x’ and y’ are the alternatives -— sometimes x’ is chosen and

sometimes y’ is chosen. Because of the possibility of indifference, the theory of deterministic



choice would not exclude the possibility that all of the observed pairs are in the set I.
However, if each possible pair appeared in the sequence a large number of times, then by the
law of large numbers we would expect that for every pair (x’,p’} in I each alternative would be
chosen about half the time. Furthermore, from the transitivity property of deterministic choice
we ‘would predict that, with few exceptions, if (x,y) and (y,z) are in P then so would (x,z),
and similarly for the pairs in the set 7. (In additibn, the theory would predict that if (x,y) is in
P and (y,z) is in I, then (x,z) is in P, etc.) We would say that the agent has revealed that if

(x,y) is in P then he prefers x to y, and if (x’,p’) is in I then he is indifferent between x* and

s

y.

In practice, the choices of agents typically do not satisfy the transitivity properties, except
when the objects of choice are already ordered in an obvious way, as in the case of amounts of
money. However, the departures from transitivity typically show an interesting regularity. Let
p{x,y) denote the relative frequency with which the agent chooses x when ;}re'sented with the
x pair of alternatives x and y. Say that the agent prefers x to p if p(x,y) > %, and is
indifferent between them if p{x,y) =1%. With these new definitions, preference and-
indifference will typically satisfy the transitivity properties, and one will be able to find a "utility
function," say u, such that p{x,y) =% if and only if #(x) = u(r). Such a construction is
called a theory of stochastic choice; in particular, this one has been called the weak binary wtility

model.

Marschak and others explored a number of stronger theories of stochastic choice, i.e.,
theories that predicted more regularity of the choice probabilities p(x,y). A particular model,
called the strict binary utility model, has been especially useful in econometric work. In this
model, the choice probabilities are sufficiently regular so that for a suitably chosen utility

function u,

@ p) =——2
PEP)I = @)y + u ()

It can be shown that, if the choice probabilities satisfy this equation for some utility function u,



then # is determined up to multiplication by a positive constant. In further elaborations of the
strict binary utility model, the utility function can be related to observable characteristics of the
objects of choice. For example suppose that
logu(x}=»56-X ,

where X is a vector of observable characteristics of x, and b is the vector of coefficients in the
linear function 5-X. In this form, the strict utility model is called the conditional logit model,
and the coefficient vector b can be estimated by now-standard techniques from actual data on
choices. Lack of space does not permit me to describe here extensions of the strict utility
model té choice situations with more than two alternatives, and a number of other related

models of stochastic choice.

The work of Marschak and his coauthors was at first more appreciated by psychologists than
by economists. His papers on this subject are standard references in the theory of psychological
scaling (Luce, Bush, & Galanter, 1965, vol. 3, chap. 19, and Luce, 1977). More recently, this
theory has provided the basis of statistical studies of individual choice beha;vior (McFadden,
1976), as well as of new approaches to the theory of economic equilibrium that take account of

the uncertainty of individual behavior (Hildenbrand, 1971; Bhattacharya and Majumdar, 1973).2

ECONOMIC VALUE OF INFORMATION

Marschak was among the first to develop a systematic theory of the economic value of
information, and probably the first economist to do so in a rigorous and thorough fashion.? In
this development he recognized that the measurement of quantity of information used by
communication engineers, and associated with the work of Wiener and Shannon, was not
adequate to measure the value of information. Indeed, it was not possibie to identify a single

measure of information such that more is always better.

Instead, Marschak turned to the newly developed theory of statistical decision for the source

of his framework.* From this point of view, the value of a particular information system - or



more generally, a system of information gathering, communication, and decision - is related to
the particular class of economic decision problems under consideration. Information is valuable
insofar as it enables 2 decision-maker to make better decisions than he could without the

information, not merely because it reduces "uncertainty”.

In order to give some flavor of the conceptual problems inherent in a theory of the
economic value of information, I shall present an extended example. To keep the calculations
relatively simple, 1 have made the example a simple one; it is more of a "textbook example”
than a realistic one, but the ways in which the example might be made more realistic will, I

hope, be fairly obvious.

Suppose, then, that I wish to send a shipment of some material, say fuel, to a distant
construction site. A priori, 1 know that the amount of fuel needed will be between 10 and 11
tons. With some expendituie of effort and/or money the manager at the site can estimate, and
communicate.to me, a more precise figure.. If I send more fuel than is actually needed, some
meney will be wasted (transportation costs, lost fuel, etc.), but if I send too little fuel, there

will be a correspondingly costly delay in construction.

Consider first two extreme information alternatives: (1) I learn from the site manager the
precise amount of fuel needed, and send that amount; (2) I receive no estimate from the
manager, and decide how much fuel to send on the basis of my prior information only. We
might call the first alternative complete information and the second alternative no information,
Before we can pursue our analysis of the value of complete information, we need to describe in
more detail my prior uncertainty about the required amount of fuel, and how the cost of an
error depends on the size of the error. Regarding the former, I shall describe my uncertainty in
terms of a probability distribution on the interval between 10 and 11. To be concrete, I shall
suppose that this distribution is wniform. Regarding the cost .of error, I shall make the
simplifying assumption that the cost of an error is proportional to the absolute value

{magnitude) of the error.



In the case of no information, I must decide on the size of the fuel shipment before
knowing the actual amount required, and the resulting cost of error will be a random variabie
whose probability distribution depends on the amount shipped. I shall adopt as my criterion for

decision-making the mathematical expectation of the resulting (random) cost.

(In a more general treatment, one would adopt the criterion of expected wtility, thus allowing
the model to express an individual’s attitude towards risk. The present simplified treatment is

equivalent to the assumption that the decision-maker is risk-neutral; see below.)

With the specific assumptions described above, it is easy to calculate that the size of the fuel
shipment that minimizes the expected cost is equal to 10.5, i.e., the midpoint of the interval
between 10 and 11. (More generally, one can show that for any prior distribution of the
required amount of fuel, the optimal shipment would be the median of that distribution.) The

corresponding (minimum) expected cost of error is ¢/4, where c is the cost per unit of error.

On the other hand, with complete information about the required amount of fuel, there is
no error, and the cost of error is zero. Complete information about the required amount of
fuel enables me to reduce the (expected) cost of error from c/4 to zero. I therefore define the

value of complete information in this decision problem to be c/4.

We might also consider information that is less than complete, but still more valuable than
no information. For example, the site manager might divide the interval from 10 to 11 into N
equal subintervals, and communicate to me in which subinterval the actual requirement lies.
(This would be an appropriate model if the site manager knew the precise amount of fuel
required, but communicated with me by means of some digital device.) If I learn that the
required amount les in the n'® subinterval (# = 1,..,N), then my con&itional probability
distribution of the amount required, given my information, is uniform on that subinterval,
rather than on the original interval from 10 to 11. (Statisticians call this conditional distribution
the posterior distribution.) My optimal decision is to ship an amount equal to the midpoint of

that subinterval, and the resulting (conditional) expected cost of error is (¢c/4N), since the



length of the subinterval is 1/N. Note that, in this simple example, the conditional expected
cost of error is independent of the particular subinterval in which the true requirement actually
lies. Therefore, if my manager communicates to me one of N equal subintervals, and I use the
optimal response to the information he provides me, my expected cost of error is (¢/4N). This
expected cost is to be compared with the expected cost of error in the case of no information,
i.e., ¢/4. The value of using N subintervals is the difference between these two expected costs,
namely

V(N) m"ﬁ“[l MJ]\T} | Bt

Note that the case of N = 1 corresponds to no information, and as N increases without bound

the value increases to a limit, which is the value of complete information.

In the scheme just described, the interval from 10 to 11 is partitioned into N equal
subintervals. For anyr particular required amount of fuel, the site manager will send me an
information signal, the number of the subinterval in which the required amount of fuel falls.
My overall expected cost of error depends on the partition, which I shall call the information
structure. It is clear that, in principle, I could consider partitions of the original interval into
unequal subintervals, or even into sets that are not intervals at all. Formally, then, an
information structure is a partition of the original interval into a family of subsets of the
original interval.’ The subsets in this partition are labeled in a one-to-one manner by elements
of some "label set", say Y. If the required amount of fuel, say x, is actually in the subset with
label y in Y, then th.e decision-maker (in this case, myself) receives the information signal y. I
then take a decision that minimizes the conditional expected cost of error, given thé signal y
(i.e., using the conditional distribution of x, given y). This decision rule, which is optimal for
the given information structure, has associated with it an overall expected cost of error. The
amount by which this expected cost is less than the expected cost of error for no information is
called the value of the given information structure. (This formal model must be generalized

slightly to accommodate the possibility of errors in the information itself; see below.)
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Notice that the value of the information structure does not depend on the set of signals
(labels) used to index the subsets in the partition, but rather depends only on the partition
itself. However, the particular set of signals used may affect fhe expected cost of communication
from the source (the site manager) to the decision-maker (me). What this cost is will depend

on the communication technology that is available.

Return now to the specific example described above, with partitions into N equal
subintervals. It is clear that, with any common measure of uncertainty, the larger the number
of subintervals in the partition, the greater is the reduction of the decision-maker’s uncertainty
about the required amount of fuel. For ¢xample, the prior variance is 1 /12, but the conditional
variance given one of N equal subintervals is (1/12N 2), so that the larger N is, the greater is

the reduction in the variance.

One might be led by this example to speculate that, .af two information structures, the one
that produces the greatest reduction in uncertainty is always the more valuable. The following
example shows that this is not so. Suppose that, in the previous example, I would in fact learn
the required amount of fuel before making the shipment. Suppose farther that- I must decide
whether to undertake the construction project before I know precisely how much fuel is
required, and that if the required amount of fuel were greater than 10.5 then the project would
be unprofitable, but if the required amount were less than 10.5 then the project would be
profitable. (With a uniform distribution on the interval from 10 to 11, the event that the
required amount is exactly 10.5 has probability zero, so we can ignore it!) It is clear that, in
order to make a correct decision about whether or not to ugdertake the project, it is sufficient
for me to have an information structure that divides the original interval into two equal
subintervals (or any even number of subintervals). However, if Iﬁy informaiion structure
divides the interval into any odd number of subintervals, no matter how large, there is some
positive probability that I shall make the wrong decision. Therefore, any (equal partition)

information structure with N odd is less valuable than the one with N = 2.
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The argument of this example can be generalized to prove the following important result:
There is no single measure of "quantity" of information that ranks information structures in
order of value, independently of the decision problem in which the information will be used.
In fact, a more precise result can be proved.® Suppose that the decision-maker is uncertain
about a variable, say x, that varies in a set X. If P and P’ are two partitions of X, ¥ shall say
that P is as fine as P’ if every set in P is a subset of some set in P’. (In other words, either P
and P’ are identical, or P is obtained from P’ by further subdividing some or all sets in P".) I
shall say that P is generally as valuable as P’ if the value of P is at least equal to the value of P’
for every decision problem in which x is the variable about which the decision-maker is
uncertain. One can prove (the "Fineness Theorem") that P is generally as valuable as P’ if and
only if P is as fine as P’. In particular, this shows that the relation generally as valuable as is
only a partial ordering, and hence there is no numerical function that ranks information

structures in order of value independently of the relevant decision problem.’

A variation on the first example can serve to illustrate how the theory can be extended to
accommodate information with error. Suppose that the site manager is using a partition into
two equal subintervals, with the signals 0 and 1 for the lower and upper subintervals,
respectively. Suppose, however, that the device he uses to communicate the signal to me is
subject to a random error, such that the probability that a signal is correctly transmitted is p,
and the probability that it is transformed into the other signal is (1 —p). (For simplicity, I
assume that the probability of incorrect transmission is the same for both signals. This is, of
course, the familiar symmetric binary channel of communication theory.) The relevant range of
p may be taken to be the interval [1/2,1] since I could always recode the signal received if p

were less than one-half. It is convenient to rescale p by the following change of variable:

pml;:r, 0=r=<1. )

With this parametrization, r can be interpreted as the "reliability" of the communication

channel, which varies from 0 to 1. It is also convenient to denote the true required amount of
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fuel by 10 + x, where the a priori distribution of x is uniform on the interval [0,1].

It is elementary to verify that the conditional density of x, given that the received signal is

0, is

1+r, 0<x <1/2,
gl =1 <1, 3

The median of this distribution is a9 = 1/2(1-+r}, and 10 + a, is the optimal amount for me to
ship if I receive the signal 0. (Note that, if » = 1 (perfectly reliable channel), then ay = 1/4,
the midpoint of the interval {0,1/2], whereas if » = 0 (a worthless channel), then ag9=1/2, the
midpoint of the interval [0,1].) Symmetrically, the conditional median of x given that I receive

the signal 1 is a; = 1 — a,.

From this one can verify that the expected cost of error is

c 1
"21“[2"_"" 1+r}’ ’ ®

If r = 0 (a worthless channel), the signal gives no information, and the expected cost of error

is ¢/4, which conforms to our earlier calculation. Subtracting ¢/4 from (4) we obtain an

expression for the value of the information structure, as a function of r:

P

14r ' )

V(r) =~§-

If r =1, then the information structure is essentially a partition into two equal intervals; the
corfesponding value is ¢/8, which agrees with equation (1) for N = 2. It is easy to verify that
the value increases mdnotonicaiiy with the reliability from a value of zero at r =0 to a value of
c/8 at r = 1. One can also verify two other properties of the value function in thisﬁ éxample:
(1) value is a convex function of r, i.e., the derivative of V is incre;asing; and (2) the derivative
of V at r =0 is zero, i.e., at low levels of reliability the value increases very slowly with
increases in reliability. These two properties are typical of the value of information in more

general situations, and have striking implications for the economics of information.®



- 13 -
l

The last example suggests how our previous mode! of information structure can be
generalized to describe information with error (or, as it is sometimes called, "noisy"
information). As before, let x denote the random variable of interest to the decision maker,
and let y denote the signal that he receives. An information structure is a family of conditional
distributions of y given x, one conditional distribution for each x. In the special case of
information without error, for every x the conditional distribution of y given x is deterministic;
i.e,, is concentrated on a single signal. At the other extreme, if all of the conditional
distributions of | the signal y given x are the same, then the information structure conveys no
information. A theorem of Blackwell gives a necessary and sufficient condition for one
information structure to be generally as valuable as another. Blackwell’s Theorem ‘is a
generaiization‘ of the "Fineness Theorem" to the case of noisy information structures. Roughly
speaking, it states that one information structure is generally as valuable as another if and only

if the second information signal can be generated by a garbling of the first.’

Thus far I have discussed the value of information in terms of the contribution that
information makes to improved decision-making. We might call this the gross value. In
deciding whether or not to acquire a given information structure, or to acquire one structure
rather than another, the decision-maker will want to subtract from ecach gross value the

corresponding cost of acquisition, to obtain the net value.

If the decision-maker is averse to risk, or there are some other significant nonlinearities in
the decision problem, the concept of net value of information must be reformulated. 1 shall
illustrate the difficulty here only in a special case.'” Suppose that the "gross" outcome of the
decision-maker’s action is measured in units of money. This gross outcome is a random
variable, whose probability distribution depends on the information structure, say r, and the
particular decision rule used by the decision-maker, say A. I shall therefore denote the
(random) gross outcome by the symbol ¥Y(4.,). Suppose that the cost of using the
information structure r is C(r), independent of the particular decision function useci. (C(n)

may be a random variable.} The net gross outcome is ¥ (4,r) — C(r). Finally, let U be the
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decision-maker’s utility function (for money); then the maximum expected utility that the
decision-maker can achieve with the information structure r (i.e., using a decision rule that is

optimal for r) is

W (r) = max EUY(A4,r) — C(r}] \ (6)

where the symbol E denotes mathematical expectation.. Thus IW(r) is the net value of the
information structure r, measured in units of expected wiility. From the point of view of the
market for information, it is perhaps ‘more interesting to look at the decision-maker’s demand
price for the information structure r. This is defined to be that cost, say ¢(r), that would make
the decision-maker indifferent between having the information structure r at cost c¢(r) and

having zero information at zero cost. Formally, ¢ (r} is defined implicitly by the equation

m:x EU\Y{A,r)— c(r}] e mjx E’U[Y(A ,0)} . (D

where 7 = 0 denotes the completely noninformative information structure. The connection
between the demand price and the net expected utility function W is that if, in (6), the actual

cost C(r) equals the demand price ¢(r) then W (r) will be zero.

The preceding discussion suggests no evident analytical benefit to be gained from attempting
to "measure” information as a continuously varying quantity, and indeed such attempts have
sometimes been misleading. On the other hand, information can be analyzed from an
economic point of view, and one can mak_c economic sense of an expression like "demand for
information". However, for various reasons that I cannot go into here, the demand for, and
supply of, information is likely to display many features that make the economics of

information significantly different from that of other "commodities”.!!

Marschak’s theoretical analyses of value and cost of information were elaborated in a long
series of papers beginning with his contribution to Decision Processes (Marschak, 1954) and
summarized in his paper "Economics of Information Systems" (1971). Also, his ideas pointed

to the importance of more empirical knowledge concerning the technology of observation,
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information processing, communication, and decision making, although he, himself, did not do

any empirical work in this field.

ECONOMIC THEORY OF TEAMS AND ORGANIZATION

Von Neumann and Morgenstern introduced into economics the concepts of the theory of
games, which still holds great promise as a basis for a theory of economic organization.
Nevertheless, the usefulness of the theory of games for the analysis of economic organization
has been impeded by the fact that no generally accepted and applicable concept of solution has

yet been developed, except for the very special case of a two-person constant-sum game.

In an economic or other organization, the members of the organization typically differ in (1)
the actions or strategies available to them, (2) the information on which their actions can be
based, and (3) their preferences among alternative outcomes and their beliefs concerning the
likelihoods of alternative outcomes given any particular organization action. Marschak
recognized that the difficulty of determining a solution concept in the theory of games was
related to differences of type 3. However, a model of an organization in which only differences
of types 1 and 2 existed, which he called a feam, presented no such difficulty of solution
concept, and promised to provide a useful tool for the analysis of problems of efficient use of
information in organizations. Such a model provided a framework for analyzing the problems
of decentralization of information so central to both the theory of competition and the
operation of a socialist economy. The idea of a team was introduced in Marschak (1954, 1955}
and a systematic development of the theory of teams is provided in Marschak and Radner

(1972).

In the theory of teams, as in statistical decision problems in general, two basic questions are:
(a) for a given structure of information, what are the optimal decision functions for the
members of the team? (b) what are the relative values of alternative structures of

information? The structure of information is generated by various processes of observation and
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communication, and even the decisions of one team member can affect the information

received by others (as well as affect the team’s utility directly).

For example, in the pre-computer age, airline ticket agents were authorized to sell tickets on
any particular fiight with only partial (if any) information about what reservations had been
booked on that flight by other agents. One can study the best rules for these agents to use
under such circumstances, taking account of the joint probability distribution of demands for
reservations at the several offices, the losses due to selling too many or too few reservation in
total, and so forth. One can also study the additional value that would result from providing
thc'agents with complete information about the other reservations already booked; such an
additional value figure would place an upper limit on the expense that it would be worthwhile to
incur in qrder to provide the agents with that information. (See Beckmann (1958) for an

analysis of airlines reservations problems along these lines.)

Similar problems arise whenever a number of agents in an organization use, sell, or
distribute a commodity provided by common sources of supply. Indeed, the theory of teams
has provided a powerful tool for the analysis of the relative informational efficiencies of so-
called decentralized price mechanisms and other mechanisms for economic decision-making. In
particular, the theory forces the analyst to be precise about the informational content of
alternative mechanisms, and provides framework for the analysis of the properties of

mechanisms that operate in "real time" and are thus typically never in equilibrium.'?

Towards the end of his career, Marschak returned to the theoretical issues concerning
conflict of interest among the members of a decentralized organization. He approached this
primarily in terms of the normative problem of devising incentives for the members of ‘a "team”
to behave in accord with the goals of the organization. Of course, to the extent that such
incentives are needed, the organization is no longer a team in the technical sense of the term,
and the problem is back in the domain of the more general theory of games. It was left to

others to make substantial progress on this set of problems. An important early effort in this
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direction was by T. F. Groves, who in his doctoral dissertation (1969) and his subsequent
article "Incentives in Teams” (1973) presented - in a particular case - a solution to the problem
of providing incentives to decentralized decision-makers both to send truthful messages as well
as to make optimal decisions. These ideas were further developed in the contexts of theories of
public goods, of the allocation of resources in divisionalized firms, and of the principal-agent

relationship.!?

From the perspective of current research, one can view the problem of "incentives in teams"
as one of devising the "rules of the game" in an economic organization so that the "equilibria”
of the game (as defined) implement the organizational goals (or perhaps larger social goals).
As Marschak recognized, a central feature of this class of problems is the dispersal of
heterogeneous relevant information among the memberé of the organization (the "agents") and
the attendant uncertainty on the part of both the agents and the organizer(s). Various
approaches differ in the way "uncertainty" is formalized, and in the definitions of "equilibrium"
that are adopted. In particular, Marschak primarily used the Ramsey-Savage framework in
which both subjective and objective uncertainty are described in a unified way in terms of
probabilities. As the pioneering work of Hurwicz and others has shown, significant progress can
also be made in a framework that eschews a thorough-going probabilistic description of
uncertainty and information.'* It is too early to tell at this point how imporiant this distinction

will turn out to be.

As is so often the case in the careers of creative and distinguished scientists, the significance
of Marschak’s individual contributions to economic analysis do not tell the whole story, and I
would like to emphasize the cumulative significance of his life’s work. Through his work ran
the important message that economists must come to grips with problems of uncertainty and
the dispersal of information in economic organizations. He led the way, not only through his
own research, but also through his indefatigable and successful efforts at explaining these
problems to his colleagues in economics and related disciplines, His work drew from

psychology, statistics, and engineering, and in turn influenced research in those disciplines.
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Indeed, Jacob Marschak was a behavioral scientist, not just an economist, and his work was

typical of the best in behavioral science.
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FOOTNOTES

! The present paper is an expansion of a note originally published in Behavioral Science, vol. 23,
1978, pp. 63-66. I am grateful to K. J. Arrow, L. Hurwicz, and R. D. Luce for comments on

an early draft.

1 have concentrated on three topics in Jacob Marschak’s research for which he is probably
best known and on which I feel competent to write. The bibliography at the end of the paper
contains only references cited here. A complete bibliography of Jacob Marschak’s publications
through 1971, excluding most book reviews and all newspaper articles, may be found in
McGuire and Radner (1972, pp. 335-341). Additional references may be found at the
beginning of the first volume of the three-volume edition of selected papers by Marschak

(1974).

2 In their chapter on "Preference, Utility, and Subjective Probability" in Vol. I of the
Handbook of Mathematical Psychology, Luce, Bush, and Galanter (1965), Luce and Suppes
probably do not accord enough importance to the early work of Luce (1959)! For other
descriptions of econometric research derived from the theories of Marschak and Luce, and

related work, see McFadden (1976, 1981) and Amemiya {1982).

3 Some may consider this stétement too strong! In any case, this is not the appropriate place
for a lengthy discourse on the history of economic thought concerning the economic value of
information. In a sense, the rigorous foundations for an economic theory of information were
developed in statistics (Wald, 1950; Savage, 1954) and in the theory of games (von Neumann
and Morgenstern, 1944). For the contributions of economists, see the survey by Hirshleifer

and Riley (1979) and the references cited there.

4 The best treatment of the foundations of statistical decision theory is probably still that of

Savage (1954). Although this book advocates the point of view that is now called "Bayesian”,
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other points of view are also well represented. A briefer and more elementary exposition is

found in the first three chapters of Marschak and Radner (1972). See also Arrow (1971).

5 To be precise, it is standard mathematical usage to restrict oneself to Borel-measurable (or
Lebesgue-measurable) sets. In this case, one would represent an information structure by a

sigma-field of Bore] subsets of the unit interval.

6 Qee Marschak and Radner (1972), Chapter 2, Section 6.

7 In particular, this is true of the well-known measure of information proposed by Shannon.

See Arrow, Ch. 6 of McGuire and Radner (1972).

8 See Radner and Stiglitz (1982). The proposition proved in that paper is more general than the
one illustrated here; in particular, it uses the criterion of expected utility, and allows for general

forms of the cost of information.

9 For discussion of Blackwell’'s Theorem, see for example, Marschak and Radner (1972),

Chapter 2, Section 8, and McGuire, Ch. 5 of McGuire and Radner {1972).

10 For a more general treatment, see Ch. 2, Sec. 12, of Marschak and Radner (1972), and

Arrow, Ch. 6 of McGuire and Radner (1972).

U For a discussion of many of these issues, and further references to a now substantial and
rapidly growing literature, see the recent survey by Hirshleifer and Riley (1979} and the

bibliographic notes in Radner (1981}, especially sections 7.1, 7.2, and 7.5.

12 Gee Radper, Ch. 11 of McGuire and Radner (1972), Groves and Radner (1972), Arrow and

Radner (1979), and Groves and Hart (1980).

13 On public goods and inputs see Groves and Ledyard (1977), Green and Laffont (1979),
Groves and Loeb (1979), and Clarke (1980); the last item has a recent and extensive

bibliography. References to the literature on the principal-agent relationship can be found in
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Grossman and Hart (1980), Fama (1980), and Radner (1981a,b).

14 See Hurwicz (1960, 1979), and also his Ch. 14, "On informationally decentralized systems”,

in McGuire and Radner (1972).



