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ECONOMIC SURVIVAL
1. Introduction!

Standard textbooks on microeconomic theory
typically ascribe to consumers the goal of max-
imizing “utility,” and to firms the goal of maxi-
mizing “profit” or the “value of the firm.”
Explicit consideration of the survival and fail-
ure of firms has scarcely been recognized by
general equilibrium theory, in spite of the
sophisticated development of the subject in the
past forty years. The recent reawakening of
interest in the evolution of economic behavior,
especially among game theorists, implicitly
brings with it a concern for the goal of “sur-
vival,” but thus far most game-theoretic mod-
els of evolution do not bear much resemblance
to even stylized pictures of economic nstitu-
tions.?

Nevertheless, failure is a common occurrence
in business. For example, during the 15-year
period from 1967-1982, almost half of U.S.
manufacturing firms exited from their industry
each year. Even if we eliminate from each
industry the group of smallest firms, producing
one percent of the industry output, the annual
exit rate was still about 37 percent. During the
same period, more than 60 percent of such
firms exited within their first five years in the
industry, and almost 80 percent in their first
ten years. (See Dunne, et al (1988), especially
pp- 503-510.) Nor is the concept of "failure” a
simple one - it has many degrees and manifes-
tations. I shall return to this point briefly at the
end of the paper.

Of course, the concept of “utility” is so broad
that it easily encompasses the goal of survival.
For example, we could ascribe to an economic
agent a “utility” of one unit per period as long
as he or she survives, and zero after that. In
this case, maximizing total utility would be
equivalent to maximizing the time to failure.
However, this is not the kind of utility function
that is usually ascribed to consumers. Indeed, I

shall argue here that the explicit consideration
of the goal of survival often leads to predic-

tions of behavior that differ radically from
those implied by the typical models of expect-

In recent decades there has been great
progress in the ability of economic theory to
deal with issues of uncertainty, and the con-
nections between survival and uncertainty are
particularly interesting. On the one hand,
there seems to have been little disagreement
among economic theorists that, in a world of
gertainty and complete markets it makes sense
to ascribe to firms the goal of profit maximiza-
tion. On the other hand, in a world of uncer-
tainty and incomplete markets, the very defini-
tion of “profit” becomes problematic.? Some
authors have suggested that there is a close
link between survival and the maximization of
expected profit, or even that the latter is neces-
sary for the former I shall sketch a theoreti-
cal model in which, to the contrary, most of the

surviving firms will not be maximizing expect-
ed profits.

My plan is to discuss these issues in the frame-
work of a sequence of theoretical models, all of
which are in some sense elaborations and

" extensions of the classical “Gambler’s Ruin

Problem.” Although I shall use hardly any for-
mal mathematical notation, I must admit that
the exposition will nevertheless be rather
abstract, and the nontheorist will probably
need some patience to get through it. [ hope
that the figures will provide some additional
help for the geometrically minded.

I have made no atternpt to provide a systemat-
ic bibliography on the subject of economic sur-
vival. Most of the exposition here is based on
research that I have done jointly with
Professors Mukul K. Majumdar and Prajit K.
Dutta, and I would like to acknowledge as
well their helpful comments on the present
paper. More details about the sources of the
results reported here, and other references, are
given in the Bibliographic Notes at the end of
the paper.



Here is an outline of the rest of the paper:
2, The Gambler’s Ruin and Survival
3. The Indebted Investor Who Wants to

Survive
4. The Profit-Maxmmizing Investor
5. Survival and Selection

6. Concluding Remarks

2. The Gamblery Ruin and Survival

As every student of probability and statistics
should know, the modern theory of probability
dates from 1654, when Antoine Gombaud,
Chevalier de la Mére, posed some some ques-
tions on games of chance to Blaise Pascal

(1623-1662).

Pascal communicated his solutions

to Pierre de Fermat [1601-1665] for
approval, and a correspondence ensued.
At that time scientific journals did not
exist, so it was a widespread habit to
communicate new results by letters

to colleagues. (Hald, 1990, p. 42.)

The “Gambler’s Ruin Problem,” which is the
forerunner of the theories of survival that 1
shall discuss here, was evidently taken up two
years later. Continuing with the account by

Anders Hald:

The correspondence of Pascal and
Fermat was resumed in 1656 when
Pascal posed to Fermat a problem
that today is known as The Problem
of the Gambler’s Ruin. Through
[Pierre de] Carcavi the problem was
passed on to [Christian] Huygens
{1629-1695] who described it in his
treatise De Rationciniis in Ludo Aleae
[1657] as the fifth problem to be
solved by the reader. Pascal, Fermat,
and Huygens all solved the problem
numerically without disclosing their

methods. (Hald, 1990, p. 63.)
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Here is the problem:

Problem 5. A and B each having 12
counters play with three dice on the
condition that if 11 points are thrown,
A gives a counter to B and if 14 points
are thrown, B gives a counter to A ,
and that he wins the play who first
has all the counters. Here it is found
that the number of chances of A to
that of B is 244,140,625 to 282,429,
536,481. (Hald, 1990, p. 76.)

This problem represented a new challenge in
probability theory, because the number of
plays before one player wins all the counters
can be unboundedly large. (In modern termi-
nology, the underlying probability space is not
finite.)

In a more general statement of the Gambler’s
Ruin Problem, players A and B start with
some given numbers of counters, and given
probabilities of winning on any one trial.
James Bernoulli (1664-1705) was apparently
the first mathematician to find the general for-
mula for the probability that A wins all of the

“counters before B does. This formula appeared,

without proof, in his posthumously published
book, Ars Conjectandi (1713), but evidently he
had discovered it much earlier. The first pub-
lished proof was by Abraham de Moivre
(1667-1754), and appeared in his paper, De
Mensura Sortts (1712), and later in his book,
Doctrine of Chances (1718). (For further details,
see Hald (1990), pp. 202 ff.)

The problems I shall be discussing here corre-
spond formally to the case in which player B
has infinitely many counters; we may think of
B as “Nature” or “the rest of the market.” The
probability that player A never loses all of his
counters, i.e., that A “is never ruined,” or that
A “survives forever,” is given by:

(2.1
P(a)im { l.r? if r<l

0, otherwise,



where a denotes A's initial nomber of counters,
and 1 denotes the odds in favor of B on any
one trial. We see from the formula that if the
individual trials are favorable to player A

(r < 1), then the probability of eventual ruin,
1- P(a), decreases geometrically from unity,
when a = 0, towards zero as a increases with-
out bound. On the other hand, if the individ-
ual trials are unfavorable to A (r > 1), or even
exactly fair (r = 1), then A is sure to be ruined
eventually.

The problems that follow will be different
from, and more general than, the Gambler’s
Ruin problem covered by this formula in sev-
eral ways. First, player A's stock of counters
will (typically) be replaced by a stock of real
money or other liquid assets.5 Accordingly, 1
shall refer to A as an “economic agent,”
“investor,” “entrepreneur,” or “manager,” and
to his stock of counters as his current “for-
tune” or “cash reserve.” Second, A may gam or
lose more than one unit in any trial (period).
Third, A may be able to ~ or be required to -
withdraw money from his current stock, e.g.,
for consumption or to service a debt. Fourth,
at each play, A may have the option of choos-
ing - from a suitably restricted set - which
game he wants to play. For example, at the
beginning of every market day an investor may
have the option of revising his portfolio at cur-

rent market prices. Fifth, A is “ruined” (fails,
goes bankrupt, is fired) at the first time - if
ever - that his stock falls below some pre-

scribed value, which I shall conventionally

take to be zero.

Finally, most of the results I shall describe are
based on a mathematical model in which
“play” takes place continuously, rather than at
discrete times. This model has been adopted
purely for mathematical convenience, since it
turns out that the relevant formulas are often
simpler and crisper in a2 model with continuous
time. In any case, we may think of the continu-
ous-time model as an approximation to the dis-
crete-time model when transactions are suffi-
ciently frequent. Accordingly, I shall adopt the
following general scheme, with further elabo-
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rations or variations as needed. Underlying
each problem will be a stochastic process that
— for the time being — we may think of as the
agent's cumulative net earnings. Thus the
increment in the earnings process over any
interval of time equals the agent’s net earnings
during that time interval. I shall make two
important assumptions about this earnings
process:

1. The earnings process evolves
continuously in time.

2. Conditioned on the agent's actions,
the earnings in non-overlapping
intervals are statisticaily
independent.

These assumptions are not entirely innocuous,
so they are worth examining for a moment.
Essentially, they represent a situation in which
the agent’s cumulative environment consists of
a sequence of small but frequent events, small
in the sense that no one event has an over-
whelming effect on the agent’s cumulative
earnings at that moment. Thus I am ruling out
infrequent catastrophes such as major earth-

" quakes, stock-market crashes, etc. One might

say that I am going to discuss problems of sur-
vival in “normal times.”

A strong mathematical consequence of the
above assumptions is that, conditioned on the
agent’s actions, the agent’s earnings in any time
interval has a Gaussian or normal
distribution.6 Roughly speakmg, in any very
small interval of time, the agent’s earnings in
that interval will be normally distributed with
mean and variance proportional to the length
of the interval. If the agent has any influence
over the earnings process, he effectively does
so by choosing that mean and variance at each
moment of time, subject, of course, to some
restrictions. The typical evolution of such a
cumulative earnings process is shown in
Figure 1.

Follow?ng standard terminology, I shall call
such a process a controlled additive diffusion.”
Such processes have become standard in the

9



modern theo.{y Of ﬁna,nce, EOEEOWing their
introduction at the turn of the century by
Bachelier, and later developments introduced
by Samuelson (1965) and Black and Scholes
(1972, 1973). (For a more recent account of
applications of continucus-time processes in
finance, see Merton {1990).)

I shall now give a formula for the probability
of survival in the special case of a diffusion in
which the agent does not exercise any control
over the game being played, and essentially
plays the “same game repeatedly.” This is the
continuous-time analogue of the Gambler's
Ruin Problem solved by James Bernoulii. By
this I mean that, in any time interval of length
h, the agent’s earnings is a normally distrib-
uted random variable with mean mh and vari-
ance vh,where m and v are fixed parameters.
Following standard terminology, I shall call m
the drift and v the yolatility of the earnings
process (sometimes called the “yield” and
“risk,” respectively). The drift may be positive
or negative, but the volatility is of course non-
negative. In fact, unless I indicate otherwise, I
shall assume that the volatility is strictly posi-
tive; otherwise there would be no uncertainty
about the evolution of the process, which
would not be very interesting.

Suppose that the agent starts with a stock of
money equal to y, and fails (is ruined) at the
first ime, if ever, that his stock falls to zero.
Such a failure is illustrated in Figure 2, at time
T. 1t can be shown (see, e.g., Harrison, 1985,
p. 43, Corollary) that the probability that the
agent survives forever (is never ruined) is
given by the formula:

(2'2)
1 - eX{) (“iny/v), '1 m > 0,

, otherwise.

Note the similarity between (2.2) and (2.1).
Player A's initial stock of counters, a, has been
replaced by the agent’s initial stock of money,
v and the odds ratio, r, has been replaced by
the expression exp(-2m/v). Again, the proba-
bility of failure, 1 - P(y), decreases exponen-
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tially to 0 as the initial stock, y, increases with-
out bound. Figure 3 illustrates the formula
for the survival probability, with the initial
stock, y, on the horizontal axis, and the sur-
vival probability, P(y), on the vertical axis.

Even though the formula (2.2) is valid only
for the special case in which the drift and
volatility are constant, | have taken some pains
to display it because it contains information
that will be relevant to the more complicated
problems that I shall discuss later. In particu-
lar, we see that the survival probability is
higher the larger is the ratio (m/v) whatever

the initial stock. y.

Apart from the gambling metaphor, the model
[ have just described might be appropriate to
represent a business of a fixed size, with two
kinds of assets: (1) fixed assets, which are
illiquid, and necessary to operate the business,
and (2) a cash reserve, or other liquid assets,
used to pay bills and other current obligations.
Net earnings in periods of equal length (e.g., a
quarter) have the same mean and variance.
Earnings are added to the cash reserve and/or
distributed to the owner(s). However, in this
model, earnings cannot be reinvested to
increase the scale of the business. Net earnings
in any period may be negative, so the the cash
reserve may decrease even if there are no dis-
tributions. If the cash reserve ever falls to zero
so that the bills cannot be paid, the business
fails. Note that the cash reserve will typically
include a line of credit, in which case the criti-
cal level that defines “failure” is really some
negative number. The important point is that
there is some such critical level. I shall call this
the constant size model.

[f we want to represent a situation in which
earnings can be reinvested to increase the scale
of operations, then we must change the model.
For example, a gambler in a large casino can
stake his entire current fortune on each play,
at least up to some large limit. Similarly, an
investdr in a securities market can reinvest his
earnings by buying more securities, and the
prices at which he can buy securities will be

11



independent of the scale of his purchases, at
least until his fortune gets very large indeed.
In both cases (up to some large limit), the
agent’s current net earnings are proportional
to his current fortune; the factor of proportion-
ality is determined by the rate of return on his
current gamble or investment. Another feature
of the gambler or securities investor is that his
assets are liguid, so that he can remain in busi-
ness as long as his fortune is positive, or at
least above some minimum level. (I cannot buy
or sell one penny’s worth of AT&T stock, and
in any case I would have to pay some mini-
mum commission.) Suppose, for example, that
the investor never spends any of his money,
but continuecusly reinvests all of his net earn-
ings. Since returns are multiplicative, and the
agent’s assets are liquid, his fortune will grow -
or decline exponentially at a rate equal to the
rate of return on the current investment. This
rate of return will fluctuate, in part because of
random factors and in part because of the
agent’s investment strategy. We can model this
situation by postuiatmg that the logarithm of
the cumulative net earnings is a controlled
additive diffusion, as described above. At any
moment of time, the drift of this diffusion rep-
resents the expected current rate of return,
and the volatility is its variance. I shall call this
the constant returns-to-scale model.

These two models — constant size, and con-
stant returns-to-scale - are the basis of the
more elaborate constructions I shall describe
in what follows. They are, of course, very spe-
cial cases. The typical firm can invest to
increase its scale, and its assets can be more or
less liquid. Also, it may be subject to varying
returns to scale, depending on its scale and
other factors. Nevertheless, these two special
cases lead to rather different results, and pro-
vide some hints as to what we can expect as
rigorous analysis succeeds in exploring the rest
of the map of technological possibilities

In addition to exploring two models of tech-
nology, I shall also focus on two contrasting
models of preference. In the first, it is asswmed

that the agent wants to maximize the probabil-
12

ity that he survives forever; I shall call such an

agent a survivalist. To make the model more
interesting and realistic, [ shall suppose that
the agent is obliged to withdraw funds from
his cash reserve, or other liquid assets, at 2
constant rate per unit time, e.g., in order to
service a debt. (Another interpretation is that
this constant rate of withdrawal is required for
the agent to maintain a “satisfactory” rate of
consumption.) I shall call this the model of the
indebted survivalist. In this case the agent can
influence the probability of survival by dynam-
ically controlling the drift and volatility of the
cumulative earnings process.

In the second model, it 1s assumed that the
agent wants to maximize the expected total
discounted withdrawals. Here the agent can
dynamically control the withdrawal rate, as
well as the drift and volatility of the earnings
process. I shall call such an agent a profit max-
lmizer.

Combining the two models of technology with
the two models of preference leads to the
accompanying 2x2 table. In the next two sec-
tions, the four blanks in the table will be filled
in with descriptions of the respective optimal
strategies of the agents, and their correspond-
ing probabilities of survival.

Indebted Profit

Survivalist Maximizer

Constant

Size

Constant
Returns
to Scale

¥
1]
]
E
E
E
E
]
E
F
E
E
]
]
]
E
E

3. The Indebied Survivalist

Most firms obtain at least part of their initial
capital by borrowing money. In this section
shall consider a model of an investor who
wants to maximize the probability of survival,

13



but has borrowed money and s obligated to
make payments at a fixed rate per unit of time.
I shall describe the rather different implica-
tions of such an obligation in the constant-size
and constant-rate-of-return models.

Starting with the constant-size model, [ need
to introduce some additional concepts. Recall
that the cumulative earnings process is mod-
eled as a controlled additive diffusion. The
evolution of the cash reserve is governed by
the following simple accounting relation:
During any time period of length h,

3.1

end-of-period cash reserve = beginning-of-
period cash reserve
plus period net
earnings less c times h,

where ¢ is the constant rate, per unit time, of
payout. Recall that the investor survives if the
cash reserve never reaches zerod

To help fix ideas, let us first suppose that the
investor has no control over the earnings
process, so that its drift, m, and its volatility, v,
are constant in time. It is intuitively clear from
the accounting relation (3.1) that the cash
reserve is also an additive diffusion process,
with the same volatility, but with drift (m-c). It
follows from equation (2.2) that the probabili-
ty that the investor survives is

(3.9)

P(y) = | -expl-2(m - O)y/v], if m > ¢,

0, otherwise.

where y is the investor’s strictly positive initial
cash reserve (at time (), and P(y) is the proba-
bility that the investor survives forever

Now suppose that the investor can influence
the earnings process by controlling the drift
and volatility through time. In other words, at
each time t the investor can choose the drift
and volatility that will govern the earnings
process at that time. (Note the mathematical
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abstraction used here: in practice, an investor
will be able to change the drift and volatility at
diserete times, like every day, or every month.)
Since the investor is not clairvoyant, he will at
each time be able to choose the drift and
volatility at best as a function of the history of
the process up to that time. In fact, in the class
of problems we are considering here, he need
not take account of the entire history, but only
his current cash reserve.? The decision rule
that determines his choice of current drift and
volatility for each current reserve will be called
the investor’s strategy. For each strategy, there
will be a corresponding probability of survival.
Since the drift and volatility may vary with
time, one cannot expect that the formula for
the probability of survival will be as simple as
(3.2). Indeed, for many quite simple strategies
it will not be possible to find a (closed-form)
formula at all, although numerical approxima-
tions will always be possible.

However, the investor will not be free to
choose any drift-volatility pair he likes. In any
situation there will be some constraints on the
pairs available to him. Suppose, for simplicity,
that the set of such feagible pairs - I shall call it
A - 1s the same at all times. Such a set is illus-
trated in Figure 4, where the volatility is plot-
ted on the horizontal axis, and the drift on the
vertical axis. Three things are important about
the feasible set A that is illustrated in the fig-
ure. First, notice that the volatility, v, is strictly
positive everywhere in A. This means that
there will be some randomness in the earnings
process, whatever the choice of the investor
{(no risk-free investment}. Second, notice that
there is some part of the feasible set A where
the drift, m, is strictly positive. This means that
the investor can guarantee that the expected
value of his earnings in any period is strictly
positive, even though he cannot guarantee that
the actual realized earnings will be so. Third,
notice that the feasible set A is bounded; this
means that the investor cannot make the drift
of the earnings process arbitrarily large. There
is some limit to how fast he can expect to make
money!



What (feasible) strategy will maximize the
investor’s probability of survival? In our pre-
sent case, the answer turns out to be quite sim-

ple: the investor should always use the same
drift and volatility, namely, the pair (m,v) that

maximizes - in the feasible set A — the ratio of
{m - ¢} to v. This is illustrated in Figure 5,
where the optimal drift-volatility pair is denot-
ed by (m,v,). Of course, in: order for the
investor’s survival probability to be strictly
positive, there must be some feasible drift that
is strictly larger than the payout rate, as is
clear from the previous formula

How does the optimal control depend on the
payout rate ¢ ? First, when the payout rate is
zero, the optimal control maximizes the ratio
of the drift to the volatility; this is denoted by
the point {my,vy) in Figure 6. On the other
hand, when the payout rate equals the maxi-
mum feasible drift, say m*, the optimal drift is
also the maximum feasible, and with the corre-
sponding volatility, v¥, i.e., the optimal control
is (m*,v®), also llustrated in the same figure.
Of course, at this payout rate, the probability
of survival is zero. Finally, it is easy to show
that, between these two limits, the optimal
controls increase monotonically with the pay-
out rate. Note, however, that the net drift of
the investor’s cash reserve, m - ¢, decreases
monotonically with the payout rate, c.

I turn now to the case of constant returns to
scale, as described in Section 2. Recall that, in
this case, if the investor were to start with a
dollar, and take no payout or consumption
from his fortune, then his fortune would grow
exponentially at some time-varying, stochastic
rate of return. Here his cumulative rate of
return, not his actual fortune, is a controlled
additive diffusion. If the investor were to start
with a fortune different from one dollar, then
his fortune at time t would be proportionally
different. The investor influences the cumula~
tive rate of return by controlling its drift and
volatility. Again, the choice of a drift-volatility
pair is constrained to be in some feasible set 19,
say A, as illustrated in Figure 4.
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Recall that, in the situation we are studying in
this section, the investor must pay his creditors
at a constant rate c. In any short period of
time, the investor’s “gross return” (before sub-
tracting the payout) 1s proportional to his for-
tune. Hence, whatever the expected rate of
return of his fortune, if his fortune is small
enough, this expected gross return per unit
time will be less than his payout rate, ¢, and

he can expect his net fortune to become even
smaller. On the other hand, if the current for-
tune is very large, then so will be the expected
total return per unit of time (provided the drift
of the rate of return is positive), and he can

expect his net fortune to become even larger.

1 shall now describe the investor’s optimal poli-
cy for controlling the drift and volatility of

the rate of return. First, and not surprising,
whatever drift-volatility pair he chooses at a

moment of time, the drift will be as large as

possible, given the volatility. This is illustrated
in Figure 7, where the upper boundary of the

feasible set, A, is indicated by a heavy curve.
As shown in the figure, the curve is smooth
and strictly concave, first increasing and then
decreasing, as the volatility increases from its
lower limit, v, to its upper limit, v''. For an
optimal policy, whatever the investor’s choice
of volatility, his corresponding optimal drift
will be on the heavy curve.

We have thus reduced the problem of deter-
mining an optimal control policy to the prob-
lem of choosing the optimal volatility as a
function of the current fortune, ¥ One can
show that this optimal volatility, or risk,
decreases as the fortune increases, l.e., the

larger the current fortune, the smaller will be

the risk chosen by the investor. This is illustrat-
ed in Figure 8 by the direction of the arrows

on the curve that define the upper boundary of
the feasible set. As the figure shows, when the
investor's fortune is very large, his choice cor-
responds approximately to the optimal control
in the constant-size model, namely (my, vy),
Keep it mind, however, that in the present
case the investor is controlling the rate of
return, not the total return.

17



Second, and somewhat surprising, when the
investor’s fortune is sufficiently small, he
behaves as if he were a “risk-lover.” To be pre-
cise, let v* denote the value of v for which the
corresponding drift attains its maximum feasi-
ble value, say m*. When the fortune is sufhi-
ciently small, the optimal risk will exceed ¥,
and the optimal control will be on the part of
the curve to the right of the point (m®,v*).
This means that, the investor chooses the max-
imum feasible risk corresponding to the opti-
mal drift. This behavior contradicts, of course,
the well-known “efficiency property” of stan-
dard portfolio analysis, which would require
that the investor choose the minimum volatility
correspording to the drift, i.e., the minimum
risk for the given “yield.” In fact, in the limit,
as the investor’s fortune approaches zero, his
optimal risk approaches v, the maximum risk
that is feasibie for him.

This apparent risk-loving behavior is related to
the fact, mentioned above, that, roughly speak-
ing, the drift in the investor’s fortune is pro-
portional to the fortune. One can show that
there is a critical fortune such that, if the
investor’s fortune is below it, then whatever
his policy, he can expect his fortune to decline.
On the other hand, if his fortune is above the
critical value, then, using the optimal policy, he
can expect his fortune to increase. In fact, it

turns out that the critical fortune is exactly

equal to the fortune at which it is optimal to
choose the drift m*™ and the volatility v*. Thus

we see that the apparent “risk-loving” behavior
of the investor when his fortune falls below the
critical value has nothing to with his attitude
towards risk. The interval between zero and
the critical fortune is a kind of trap, from
which the investor tries to escape by taking
sufficiently high risks, and the smaller his cur-
rent fortune the greater the risk he must take.

Another insight into the investor’s apparent
attitude toward risk is obtained by examining
the function that gives the maximum probabili-
ty of survival, starting from any current for-
tune. Since the investor is constantly changing
the drift and volatility of the rate of return,
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there is no simple formula for this probability.
It tarns out to be convenient to measure the
“state of the system” by the logarithm of the
fortune, rather than by the fortune itself; [
shall call this the logfortune. Figure 9 iflus-
trates the maximum probability of survival,
P(z), given that the initial logfortune is z. As
we would expect, P(z) increases with z,
approaching 1 asymptotically as z increases
without bound. What is perhaps less expected
is that P is S:shaped. The point z* at which the
“S” changes direction s, in fact, the logarithm
of the critical fortune, i.e., the gritical logfor-
tune. In mathematical language, P is convex
on the interval from 0 to z*, and concave after
that.

Now imagine that the investor is at time 0,
with an initial logfortune z. Suppose that he
adopts a drift for the rate of return process
during a short time interval from 0 to h. If the
interval is sufficlently small, then the proba-
bility that the investor fails in the interval 0 to
b will be negligible. Therefore, the investor
will want to control the process so as to maxi-

mize the expected value of the probability P at

the end of the interval.

Those of you who have some familiarity with
the theory of economic choice under uncer-
tainty can now appreciate the significance of
the shape of the function P. Since P is convex
below the critical logfortune, z*, the short-run
behavior of the investor will appear to exhibit
a love of risk in that region, whereas when his
current logfortune exceeds z* then his short-
run behavior will exhibit apparent risk-aver-
sion.

How do the optimal control and probability of
survival depend on the payout rate? First, one
can show that the optimal control is deter-
mined by the ratio, ¢/y, of the payout rate to
the current fortune. It follows from what we
know about the dependence of the optimal
control on the current fortune that the optimal

volatili#y increases monotonically with the
payout rate, and that the optimal drift first

increases from m to m*, and then decreases.
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Furthermore, as the payout rate, ¢, decreases
to zero, for any given fortune the probability
of survival increases towards unity; in other
words, the entire curve P(z) shifts upwards.

4. The Profit-Maximizing Investor

Up to this point I have foctised on the implica-
tions of the hypothesis that the investor wants
to maximize the probability of surviving forev-
er. [ shall now switch to the hypothesis that
the investor wants to maximize profits, and we
shall see that the implications are quite
different.

We first have to fix on a definition of “profit.” [
shall define profit to be the expected total dis-
counted income from the investment, where
future income is discounted at some fixed,
exogenously given, rate. Although this may
seem straightforward enough for some listen-
ers, some comments may be in order for oth-
ers. By “income” from the investment I mean
money withdrawn from the capital stock or
cash reserve for the purpose of consumption,
debt repayment, and/or other payments to
(other) investors. Thus money that is reinvest-
ed does not count as current income to the
investor. Income may reflect realized capital
gains, but since the investor’s horizon is infi-
nite, there is no terminal value of the capital
stock. If the income is used for consumption,
the addition of discounted income from differ-
ent periods of time corresponds to the hypoth-
esis that the investor’s preferences are
intertemporally independent, and the constan-
cy of the rate of discount reflects the stationar-
ity of his preferences (a constant rate of impa-
tience).l! Finally, taking the expected value
reflects the investor’s neutrality towards risk.
Thus this definition of profit is not innocuous,
and it will have strong implications for the
investor's behavior. On the other hand, this is
a fairly standard definition of the “profit” of a
firm.

As in the previous section, the investor’s opti-
mal behavior will depend on his investment
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“technology.” Again, I shall consider the two
polar cases of constant size and constant
returns-to-scale. However, this time [ shall
first discuss the constant-returns-to-scale
model. The reason for this switch in order is
that the CRTS model will require very little of
our time. The combination of profit maximiza-
tion and CRTS results in a poorly posed opti-
mization problem: either the investor can make

an infinite profit. or he will want to terminate

his investment and withdraw all of his liquid
capital at the very beginning. [ believe that this

phenomenon is well known in the case of cer-
tainty, and it can also be shown to exist in the
uncertain world of our model, but I shall not
discuss it further here.

So I turn now to the constant-size model.
Recall that, in this model, the * producttve
capital stock is fixed and illiquid. Its cost is
sunk, and so — for the purpose of characteriz-
ing the investor's optimal policy - it will not
be necessary to subtract it from the profit. At
any time, the current net earnings can be
divided between a part that is added to the
cash reserve and a part that is withdrawn. The

. amount that is “added” to the cash reserve can

even be negative, as long as the cash reserve is
strictly positive. On the other hand, the
amount withdrawn in any period must be posi-
tive or zero. Thus we have the following sim-
ple accounting relation in any period

(4.1

end-of-period cash reserve = beginning-of-
period cash reserve
plus period net earning
less amount with
drawn,

This process continues until the first time, if
ever, that the cash reserve falls to zero (call
this the failure time), after which the earnings,
cash reserves, and amounts withdrawn are all
zero, 1.e., the enterprise ceases to exist. The

profit from the enterprise is defined to be the
expected total of the discounted withdrawals.!2

In the model of this section, there may be more
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than one Investor in the background, although
these will not be described explicitly. For this
reason, [ shall call the decision maker the
entrepreneur. In addition to managing the
firm, the entrepreneur may also have money
invested in it. The entrepreneur’s policy will
have two parts: (1) a control policy, for con-
trolling the drift and volatility of the earnings
process, and (2) a withdrawal'policy. In
Section 3, we saw a particularly simple exam-
ple of a withdrawal policy, namely, a constant
rate of payout (as long as the enterprise is sol-
vent). As we shall see, this is not a profit-maxi-
mizing policy. In fact, the profit-maximizing
withdrawal policy is also simple, but quite dif-
ferent '

To prepare you for the description of the opti-
mal (L.e., profit-maximizing) policy, I shall first
describe a special class of withdrawal policies,
which I shall call overflow policies. Imagine
that the cash reserve is stored in a tank, as
ilustrated in Figure 10. Incoming rain adds to
the water level in the tank (positive net earn-
ings), but evaporation decreases it (negative
net earnings). If tank ever goes dry, the firm
fails. Near the top of the tank is a hole that
feeds into a pipe; the pipe, in turn, empties into
a bucket. Whenever the water level reaches
the hole, any excess water (net earnings) flows
into the pipe, and is thus withdrawn into the
bucket; this corresponds to a withdrawal of
funds from the cash reserve. The capacity of
the tank up to the level of the hole, say b, is a
parameter of the overflow policy, which we
might call the overflow level.

The next two figures illustrate how the cash
reserve will fluctuate with an overflow policy.
Figure 11 shows a typical evolution of the cash
reserve with no withdrawals, i.e., the cumula-
tive earnings. Figure 12 shows how the cash
reserve would evolve with the same net earn-
ings, but with an overflow withdrawal policy.

If the entrepreneur uses an overflow policy,
then the cash reserve will fluctuate between
zero and the overflow [evel, but will never

exceed the latter. Money is withdrawn from
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the cash reserve only when the reserve level
reaches the overflow level, and then only if a
further accumulation of positive net earnings
would raise the cash reserve above it.
Furthermore, it can be shown that, with an
overflow policy, the cash reserve will eventual-
ly reach zero in finite time, and hence the firm
will not survive forever.’3

The first important result about the profit-
maximizing policy is that the optimal with-
drawal policy is an overflow policy, for a suit-
ably chosen overflow level, b. This characteri-
zation has an important corollary, namely, a
profit-maximizing firm will fail in finite time!
Although a rigorous proof of this requires the
use of advanced mathematical techniques,
some heuristic remarks may make it plausible.
Recall that the cash reserve is not directly pro-
ductive, but it is indirectly productive in that it
provides insurance against a run of bad luck
that would lead to failure. The larger the cash
reserve, the greater is the protection that it
provides, and hence the greater is the expected
value of future withdrawals. However, this
indirect (insurance) productivity of the cash
reserve is subject to decreasing returns. The
larger the cash reserve, the smaller is the
marginal benefit - in terms of expected future
profit — from a further increase in the reserve,
compared to the benefit of an immediate with-
drawal. On the other hand, it can be shown
that, in order to have a positive probability of
surviving forever, the firm must accumulate a
larger and larger cash reserve, without bound;
but beyond a certain point such accumulation
is no longer profitable.

I turn now to the other part of the entrepre-
neur's pelicy, namely, the control of the drift
and volatility of earnings. We shall see that
there is a marked contrast with the behavior of
the indebted investor of the previous section.
The optimal policies are similar in that entre-
preneur always chooses the maximum possible
drift for any given volatility; in other words, he
always"chooses a point on the upper boundary
of the feasible set. But here the similarity ends.
First, the optimal control lies between the pair
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that maximizes the ratio of the drift to the
volatility, i.e., the yield/risk ratio — the familiar
point (mg,vy) — and the pair that maximizes the
vield - the point (m*,v*) in the figure. Thus
the optimal control is always “efficient” in the
sense of standard portfolio theory. Second, the
optimal volatility is an increasing function of
the cash reserve, which is just the opposite of
the survival-maximizing coptrol policy of the
indebted investor. Third, i follows that the
optimal drift is also an increasing function of
the cash reserve. This direction of monotonici-
ty of the drift and volatility is illustrated by the
arrow in the upper boundary of the feasible set
in the figure.

5. Survival and Selection

Although economists may admit that,a priori,
different firms may have different goals and
behaviors, it is often argued that market forces
will tend to weed out all but the firms that dis-
play a certain specific behavior. In particular, it
has been argued that firms that maximize prof-
its (and are the most “efficient™) will have the
greatest chances for survival, and hence in the
long run most of the existing firms will be
maximizing profits.’4 I shall call the proposi-
tion in this more specific form the Neoclassical
Selection Hypothesis (NSH). Thus Milton
Friedman has written in his Essays in Positive
Economies:

... under a wide range of circumstances
individual firms behave as if they

were seeking rationally to maximize

their expected returns ... and had full
knowledge of the data required to succeed
in this attempt ... unless the behavior of
businessmen in some way or other approxi
mated the behavior consistent with the
maximization of returns, it seems unlikely
that they would remain in business for long.

(Friedman, 1953, pp. 21-22).

Although some authors have criticized the
NSH - notably Sidney Winter (see, e.g.,
Winter, 1982) ~ [ think that it is fair to say
that the issue has not received a thorough and
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systematic treatment. It is, of course, tautologi-
cal that in the long run most of the existing
firms will be those with the largest probability
of survival, but the results of the previous two
sections might cast some doubt on the validity
of the more specific NSH. After all, we have
seen that (1) firms that maximize (expected)
profits are sure to fail in finite time, whereas
there are policies that produce a positive profit
and yet have a positive probability of surviving
forever . If both kinds of firms are present ini-
tially, then after a long time most of the surviv-
ing firms will be of the latter kind, and hence
not be profit maximizers.

But, one might say, won't the competition for
investment funds force each firm to pay the
highest possible return? If this were the case,
all existing firms would be profit-maximizers,
and all would fail in finite time, although some
would last longer than others.

Nevertheless, Prajit Dutta and I have argued
that the NSH can be wrong under quite plau-
sible conditions. I can only very briefly sum-
marize the argument here. Successive cohorts
of investors and potential new firms enter the
capital market every period. The investors
want to maximize their expected discounted
returns. The firms are diverse in technology
and behavior. In particular, if we call the maxi-
mum expected rate of return that a firm can
offer its potential rate of return, then firms are
diverse in their potential rates of return. At the
market equilibrium, all new firms that are
actually financed offer the same rate of return
to outside investors. Firms whose potential
rates of return are less than the equilibrium
rate will not be financed. Firms whose poten-
tial rate exactly equals the market rate can be
financed, but must maximize profit to do so,
and hence will fail in finite time. A “supramar-
ginal” firm, whose potential rate exceeds the
market rate, will have some freedom to pursue
goals other than profit maximization, for
example, the goal of survival, in which case it
will have a positive probability of surviving
forever. The result is that, if each cohort con-
tains some supramarginal “survivalists,” then
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as time goes on, the relative frequency of
profit-maximizing firms becomes negligible.

What is happening, of course, is that the
supra,margmal firms are capable of earning

“rents,” which they canr use in pursuit of vari-
ous goals, e.g., survival. In this sense the capi-
tal market is “imperfect,” in contrast to a so-
called “perfect” capital marketin which there
would be an infinite supply of firms that offer
the highest possible rate of return. I don't
know what kind of capital market Milton
Friedman had in mind, but I have no doubt in
my own mind that the “imperfectly competi-
tive” case is the normal one. In fact, it is quite
common to call a market such as the one for
investment funds I have described here
“competitive,” since the firms, although finite
in number, are price-takers in the market for
investment funds.

6. Concluding Remarks

The models I have described here are admit-
tedly special, and need to be generalized in
varlous directions. First, we need richer mod-
els of the technology and of the capital market.
Second, my picture of “failure” is too stark.
There are various forms and gradations of
bankruptcy. There are also other crises that
the firm may confront, such as hostile
takeovers. Many of these crises may result in a
change of management, but not in the disap-
pearance of the firm itself.

Third, these considerations lead naturally to
another set of issues that concern the separa-
tion of ownership and management. The mod-
els | have discussed here are perhaps suitable
descriptions of a firm with a single entrepre-
neur/manager who raises investment funds
from outside lenders and/or investors who,
however, have no control over the firm except
to force it into bankruptcy when it runs out of
cash. They are less suitable as descriptions of a
publicly held firm with shareholders and a
board of directors, and a management team
reporting to them. In the latter case, we should
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deal more directly with the agency problems
that such a structure entails. Both casual
observation and game-theoretic research sug-
gest that the threat of dismissal may be an
effective ingredient in a potentially long-lasting
principal-agent relationship.!$

Nevertheless, 1 hope that [ have been able to
communicate the idea that the survival motive
has interesting implications for behavior under
uncertainty, implications that sometimes differ
radically from the implications of profit maxi-
mization. [ also hope that [ have raised doubts
in your mind about whether the connection
between profit-maximization and survival is as
straightforward as it is assumed to be.

7. Bibliographic Notes and References

[ have already noted that the early history of
the analysis of the Gambler’s Ruin problem is
described fully by Hald (1990). Modern treat-
ments for the case of discrete time can be
found in many textbooks and treatises on ran-
dom walks and Markov chains, e.g., Spitzer
(1976). Likewise, the analysis of the ruin
problem for the case of a controlled diffusion 1s
well-known; I have relied here on Harrison
(1985), who, however, prefers the term “con-
trolled Brownian Motion.”

Regarding the indebted survivalist, the optimal
policy for the constant-size technology is easy
to derive, although I cannot find a convenient
published reference. My exposition of the
results for the case of constant returns to scale
is based on Majumdar and Radner (1991).
Further results about survival under produc-
tion uncertainty under various conditions have

been derived by Majumdar and Radner (1992)
and Mitra and Roy (1993).

The fact that the problem of profit maximiza-
tion is not not well posed in the model of con-
stant returns to scale has been pointed out by
Radnerfand Shepp (1995). The characteriza-
tion of the profit-maximizing policy in the con-
stant-size model was first given by Dutta and
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Radner in 1993. They dealt with the case in
which the set A of feasible drift-volatility pairs
is compact and strictly convex; the rate of
withdrawal can be unbounded (as was implic-
itly assumed here), or bounded above by some
exogenously given number. A more explicit
characterization of the optimal policy can be
derived if the set A is finite; in this case it is
sufficient to consider the extreme points of the
convex hull of A; see Radner and Shepp
(1995). It 1s conjectured that the analysis can
be extended to the case in which A is only
assumed to be compact.

Section 6 is also based on Dutta and Radner
(1995). That analysis was inspired, in part, by
the now extensive theoretical literature on the
evolution of strategies in games, and more par-
ticularly by Dutta and Sundaram (1992) and
Blume and Easley (1992).
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ENDNOTES

! ] would like to thank P.K. Dutta, H.-L.
Huyoh, E. Kalai, P.B. Linhart, and M.X.
Majumdar for comments on a previous version of
this paper. This paper was prepared while I was
still at AT&T La%oratories. However, the views

expressed here are those of the author, and not nec-
essarily those of AT&T Bell Laboratories.

2 For exceptions, see the references in Dutta

and Radner (1993).
i See, e.g., Radner (1981).
4 See Section 5 below.

5 In the context of the so-called principal-agent
problem, the agent’s “stock” may be in units gg
some measure of performance, such as internal
accounting profits.

¢ ] make no attempt to be rigorous here. See,
a.g.,‘IlBreiman {1968) and Harrison (1985} for
etails.

7 Some authors use the term “controlled
Brownian motion.” See, e.g., Harrison (1985).

8 Under the assumptions of our model, the cash
reserve must be a continuous function of time, and
s0 it cannot become negative without actually tak-

ing on the value of zero.

9 Technically, we are dealing with a
stationary Markovian dynamic programming
problem.

10 T'o be precise, for the rest of this paper it will
be assumed (unless stated otherwise) tEat the set A
is closed, bounded and strictly convex, with smooth
boundary, that volatility is everywhere positive in
A, and that there is a point in A with pesitive drift.

' See Koopmans (1986).

12 Note that it is implicitly assumed in (4.1) that
the cash reserve earns zero interest. However, this
assumption could be relaxed.

¥ In fact, it can be shown that the expected time
to failure is finite.

14 See, for example, Alchian (1950), Friedman
(1953), and other references cited in Dutta and
Radner (1993).

18 Ske Dutta and Radner (1995) for a

survey.
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Figure 7 Figure 9
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