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1 Introduction

[To be written.]

2 Naive Surplus Theory

2.1 Consumers who buy 0 or 1 unit

I introduce the concept of surplus in one of the simplest models of demand. [This
is the model underlying (Bakos and Brynjolfsson, 1999).] Consider a very large
population of K consumers facing a market for a single good. Each consumer
will buy either one or zero units of this good (per period), depending on the
price. Each consumer has a willingness-to-pay (WTP), or �reservation price�
for one unit, and will buy one unit if and only if his or her WTP exceeds the
price. Let FK denote the cumulative distribution function (cdf) of the WTP in
the population, i.e.,

FK(p) is the fraction of the population whose WTP � p: (1)

The demand function for the good is therefore

DK(p) = 1� FK(p); (2)

i.e., if the price is p, the demand for the good equals the fraction of the pop-
ulation whose WTP > p. I shall assume that the cdf FK has the following
properties:

FK(0) = 0; FK(p) is nondecreasing, FK(vmax) = 1 for some vmax > 0:
(3)
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Thus the demand function has the usual property that it is everywhere decreas-
ing (or constant). In addition,

DK(0) = 1; DK(vmax) = 0: (4)

Since there are only �nitely many consumers, the cdf FK is a "step func-
tion," i.e., it is constant except at a �nite number of points. The set of these
points is exactly the set of di¤erent values of the WTP in the population of
consumers. At such a point w, the cdf FK jumps up by an amount equal to
the fraction of consumers with a WTP equal to w. The demand function jumps
down correspondingly at the same set of point.
It is sometimes convenient to approximate the above model by a "smooth"

one. Imagine that the population of K consumers is a random sample from a
population for which the cdf of the WTP is F . Assume that

F has a derivative, denoted by f; (5)

f(w) > 0 for 0 < w < vmax: (6)

The function f is called the density function corresponding to F . Thus, for
small �, the fraction of the population whose WTP is between w and w + �
is approximately f(w)�. As is well known, as K increases without bound, the
sequence of cdfs, FK , approaches the cdf F as a limit (see a standard text on
probability theory or statistics). We therefore adopt, as an approximation, the
(�ctional) model of the consumers as a continuum, with the convention that
the total mass of consumers is unity. Corresponding to (4), in this model, the
demand function is given by D(p) = 1� F (p). With our assumption about F ,
the demand function D is strictly decreasing for 0 < w < vmax.
If a person with WTP w consumes one unit of the good, we shall say that

his or her (incremental) gross value derived from this consumption is w. Hence,
speaking heuristically, for small �, the consumers whose WTP is between w
and w+� derive a total gross value that is approximately wf(w)�. Hence the
total gross value derived by all consumers whose WTP is greater than p is

�(p) =

Z vmax

p

wf(w)dw: (7)

Correspondingly, if a consumer with WTP w buys one unit of the good at
price p, we shall say that his or her surplus from the transaction is (w�p). Hence,
speaking heuristically, for small �, the consumers whose WTP is between w and
w+� have a surplus that is approximately (w�p)f(w)�, provided that w > p.
Hence, if all consumers face the same price, p, then the total consumer surplus
at that price is

(p) =

Z vmax

p

(w � p)f(w)dw: (8)

From this last equation, and the de�nition of D, is straightforward to verify
that

0(p) = �D(p): (9)
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2.2 Consumers who buy multiple units

If a person buys more than one unit of a good, it is intuitively plausible that
the WTP for successive additional units will be decreasing as the total number
consumed increases. (For the time being, assume that the quantity purchased
must be a nonnegative integer.) Pursuing this line of thinking, given the price
of a good, assume that a person will want to increase his or her consumption as
long as the incremental willingness to pay for the next additional unit (strictly)
exceeds the price. (Of course, if the WTP for the �rst unit is less than the price,
then the person will consume zero units.) Let wix denote person i�s incremental
WTP for the �last�unit of the good if his or her total consumption of the good
is x. Extending the idea of value from the previous subsection, we suppose that
the total gross value to i of consuming q units is

Wi(q) =

qX
x=1

wix: (10)

Now suppose that consumers can buy fractional units of the good, i.e., the
quantity bought can be any nonnegative real number. Adapting the notation
of the previous paragraph to this case, let Wi(q) denote the consumer�s WTP
for a quantity q. I make the following assumptions about the function Wi:

The derivative W
0

i (x) = wi(x) exists and is continuous for 0 < x < �i;

wi(x) > 0 and is strictly decreasing for 0 � x < �i; (11)

wi(x) = 0 for x � �i: (12)

[In particular, if �i = 0, then wi(x) = 0 for all x � 0.] Thus, corresponding to
equation (10) we have

Wi(q) =

Z q

0

wi(x)dx: (13)

With these assumptions,

Wi(q) > 0 and is strictly concave and increasing for 0 < q < �i; (14)

Wi(q) = Wi(�i) for q � �i: (15)

The value wi(x) is sometimes called the consumer�s marginal willingness-to-pay
at quantity x. Since the marginal WTP is zero for q � �i; the quantity �i is
called the consumer�s point of satiation for the good. To simplify the exposition,
I make the further assumption that

wi is continuous at x = �i: (16)

(In what follows, the reader should think about the possible implications of a
discontinuity of the marginal WTP at the point of satiation.)
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Now assume that the the consumer�s "net utility" if he consumes a quantity
q and pays a (per-unit) price p is

Ui(q; p) =Wi(q)� pq: (17)

Given the price, the consumer demands a quantity, Di(p), that maximizes his
net utility. For a �xed price p, the function Ui(q; p) is strictly concave on the
interval (0; �i), and linear and strictly decreasing for q � �i. (The reader should
draw a �gure.) The partial derivative of Ui(q; p) with respect to q is

@Ui(q; p)

@q
=W 0

i (q)� p = wi(q)� p: (18)

Hence
wi(0) < p implies Di(p) = 0; (19)

whereas

wi(0) > p implies that Di(p) is the solution of wi[D(p)] = p: (20)

The last two conditions determine the consumer�s demand function, Di. (What
can happen if the marginal WTP is discontinuous at the point of satiation?)
De�ne

vi = the smallest price p at which Di(p) = 0: (21)

We are now in a position to characterize the consumer�s surplus, Si(p), at
price p. The surplus is de�ned as

Si(p) =Wi[Di(p)]� pDi(p) (22)

Case 1. wi(0) > p. Make the change of variable,

x = Di(y);

so that

dx = D0
i(y)dy;

x = 0) y = vi;

x = Di(p)) y = p;

By the optimality condition (20),

wi(x) = wi[Di(y)] = y: (23)

Hence

Wi[Di(p)] =

Z Di(p)

0

wi(x)dx = �
Z vi

p

yD0
i(y)dy:

Integrating by parts, we getZ vi

p

yD0
i(y)dy = viDi(vi)� pDi(p)�

Z vi

p

Di(y)dy:
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Hence, recalling that Di(vi) = 0,

Si(p) =

Z vi

p

Di(y)dy: (24)

This expression for the individual consumer�s surplus can be interpreted geomet-
rically as the area under his demand curve and above the price axis, from p to
vi.
Case 2. wi(0) � p. In this case, the consumer�s demand is zero for all prices

� p, and so the surplus is zero, and the above characteriation of the surplus is
also valid for this case.
The total consumer surplus is de�ned as the sum of the individual consumer

surpluses:

S(p) =
X
i

Si(p) =
X
i

Z vi

p

Di(y)dy: (25)

De�ne
v = maxfvig;

and note that, for all i,

p > vi ) Di(p) = 0; so thatZ vi

p

Di(y)dy =

Z v

p

Di(y)dy:

Hence, from (25),

S(p) =
X
i

Z vi

p

Di(y)dy (26)

=

Z v

p

"X
i

Di(y)dy

#
: (27)

However, the total demand from all consumers at the price p is:

D(p) =
X
i

Di(p): (28)

Hence

S(p) =

Z v

p

D(y)dy: (29)

so we have, for the entire market, the total consumer surplus is equal to the area
under the market demand curve and above the price axis, from p to v. (See
Figure 1.)

Let P denote the inverse demand function, i.e., P (x) is the solution of

D[P (x)] = x: (30)
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If we redraw Figure 1 with quantity on the horizontal axis and price on the
vertical axis, we see that the consumer surplus is now the area between the
graph of the inverse demand function and the horizontal line y = p; and between
zero and the quantity demanded. (See Figure 2.) De�ne

�(q) =

Z q

0

P (x)dx; (31)

�(q) = S[P (q)]: (32)

We may call �(q) the gross value of consuming the quantity q. With this no-
tation, if the total demand is q and the corresponding price is P (q), then the
consumer surplus is.

�(q) = �(q)� qP (q); (33)

i.e., it is the di¤erence between the gross value and the total cost to the con-
sumers.

2.3 E¢ cient Output

With the machinery of the previous section, we can now address the question:
what would a �socially e¢ cient�level of output of the good be? Of course, the
answer will depend on the cost of production. Suppose that the society as a
whole has available a method of production such that the cost of producing an
output q is

CT (q) = c0 + C(q): (34)

Here c0 is the �xed cost, independent of output, and C(q) is the variable cost.
By de�nition, C(q) = 0. I shall also assume that C(q) is an increasing, convex,
di¤erentiable function. The net value to society of producing and consuming a
quantity q is de�ned to be the di¤erence between the gross value and the cost.
The total surplus is de�ned to be the di¤erence between the gross value and the
variable cost.

�(q) = �(q)� C(q): (35)

A quantity is socially e¢ cient (in the short run) if it maximizes the total surplus.
From (31),

�0(q) = P (q); (36)

which is decreasing; hence � is a concave function. Furthermore, the variable
cost function is convex, so �C is concave. Hence � is concave. Assume that the
socially e¢ cient output is strictly positive. The �rst-order-condition (FOC) for
a maximum is

�0(q) = �0(q)� C 0(q) = 0;
or

P (q) = C 0(q); (37)

which gives rise to the recipe, �price equals marginal cost.�[Of course, the recipe
is valid only if the FOC does indeed determine the socially e¢ cient output. The
reader should consider other possibilities.] Let q̂ the socially e¢ cient output.
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The total surplus can represented graphically as the area between the inverse
demand curve and the marginal cost curve, and between zero and the socially
e¢ cient output. (See Figure 3.)

2.4 Monopoly is ine¢ cient

Consider a market with consumers as in the previous sections, and a monopolist
with a variable cost function C, as in the previous section. If the �rm produces
and sells a quantity q, its revenue will be qP (q), and its variable cost will be
C(q). De�ne the producer surplus to be

 (q) = qP (q)� C(q): (38)

(It�s pro�t will equal its surplus minus its �xed cost.) Hence, by (33) and (35),
the sum of the producer and consumer surpluses equals the total surplus.
The �rst-order condition determining the output at which the �rm�s pro�t

or surplus is maximized is

 0(q) = qP 0(q) + P (q)� C 0(q) = 0: (39)

Call the pro�t-maximizing output q*, and assume that it is strictly positive.
Hence

P (q*) = C 0(q*)� q*P 0(q*): (40)

Since q*P 0(q*) < 0, at the pro�t-maximizing quantity the price exceeds mar-
ginal cost. Hence, compared to the socially e¢ cient outcome, the monopolist�s
quantity is too low and the price is too high. The di¤erence between the maxi-
mum total surplus and the total surplus at the monopolist�s quantity is called
the dead weight loss. This is illustrated in Figure 4.

2.5 Competition is e¢ cient

Another recipe common to our modern economic cookbook is that �competition
is e¢ cient.� I shall now show that this recipe is correct in a particular elabo-
ration of our model. (This is not meant to imply that the recipe is universally
useful.) Suppose that there are a number of �rms that produce the good in ques-
tion, numbered 1; :::; J: Roughly speaking, the market is said to be perfectly (or
purely) competitive if each �rm assumes that varying its output will not a¤ect
the market price. This assumption is approximately plausible if there are many
�rms, and no �rm is �large� relative to the the other �rms. More precisely,
a competitive equilibrium of the market for this good is a vector, (p; q1; :::; qJ),
such that
(1) for every �rm j, its output qj maximizes its pro�t, given the price p;
(2) demand equals supply, i.e.,

D(p) =
JX
j=1

qj : (41)
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Suppose that for every �rm j, it�s cost function, CTj ; satis�es the assumption of
the previous section (about the monopolist), and that the total demand function
for the good also satis�es the previous assumptions. If �rm j produces an output
qj , and the price is p, then its pro�t is

�j(qj) = pqj � CTj (qj) = pqj � c0j � Cj(qj):

Assume that its optimal output is determined by the FOC,

�0j(p) = p� C 0j(qj) = 0;
C 0j(qj) = p; j = 1; :::; J: (42)

These last J equations, together with (41), form a system of (J+1) simultaneous
equations in (J + 1) unknowns, i.e., the outputs of the �rms and the market
price. In what follows, I shall assume that there is at least one solution to this
system.
In order to apply the analysis of Section 2.3, we need to identify the �global

cost function� that is implied by the individual cost functions of the J �rms.
Suppose that society wants to produce a quantity q of the good, using the
production capabilities of the J �rms. A reasonable notion of �e¢ ciency�would
require that it do so at minimum cost, or equivalently, at minimum variable cost.
Accordingly, de�ne

C(q) = min
JX
j=1

Cj(qj) subject to
JX
j=1

qj = q: (43)

Call the resulting vector (q1; :::; qJ) an e¢ cient allocation of the total output, q,
among the J �rms. Assume that in an e¢ cient allocation every �rm produces
strictly positive output. It follows that at an e¢ cient allocation all the �rms
must have the same marginal cost, say �, i.e.,

C 0j(qj) = �; j = 1; :::; J: (44)

To see this, suppose, to the contrary, that there are 2 �rms, say j and k, such
that C 0j(qj) < C 0k(qk). In this case, total cost can be reduced by reducing k�s
output by some small amount and increasing j�s output by the same amount.
Hence the original allocation was not e¢ cient.
If we add the constraint,

JX
j=1

qj = q; (45)

then (given the total quantity q) we have a system of (J + 1) simultaneous
equations in (J + 1) unknowns, i.e., the J outputs of the �rms and �. For the
purpose of this analysis, denote the solutions by

qj = Qj(q); j = 1; :::; J;

� = �(q);

8



to emphasize their dependence on the total output, q. Hence the global cost
function is given by

C(q) =
JX
j=1

Cj [Qj(q)]: (46)

From Section 2.3, the socially e¢ cient output is characterized by �marginal
cost equals price,�or

C 0(q) = P (q); (47)

where, as before, P is the inverse demand function. Di¤erentiating both sides
of (46) with respect to q, we get

C 0(q) =

JX
j=1

C 0j [Qj(q)]Q
0
j(q): (48)

From (44),
C 0j [Qj(q)] = �(q); j = 1; :::; J; (49)

so from the previous equation,

C 0(q) = �(q)
JX
j=1

Q0j(q):

Now observe that
JX
j=1

Qj(q) = q;

so that
JX
j=1

Q0j(q) = 1;

and hence, by (49),
C 0(q) = �(q) = P (q): (50)

Therefore, from (44) and (45),

C 0j(qj) = P (q); j = 1; :::; J; (51)
JX
j=1

qj = q (52)

Compare these equations with the equations (42) and (41) for a competitive
equilibrium:

C 0j(qj) = p; j = 1; :::; J;

JX
j=1

qj = D(p):

Since q = D(p) and p = P (q), the conditions for a competitive equilibrium are
equivalent to those for a socially e¢ cient output and price.

9



2.6 Example: An application to bundling information goods

This example is based on [Bakos and Brynjolfsson, 1999]. Consider a market for
N �information goods.�For each good, a consumer purchases either 1 or 0 units,
as in Sec. 2.1. Let Vndenote a consumer�s willingness-to-pay (WTP) for good
n. [Warning! The notation used in this subsection is not entirely consistent
with that used in the preceding sections.] Assume that the variables Vn are
independently and identically distributed (IID) in the population of consumers.
This population is �very large,� so we represent it by a continuum with "unit
mass,� and the total consumption of a good as unity if every consumer buys
that good. [Cf. the "smooth" model in the second part of Sec. 2.1.] Thus the
total consumption of a good equals the fraction of consumers who buy it.
As a consequence of these assumptions, the fraction of consumers for which

V1 � v1; V2 � v2; :::; VN � vN ; is given by

Pr fVn � vn : n = 1; :::; Ng =
NY
n=1

F (vn); (53)

where F is a cumulative distribution function (cdf). For convenience of exposi-
tion, assume that F is di¤erentiable.
Suppose now that the variable cost of producing these goods is zero, at

any level of output. (This may be a good approximation for many information
goods.) From Sec. 2.3, for each good the socially e¢ cient price and output are
0 and D(0) = 1, respectively. By (7) the corresponding maximum total surplus
for the sale of a single good is

�(0) =

Z vmax

0

vf(v)dv = m; (54)

which is the mean (mathematical expectation) of the distribution F . The max-
imum total surplus for all N goods together is thus Nm.
Suppose further that the N goods are provided by a monopolist, who will

be denoted by the acronym �Mon.�Since variable cost is zero, Mon�s surplus is
equal to his revenue. We shall consider the question: which is better for Mon,
to sell the goods separately or in a single �bundle�? We �rst consider the case
in which Mon sells the goods separately. Let p1 and q1 denote Mon�s optimal
price and output for a single good, respectively. Under plausible assumptions,
about F , p1 > 0 and q1 < 1, and Mon�s surplus will be strictly less than the
maximum, i.e., in the notation of Sec. 2.4,  (q1) < m, or equvalently,

 (q1) = km; 0 < k < 1: (55)

Thus, if Mon sells the N goods separately, his total surplus will be

N (q1) = Np1q1 = Nkm: (56)

Figure 1 illustrates the two surpluses for a single good with monopoly pricing.
The maximum total surplus is the area under the demand curve between a zero
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price and a a price equal to vmax, whereas Mon�s surplus is the area of the
rectangle.
An alternative marketing strategy for Mon is to sell all of the goods in a

single bundle, at a single price, say �, per bundle. The WTP of a (random)
consumer is

SN = V1 + :::+ VN ;

and the consumer will buy the bundle if SN > �, or equivalently, if �WN > �pN ,
where

�WN =
SN
N
; �pN =

�

N
: (57)

Note that �WN is the average WTP per good in the bundle, and �pN is the
corresponding average price per good (APPG). Let F denote the cdf of �WN ,
and let DN (�pN ) be the demand for bundles if the APPG is �pN ; then

DN (�pN ) = 1� FN (�pN ): (58)

The mean (mathematical expectation) of �WN is the same as the mean of
every Vn, namely m. The variance of �WN is s2=N , where s2 is the variance of
every Vn. As we shall see, by the �Law of Large Numbers,� the distribution
of �WN is more concentrated about m than that of the each individual Vn.
This is illustrated in Fgure 5. The corresponding total, producer, and consumer
surpluses are illustrated in Figure 6, which suggests that, for largeN , the average
producer�s surplus per good is close to the maximum total (social) surplus, and
the consumer surplus is close to zero. I shall show below that this is the case.
More precisely, I shall demonstrate the following proposition.

Proposition 1 For any � > 0; there exists a number M� such that, for every
N �M�, if the monopolist sells the N goods as a single bundle, then the average
producer surplus per good will be at least m� �.

Before proving Proposition 1, I shall show that it implies a second proposi-
tion:

Proposition 2 For large enough N; it is better for the monopolist to bundle N
goods than to sell them separately.

An easy corollary of this last proposition is:

Corollary 3 For any bundle size, there is always a larger bundle size that is
better for the monopolist.

I �rst show that Proposition 1 implies Proposition 2. From Proposition 1,
we see that N �M� implies that Mon can achieve a producer surplus of at least
N(m � �) by bundling the N goods. By (55), this is greater than the surplus
attained by selling the goods separately if and only if N(m� �) > Nkm, or

(m� �) > km;
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which is true for � su¢ ciently small. This completes the proof of Proposition 2.
To prove the Corollary, simply regard the bundle of N1 goods as a single good,
and then apply Proposition 2.
I now prove Proposition 1. As above, let s2 denote the variance of the

distribution of a single good, i.e.,

s2 =

Z vmax

0

(v �m)2f(v)dv:

By Chebyche¤�s Inequality (see a standard probability or statistics textbook),
for any h > 0,

Pr
�
j �WN �mj > h

	
� s2

Nh2
:

Hence, for any h > 0, there exists a number Nh such that, for all N � Nh,

Pr
�
j �WN �mj > h

	
� h: (59)

From this last statement,

FN (wi) � h; 0 � wi � m� h;
FN (wi) � 1� h; m+ h � w � vmax:

Equivalently,

DN (�pN ) � 1� h; 0 � �pN � m� h; (60)

DN (�pN ) � h; m+ h � �pN � vmax:

Now observe that the maximum WTP for a bundle is Nvmax. For the purpose
of this proof, let � denote the demand function for bundles of size N . By the
de�nition of DN ;

DN (�pN ) = �(N �pN ): (61)

Replacing D by � and vmaxby Nvmax; the maximum total (social) surplus is
from consuming bundles is Z Nvmax

0

�(p)dp:

But the maximum total surplus is also the mean of the distribution of SN , which
is Nm, so

Nm =

Z Nvmax

0

�(p)dp:

In the last integral, make the change of variable �pN = p=N , or p = N �pN ; then
the integral becomes Z vmax

0

�(N �pN )Nd�pN ;

which is equal to

N

Z vmax

0

DN (�pN )d�pN :
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Hence,

m =

Z vmax

0

DN (�pN )d�pN ;

To prove the proposition, it is not necessary to �nd the optimal monopoly
price for bundles. It is su¢ cient to �nd a pricing method such that Mon�s
average surplus per good is within � of m for su¢ ciently large bundle size.
Figure 6 and (58) suggest that we take the average price per good to be close
to, but less than, the mean WTP per good. Accordingly, let the APPG be

�pN = m� h: (62)

The bundle size, N , and the number h will be chosen appropriately. Mon�s
average surplus per good at this price is (m� h)DN (m� h). Hence we want to
make the di¤erence,

� =

Z vmax

0

DN (�pN )d�pN � (m� h)DN (m� h); (63)

small. Write the above integral as a sum of three integrals:Z vmax

0

DN (y)dy =

Z m�h

0

DN (y)dy +

Z m+h

m�h
DN (y)dy +

Z vmax

m+h

DN (y)dy:

Also, write

(m� h)DN (m� h) =
Z m�h

0

DN (m� h)]dy:

Hence, from (58),Z m�h

0

DN (y)dy � (m� h)DN (m� h) =

Z m�h

0

[DN (y)�DN (m� h)]dy

� (m� h)h;Z vmax

m+h

DN (y)dy � (vnax �m� h)h:

In addition, since 0 � DN (y) � 1;Z m+h

m�h
DN (y)dy � 2h:

Combining the last three inequalities, we get

� � (m� h)h+ 2h+ (vmax �m� h)h = (vmax + 2� 2h)h:

Now take h small enough so that � < �, and take Nh large enough so that (58)
is satis�ed, and the proposition is proved.
The statement containing the inequality (59) is a form of the Weak Law of

Large Numbers. Proposition 1 can be generalized to include cases in which the
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variables Vn are neither independent nor identically distributed, provided that
the Weak Law of Large Numbers is still valid. For example, it is su¢ cient that
they be independent, their variances be bounded between two positive numbers,
say s2 < t2, and their means, mn, have a well-de�ned long-run average,

m = lim
N!1

1

N

NX
n=1

mn:

[Note: Proposition 1 of Bakos and Brynjolfsson, 1999, is incorrect as stated, in
that Assumption 2 is too weak. Correspodingly, Proposition 1A is also incorrect
as stated.]
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