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Abstract

The first two chapters of this dissertation discuss multivariate long memory mod-

els. First, we discuss two distinct parametric multivariate time-series models. We

discuss the implications of the models and describe an extension to fractional coin-

tegration. We describe algorithms for computing the covariances of each model,

for computing the likelihood and for simulating from each model. These algo-

rithms are much more computationally efficient than the existing algorithms and

are equally accurate, making it feasible to model multivariate long memory time

series and to simulate from these models. We use maximum likelihood to fit models

to data on goods and services inflation in the United States.

Second, we present a semiparametric model for bivariate long-memory time

series that allows for power law behavior in the coherency and powers of the fre-

quency in the phase. We describe the implications of a power law in the coherency

and of powers of the frequency in the phase on the time-domain behavior of the

time series and provide time domain examples. We prove the consistency of the av-

eraged periodogram estimator for estimating the power law in the cross-spectrum

and coherency. We prove that the very-narrow-band least squares estimator of the

cointegrating parameter is not affected by power laws in the phase and coherency.

We apply our methods to money supply data and to high and low stock prices.

The final chapter presents a methodology that combines the flexibility of tree-

based estimation methods with the structure of random effects models for longi-

tudinal data. We apply the resulting model and estimation method, called the

RE-EM tree, to state traffic fatality rates and to pricing in online transactions.

We also perform extensive simulation experiments to show that the estimator im-

proves predictive performance relative to regression trees without random effects

and is comparable or superior to using linear models with random effects.
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1 Introduction

This dissertation consists of three papers dealing with different facets of economet-

rics. The first two chapters deal with different facets of multivariate long memory

time series, while the third applies data mining methods to longitudinal data.

Univariate long memory time series have been widely discussed in literature.

However, very few papers had previously considered models for two or more long

memory time series. Chapter 2 takes a parametric approach: it describes two

distinct multivariate extensions of the ARFIMA model to the multivariate case.

It then presents efficient algorithms for calculating the covariance sequences of the

two models, for simulating from the two models (and, in fact, many multivariate

Gaussian models), and for computing the Gaussian likelihood. In contrast, Chapter

3 uses a semiparametric approach: it decomposes the cross-spectrum of a bivariate

time series into the auto-spectra, the phase and coherency. It then presents a

semiparametric model that allows for a wide range of behaviors in the phase and

coherency, including power laws in the phase and infinite group delay at zero

frequency.

Chapter 4 is quite different from the other two chapters, applying regression

trees to longitudinal data. Most previous work on regression trees has focused on

cross-sectional data. The fact that longitudinal data includes multiple observations

per individual allows for improved estimation and prediction, if a model uses the

longitudinal structure. RE-EM trees combines the flexibility of regression trees

with individual-specific effects to account for the structure of the data. This allows

for great flexibility in modelling and improves predictive performance.
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2 Computationally Efficient Gaussian Maximum

Likelihood Methods for Vector ARFIMA Mod-

els

2.1 Introduction

While time series often come in groups that could be analyzed together, much time

series work focuses on the analysis of univariate time series. This has led to the

creation of a wide variety of models that can handle many types of correlation

structure, including long memory processes which have slowly-decaying autocorre-

lations (see Granger and Joyeux [1980] and Hosking [1981] for some of the earliest

work in this area). In the case of multiple stationary time series, the most widely-

used model is a vector autoregressive-moving average (ARMA) model, in which

the autocorrelations of each component series and therefore the cross-correlations

between pairs of series decay exponentially fast. Such a restriction on the au-

tocorrelations has been found to be too strong in a variety of univariate cases.

Instead, many authors suggest applying a long memory model such as an fraction-

ally integrated ARMA (ARFIMA) model, to such time series (see Baillie [1996] for

a discussion of applications to geophysical sciences, macroeconomics, prices, and

more). In this paper, we discuss two vector versions of the ARFIMA model, both

of which are multivariate generalizations of the traditional univariate ARFIMA

model.

To make a time series model suitable for practical use, it is desirable to be able

to determine its covariance structure, estimate its parameters through maximum

likelihood, and simulate from it. Ideally, all of these tasks must be done both

quickly and precisely. In the case of univariate and multivariate ARMA models,
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the conditional likelihood function, in which some initial values of the time series

are assumed to be fixed, provides a simple approximation to the full likelihood

function. The application of the EM algorithm of Dempster et al. [1977] to the

state-space representation of a multivariate ARMA process provides an alternative

estimation method. (See Hamilton [1994, chapter 11 and section 13.4] for more

information.) However, neither of these methods is applicable to long memory

models, because one cannot condition on a finite number of observations and be-

cause long memory models do not have state space representations (Baillie [1996]

and others). For univariate ARFIMA models, more recent work [Bertelli and Ca-

porin, 2002, Deo et al., 2006, Davies and Harte, 1987] has found efficient methods

for computing the autocovariances of an ARFIMA process, computing the likeli-

hood function of an ARFIMA process, and simulating from an ARFIMA process.

Previously, Sowell [1989b,a] described exact methods for computing the covari-

ances from one particular type of vector ARFIMA model and for computing the

exact likelihood and simulating from general multivariate processes. However, his

calculation methods are often slow, with the likelihood and simulation calculations

taking O(T 2) time, where T is the number of observations in the dataset; reliance

on these algorithms makes the use of vector ARFIMA models prohibitively expen-

sive for large datasets. In this paper, we present methods which will accomplish

the tasks of computation and simulation fast enough to make the use of vector

ARFIMA models more practical.

Beyond the application of the newly proposed methods to estimating vector

ARFIMA models, our algorithms for computing the quadratic form and for sim-

ulation are applicable to any multivariate time series for which the covariance

structure is known. This provides additional value to people who wish to compute

the quadratic form of or to simulate from a multivariate time series that does not
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have state space representations or other methods for exact computation.

To make our notation precise, suppose that we observe k = 1, ..., K time series

over t = 1, ..., T periods, with Xkt denoting the tth period of the kth time series

and Xt = (X1t, ..., XKt)
′. In this paper, unless stated otherwise, we will assume

that all time series are stationary with zero mean. We will consider these ob-

servations grouped either by series or by time. In the former case, we will write

X = (X1·, ..., XK·)
′, where Xk· = (Xk1, ..., XkT )′. In the latter case, we will write

X̃ = (X ′1, ..., X
′
T )′. Notice that X = PX̃, where P is a permutation matrix. Sup-

pose we have a model for X described by a vector of parameters, θ. Define Ω(θ)

as the KT ×KT matrix, Cov(X). Note that Ω(θ) consists of K2 blocks, with the

(i, j) block equal to the T ×T matrix containing E(Xi·X
′
j·). Since the multivariate

process is stationary, each block is Toeplitz, with the same number along each di-

agonal. Alternatively, we may consider Ω̃(θ) = Cov(X̃). Then, Ω̃(θ) consists of T 2

blocks containing Cov(Xt, Xt−r), arranged in a Toeplitz fashion, so that the blocks

along each diagonal are identical. We may then write the Gaussian log likelihood

as:

l(θ|X) = −1

2
log |Ω(θ)| − 1

2
X ′Ω(θ)−1X (2.1)

= −1

2
log |Ω̃(θ)| − 1

2
X̃ ′Ω̃(θ)−1X̃ (2.2)

We will discuss how to compute the autocovariances which could be used to create

Ω(θ) and Ω̃(θ) in section 2.5, how to compute the term containing the quadratic

form in section 2.6, and how to approximate the determinant term in section 2.7.

In section 2.2 we provide some background on long memory processes and a

discussion of two distinct models that appear as we move from the univariate case

to the multivariate case. Section 2.3 describes block circulant and block Toeplitz

matrices, which are the basis of many of the methods we will use. In section 2.4,

we discuss existing computational methods that have been applied to maximum
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likelihood estimation in multivariate ARFIMA models. In sections 2.5, 2.6, and

2.7, we present computationally efficient methods for the distinct tasks in estimat-

ing vector ARFIMA models with maximum likelihood: computing covariances,

computing the quadratic form in the likelihood function, and computing the de-

terminant in the likelihood function. The methods for computing the covariances

and computing the quadratic form are extensions of univariate algorithms which

have been discussed in the time series literature, and we review those methods

in the corresponding sections. In section 2.8, we discuss simulating from a vector

ARFIMA process. This section also includes a description of the existing method

for univariate ARFIMA processes that our algorithm extends. After presenting

these methods, we discuss the performance of the maximum likelihood estimator

in section 4.6. We apply our estimator to econometric and meteorological data in

section 2.10. Section 4.7 concludes.

2.2 Long Memory Processes

2.2.1 Univariate ARFIMA Processes

A univariate long memory process with differencing parameter, d, is one in which

the autocovariances, ω(r), decay at a hyperbolic rate; that is, lim|r|→∞
ω(r)
|r|2d−1 is

constant. Equivalently, a univariate long memory process is a process in which

the spectral density, defined as f(λ) = 1
2π

∑∞
r=−∞ ω(r) exp(−irλ), obeys f(λ) ∼

C|1 − e−iλ|−2d when λ is near 0. We must have 0 ≤ |d| < 1
2
, for this spectrum

to be integrable and for the process to be stationary; the process is said to have

short memory when d = 0 and long memory for any 0 < |d| < 1
2
. Long memory

processes have long been studied in the literature. (See Granger and Joyeux [1980]

and Hosking [1981] for early work on long memory and Brockwell and Davis [1993,

section 13.2] or Baillie [1996] for more background.)
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The simplest case of long memory is fractionally integrated white noise, {yt}.

Fractionally integrated white noise is defined by (1− L)dyt = εt, where εt is white

noise with variance σ2, and L is the lag operator, Lxt = xt−1. Even though d is

not an integer, we can define (1− L)d by the binomial expansion:

(1− L)d =
∞∑
j=0

(−1)j
(
d

j

)
Lj(

d

j

)
=

d(d− 1) · · · (d− j + 1)

j!

The spectral density of {yt} is given by fy(λ) = σ2

2π
|1 − e−iλ|−2d. The coefficients

of the infinite order autoregressive representation, the infinite order moving aver-

age representation, and the autocovariances of {yt} are available in closed form

[Brockwell and Davis, 1993, see, for example, [Theorem 13.2.1].

ARFIMA models are a more general class of univariate long memory processes.

A time series, {xt}, follows an ARFIMA(p, d, q) process if it can be written as

a(L)(1−L)dxt = b(L)εt, where a(L) and b(L) are lag polynomials of degree p and

q respectively. We generally assume that a(L) and b(L) have no common roots and

that all of their roots are outside the unit circle. Together with the assumption that

|d| < 1
2
, these conditions ensure that {xt} is a stationary and invertible process.

Notice that we may think of {xt} in two different ways that are equivalent in the

univariate case but will not be equivalent for multivariate models. First, {xt} is

an ARMA(p, q) process driven by fractionally integrated white noise, which can

be written as:

a(L)xt = b(L)[(1− L)−dεt]

Second, we may describe {xt} as an ordinary ARMA(p, q) process which has been

fractionally integrated:

xt = (1− L)−d
(
b(L)

a(L)
εt

)
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Since the composition of linear filters is commutative in the univariate case, the

two descriptions are identical.

2.2.2 Vector ARFIMA Processes

The composition of linear filters does not commute in the multivariate case, so

there are multiple possible extensions of a univariate ARFIMA process to a vector

ARFIMA process. In this paper, we will focus primarily on models with autoregres-

sive but not moving average components, because of the additional complications

associated with moving average components, particularly in a multivariate set-

ting (see Dunsmuir and Hannan [1976, page340] for a description of the structure

needed to identify the parameters in vector ARMA models). Because a vector

ARMA model can be written as a vector AR model [Hamilton, 1994, page 259],

many of our results generalize to models with MA components; we will identify

cases in which that occurs.

Let A(L) = A0 + A1L + ... + ApL
p, where A0 is the K × K identity matrix,

IK , and A1, ..., Ap are any matrices such that |A(L)| has all of its roots outside

the unit circle. If p = 1, this condition is equivalent to the requirement that A1

has all of its singular values less than 1, or equivalently that all of the eigenvalues

of ATA are less than one. Let D(L) be the diagonal matrix with diagonal entries

(1 − L)d1 , ..., (1 − L)dK , where d1, ..., dK ∈ (−1
2
, 1

2
), to ensure stationarity and

invertibility. Let {εt} be a sequence of K-variate white noise, with E(εtε
′
s) = 0

when t 6= s and E(εtε
′
t) = Σ, with Σ positive definite. Given the parameters D(L),

A(L) and Σ, we may define two distinct vector ARFIMA models; versions of the

models including moving average components were presented by Lobato [1997].

In the first model, called Model A by Lobato, we have:

A(L)D(L)Xt = εt
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We may understand the properties of the process, Xt, by defining it in two steps.

First, define Xt = D(L)−1Zt, so that Xk· = (1 − L)−dkZk·. Then, assume that

{Zt} follows a vector autoregressive (VAR) model, A(L)Zt = εt. Combining these

two parts, we see that Xt is a fractionally integrated vector autoregression, which

we will called a FIVAR model in this paper. When we wish to specify p and

~d = (d1, ..., dK), we will call this a FIV AR(p, ~d) model.

Permuting the matrices A(L) and D(L) gives us what Lobato calls Model B:

D(L)A(L)Xt = εt

This model is a vector autoregressive model, A(L)Xt = Yt, driven by fractionally

integrated white noise, D(L)−1εt. In this paper, we will refer to this model as a

V ARFI(p, ~d) model, where p is the order of the lag polynomials in A(L) and ~d is

the vector of differencing parameters, as before.

In the univariate case, these two models are identical. Since the composition

of A(L) and D(L) is not necessarily commutative, however, these models differ

in most cases when K > 1. The distinction between the models is also apparent

when we write down the the spectral densities of the models:

fFIV AR(ν) =
1

2π
D(e−iν)−1A(e−iν)−1Σ(A(e−iν)−1)∗(D(e−iν)−1)∗

fV ARFI(ν) =
1

2π
A(e−iν)−1D(e−iν)−1Σ(D(e−iν)−1)∗(A(e−iν)−1)∗

These spectral densities are identical when the matrices describing the linear fil-

ters, D(·) and A(·), commute. In particular, they are identical when D(L) is a

scalar multiple of the identity matrix; this occurs when all of the series have equal

differencing parameters. Also, they are identical when A(L) and Σ are both diag-

onal; in that case, the individual series, Xk·, are uncorrelated univariate ARFIMA

series.
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Figure 1: The theoretical autocovariance sequences and cross-covariance sequence

of a FIV AR(1, ~d) process with parameters d = (0.1, 0.4), A1 = (0.7, 0.1, 0.2, 0.6),

and Σ = (1, .5, .5, 2) for lags -199 to 199.

In Figures 1, 2, and 3, we plot the autocovariance sequences and cross-covariance

sequences of FIV AR(1, ~d) and V ARFI(1, ~d) processes with identical A(L), Σ, and

d. The covariance sequences differ dramatically. The autocovariance sequences of

the two variables decay more rapidly in the VARFI process than in the FIVAR

process. The cross-covariance sequences show an even larger difference; the FIVAR

process shows much more asymmetry in the cross-covariances.

Besides producing different autocovariance sequences, the two models differ in

their implications; a FIVAR model cannot produce anything like fractional coin-
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Figure 2: The theoretical autocovariance sequences and cross-covariance sequence

of a V ARFI(1, ~d) process with parameters d = (0.1, 0.4), A1 = (0.7, 0.1, 0.2, 0.6),

and Σ = (1, .5, .5, 2) for lags -199 to 199.
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Figure 3: The theoretical cross-covariance sequences of a FIV AR(1, ~d) pro-

cess and a V ARFI(1, ~d) process, both with parameters d = (0.1, 0.4), A1 =

(0.7, 0.1, 0.2, 0.6), and Σ = (1, .5, .5, 2) for lags -199 to 199.
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tegration because the stationary VAR series are integrated separately. However,

in most cases, a VARFI model will have linear combinations of Xt and up to p

lags which are integrated of a lower order. Extending the analysis of Lobato [1997,

page 141] from the bivariate case to a general multivariate case, we give a sim-

ple formula that describes the cointegrating relationships. Let A·,k(L) be the kth

row of A(L). Then, A·,k(L)Xt = (1 − L)dkεkt. Suppose that dk < max(~d) and

at least two elements of A·,k(L) are non-zero, and that the corresponding Xkt are

integrated of order max(~d). Then A·,k(L)Xt is a linear combination of present and

past variables which is fractionally integrated of a lower order than the individual

variables are. This relationship will include both present and past values of the

variables; since A0 is the identity matrix, exactly one variable will enter with its

present value.

True fractional cointegration occurs when there is some vector, a, such that a′Xt

is fractionally integrated of a lower order than any of the elements of Xt. Unlike

the relationship we found for VARFI models, this relationship depends only on

contemporaneous values of Xt. To produce true cointegration in a FIVAR model,

we must include an additional linear filter in our description of the series (Sowell

[1989a] uses this method as well). We motivate this addition through the simple

bivariate fractional cointegration model of Robinson and Hualde [2003], Hualde

and Robinson [2007]. Their model can be written as:

D(L)V Xt = εt (2.3)

where V =

 1 −ν

0 1

; unlike them, we do not assume that εkt = 0 when t < 0,

because we consider only stationary cases. We may generalize the formulation in

(2.3) by applying the V matrix to a FIVAR model, yielding a cointegrated FIVAR
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model:

A(L)D(L)V Xt = εt

where V is a matrix with ones along the diagonal and which is block diagonal

according to which sets of series are cointegrated; see Sowell [1989a, section 5] for

more details. In the case of a bivariate model, Sowell defines V =

 1 0

ν 1

.

In our analysis of cointegration in sections 2.5.4 and 2.7.4, any parameterization

of the cointegrating matrix could be used. In our parameter estimation, we will

use the parameterization of Sowell for identification. Then, the spectral density of

multivariate cointegrated time series is given by:

fcoint(ν) =
1

2π
V −1D(e−iν)−1A(e−iν)−1Σ(A(e−iν)−1)∗(D(e−iν)−1)∗(V −1)∗

One could also introduce the V matrix into a VARFI model, though it would not

generally lead to cointegration, because the series A(L)−1D(L)−1εt may all have

the same order of integration even before the addition of V .

Thus far, we have assumed that all series have mean zero. In practice, it is likely

that each time series will have an unknown mean. Consider the series Yt = Xt+~µ,

where Xt follows one of the models with mean zero discussed above. A variety of

possibilities exist for the estimation of the parameters of Xt and the estimation of

µ. A common approach in the literature [for example Brockwell and Davis, 1993,

page 238] is to subtract the sample mean from each time series Yk·, and to proceed

with estimation based on the demeaned observations. However, the variance of

the sample mean of a long memory process is O( 1
n1−2d ), where d is the differencing

parameter; thus, when d > 0, the variance declines more slowly than the traditional

short memory variance of the mean, O( 1
n
). Despite these problems, demeaning is
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straightforward, and we will use this method in our data analysis. An alternative

method is to use restricted maximum likelihood (REML) as described by Harville

[1977b]. In REML, the data is transformed to remove nuisance parameters, and

then maximum likelihood is applied to the transformed data. In the case where the

means of the individual time series are the only nuisance parameters, it is enough

to take the first difference of each time series individually. Because differencing

decreases each dk by one, this method should be applied when we may assume

that the original data has each dk ∈ (0.5, 1.5). One could also include the mean

directly as part of maximum likelihood estimation. We will not pursue REML or

inclusion of the mean further in this paper.

It is more common in the literature [for example Sowell, 1989a, Hosoya, 1996,

Martin and Wilkins, 1999, ?, Ravishanker and Ray, 1997, 2002] to analyze FIVAR

models. Tsay [2007] is a notable exception. We will present algorithms for com-

puting the covariances of FIVAR and VARFI models in sections 2.5.2 and 2.5.3,

respectively. In section 2.7.1, we present an algorithm for approximating |Ω| which

can be used with either FIVAR or VARFI models; section 2.7.3 contains a second

algorithm which can be used only for VARFI models. The algorithms which we

will present for computing the quadratic form, X ′Ω−1X, and simulating from a

multivariate time series apply to either of the models, because they depend only

on knowing the covariance structure.

2.3 Block Circulant and Toeplitz Matrices

We begin by discussing some properties of circulant and Toeplitz matrices. These

properties will be integral to many of the computational methods we will present.

First, we recall the definitions of these two types of matrices. A Toeplitz matrix

is one in which all of the elements along each diagonal are constant. That is, the
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value of element Aij depends only on i− j. The covariance matrix of a sequence of

observations of a univariate time series, x = (x1, ..., xT )′, is a symmetric Toeplitz

matrix. In general, Toeplitz matrices need not be symmetric. A circulant matrix

is a matrix in which each row shifts the elements of the previous row one space to

the right and moves the right-most element to the beginning of the row; a circulant

matrix is a special case of a Toeplitz matrix.

Once we begin to consider multiple time series, we must use block matrices, that

is, a matrices that can be partitioned into square blocks, each of which has a certain

property. A block circulant matrix is a matrix which can be partitioned into blocks,

each of which is a circulant; a block Toeplitz matrix is defined analogously. In this

paper, we will generally consider KT ×KT matrices which can be partitioned into

K2 Toeplitz or circulant blocks, each of which is of dimension T × T .

In this section, we will present suggestions for the storage of block circulant

and block Toeplitz matrices and algorithms for computing powers of block circulant

matrices and for multiplying by block circulant and block Toeplitz matrices. Most

of these algorithms are well-known; the algorithm for computing powers of circulant

matrices is a new generalization of an algorithm presented by Chan and Olkin

[1994] for computing inverses of block circulant matrices.

2.3.1 Efficient Storage

In this and the following sections, we discuss how we can use the properties of

Toeplitz and circulant matrices to make the operations of the algorithms more

efficient. In this section, as an introduction to the structure of these matrices, we

discuss the simplest way: the repeated elements in each kind of matrix mean that

there are more efficient ways to store them than just writing down all the elements.

The most obvious way to store a block circulant matrix would be to store all
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K2T 2 elements. However, because a circulant is completely defined by its first row,

it is sufficient to store the first row of each block in a K ×K × T array, which is a

dramatic reduction in the required storage space when T is large. In fact, one can

store any T elements which uniquely define the first row of a circulant; we actually

store the Fourier transform of the first row, as we will discuss in section 2.3.3.

In addition, it is not efficient to store the entire block Toeplitz matrix, Ω,

since it would require the same large amount of space. Any Toeplitz matrix can be

completely described by the first row and first column, and we store those elements

instead of storing the entire matrix. In particular, we specify the Toeplitz matrix

by the vector of elements:

[a(T − 1, 0), ..., a(1, 0), a(0, 0), a(0, 1), ..., a(0, T − 1)],

where we number the rows and columns starting at 0. When this Toeplitz matrix

is the (i, j) block of Ω, we may describe the elements in relation to the covariances

of {Xit} and {Xjt}.. Note that, in block Ai,j, the (0, r) element is ωij(−r) =

Cov(Xi,t, Xj,r+t), and the (r, 0) element is ωij(r) = Cov(Xi,t, Xj,t−r). Thus, the

elements of the first row and column as ordered above are simply

[a(T−1, 0), ..., a(1, 0), a(0, 0), a(0, 1), ..., a(0, T−1)] = [ωij(T−1), ..., ωij(−(T−1))]

To describe a block Toeplitz matrix, we combine all of these vectors of length

2T − 1 into a three-dimensional array of size K × K × (2T − 1), in which each

K ×K layer is ω(r) = Cov(Xt, Xt−r) for r = −(T − 1), ..., (T − 1).

2.3.2 Computing a power of a block circulant matrix

As we will see, the methods for computing the quadratic form and for simulation

both depend on computing a power of a block circulant matrix; the quadratic

form requires computing an inverse, while simulation requires computing a square
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root. In this section, we describe a fast way to compute an arbitrary power of a

matrix, assuming that it is well-defined. The algorithm given in this section is a

generalization of the one given by Chan and Olkin [1994], which describes only

how to compute the inverse.

We first describe how the αth power of a block circulant matrix, C, could be

computed in theory. Let Cij be the (i, j) block of C. The eigenvalue decompo-

sition of that block is Cij = F ∗ΛijF , where F is the Fourier matrix with entries

Fjk = 1√
T

exp
(

2πjk
√
−1

T

)
and Λij is the diagonal matrix with diagonal equal to the

Fourier transform of the first row of Cij [see, for example, Brockwell and Davis,

1993, section 4.5]. Throughout this section, when we refer to the eigenvalues of a

circulant, we order them as in the Fourier transform of the first row of Cj.

We now consider the matrix, C, as a whole. Let L be the KT × KT matrix

consisting of the diagonal blocks, Λij. We may write C = (I ⊗ F ∗)L(I ⊗ F ),

where ⊗ is the Kronecker product. Since (I ⊗ F )∗ = (I ⊗ F ∗)−1, we may write

Cα = (I ⊗ F ∗)Lα(I ⊗ F ). Thus, it remains only find an expression for Lα.

Notice that L consists of K2 blocks of size T × T , each of which is zero except

on the diagonal. Therefore, we may find a permutation matrix, P , such that

L = PBP ′, where B is a matrix with T blocks of size K ×K along the diagonal

and zeroes everywhere else. In particular, we choose P such that the tth block

along the diagonal of B consists of the tth elements along the diagonal of each

block in L; this moves all K2T non-zero elements of L to the blocks along the

diagonal of B. This is the same permutation matrix described in the introduction.

The resulting blocks are not necessarily diagonal or Toeplitz. (See Chan and Olkin

[1994, section three] for more details, particularly the graphic on page 94.)

Consider the spectral decomposition, VBΛBV
−1
B , of B. Since B is block diago-

nal, we may choose VB to be block diagonal as well. Combining this decomposition
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with (I ⊗ F ) and P yields the eigenvector decomposition of C:

C = (I ⊗ F ∗)PVBΛBV
−1
B P−1(I ⊗ F ∗)−1

The spectral decomposition allows us to compute powers of C in a simple form. To

do this, we first find Bα using the spectral decomposition for each block separately.

(Though there no structure on the individual blocks in B, finding the eigenvalues

is not computationally intensive if K is small.) We then find that Lα = PBαP ′.

Since Bα is a block diagonal matrix and P is the same permutation matrix, Lα

has the same diagonal block structure as L. Multiplying by (I ⊗F ∗) and (I ⊗F ),

we find the formula for Cα:

Cα = (I ⊗ F ∗)PBαP ′(I ⊗ F )

Not only does this give a method for computing Cα in theory, but it also shows

that Cα is block circulant.

In a small number of cases, a block, Br, of the matrix B might be defective,

so that it has no spectral decomposition. While this means that general powers

of Br cannot be computed, algorithms exist for computing Bα
r for certain α. The

inverse, α = −1, can be computed using Gaussian elimination, as long as Br is

invertible. When α = 1
2
, the algorithm of Denman and Beavers [1976] can be used

to compute a square root. These are the two cases which will be required in this

paper. When all of the Br have spectral decompositions, the algorithm we have

presented can be used for any α.

Though the formula above gives a straightforward method for describing Cα, it

is not efficient to write down all K2T 2 elements of Cα nor to multiply by permuta-

tion matrices. Instead, we create a K ×K × T array, Γ, to completely describe C

in a way that makes computation simpler. First, we consider what is in each block,

Brr, of the block diagonal matrix, B. For a permutation matrix which moves the
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rth diagonal element of Lij to the (i, j) location in the rth block, the (i, j) element

of Brr is the rth eigenvalue of Cij. Thus, as we compute the eigenvalues for each

block, Cij, we may store them as Γ(i, j, ·), so that each column of Γ corresponds

to the eigenvalues of one block of C. Once Γ has been stored in this way, Brr is

simply Γ(·, ·, r). Define Γ̃ as the array that stores the elements of Cα in the same

fashion. Then, since B is block diagonal, Γ̃ is obtained from Γ by computing the

power of each layer, Γ(·, ·, r). This yields the following algorithm for obtaining the

eigenvalues of the blocks of Cα:

Algorithm 2.1 Computing a Representation of a Power of a Block Circulant

Matrix

• Create two K ×K × T arrays, Γ and Γ̃, for storage.

• Loop over all pairs, (i, j), with i = 1, ..., K and j = 1, ..., K:

– Set Γ(i, j, ·) to the Fast Fourier Transform of the first row of Cij.

• For r = 1, .., T , set Γ̃(·, ·, r) = [Γ(·, ·, r)]α.

The resulting array holds the eigenvalues of the individual blocks of the power

of the circulant preconditioner, which can be used for multiplication by Cα as

shown in the next section.

2.3.3 Efficient Multiplication Methods

Multiplying a T × T matrix by a T × 1 vector, v, requires O(T 2) steps in general.

If, however, the matrix, G, is a circulant, we can speed up this multiplication to

O(T log T ) steps, again using the fact that G = F ∗ΛF . The following algorithm

an be used for efficient multiplication by a circulant:

Algorithm 2.2 Multiplication by a Circulant, G = F ∗ΛF .
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• Compute Fv as the Fourier transform of v.

• Compute ΛFv by multiplication by a diagonal matrix.

• Compute F ∗ΛFv as the inverse Fourier transform of the previous result.

Computing the Fourier transforms in the first and third steps takes O(T log T )

operations, while the second step takes only O(T ) operations. In total, this mul-

tiplication takes O(T log T ) time.

Algorithm 2.2 can also be used to compute Av, where A is a Toeplitz matrix and

v in any vector. The extension to Toeplitz matrices requires circulant embedding.

First, we create a 2T×2T circulant matrix, Ã, with diagonal blocks equal to A and

off-diagonal blocks filled in with the elements of A necessary to make the matrix

into a circulant. That is, if we number the row and column indices from 0 as before,

the first row of Ã is [A(0, 0), A(0, 1), ..., A(0, T −1), A(0, 0), A(T −1, 0), ..., A(1, 0)],

and the circulant structure defines the remaining elements of Ã. Second, we extend

v to a vector of length 2T , ṽ, by appending T zeroes to the end. We may then use

Algorithm 2.2 to compute Ãṽ. Then, the first T elements of Ãṽ are identical to

the elements of Av.

Multiplication by circulant and Toeplitz matrices may be extended to multipli-

cation by block circulant and block Toeplitz matrices. This takes advantage of the

block-Toeplitz and block-circulant structures to reduce the number of operations

required for multiplication to O(K2T log T ) steps. Consider the general block ma-

trix, B, with T × T blocks, Bij, and vector, v, of length TK, partitioned into K

subvectors, vk, of length T . Then, we compute:
B11 · · · B1K

...
. . .

...

BK1 · · · BKK




v1

...

vK

 =


B11v1 + · · ·+B1KvK

...

BK1v1 + · · ·+BKKvK
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If the blocks of B are circulants, then each of the multiplications can be computed

using the method for multiplying by a circulant. If the blocks of B are Toeplitz,

then each of the multiplications can be computed using circulant-embedding. Com-

puting K2 such multiplications and then adding them up to get the final vector

will take O(K2T log T ) steps. We will see the usefulness of these multiplication

methods in section 2.6.

2.4 Previous Computational Methods for Multivariate Mod-

els

2.4.1 Existing approximations to the likelihood of vector ARFIMA

models

The most commonly used approximation to the likelihood in the frequency domain

is the Whittle approximation first given in Whittle [1963]. The estimation is based

on the periodogram matrix,

I(λ) =
1

2πT

T∑
t=1

T∑
s=1

XtX
′
s exp(iλ(t− s))

According to Dunsmuir and Hannan [1976], the log likelihood is approximately a

constant plus:

−T
2

log |Σ| − 1

2

T∑
j=1

tr

(
f−1

(
2πj

T

)
I

(
2πj

T

))
where tr(·) is the trace operator and f is the spectral density described in 2.2.2.

Hosoya [1996] discusses this approximation in more detail. The first term uses

the approximation |Ω| = T |Σ| of Grenander and Szego [1958], which Dunsmuir

and Hannan [1976, page 344] note might not work well for small T even in the

ARMA case, but which is very easy to compute. We discuss this approximation
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and some possible modifications in more detail in section 2.7.1. In the univariate

case, Hannan [1970, chapter 6, section 6] notes that the second term is based on

the approximation Ω−1 ≈ FΛF ∗, where F is the Fourier matrix in section 2.3.2

and Λ is a diagonal matrix with 2π
σ2 f

(
2πj
T

)
at the (j, j) location. Notice that this

approximates the Toeplitz matrix Ω by a circulant matrix. [See also Brockwell

and Davis, 1993, Proposition 4.5.2.] Since f(0) may be infinite in long memory

models, this approximation may not be as accurate for vector ARFIMA models.

In the time domain, Luceno [1996] finds an approximation to the quadratic form

in the likelihood expression; he neglects the determinant because he says (page 605)

that importance declines in relation to the importance of the quadratic form for

large T . As we will show in section 4.6, inclusion of an accurate approximation

to the determinant can be quite important in the sample sizes we consider. He

then finds an asymptotic approximation to Ω−1 in terms of “inverse-transpose”

autocovariances, δi. These inverse-transpose autocovariances are defined by δi =

δ′−i =
∑∞

j=0 π
′
t+jΣ

−1πj, for i ≥ 0, where πj are the AR(∞) coefficients and Σ

is the innovation covariance for the process Xt. Using these inverse-transpose

autocovariances, an exact expression for the quadratic form is given by:

X ′Ω−1X = tr(δ0P0) + 2
∞∑
i=1

tr(δiPi)

where he defines

Pi =
∞∑

t=−∞

X̂t+iX̂
′
t

and X̂t is the observed series for t = 1, ..., T and the forecast or backcast, that

is, E(Xt|X1, ..., XT ), of the series otherwise. While this expression is exact, the

forecasts and backcasts may be costly to compute, and the exact sum must be

truncated for computational purposes. Therefore, Luceno recommends approxi-
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mating:

Pi ≈


∑T−i

t=1 Xt+iX
′
t 0 ≤ i ≤ T − 1

0 T ≤ i

Pi = P ′−i, i < 0

This approximation has an error which of the order 1
T

. Using the expression

given above, the quadratic form can be computed by truncating the infinite sums.

Luceno notes that the inverse-transpose autocovariances “frequently” are of the

same model type as the original autocovariances (page 608); that is, the inverse-

transpose autocovariances of a scalar ARFIMA model will be the autocovariances

of a different ARFIMA model. However, he does not give a general method for

computing the inverse-transpose autocovariance sequence, which makes them in-

feasible for the general case.

Martin and Wilkins [1999] avoid the likelihood functions altogether by applying

indirect estimation to FIVAR models. In this approach, they estimate a V AR(2)

using the data and then find parameter values for a FIVAR model that lead to

simulated data with identical estimates in a V AR(2). We do not pursue this ap-

proach, though we note that indirect estimation would benefit from the simulation

algorithm we propose in section 2.8.

2.4.2 Existing exact likelihood algorithms for vector ARFIMA models

The most comprehensive set of exact methods for maximum likelihood estimation

for vector ARFIMA models can be found in two papers of Sowell [1989a,b]. The

second paper presents algorithms of computing the autocovariances of a vector

ARFIMA process of the FIVAR type, while the first paper presents methods for

computing the inverse and determinant of a block Toeplitz matrix, which could be

associated with any multivariate process.
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First, we discuss Sowell’s (1989a) algorithm for computing the autocovariances

of a FIVAR process. Consider the autocovariances of a FIV AR(p, ~d) process,

where B(L)
a(L)

is the moving average representation of the vector ARMA(p, q) part of

the model, with B(L) a matrix of lag polynomials of order at most (K − 1)p + q

and a(L) a scalar lag polynomial of order at most H = Kp. Let vij be the (i, j)

entry of the cointegration matrix described in section 2.2.2. Sowell (1989a) finds

that ωij(s) = Cov(Xi,t, Xj,t−s) can be written as:

ωij(s) =
M∑

l=−M

H∑
m=1

K∑
n=1

K∑
r=1

vinvjrψij(l)ζmC(di, dj, H + l − s, ρm)

with

C(w, v, h, ρ) = Γ(1− w − v)

(
ρ2H

∞∑
m=0

ρm(−1)h+m

Γ(1− w + h+m)Γ(1− v − h−m)
+

∞∑
n=1

ρn(−1)h−n

Γ(1− w + h− n)Γ(1− v − h+ n)

)
and where the ρn, ζn, and ψij(l) satisfy:

a(ξ) =
H∏
j=1

(1− ρjξ)

ζj =
1

ρj
∏H

i=1(1− ρiρj)
∏H

m=1,m 6=j(ρj − ρm)

ψij(l) =
K∑
h=1

K∑
t=1

min(M,M−l)∑
s=max(0,l)

ΣhtBih(s)Bjt(s− l)

These sums must be evaluated using the hypergeometric function, which has no

closed form in general [Weisstein, 2008]. While this gives an exact expression

for the covariances, the sums are slow to evaluate, as we will show in section 4.

Furthermore, Sowell’s method does not apply to VARFI models.

An alternative method to compute the covariances of either a FIVAR or a

VARFI model is to use the relationship between the spectral density and the
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autocovariances. For any multivariate time series with cross-spectral density, f ,

we may compute the autocovariance function as:

ω(h) =

∫ π

−π
eihλf(λ)dλ

[See, for example, Brockwell and Davis, 1993, section 11.6.] This gives a straightfor-

ward method for computing the autocovariance sequence for either type of model.

However, as we will show in Tables 2 and 4, it is also a computationally intensive

method.

Sowell [1989b] describes methods to compute the determinants, inverses, and

simulated realizations of any stationary multivariate process, including a vector

ARFIMA process. In this paper, Sowell uses a version of the Durbin-Levinson

algorithm [see also Brockwell and Davis, 1993, Proposition 11.4.1] to decompose

the autocovariance matrix Ω = Var(X̃), where ω(j) = Cov(Xt, Xt−j), into a series

of matrices that are useful for computation.

Algorithm 2.3 Sowell/Durbin-Levinson Covariance Matrix Decomposition [Sow-

ell, 1989b]. Set the initial values:

v(0) = v̄(0) = ω(0)

D(1) = ω(1)

D̄(1) = ω(−1)
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For n = 1, ..., T and k = 1, ..., n, compute the following quantities iteratively:

A(n, n) = D(n)v̄(n− 1)−1

Ā(n, n) = D̄(n)v(n− 1)−1

A(n, k) = A(n− 1, k)− A(n, n)Ā(n− 1, n− k)

Ā(n, k) = Ā(n− 1, k)− Ā(n, n)A(n− 1, n− k)

v(n) = ω(0)−
n∑
j=1

A(n, j)ω(−j)

v̄(n) = ω(0)−
n∑
j=1

Ā(n, j)ω(j)

D(n+ 1) = ω(n+ 1)−
n∑
j=1

A(n, n− j)ω(j)

D̄(n+ 1) = ω(−n− 1)−
n∑
j=1

Ā(n, n− j)ω(−j)

Because all of the A(n, k) must be computed, finding this decomposition re-

quiresO(T 2) operations. General algorithms for determinants, inverses, and Cholesky

decompositions for general matrices are O(T 3), which means that using this algo-

rithm is an improvement. However, an algorithm which is O(T 2) is still quite

slow for many applications. Given this decomposition, various quantities of in-

terest become quite straightforward to compute. The determinant of Ω is simply
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∏T−1
t=0 |v(t)|. The inverse is given by Ω−1 = β̄β̄′, where

β̄ =


IK −Ā(1, 1)′ −Ā(2, 2)′ · · · −Ā(T − 1, T − 1)′

0 IK −Ā(2, 1)′ · · · −Ā(T − 1, T − 2)′

...
. . . . . .

...

0 · · · 0 IK



×


v̄(0) 0 0 · · · 0

0 v̄(1) 0 · · · 0

...
. . .

...

0 · · · 0 v̄(T − 1)



−1/2

Notice that computation of the quadratic form, X ′Ω−1X, using this representation

would require an additional O(T 2) steps, even if the decomposition were already

known. Finally, Sowell points out (Result 3) that one can simulate from the

distribution of X can be done by drawing a vector U = (U ′1, ..., U
′
T )′ of length KT

and then defining X1 = v̄(0)1/2U1 and Xt =
∑t−1

j=1 Ā(t− 1, t− j)Xj + v̄(t− 1)1/2Ut.

This simulation method also requires O(T 2) steps, which would be particularly

problematic if many samples were drawn. All of these methods are exact. However,

the computations required are daunting when T is large. In fact, Doornik and

Ooms [2003] say that this method is “still rather time consuming” for a dataset in

which K is 2 and T is 121. In order for exact maximum likelihood to be feasible

for estimating multivariate ARFIMA models, a faster algorithm is needed.

Tsay [2007] applied Sowell’s algorithms to VARFI processes and using Sowell’s

(1989a) expression for the autocovariances of a V ARFI(0, ~d) process. While this

work avoids the slow computations of autocovariances that plagues Sowell’s (1989a)

algorithm for computing the covariances of a FIVAR process, it does not address

the slowness of the Cholesky decomposition.

Chung [2001] presents a method for calculating the impulse response function

27



of a FIVAR process. Also, Ravishanker and Ray [1997, 2002] discuss Bayesian

methods for estimating from and forecasting FIVAR processes. We do not pursue

either of these computations further.

2.5 Computing Autocovariances

In this section, we present algorithms for computing the autocovariances of both

types of vector ARFIMA processes. First, as background, we describe the univari-

ate splitting algorithm of Bertelli and Caporin [2002] for computing the autocovari-

ances of a univariate ARFIMA model. In sections 2.5.2 and 2.5.3, we present fast

algorithms for computing the autocovariance sequences of both FIVAR and VARFI

processes. After we detail each algorithm, we will show the speed in practice and

compare it to existing algorithms.

2.5.1 Computing the autocovariances of a univariate ARFIMA model

To compute the autocovariance sequence, ω(j), of an ARFIMA(p, d, q) process

with d ∈ (−1
2
, 1

2
), Bertelli and Caporin [2002] write the covariances as the infinite

convolution of the autocovariances, ξ(j), of an ARMA(p, q) process, and the auto-

covariances, φ(j), of an ARFIMA(0, d, 0). Both of these autocovariance sequences

have closed forms or can be computed quickly. Then, the ARFIMA(p, d, q) auto-

covariances can be written as :

ω(j) =
∞∑

h=−∞

ξ(h)φ(j − h)

Because the autocovariances of an ARMA model decay exponentially fast, they

recommend setting the ξ(h) to 0 for |h| > M for large M . A larger value of M may

be chosen to increase the accuracy. Then, the computation of these convolutions

for j = 0, ..., T can be done quickly using the Fast Fourier Transform. This gives a
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fast and accurate method to compute the autocovariance sequence in the univariate

case.

2.5.2 FIVAR Covariances

To generalize the univariate splitting algorithm to a FIVAR process, we use the

two-step definition of a FIVAR discussed in section 2.2.2. In this section, for

complete generality, we allow for a moving average component as well as an au-

toregressive component. First, we define Zt as a vector ARMA process, so that

A(L)Zt = B(L)εt, with Cov(εt) = Σ. We assume that A(L) and B(L) both have

all of their roots outside the unit circle. If this model were used for estimation, we

would also require that A(L) and B(L) fit the identifiability conditions of Dunsmuir

and Hannan [1976]. Let ξ(h) = E(Zt+hZ
′
t) be the autocovariance sequence of Zt.

The full model, A(L)D(L)Xt = B(L)εt, can be written as D(L)Xt = Zt. We may

write Xt =
∑∞

j=0CjZt−j, where Cj is a diagonal matrix with (k, k) element equal

to ψ(j, dk) = Γ(j+dk)
Γ(j+1)Γ(dk)

and Γ is the gamma function. If Zt were white noise, this

would be the moving average expansion of an ARFIMA(0, dk, 0) process. Using

this “moving average” expansion, we find an expression for the autocovariances of

X·t:

ω(h) = Cov(Xt, Xt−h) (2.4)

= Cov

(
∞∑
i=0

CiZt−i,
∞∑
j=0

CjZt−j−h

)
(2.5)

=
∞∑
i=0

∞∑
j=0

CiCov(Zt−i, Zt−h−j)C
′
j (2.6)

=
∞∑
i=0

∞∑
j=0

Ciξ(h+ j − i)C ′j (2.7)

We now focus on the (k, l) entry of Ciξ(h+j−i)C ′j. Let ξkl(h) be the (k, l) entry of

ξ(h), that is, ξkl(h) = E(Zk,t+hZl,t). Since Ci and Cj are both diagonal matrices,
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the (k, l) entry of Ciξ(h + j − i)C ′j is ψ(i, dk)ψ(j, dl)ξkl(h + j − i). Using this, we

find an expression for the (k, l) entry of ω(h):

ωkl(h) =
∞∑
i=0

∞∑
j=0

ψ(i, dk)ψ(j, dl)ξkl(h+ j − i) (2.8)

=
∞∑
m=0

∞∑
j=m

ψ(j −m, dk)ψ(j, dl)ξkl(h+m) (2.9)

=
∞∑
m=0

ξkl(h+m)

(
∞∑
j=m

ψ(j, dl)ψ(j −m, dk)

)
(2.10)

where the second equality follows from the substitution m = j − i and an inter-

change of the order of summation. The inner sum is the cross-covariance of an

ARFIMA(0, dk, 0) process and an ARFIMA(0, dl, 0) process that are driven by

common white noise. Writing this cross-covariance in terms of the integral of the

cross-spectrum, we find that:

∞∑
j=m

ψ(j, dl)ψ(j −m, dk) =
1

2π

∫ 2π

0

(1− e−iλ)−dk(1− eiλ)−dleiλmdλ (2.11)

=
Γ(1− dk − dl)(−1)m

Γ(1− dk −m)Γ(1− dl +m)
(2.12)

=
Γ(1− dk − dl)Γ(dk +m)

Γ(dk)Γ(1− dk)Γ(1− dl +m)
(2.13)

where the last two equations follow from Sowell [1989a, Appendix II and Appendix

III, equation IV.2]. Notice that this agrees with the usual expression for the au-

tocovariance of an ARFIMA(0, dk, 0) process when dk = dl [see, for example,

Brockwell and Davis, 1993, Theorem 13.2.1]. For notational convenience, we write

φlk(h) = Γ(1−dk−dl)Γ(dk+h)
Γ(dk)Γ(1−dk)Γ(1−dl+h)

. Note that φkl(h) = φlk(−h), as must be true for any

cross-covariances.

Following Bertelli and Caporin [2002], we consider the finite approximation to

the outer sum in (2.10), by setting ξkl(m) = 0 for all |m| > M . Because the auto-

covariance sequence of a vector ARMA decays exponentially fast, we may choose a
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relatively small M to approximate the process to a given degree of accuracy. Our

choice of M depends on the parameters of the ARMA process; if ξ(h) is the auto-

covariance sequence of an MA(q) process, then we may choose M = q to compute

the autocovariances exactly. Otherwise, we must choose an M which accounts for

how quickly the autocovariances of the vector ARMA process decay.

Because any stationary and invertible vector ARMA(p, q) process can be writ-

ten as a vector AR(1) [see Hamilton, 1994, page 259 for details], we focus on the

AR(1) process,

Zt = A1Zt−1 + ηt

where A1 is a K×K matrix such that all of its eigenvalues lie inside the unit circle.

Notice that rewriting an ARMA process as an AR(1) may lead to an innovation

variance which is positive semi-definite but not positive definite. The computations

presented in this section do not depend on Σ being positive definite, so this does

not pose a problem. Then, the autocovariance sequence, ξ(h), satisfies [Hamilton,

1994, page 265]:

vec(ξ(0)) = (IK2 − A1 ⊗ A1)−1vec(Σ)

ξ(h) = Ah1ξ(0), h > 0

ξ(−h) = ξ(h)′

where h is a positive integer, vec is the vectorization operator, ⊗ is the Kronecker

product, and IK2 is a K2 ×K2 identity matrix. Let G = maxk,l φkl(0). Let ‖ · ‖

be the Euclidean matrix norm, ‖Q‖2, where ‖Q‖2 is the maximum singular value

of Q [see Heath, 2002, sections 3.6 and 4.7 for background]. This is equal to the

square root of the largest eigenvalue of QTQ, which ensures that ‖A1‖ < 1 as long

as the V AR(1) process defined by A1 is stationary. Then, we may bound the norm
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of the error in truncating the infinite sum by:

2G
∞∑

m=M

‖ξkl(m)‖ = 2G
∞∑

m=M

‖Am1 ξ(0)‖

≤ 2G
∞∑

m=M

‖A1‖m‖ξ(0)‖

= 2G‖ξ(0)‖ ‖A1‖M

1− ‖A1‖

Thus, once we know ξ(0) and A1, we can choose M such that the norm of the error

does not exceed a chosen value, δ. In particular, we must have:

M ≥ log(1− ‖A1‖) + log(δ)− log(G)

log(‖A1‖)
+ 1

Once M has been chosen, it remains to compute the sequences φkl(h), h =

−M − T, ...,M + T and ξkl(h), h = −M, ...,M and their convolutions for each

(k, l). Using the naive method of summing all the products directly would require

O(M2 + MT ) operations. Instead, for larger values of M , we recommend using

the Fast Fourier Transform to speed up the process to O((M + T ) log(M + T ))

operations for each of the K2 convolutions. In most cases, M > log T ; exceptions

may occur when the eigenvalues of F are far from the unit circle or T is very

large; we suggest checking this condition so that the faster convolution method is

used. Since there are K2 convolutions, using an efficient method is particularly

important.

Combining all of these considerations yields the splitting algorithm for a FIVAR

process:

Algorithm 2.4 Computing FIV AR(1, ~d) covariances to tolerance δ.

• Set G to be the maximum singular value of φkl(0) and compute the maximum

singular value of A1, ‖A1‖.
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• Set M to be the smallest power of two greater than log(1−‖A1‖)+log(δ)−log(G)
log(‖A1‖) +1.

• Compute the covariances, ξ, for a V AR(1) for lags −M to M .

• Compute the cross-covariances, φ, for ARFIMA processes with differencing

parameters ~d for lags −(M + T ) to M + T .

• If M ≥ log T , compute the convolution of ξij with φij for i = 1, ..., K and

j = 1, ..., K using the Fast Fourier Transform:

– Append enough zeroes to ξij and φij so that the total length is the small-

est power of two which is greater than length(ξij) + length(φij). Call

these series ξ̃ and φ̃.

– Compute the inverse Fast Fourier Transforms of ξ̃ and φ̃ and multiply

them together element-by-element.

– Compute the Fast Fourier Transform of the result.

– Return the first (length(ξij) + length(φij)− 1) elements of the result.

– Extract the middle covariances from the result.

• If M < log T , then compute the convolutions by summing all the terms di-

rectly.

If the V AR(1) process has been created from a vector ARMA(p, q) process,

the autocovariances of the original process are the autocovariances computed using

the method above for the observed series.

Though we must truncate the sum, this method can be used to compute the

autocovariances to any level of precision; more precision simply requires a larger

choice of M . In Table 1, we give the computed values of some autocovariances
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Lag Splitting Sowell

0 (3.658217, 6.04877,

6.048769, 35.02676)

(3.658217, 6.04877,

6.048769, 35.02676)

1 (3.103113, 5.530935,

6.094733, 33.952608)

(3.103113, 5.530935,

6.094733, 33.952608)

10 (0.7597274, 1.855598,

3.9196162, 25.501238)

(0.7597274, 1.855598,

3.9196162, 25.501238)

100 (0.06346564, 0.3674387,

1.12644985, 15.4985175)

(0.06346564, 0.3674387,

1.12644985, 15.4985175)

Table 1: Computed values for the autocovariances of a FIVAR process with d =

(0.1, 0.4), A1 = (0.7, 0.1, 0.2, 0.6), and Σ = (1, .5, .5, 2), using the Sowell (1989a)

method and the splitting method.

based on the splitting method and based on Sowell’s (1989a) method. The two

computed results are almost identical to at least five figures.

The running time of the FIVAR splitting algorithm depends on two factors.

First, as the largest singular value of A1 moves arbitrarily close to the unit circle,

M will grow infinitely large. Second, given a fixed A1 and therefore a fixed value

of M , the running time will initially grow as O(T log T ) as long as M > log T ,

and will then grow linearly with T once it is faster to use direct summation in-

stead of the Fast Fourier Transform. Notice that both the Sowell [1989a] method

and the method using integrals described in section 2.4.2 grow linearly with T .

Furthermore, Sowell’s method depends on computing an infinite sum in which the

summands decay as ρ1, ..., ρK , which turn out to be the eigenvalues of A1 in this

case. Thus, both Sowell’s method and our method slow down as the roots of

I − A1L approach the unit circle. In Tables 2 and 3, we report the total elapsed
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T Splitting Sowell Integral-Based Method

4 0.028 0.354 4.988

8 0.029 0.672 11.025

16 0.029 1.330 *

32 0.028 2.629 *

64 0.029 4.470 *

128 0.030 8.423 *

Table 2: Processing time needed to compute the autocovariances of a FIVAR

process with d = (0.1, 0.4), A1 = (0.7, 0.1, 0.2, 0.6), and Σ = (1, .5, .5, 2), using

the Sowell (1989a) method, the integral-based method and the splitting method

presented in section 2.5.2. * indicates that the integral covariances for higher lags

did not converge.

processor time in seconds as reported by the R system.time function to compute

the autocovariances in various cases. This table shows that our method is much

faster than either of the competing methods, for a range of T and for autoregressive

matrices with singular values both near and far from the unit circle.

Now that we have seen that the splitting algorithm yields the same results as

Sowell’s algorithm in a fraction of the time, we will use only the splitting algorithm

to compute covariances in the remainder of this paper.

2.5.3 VARFI Covariances

To use the splitting algorithm with a VARFI process, we first consider the spectral

density of Xt. We begin with a V ARFI(1, ~d) in which A(L) = I − A1L, where

A(L) has all of its roots outside of the unit circle. In this case, we also assume

that A1 is not a defective matrix, so that it has K unique eigenvectors [see, for
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Maximum

Singular

Value

Our Time Sowell Time Maximum

Difference

M Required

0.8 0.028 4.552 9.808× 10−10 119

0.9 0.038 5.970 7.827× 10−10 263

0.95 0.058 8.154 7.504× 10−10 564

0.99 0.246 14.733 5.955× 10−8 3138

0.995 0.577 14.848 1.413× 10−5 6479

0.999 4.701 14.775 0.001285 34324

Table 3: Processing time needed to compute the autocovariances of a FIVAR

process with T = 64, d = (0.1, 0.4), Σ = (1, .5, .5, 2), and A1 = α(0.7, 0.1, 0.2, 0.6),

where α is a scalar chosen to vary the maximum singular value. The fourth column

shows the maximum absolute difference between Sowell’s (1989a) method and our

method over all 64 autocovariances. The last column shows the value of M required

by the splitting algorithm. Times are the mean processing time needed for 100

repetitions of the calculation.
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example Heath, 2002, chapter 4]. Though this requirement will cause the method

not to apply for certain matrices, defective matrices are quite rare and therefore

of little concern.

We first write the autocovariances of Xt in terms of the spectral density:

fX(λ) = (I −A1e
−iλ)−1D(e−iλ)−1ΣD(eiλ)−1(I −A∗1eiλ)−1

=

( ∞∑
r=0

Ar1e
−iλr

)
×



Σ11 Σ12 · · · Σ1K

Σ21 Σ22

. . . Σ2K

.

..
.
..

. . .
...

ΣK1 ΣK2 · · · ΣKK


•



(1− e−iλ)−d1 (1− eiλ)−d1 (1− e−iλ)−d1 (1− eiλ)−d2 · · · (1− e−iλ)−d1 (1− eiλ)−dK

(1− e−iλ)−d1 (1− eiλ)−d2 (1− e−iλ)−d2 (1− eiλ)−d2
. . . (1− e−iλ)−d2 (1− eiλ)−dK

...
...

. . .
...

(1− e−iλ)−dK (1− eiλ)−d1 (1− e−iλ)−dK (1− eiλ)−d2 · · · (1− e−iλ)−dK (1− eiλ)−dK


×
( ∞∑
s=0

(A∗1)seiλs

)

=

∞∑
r=0

∞∑
s=0

Ar1 ×

Σ11 Σ12 · · · Σ1K

Σ21 Σ22

. . . Σ2K

...
...

. . .
...

ΣK1 ΣK2 · · · ΣKK


•



(1− e−iλ)−d1 (1− eiλ)−d1 (1− e−iλ)−d1 (1− eiλ)−d2 · · · (1− e−iλ)−d1 (1− eiλ)−dK

(1− e−iλ)−d2 (1− eiλ)−d2 (1− e−iλ)−d2 (1− eiλ)−d2
. . . (1− e−iλ)−d2 (1− eiλ)−dK

...
...

. . .
...

(1− e−iλ)−dK (1− eiλ)−d1 (1− e−iλ)−dK (1− eiλ)−d2 · · · (1− e−iλ)−dK (1− eiλ)−dK


×(A∗1)seiλ(s−r)

where • denotes the Hadamard (element-wise) matrix product. Let A1 = VAΛV −1
A
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be an eigenvalue decomposition of A1. For notational convenience, define:

Q(λ) = V −1
A



Σ11 Σ12 · · · Σ1K

Σ21 Σ22

. . . Σ2K

...
...

. . .
...

ΣK1 ΣK2 · · · ΣKK


•



(1− e−iλ)−d1 (1− eiλ)−d1 (1− e−iλ)−d1 (1− eiλ)−d2 · · · (1− e−iλ)−d1 (1− eiλ)−dK

(1− e−iλ)−d2 (1− eiλ)−d2 (1− e−iλ)−d2 (1− eiλ)−d2
. . . (1− e−iλ)−d2 (1− eiλ)−dK

...
...

. . .
...

(1− e−iλ)−dK (1− eiλ)−d1 (1− e−iλ)−dK (1− eiλ)−d2 · · · (1− e−iλ)−dK (1− eiλ)−dK


×(V ∗A)−1

Using this notation, we describe the autocovariances of Xt:

ω(h) =

∫ π

−π
fX(λ)eihλdλ

=

∫ π

−π

∞∑
r=0

∞∑
s=0

VAΛrQ(λ)(Λ∗)sV ∗Ae
−iλ(r−s)eihλdλ

= VA

(
∞∑
r=0

∞∑
s=0

Λr

(∫ π

−π
Q(λ)e−iλ(r−s−h)dλ

)
(Λ∗)s

)
V ∗A

Notice that
∫ π
−πQ(λ)e−iλ(r−s−h)dλ is V −1

A (Σ • φ(r − s − h))(V ∗A)−1, where (Σ •

φ(r − s − h)) is the rth autocovariance of a V ARFI(0, ~d); this can be computed

using the expression in equation (2.13) above. Let Hij(r) be the (i, j) element of

V −1
A φ(r− s− h)(V ∗A)−1. Let Λii be the (i, i) element of Λ. Then, the (i, j) element

of the inner sum is:

∞∑
r=0

∞∑
s=0

Λr
iiΛ̄

s
jjHij(h+ s− r) =

∞∑
u=−∞

Lij(u)Hij(h− u) (2.14)

where Λ̄jj is the complex conjugate of Λjj and

Lij(u) =


Λuii

1−ΛiiΛ̄jj
u ≥ 0

Λ̄
|u|
jj

1−ΛiiΛjj
u < 0
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After the sums in (2.14) have been calculated for each lag and each i = 1, ..., K

and j = 1, ..., K, the matrix of sums for each u must be multiplied by VA and V ∗A

to find the covariances of the original process.

As before, we want to approximate the sums above by sums with a finite

number of terms. Since each Lij(u) decays exponentially quickly, we again choose

M so that
∑∞

u=M+1 Lij(u) < δ for a given tolerance δ and all i, j. Let G =

maxV −1
A φ(0)(V −1

A )∗, where the maximum is taken over all of the entries in the

product. Let |Λj∗j∗ | be the absolute value of the largest eigenvalue. Then, Lij(u) ≤
Λu
j∗j∗

1−|Λj∗j∗ |2
, and we may bound the sum of the omitted terms:

∞∑
u=M+1

H(h− u)Lij(u) ≤ G
∞∑

u=M+1

Λu
j∗j∗

1− |Λj∗j∗|2

= G
ΛM+1
j∗j∗

(1− |Λj∗j∗|2)(1− |Λj∗j∗|)

Thus, we may choose M >
log δ+2 log(1−|Λj∗j∗ |)+log(1+|Λj∗j∗ |)

| log Λj∗j∗ |−logG
to ensure that the sum

of the omitted terms is less than δ. As in the computation of the autocovariances

of FIVAR processes, we suggest using the fast Fourier transform to compute the

convolutions in the case where M > log T . This yields the following algorithm:

Algorithm 2.5 Computing the Covariances of a VARFI process to tolerance, δ.

• Compute the eigenvalue decomposition, A1 = VAΛV −1
A and find j∗ such that

Λj∗j∗ is the largest eigenvalue.

• Set G to be the maximum entry of V −1
A φ(0)(V −1

A )∗.

• Set M to be the smallest power of two greater than
log δ+2 log(1−Λj∗j∗ )+log(1+Λj∗j∗ )

log Λj∗j∗−logG
.

• For i = 1, ..., K, j = 1, ..., K, and u = −M, ...,M , compute Lij(u) using

equation (2.15).
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• Compute the cross-covariances, φ(r), for ARFIMA processes with differenc-

ing parameters ~d from lags r = −(M + T ), ...,M + T .

• For r = −(M + T ), ...,M + T , compute H(r) = V −1
A φ(r)(V −1

A )∗.

• If M ≥ log T , compute the convolution of Lij with Hij for i = 1, ..., K and

j = 1, ..., K using the Fast Fourier Transform:

– Append enough zeroes to Lij and Hij so that the total length is the

smallest power of two which is greater than (length(Lij)+ length(Hij)).

Call these series L̃ and H̃.

– Compute the inverse Fast Fourier Transforms of L̃ and H̃ and multiply

them together element-by-element.

– Compute the Fast Fourier Transform of the result.

– Return the first (length(Lij) + length(Hij)− 1) elements of the result.

– Extract the middle covariances, from −T to T , from the result.

• If M < log T , then compute the convolutions by summing all the terms di-

rectly.

• Pre-multiply the matrix for each lag by VA and post-multiply the matrix for

each lag by V ∗A.

Like the algorithm for FIVAR covariances, this algorithm runs in O(min(M2 +

MT, (M +T ) log(M +T )). In Table 4, we compare the processing time needed for

this method to the time needed to use the integral definition of the autocovariance

sequence. As in the FIVAR case, using the integral definition of the covariances

requires dramatically more computing time, despite the fact that it is O(T ).
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One disadvantage to this computational method for VARFI covariances is that

VA must be inverted. While this is generally fast for small K, it makes the com-

puted covariances sensitive to the condition number of VA. In particular, we have

found that when VA is close to singular, many of the computed covariances are

zero, even though their exact values are nowhere near 0. This can occur when A1

differs by a minute amount from a multiple of the identity matrix. This consid-

eration should inform the choice of initial values in VARFI maximum likelihood

estimation.

To extend this method for computing covariances to a V ARFI(p, ~d) model, we

rewrite that model as a V ARFI(1, ~d#) model. Suppose A(L) = I−A1L−...−ApLp.

Let X#
t = vec(Xt, ..., Xt−p+1), and

A#
1 =


A1 A2 ... Ap

IK 0 ... 0

...
...

. . .
...

0 0 · · · 0



d# =


d

0

...

0



Σ# =


Σ 0 · · · 0

0 0 · · · 0

...
...

. . .
...

0 0 · · · 0


Then, D#(L)(I − A#

1 L)X#
t = εt is a V ARFI(1, ~d#, 0) process, and the first K

series follow the original V ARFI(p, ~d, 0) model. As before Σ# is not generally

positive definite, but this does not pose a problem for computing autocovariances.
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T Splitting Integral-Based Method

4 0.031 8.362

8 0.031 18.025

16 0.032 37.511

32 0.035 85.087

64 0.040 216.706

128 0.050 623.426

Table 4: Time needed to compute the autocovariances of a VARFI process with

d = (0.1, 0.4), A1 = (0.7, 0.1, 0.2, 0.6), and Σ = (1, .5, .5, 2) using the integral

definition and using the splitting algorithm presented in section 2.5.3. Times are

the mean processing time needed over 100 repetitions of the calculation.

Thus, the method presented above generalizes to any V ARFI(p, ~d, 0) model with

finite p, where we extract the relevant autocovariances as we did in section 2.5.2.

We do not extend this method to models with moving average components.

2.5.4 Cointegrated Systems

Consider the cointegrated FIVAR model, A(L)D(L)V Xt = εt. Define the process,

Yt, by A(L)D(L)Yt = εt. Then,

Cov(Xt, Xt−j) = Cov(V −1Yt, V
−1Yt−j)

= V −1Cov(Yt, Yt−j)(V
−1)′

Since Yt is a FIVAR process, its autocovariance sequence can be computed us-

ing Algorithm 2.4 above. Then, we may compute the autocovariances of Xt by

multiplying each autocovariance by V −1 and (V −1)′, which takes O(T ) additional

steps.
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2.6 Computing the Quadratic Form

To compute the quadratic form, XΩ−1X, in the expression for the likelihood in

equation (2.1), we apply the preconditioned conjugate gradient algorithm. The ap-

plication of preconditioned conjugate gradient algorithms to univariate long mem-

ory time series began with Deo et al. [2006]; related theoretical results are available

in Chen et al. [2006]. The algorithm which we present in this section was devel-

oped by Chan and Olkin [1994], but this is its first application to multivariate long

memory time series.

We begin this section with some background on the PCG algorithm. We then

describe how we can apply it most efficiently to multivariate time series, and finally

discuss the computational cost of these methods.

2.6.1 The Preconditioned Conjugate Gradient Algorithm

Preconditioned conjugate gradient methods have been used extensively in solving

systems of linear equations of the form Ωy = b where Ω is symmetric and positive

definite (in this section, we rely heavily on Shewchuk [1994]; see his write-up for

more details). The conjugate gradient method and the preconditioned conjugate

gradient method are based on using the residual error at at each iteration to choose

a search direction and the optimal distance in that direction. These methods can

be applied to any system in which Ω is symmetric and positive definite.

Algorithm 2.6 Conjugate Gradient Algorithm [Shewchuk, 1994, see, for example,

]. Let a tolerance, δ, be given. Let the initial value, y(0), be a vector of zeroes.
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Initialize:

d(0) = b− Ωy(0)

r(0) = b− Ωy(0)

Iterate through the following steps until ‖r(i)‖ < δ.

α(i) =
r′(i)r(i)

d′(i)Ωd(i)

y(i+1) = y(i) + α(i)d(i)

r(i+1) = r(i) − α(i)Ωd(i)

β(i+1) =
r′(i+1)r(i+1)

r′(i)r(i)

d(i+1) = r(i+1) + β(i+1)d(i)

This algorithm chooses a direction, d(i), which is conjugate, or Ω-orthogonal, to

all the previous search directions; that is, d′(i)Ωd(j) = 0 when i 6= j. The choice

of direction is based on Gram-Schmidt conjugation. Each search direction, d(i),

is linearly independent, and the distance chosen for each search direction, α(i), is

optimal. That is, the resulting residual is conjugate to the search direction used to

compute it. Because of this, if there were no roundoff error, each search direction

would be linearly independent and used at most once. Thus, with infinite precision,

the algorithm would always converge to exactly the true solution in a number of

steps at most the dimension of Ω.

Because computers have finite precision, we say that the algorithm has con-

verged when the distance from the computed answer to the true value is less than

some tolerance level. In this algorithm, the search directions with the largest steps

are used first, so convergence in this sense takes fewer steps than would be required

with infinite precision. This is an important property when the dimension of Ω is

44



large. To be precise, the error in the ith iteration, e(i) = y(i)−y, satisfies [Shewchuk,

1994, page 36]:

√
e′(i)Ωe(i) ≤ 2

(√
κ(Ω)− 1√
κ(Ω) + 1

)i

e′(0)Ωe(0) = 2

(
1− 2√

κ(Ω) + 1

)i

e′(0)Ωe(0)

where κ(Ω) is the condition number of the matrix Ω, defined as the ratio of the

largest to the smallest eigenvalue of Ω. Given any tolerance level and initial er-

ror, we can solve for i to find an approximate number of iterations required for

convergence within that tolerance level. Such an analysis shows that the required

number of iterations is O(
√
κ(Ω)). This shows the importance of the condition

number of Ω to the computational complexity of this algorithm.

When the condition number is large, we can “precondition” the matrix in order

to reduce the condition number. This is based on solving the system of linear

equations, C−1Ωy = C−1b, where C approximates Ω but has an inverse which is

easy to compute. This method is effective when κ(C−1Ω) << κ(Ω). However, one

does not simply apply the conjugate gradient method to the system C−1Ωy = C−1b,

since the product C−1Ω is not generally symmetric or positive definite. Instead,

consider the matrix E such that EE ′ = C. Then, κ(C−1Ω) = κ(E−1Ω(E−1)′),

and the latter matrix is symmetric and positive definite. Thus, we could solve the

system E−1Ω(E−1)′ŷ = E−1b for ŷ, and then compute y = (E−1)′ŷ; this is called

the transformed preconditioned conjugate gradient algorithm.

Using this version of the algorithm would require computing E. Instead, we

define r̂(i) = E−1r(i) and d̂(i) = E ′d(i). We can substitute these into the conjugate

gradient algorithm above to arrive at the untransformed preconditioned conjugate

gradient (PCG) algorithm.

Algorithm 2.7 Preconditioned Conjugate Gradient Algorithm [Shewchuk, 1994,

see, for example, ]. Let a tolerance, δ, be given. Let x(0) be a vector of zeroes.
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Initialize:

r(0) = b− Ωx(0)

d(0) = C−1r(0)

Iterate through the following steps until ‖r(i)‖ < δ.

α(i) =
r′(i)C

−1r(i)

d′(i)Ωd(i)

x(i+1) = x(i) + α(i)d(i)

r(i+1) = r(i) − α(i)Ωd(i)

β(i+1) =
r′(i+1)C

−1r(i+1)

r′(i)C
−1r(i)

d(i+1) = C−1r(i+1) + β(i+1)d(i)

Note that this algorithm requires multiplying vectors by C, which can be one

of the more computationally intensive steps of the process. Therefore, we choose

C to make the multiplication more tractable. In the case of multivariate time

series with K << T , we choose C to be block circulant. This choice allows us to

take advantage of all the computational methods designed for circulants described

in section 2.3. For an extensive review of the PCG algorithm for Toeplitz and

block-Toeplitz matrices, see Chan and Ng [1996].

2.6.2 The Choice of Preconditioner

A good preconditioner, C, must approximate Ω. In addition, its inverse must lend

itself to efficient multiplication. We choose to use the “level 1” preconditioners of

Chan and Olkin [1994]. In this section, we describe the preconditioner and how to

compute it.
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We begin by writing our block Toeplitz matrix, Ω, in terms of its blocks:

Ω =


A11 A12 · · · A1K

A21 A22 · · · A2K

...
...

. . .
...

AK1 AK2 · · · AKK


Define Aij(r), for r = −(T − 1), ..., (T − 1), to be the element along the rth sub-

diagonal away from the main diagonal, where a negative r corresponds to diagonals

in the lower triangle of the matrix and a positive r corresponds to diagonals in the

upper triangle of the matrix. That is, we write:

Aij =


Aij(0) Aij(1) · · · Aij(T − 1)

Aij(−1) Aij(0) · · · Aij(T − 2)

...
...

. . .
...

Aij(−(T − 1)) Aij(−(T − 2)) · · · Aij(0)


,

As mentioned in the section 2.3.1, Aij(r) = ω(−r); this allows us to relate the

elements of this matrix to the properties of the underlying time series. We ap-

proximate Ω by approximating its individual blocks. The approximation we use

here is T. Chan’s (1988) optimal circulant preconditioner, circ(Aij). This precon-

ditioner is the circulant matrix with first row consisting of entries c0 = Aij(0) and

cr =
rAij(−(T−r))+(T−r)Aij(r)

T
, r = 1, ..., T − 1. Combining the preconditioners for all

of the blocks yields the following block circulant matrix:

C =


circ(A11) circ(A12) · · · circ(A1K)

circ(A21) circ(A22) · · · circ(A2K)

...
...

. . .
...

circ(AK1) circ(AK2) · · · circ(AKK)


.

With this theoretical preconditioner, we can now apply the methods we dis-

cussed in section 2.3. First, we store only the first row of each block of the pre-

47



conditioner. Second, we find a representation for C−1 using the inversion method

for block circulant matrices described in Algorithm 2.1. Finally, we multiply by Ω

and by C−1 using the fast multiplication methods discussed in 2.3.3.

2.6.3 Computational Cost

Chan and Olkin [1994] show that the algorithm described in the previous two

sections has a set-up cost of O(K2T log T + K3T ) to compute the preconditioner

and a cost of O(K2T + KT log T ) per iteration. In most multivariate time series

applications, K is generally fixed and much smaller than log T , so the relevant

costs are O(K2T log T ) and O(KT log T ).

As we mentioned in 2.6.1, the number of iterations required for convergence

depends on the condition number of the matrix. By preconditioning, we hope

to reduce that ratio so that convergence is faster. In the case of a covariance

matrix based on a univariate long memory model, Chen et al. [2006] show that

the condition number of the preconditioned matrix grows as O(log3 T ), which

implies that the overall algorithm with K = 1 runs in O(T log5/2 T ) time. Chan

and Olkin [1994] run numerical experiments in which the rth diagonal (for r =

−(T −1), ..., T −1) of the jth block has element 1
(j+1)1.1+(|r|+1)1.1

or 1
(j+1)2.1+(|r|+1)2.1

.

In their experiment, they find that their preconditioner dramatically reduces the

number of iterations, but sometimes increases the number of operations because

of the additional multiplications.

In Tables 5 and 6, we report the condition number, before and after pre-

conditioning, for the covariance matrices associated with FIVAR and VARFI pro-

cesses. Preconditioning dramatically reduces the condition number in both cases.

A simple regression of log(κ(C−1Ω)) on log(log(T )) using the data in those tables

produces slope estimates of 1.238 (standard error 0.0492) and 1.259 (standard error
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T κ(Ω) κ(C−1Ω) log(κ(Ω)) log(κ(C−1Ω))

4 782.7286 11.5169 6.6628 2.4438

8 1749.7115 22.7916 7.4672 3.1264

16 3322.2824 32.5125 8.1084 3.4816

32 5952.1906 38.2324 8.6915 3.6437

64 10454.6722 42.2234 9.2548 3.7430

128 18250.7736 56.7711 9.8120 4.0390

256 31801.4260 71.3439 10.3673 4.2675

512 55382.3246 83.8753 10.9220 4.4293

Table 5: Condition number of autocovariance matrices for a FIV AR(1, ~d) process

with parameters d = (0.1, 0.4), Σ = (1, 0.5, 0.5, 2), and A1 = (0.6,−0.1, 0.2, 0.8),

for a range of T .

0.0404) for FIVAR and VARFI processes, respectively. We also plot log(κ(C−1Ω))

versus log(log(T )) in Figures 4 and 5; these plots show that the relationship is

approximately linear. Based on the slope estimate and the linear relationship in

the plots, the conditioned number of the preconditioned matrix appears to grow

approximately as O(log5/4 T ).

In the case of cointegrated FIVAR series, we may bound the condition number

of Ω in terms of the cointegrating matrix and the properties of the underlying

FIVAR series. Let Ω0 be the covariance matrix of the series before they are coin-

tegrated; this is the covariance matrix associated with the FIVAR process, Yt,

described in section 2.5.4. Let V be the cointegrating matrix as before. Then,
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Figure 4: Plot of the logged condition number versus log(log(T )) for a

FIV AR(1, ~d) process with parameters d = (0.1, 0.4), Σ = (1, 0.5, 0.5, 2), and

A1 = (0.6,−0.1, 0.2, 0.8).
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Figure 5: Plot of the logged condition number versus log(log(T )) for a

V ARFI(1, ~d) process with parameters d = (0.1, 0.4), Σ = (1, 0.5, 0.5, 2), and

A1 = (0.6,−0.1, 0.2, 0.8).
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T κ(Ω) κ(C−1Ω) log(κ(Ω)) log(κ(C−1Ω))

4 688.5823 8.2331 6.5346 2.1082

8 1537.3445 16.4618 7.3378 2.8010

16 2892.7798 23.2247 7.9700 3.1452

32 5123.9246 26.9049 8.5417 3.2923

64 8907.3649 32.7076 9.0946 3.4876

128 15417.6091 42.8939 9.6433 3.7587

256 26681.6308 52.1514 10.1917 3.9542

512 46214.2378 59.8457 10.7410 4.0918

Table 6: Condition number of autocovariance matrices for a V ARFI(1, ~d) process

with parameters d = (0.1, 0.4), Σ = (1, 0.5, 0.5, 2), and A1 = (0.6,−0.1, 0.2, 0.8),

for a range of T .

Ω = (V −1 ⊗ I)Ω0((V ′)−1 ⊗ I). Applying the definition of a condition number,

κ(Ω) = max
x∈RKT

‖Ωx‖
‖x‖

= max
x∈RKT

(
‖Ωx‖

‖Ω0((V ′)−1 ⊗ I)x‖
× ‖Ω0((V ′)−1 ⊗ I)x‖
‖((V ′)−1 ⊗ I)x‖

× ‖((V
′)−1 ⊗ I)x‖
‖x‖

)
≤ max

x∈RKT

(
‖Ωx‖

‖Ω0((V ′)−1 ⊗ I)x‖

)
× max

x∈RKT

(
‖Ω0((V ′)−1 ⊗ I)x‖
‖((V ′)−1 ⊗ I)x‖

)
× max

x∈RKT

(
‖((V ′)−1 ⊗ I)x‖

‖x‖

)
= κ(V −1 ⊗ I)κ(Ω0)κ((V ′)−1 ⊗ I)

= κ(V )2κ(Ω0)

Using Sowell’s (1989a) representation of bivariate cointegration with V =

 1 0

ρ 1

,

κ(V ) is larger for larger values of |ρ|. This shows that both the cointegrating ma-

trix and the autocovariance sequence of the associated FIVAR process affect the

condition number of the resulting covariance matrix.
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In addition to looking at the condition numbers, we can compare the processing

time of this algorithm to the processing time needed to compute the quadratic

form using the method of Sowell [1989b]. We time the Sowell method in two parts.

First, the sequence of matrices, v(n), d(n), A(n, k), must be computed. Then,

those matrices must be used to compute the quadratic form itself. In Table 7,

we present the processing time needed to compute the quadratic form using the

PCG algorithm and Sowell’s method. While the two methods are comparable for

very small samples, we see that the PCG algorithm is almost ten times faster than

Sowell’s method at a sample size as small as 64. In Figure 6, we can also see that the

time needed to use Sowell’s method dwarfs the time needed for PCG; this figure also

confirms that the processing time needed for Sowell’s method grows quadratically

with the sample size. In Figure 7, we plot only the processing time needed for the

PCG method. As we expect from the discussion of condition numbers above, the

PCG processing time seems to grow at less than a quadratic rate.

2.6.4 Relationship to Periodogram

In this section, we extend the analysis of Chen et al. [2006] to show that the block-

circulant preconditioner is related to the expected value of the cross-periodogram

of the multivariate time series, Xt. Let I(νs) be the K×K cross-periodogram of the

vector Xt, where νs = 2πs
T

is the sth Fourier frequency. Then, we may write I(νs)

and its expectation in terms of the sample cross-covariance and its expectation [for

example Brockwell and Davis, 1993, p. 443]:

I(νs) =
T−1∑

r=−(T−1)

ω̂(r) exp(−irνs)

E(I(νs)) =
T−1∑

r=−(T−1)

E(ω̂(r)) exp(−irνs)
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T Sowell Setup Sowell Quadratic Form PCG

8 0.007 0.009 0.007

16 0.021 0.021 0.010

32 0.079 0.051 0.015

64 0.276 0.141 0.026

128 1.041 0.417 0.049

256 4.076 1.350 0.090

512 16.149 4.686 0.176

1024 64.07194 17.758 0.351

2048 255.430 67.672 0.730

Table 7: Processing time used to compute XΩ−1X where X is a vector of ones

and Ω is the autocovariance matrix for the FIV AR(0, ~d) with d = (0.1, 0.4) and

Σ = (1, 0.5, 0.5, 2). All times are the mean processing time as measured by R, over

100 repetitions.
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Figure 6: Processing time needed for quadratic form computation methods for

various sample sizes.
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Figure 7: Processing time needed for quadratic form computation using the PCG

algorithm.
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where ω̂(r) is the sample cross-covariance of xt at lag r, defined as:

ω̂(r) =


1
T

∑T−r
t=1 Xt+rX

′
t 0 ≤ r ≤ T − 1

1
T

∑T
t=−r+1Xt+rX

′
t −T + 1 ≤ r < 0

(This definition differs slightly from Brockwell and Davis [1993, page 407] because

we do not subtract off the sample mean.) Note that E(ω̂(r)) = T−|r|
T
ω(r). Mean-

while, we may compute the elements of Chan and Olkin’s preconditioner for the

(i, j) block and its eigenvalues, λij(s), in terms of the covariances, ωi,j(r):

cr =
1

T
(rωij(−(T − r)) + (T − r)ωij(r))

λij(s) =
T−1∑
r=0

r

T
ωij(−(T − r)) exp(−irνs) +

T−1∑
r=0

T − r
T

ωij(r) exp(−irνs)

=
−1∑

q=−(T−1)

T − |q|
T

ωij(q) exp(−iqνs) +
T−1∑
r=0

T − r
T

ωij(r) exp(−irνs)

where the last line follows from the substitution q = −(T − r). Notice that the

last line equals the (i, j) element of E(I(νs)). Thus, the sth eigenvalue of the (i, j)

block of the preconditioner equals the expected value of the cross-periodogram of

Xit and Xjt at νs. This corresponds to the results found in the univariate case,

given in Chen et al. [2006, section 4].

2.6.5 Prediction

The preconditioned conjugate gradient algorithm which we have discussed can also

be applied to efficiently compute the best linear predictor of multivariate processes.

Notice that, for any Gaussian time series and lead time h > 0,

E(XT+h|X) = E(XT+h) + Cov(X,XT+h)Cov(X)−1(X − E(X))

The preconditioned conjugate gradient algorithm can be used to compute Cov(X)−1(X−

E(X)), and the remaining multiplication can be computed in O(TK) time. This
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gives an efficient prediction computation based on the full sample and known co-

variance structure, which allows us to avoid computing an autoregressive approx-

imation.

2.7 Computing the Determinant

Let Ω(T ) be the covariance matrix of T observations of any multivariate process,

Xt, that has an infinite moving average representation driven by innovations, εt,

that have covariance matrix Σ = E(εtε
′
t). As before, let the autocovariance matrix

of Xt at lag r be ω(r). According to Sowell [1989b], we may write:

|Ω(T )| =
T−1∏
r=0

|v(r)|

v(r) = v(0)−Υ(r)′Ω(r)−1Υ(r)

Υ(r) =


ω(−1)

...

ω(−r)


v(r) is the prediction variance of Xt given Xt−1, ..., Xt−r. Notice that we may

use the PCG algorithm presented in section 2.6 K times to compute Ω(r)−1Υ(r),

by using PCG on each column of Υ(r) separately. This means that v(r) can be

computed efficiently for any particular value of r. However, computing all of the

v(r) using the PCG algorithm would be slower than the O(T 2) time required by

Sowell’s (1989b) method presented in section 2.4.2. Instead, we use our knowledge

of |v(r)| as a function of r and consider a variety of methods which may allow us

to approximate the determinant in less processing time.

We begin by noting a few facts about |v(r)| as a function of r. These facts

hold for any multivariate time series with a moving average representation. First,
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|v(r)| is a non-increasing function, since

|v(r)| = |Var(Xt|Xt−1, ..., Xt−r)|

≥ |Var(Xt|Xt−1, ..., Xt−r, Xt−r−1)|

= |v(r + 1)|

Second, |v(r)| is bounded below by |Σ|, since εt is uncorrelated with all past ob-

servations. Third, we can use the equations given in Sowell’s algorithm to find

that:

v(r)− v(r − 1) = −
r∑
j=1

A(r, j)ω(−j) +
r−1∑
j=1

A(r − 1, j)ω(−j)

=

(
r−1∑
j=1

(A(r − 1, j)− A(r, j))ω(−j)

)
− A(r, r)ω(−j)

=

(
r−1∑
j=1

A(r, r)Ā(r − 1, r − j)ω(−j)

)
− A(r, r)ω(−j)

= A(r, r)D̄(r)

= A(r, r)Ā(r, r)v(r − 1)

|v(r)|
|v(r − 1)|

= |I − A(r, r)Ā(r, r)|

This result is the analog of the result in the univariate case that v(r)
v(r−1)

= 1 − φ2
r,

where φr is the rth partial autocorrelation [for example, Brockwell and Davis,

1993].

In addition, we have found empirically for both FIVAR and VARFI models

that |v(r)| is quite smooth as a function of r, when r > 0. This smoothness does

not hold as well at |v(0)|, since the inclusion of the first lagged value in predictions

reduces the prediction variance quite dramatically because of the long memory.

(See Figure 8 for an example.) This observation, together with the theoretical

facts about |v(r)|, inform our choice of methods to compute the determinant.
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Figure 8: |v(r)| for VARFI and FIVAR processes for r ranging from 1 to 199.
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In the univariate case, Chen et al. [2006] suggest using an asymptotic approxi-

mation given by Bottcher and Silbermann [1999]. Also in the univariate case, Rohit

Deo (private communication) has proposed an exact computational method, which

generalizes to VARFI processes but not to FIVAR processes; we discuss the gener-

alization in section 2.7.3. Sowell’s (1989b) decomposition can be used to compute

the exact determinant for univariate and multivariate processes, but it requires

O(T 2) time. In this section, we will discuss two alternatives to Sowell’s method.

First, we describe asymptotic approximations. Second, we discuss approximations

that use curve-fitting and show the effectiveness of this method. In the final two

sections, we describe ways to compute VARFI determinants and the determinants

of cointegrated systems; these two methods would be exact if we had exact expres-

sions for the determinants of the covariance matrices associated with V ARFI(0, ~d)

or FIVAR processes respectively. None of the possible alternatives is exact. How-

ever, as we will see in section 4.6, using the approximation we describe instead

of Sowell’s exact determinant does not change parameter estimates by very much

while it does speed up computation.

2.7.1 Asymptotic approximations to determinants

In this section, we will discuss two asymptotic approximations to the determi-

nant. In our presentation, we will use two different notations for different types

of asymptotic formulas. First, we write f(T ) ∼ g(T ) if limT→∞
f(T )
g(T )

= 1. In

some cases, we will also consider limt→∞
f(T )
f(T−1)

. Notice that, if f(T ) ∼ g(T ) and
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limT→∞ g(T ) 6= 0:

lim
T→∞

f(T )/f(T − 1)

g(T )/g(T − 1)
= lim

T→∞

(
f(T )

g(T )

)(
g(T − 1)

f(T − 1)

)
= lim

T→∞

(
f(T )

g(T )

)
lim
T→∞

(
g(T − 1)

f(T − 1)

)
= 1

and f(T )
f(T−1)

∼ g(T )
g(T−1)

. If we take the logarithm of f(T )
g(T )

, we have log f(T ) = log g(T )+

o(1).

We now consider asymptotic approximations to either the overall determinant,

|Ω(T )|, or to the individual |v(r)|. In the univariate case, Bottcher and Silber-

mann [1999] give an asymptotic formula for the overall determinant of a univariate

ARFIMA process . Taking the ratio of the approximations for r and r − 1 yields

an approximation for |v(r)| in the univariate case. This approximation is:

|v(r)| ∼ |Σ| exp

(
d2

r − 1

)
log |v(r)| = log |Σ|+ d2

r − 1
+ o(1)

Torsten Ehrhardt (private communication) found that this asymptotically correct

formula can be extended to the multivariate case by replacing d2 by a different

constant. In the case of a V ARFI(0, ~d, 0) or FIV AR(0, ~d, 0) model where Σ is

invertible, he has worked out the expression for this constant. Let δ be the K×K

diagonal matrix with e−2πid1 , ..., e−2πidK along the diagonal. Define

U = Σδ∗Σ−1δ

Let e2πiu1 , ..., e2πiuK be the eigenvalues of U . Since |U | = |Σ||δ−1||Σ−1||δ| = 1, we

must have 1 =
∏K

k=1 e
2πiuk = e2πi

∑K
k=1 uk . While it is always possible to choose

the uk so that
∑K

k=1 uk = 0, Ehrhardt’s expression might not hold if the uk cho-

sen are not the principal branch logarithms. However, Ehrhardt conjectures that
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for any choice where |Re(uk) − Re(uj)| < 1, the method will continue to hold.

Given choices for uk which obey this condition and which sum to 0, we have

|v(r)| ∼ |Σ| exp
(∑K

k=1 d
2
k−

1
2

∑K
k=1 u

2
k

r−1

)
. We find that, when there is no short memory

component, Ehrhardt’s approximation improves monotonically as n increases, as

seen in Figures 9 and 10. In addition, the error in the approximation is always of

the same sign. The assumption that the error is monotonically decreasing allows

us to bound the error in the approximation beyond a certain point. However,

Ehrhardt’s approximation does not give us a way to reduce the error beyond the

initial approximation because there are no higher order terms. In fact, even if the

term in the exponent is not correct, the approximation will eventually be close,

since both the approximation and the true values tend toward |Σ|; in this case,

the errors might not decrease monotonically and the approximation might not be

as accurate for small n; we can see in this in Figure 10, looking at the two lines

with A1 6= 0. However, as we see in Figure 10, Ehrhardt’s approximation does not

work well for small values of r.

We also consider the simpler approximation of the determinant of the covariance

matrix by |Σ|T , as suggested by Dunsmuir and Hannan [1976] and others. This

is equivalent to approximating |v(r)| by Σ for all r. This approximation ignores

the exp
(∑K

k=1 d
2
k−

1
2

∑K
k=1 u

2
k

r−1

)
term of Ehrhardt’s approximation. This term does not

exist in short memory cases, since each dk = uk = 0. Furthermore, in the case of

a V AR(p) process, v(r) = Σ for all r ≥ p, because the prediction error based on

the previous p observations is simply the next innovation, εt. In that case,

|Ω(T )| =
T−1∏
r=0

|v(r)|

= |Σ|T−p
p−1∏
r=0

|v(r)|

Thus, for vector autoregressions, computation of the exact determinant requires
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Figure 9: The Ehrhardt approximation to |v(r)| and the true values for |v(r)| for

a variety of FIVAR processes.
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Figure 10: The Ehrhardt approximation to |v(r)| and the true values for |v(r)| for

a variety of FIVAR processes, divided by |Σ| and then logged.
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the computation of only a fixed number of initial |v(r)|. Furthermore,

lim
T→∞

1

T
log |Ω(T )| = lim

T→∞

1

T

(
(T − p) log |Σ|+

p−1∑
r=0

log |v(r)|

)
= log |Σ|

For this reason, it seems reasonable to approximate |Ω(T )| by |Σ|T for vector

autoregressive models, even though the term containing log |Ω(T )| is not divided

by T in the expression for the likelihood. In a more general univariate case, under

the conditions of a theorem of Grenander and Szego [1958, page 76], we must have:

lim
T→∞

Ω(T )

|Σ|T
= C

where C is a constant that depends on the moving average representation of Xt.

Even in this simple case, the assumption that C = 1 will not be accurate. This

approximation has additional problems in the long memory case. One of the

conditions of Grenander and Szego’s theorem is that the spectral density, f , is

differentiable and that the derivative, f ′, obeys:

|f ′(x1)− f ′(x2)| < K|x1 − x2|α

with K > 0 and 0 < α < 1; this excludes the case of long memory. The approxima-

tions offered by Dunsmuir and Hannan [1976] and Luceno [1996] for more general

models assume that this limit continues to hold. However, the Ehrhardt approx-

imation shows that log |v(r)| = log |Σ| +
∑K
k=1 d

2
k−

1
2

∑K
k=1 u

2
k

r−1
+ o(1). Since

∑T
r=0

1
r−1

diverges as T →∞, the approximation of |Ω(T )| by |Σ|T may not be good enough

for estimation. Our results in section 2.9.2 confirm this.

2.7.2 Determinant approximations using curve-fitting

Instead of using an asymptotic approximation, we consider using regression and

curve-fitting as a way to interpolate between a few computed values of |v(r)|.
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We expect that the best fits will come from functions which are decreasing and

have a finite asymptotic value, so that they can mimic the known behavior of

|v(r)|. For such a method to be feasible, we must be able to find a fit that is

reasonably accurate based on computing only a subset of the |v(r)| exactly, using

either Sowell’s method or PCG. We focus on fitting:

r
√
|v(r)| = α + βr

This relationship is equivalent to:

|v(r)| = β2 +
2αβ

r
+
α2

r2

which is decreasing and smooth in r. In this formulation, β2 is able to adjust to

match the asymptotic value of |v(r)|.

We will combine curve-fitting with the application of Sowell’s method to an

initial set of points. Though Sowell’s method is too slow to use to compute |v(r)|

for all r = 0, ..., T − 1 when T is large, it can be used for some of the initial points,

r = 0, ..., S, where the curve may be hardest to fit and the approximation is least

accurate. As long as the initial segment of points used with Sowell’s method grows

more slowly than T , we can use this method to compute some of the determinants

of the prediction variances exactly without much additional computational cost.

Our current method combines a regression with the application of Sowell’s

method. First, we apply Sowell’s method to compute |v(r)| for r = 0, ..., S, for

some S (we use 32 in our program). Then, we use PCG to compute |v(T −1)|. We

then regress r
√
|v(r)| on r for r = 1, .., S, T − 1. Using the fitted line, we estimate

|v(r)| for all the points where |v(r)| is unknown.

Algorithm 2.8 Approximating |Ω(T )| through curve-fitting.

1. Use Sowell’s algorithm (Algorithm 2.3) to compute |v(r)| for r = 0, ..., S.
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Figure 11: A plot of r versus r
√
|v(r)| for the FIVAR process with d = (0.1, 0.4),

Σ = (1, 0.5, 0.5, 2) and A1 = (0.7, 0.1, 0.2, 0.9).
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2. Compute |v(T − 1)| using the PCG algorithm:

(a) Set Υ to be the KT×K matrix which stacks the autocovariance matrices,

ω(−1), ..., ω(−r).

(b) Set G to be a KT ×K matrix.

(c) For i = 1, ..., K, compute the ith column of G as Ω−1Υ(·, i) using the

PCG algorithm, where Υ(·, i) is the ith column of Υ.

(d) Compute v(T − 1) = Υ′G.

(e) Compute |v(T − 1)|.

3. Regress r
√
|v(r)| on r for the points r = 1, .., S, T − 1.

4. Compute the fitted values, |̂v(r)| for r = S + 1, ..., T − 2 based on the fitted

values from the regression.

5. Sum the logarithms of |v(0)|, ...|v(S)|, ̂|v(S + 1)|, ..., ̂|v(T − 2)|, |v(T − 1)| to

find the approximate log determinant.

While this method is ad hoc, Tables 8 and 9 show that it performs well for

both FIVAR and VARFI models. The approximation is closest when A1 is far

from the unit circle, but our approximate log determinant is within 0.5 of Sowell’s

exact log determinant even in the case where A1 =

 .7 .2

.1 .9

, which has one

eigenvalue greater than 0.97. The approximation is better for VARFI than for

FIVAR models. The difference in computing time between Sowell’s exact method

and our regression-based approximation is quite large; when T = 1000, Sowell’s

algorithm takes almost 70 times longer than our approximation. Furthermore, we

will see in Section 2.9.2 that the maximum likelihood estimates for the parameters

based on using this determinant are close to those from Sowell.
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T A1 d Sowell

Time

Sowell

Value

Reg.

Time

Reg.

Value

Naive

250 (0,0,0,0) (.4,.1) 3.966 141.7575 0.292 141.7568 139.9

250 (.4,.2,.1,.6) (.4,.1) 3.950 143.6495 0.311 143.6363 139.9

250 (.7,.2,.1,.9) (.4,.1) 3.978 151.4243 0.395 151.2217 139.99

500 (0,0,0,0) (.4,.1) 18.359 281.7858 0.683 281.7827 279.8

500 (.4,.2,.1,.6) (.4,.1) 18.302 283.7176 0.751 283.6769 279.8

500 (.7,.2,.1,.9) (.4,.1) 18.184 291.8804 1.215 291.4227 279.8

1000 (0,0,0,0) (.4,.1) 74.211 561.7179 0.798 561.7127 559.6

1000 (.4,.2,.1,.6) (.4,.1) 73.016 563.6902 0.864 563.623 559.6

1000 (.7,.2,.1,.9) (.4,.1) 74.146 572.2505 1.146 571.5228 559.6158

250 (0,0,0,0) (.4,.49) 3.883 145.9179 0.313 145.9187 139.9

250 (.4,.2,.1,.6) (.4,.49) 3.895 148.6055 0.320 148.5785 139.9

250 (.7,.2,.1,.9) (.4,.49) 3.880 157.7377 0.552 157.6283 139.9

500 (0,0,0,0) (.4,.49) 18.134 286.1003 0.734 286.1026 279.8

500 (.4,.2,.1,.6) (.4,.49) 18.167 288.7922 0.797 288.7112 279.8

500 (.7,.2,.1,.9) (.4,.49) 18.198 298.052 1.633 297.8051 279.8

1000 (0,0,0,0) (.4,.49) 73.729 566.18648 0.858 566.19019 559.6

1000 (.4,.2,.1,.6) (.4,.49) 72.877 568.88358 0.901 568.75156 559.6

1000 (.7,.2,.1,.9) (.4,.49) 74.253 578.28725 1.267 577.86903 559.6

Table 8: The computed value of the log determinant and the processing time

required to do the computation using Sowell’s algorithm and using the regression-

based approximation. The naive approximation is log |Σ|T . All models are FIVAR

processes with Σ = (1, .5, .5, 2). Times are the mean time taken over 100 repetitions

of the calculation.
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T A1 d Sowell

Time

Sowell

Value

Reg.

Time

Reg.

Value

Naive

250 (0,0,0,0) (.4,.1) 3.930 141.7575 0.294 141.75678 139.9

250 (.4,.2,.1,.6) (.4,.1) 4.004 143.0659 0.320 143.05746 139.9

250 (.7,.2,.1,.9) (.4,.1) 3.919 147.4836 0.346 147.44006 139.9

500 (0,0,0,0) (.4,.1) 17.905 281.7858 0.679 281.78269 279.8

500 (.4,.2,.1,.6) (.4,.1) 17.998 283.0938 0.738 283.06462 279.8

500 (.7,.2,.1,.9) (.4,.1) 17.919 287.5041 0.868 287.40505 279.8

1000 (0,0,0,0) (.4,.1) 73.589 561.7179 0.797 561.71271 559.6

1000 (.4,.2,.1,.6) (.4,.1) 72.954 563.0257 0.841 562.97756 559.6

1000 (.7,.2,.1,.9) (.4,.1) 73.227 567.4326 0.905 567.27000 559.6

250 (0,0,0,0) (.4,.49) 3.949 145.9179 0.304 145.91866 139.9

250 (.4,.2,.1,.6) (.4,.49) 3.922 148.0327 0.320 148.00202 139.9

250 (.7,.2,.1,.9) (.4,.49) 3.894 153.6547 0.538 153.57598 139.9

500 (0,0,0,0) (.4,.49) 17.932 286.1003 0.737 286.10259 279.8

500 (.4,.2,.1,.6) (.4,.49) 17.871 288.2132 0.795 288.1236 279.8

500 (.7,.2,.1,.9) (.4,.49) 18.020 293.8121 1.531 293.64902 279.8

1000 (0,0,0,0) (.4,.49) 72.464 566.1865 0.853 566.1902 559.6

1000 (.4,.2,.1,.6) (.4,.49) 72.054 568.2984 0.889 568.1529 559.6

1000 (.7,.2,.1,.9) (.4,.49) 72.932 573.8849 1.213 573.6140 559.6

Table 9: The computed value of the log determinant and the processing time

required to do the computation using Sowell’s method and using the regression-

based approximation. All models used Σ = (1, .5, .5, 2) and a VARFI process.
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Ideally, we also wish to move from this approximation to an approximation

which can be made as close as desired with some additional computations; to

accomplish this, we must find a way to bound the approximation error and reduce

the error if desired. The approximation method we will present does not do this.

2.7.3 An alternative way to compute the determinant of a VARFI pro-

cess

We now consider an alternative way to compute the covariances of the V ARFI(1, ~d)

process, X·. This algorithm for computing the determinant is a generalization of

a univariate algorithm given by Rohit Deo (private communication). This method

would be exact if we could compute the determinant of a V ARFI(0, ~d) process

exactly. Since our approximation is close for such processes, we expect this ap-

proximation will also be close.

As before, let Ω be the covariance matrix of X, and ω(h) = Cov(Xt, Xt−h) be

the K ×K autocovariance matrix at lag h. Define a new process, Wt, by:

W1 = X1

Wt = Xt − A1Xt−1

Then, W = (W ′
1, ...,W

′
T )′ can be written as W = BX, where |B| = 1. Thus,

|Var(W )| = |B′ΩB| = |Ω|, and it is sufficient to compute |Var(W )|. Notice that:

Var(W ) =

 ω(0) C ′

C Φ(T − 1)


where ω(h) is the autocovariance of the original process, Φ(T −1) is the covariance

matrix of a V ARFI(0, ~d, 0) process of length T − 1 and C is the K(T − 1) ×K
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matrix given by:

C =


ω(1)− A1ω(0)

...

ω(T − 1)− A1ω(T − 2)


Using a formula for the determinant of a partitioned matrix [Sowell, 1989b], we

compute:

|Var(W )| = |Φ(T − 1)| · |ω(0)− C ′Φ(T − 1)−1C|

The first term must be computed using the method given in the previous section.

The product Φ(T − 1)−1C can be computed using the PCG algorithm K times,

once for each column of C. Then, since ω(0) − C ′Φ(T − 1)C is a K ×K matrix,

computation of the determinant can be done quickly using standard methods.

2.7.4 Determinants of Cointegrated Systems

Let γ(j) be the autocovariance sequence of a cointegrated system. Using the

results from section 2.5.4, we know that γ(j) = V −1ω(j)(V −1)′, where ω(j) is the

autocovariance sequence of the corresponding FIVAR process. Let

Γ(T ) = (V −1 ⊗ I)Ω̃(T )((V −1)′ ⊗ I) (2.15)

|Γ(T )| = |V |−2T |Ω(T )| (2.16)

If we use a lower triangular representation with ones along the diagonal for the

cointegrating relationship, then |V | = 1, and the determinant of the covariance

matrix of a cointegrated system equals the determinant of the covariance matrix

of the system before it is cointegrated. Even if we do not impose a restriction that

implies that |V | = 1, this computation in equation (2.16) takes O(1) time once

|Ω(T )| is known.
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2.8 Efficient Simulation

In this section, we present an efficient algorithm for simulating from a vector

ARFIMA process with normally distributed innovations. Our approach extends

the method proposed by Davies and Harte [1987]. Wood and Chan [1994] de-

scribed the algorithm for a univariate time series in more detail and extended the

algorithm to spatial time series in multiple dimensions but not to multivariate time

series. The algorithm described in this section may be applied to other stationary

multivariate time series, assuming that the conditions described are met.

As before, let Ω be the covariance matrix of the vector containing T periods

of a stationary K-variate time series, where the data is grouped by series. The

underlying idea of this algorithm is to embed Ω in a covariance matrix for a random

vector which it is easy to simulate.

Recall that Ω is a block Toeplitz matrix, with K2 blocks of size T × T . Let

C(Ω) be a block circulant embedding of Ω, where each block, Cij(Ω), is of di-

mension M , with M ≥ 2T − 1 and odd. We set the first row of C(Ω) equal to

ωij(0), ..., ωij(
M−1

2
), ωij(−M−1

2
), ..., ωij(−1). Unlike the circulant embedding used

in section 2.3.3, this embedding does not include a second diagonal with ωij(0).

Because C(Ω) is a block circulant matrix, we can apply the results of section

2.3.2 to write it as:

C(Ω) = (I ⊗ F ∗)PB(Ω)P ′(I ⊗ F )

where B(Ω) is a matrix withM blocks, B1, ..., BM , of sizeK×K along the diagonal.

Using this representation, C(Ω)1/2 is straightforward to compute, using either the

eigenvalue decomposition of each Br or the algorithm of Denman and Beavers

[1976]. Notice, however, that C(Ω) need not be a positive definite matrix. If it is

not, the algorithm below will not apply, since C(ω) must be a covariance matrix

for simulation. However, Wood and Chan [1994, proposition 2] notes that, in the
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cases they consider, there is always a sufficiently large M such that the circulant

embedding of size M × M will be positive definite. We have also found that

omitting the second diagonal of ωij(0) generally results in a matrix that is positive

definite. Because we do not repeat ωij(0) but we do repeat ωij(r) for every other

r, M must be odd. For the efficiency of the fast Fourier transform, we recommend

choosing M such that it has many small factors; choosing M to be a power of three

allows it to be odd and have many factors. All of these considerations yield the

following algorithm for computing B, which is a specialization of Algorithm 2.1 to

this case:

Algorithm 2.9 Preparation for simulation using block circulant embedding.

1. Choose M = 3R, where 3R−1 < 2T − 1 ≤ 3R.

2. Compute the K ×K autocovariances, γ, at lags −M−1
2
, ..., 0, ..., M−1

2
.

3. Set the first row of each block of the circulant embedding equal to ωij(0), ...,

ωij(
M−1

2
), ωij(−M−1

2
), ..., ωij(−1).

4. Compute the inverse fast Fourier transform of each first block’s first row.

This yields Br(i, j).

5. For each r = 1, ..,M , compute the eigenvalue decomposition of Br. If any of

the eigenvalues are negative, set M to 3M and return to step 2. Otherwise,

compute B
1/2
r and store the result.

Given C(Ω), we require an algorithm to simulate a random vector with that

covariance matrix. We extend the univariate algorithm of Wood and Chan [1994,

section 5.1.2] to simulation from a block-circulant covariance matrix. Consider the

random variable, U ∼ Normal(0, IM×M). As long as C(Ω) is positive definite,
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C(Ω)1/2U exists and has covariance matrix C(Ω). The subvector of C(Ω)1/2U

defined by the first T elements of each of the K series has covariance matrix Ω.

Thus, a fast method for simulating C(Ω)1/2U yields a simulation method for the

original multivariate time series. This suggests the following algorithm, in which

we describe each step in terms of the spectral decomposition of C1/2 given in section

2.3.2:

Algorithm 2.10 Simulation.

• (I ⊗ F )X: Compute vectors Y1·, ..., YK· of length M with V ar(Yk,·) = FF ∗,

using the method given in Wood and Chan (1994, section 5.1.2).

• P ′(I⊗F )X: Combine these vectors in the order (Y11, ..., YK1, ..., Y1M , ..., YKM)′.

• B1/2
Ω P ′(I ⊗ F )X: Compute B

1/2
r Yr for each r = 1, ...,M .

• PB1/2
Ω P ′(I ⊗ F )X: Re-sort the vector to group the observations by series

instead of by time.

• (I ⊗ F ∗)PB1/2
Ω P ′(I ⊗ F )X: Take the fast Fourier transform of each Yk,· for

k = 1, ..., K.

• Return the first T observations from each vector, Yk,·.

Consider the time requirements of this method. The initialization algorithm

is run once. Given a choice of M , the computation of the autocovariances and

fast Fourier transforms takes O(M log3M) time, while the eigenvalue calculations

take O(M) time; as in the other algorithms we have presented, larger values of

K will slow these steps down. The required M is unknown, but we found in

our experiments that it needed to be increased from the initial value given in

Step 1 of Algorithm 2.9 when T = 4 (see Tables 10, 11, and 12). In that case,
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M = O(T ). The simulation step also uses Fast Fourier Transforms, so that it also

runs in O(M log3M) time. In contrast, the method of Sowell [1989b] requires an

initial computation of his matrix decomposition, which takes O(T 2) steps; each

simulation takes another O(T 2) steps, since the computation of:

Xt =
t−1∑
j=1

Ā(t− 1, t− j)Xj + v̄(t− 1)1/2ut

for t = 1, ..., T will require T (T−1)
2

summations.

In Table 10, we show the processing time required for initialization of the algo-

rithm and for each simulation for both Sowell and the block circulant embedding

algorithm. In this test, the processing time required to compute the covariances

for Sowell’s simulation method is not included in the setup, but it is included in the

setup for circulant embedding, since there was the change that M would need to

be increased. Despite this disadvantage, our method always faster for simulation

and is faster for the initialization except for small values of T .

2.9 Maximum Likelihood Estimation and Monte Carlo

We now combine all of the computational methods we have discussed so far to

run Monte Carlo experiments using the various estimation methods. We first

discuss how we parameterize our models to ensure stationarity and invertibility.

Second, we use Monte Carlo experiments to describe the effect of approximating

the determinant using the methods discusses in section 2.7. Finally, we compare

maximum likelihood estimation methods to the Whittle estimator for a variety of

sample sizes.
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T Sowell

Setup

Sowell

Simulation

Circulant

Setup

Circulant

Simulation

M

4 0.003 0.005 0.017 0.001 9

8 0.007 0.009 0.047 0.003 27

16 0.021 0.021 0.132 0.008 81

32 0.078 0.052 0.130 0.008 81

64 0.273 0.142 0.375 0.023 243

128 1.039 0.414 1.091 0.070 729

256 4.074 1.365 1.090 0.070 729

512 16.248 4.764 3.257 0.205 2187

1024 63.666 17.698 3.260 0.210 2187

Table 10: Processing time needed to set up for simulation and simulate from a

FIV AR(0, ~d) with d = (0.1, 0.4) and Σ = (1, 0.5, 0.5, 2). Estimates for the setup

time are based on 100 repetitions; estimates for the simulation times are based on

1000 repetitions.
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Figure 12: Processing time needed to set up for simulation and simulate from a

FIV AR(0, ~d) with d = (0.1, 0.4) and Σ = (1, 0.5, 0.5, 2). Estimates for the setup

time are based on 100 repetitions; estimates for the simulation times are based on

1000 repetitions.
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Figure 13: Processing time needed for the circulant embedding method to set up

for simulation and simulate from a FIV AR(0, ~d) with d = (0.1, 0.4) and Σ =

(1, 0.5, 0.5, 2). Estimates for the setup time are based on 100 repetitions; estimates

for the simulation times are based on 1000 repetitions.
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T Sowell

Setup

Sowell

Simulation

Circulant

Setup

Circulant

Simulation

M

4 0.005 0.012 0.222 0.005 27

8 0.013 0.025 0.128 0.005 27

16 0.041 0.058 0.293 0.013 81

32 0.131 0.130 0.275 0.012 81

64 0.450 0.302 0.793 0.039 243

128 1.753 0.824 2.198 0.117 729

256 6.670 2.544 2.118 0.113 729

512 27.383 9.062 6.559 0.352 2187

1024 111.766 36.267 6.741 0.397 2187

Table 11: Processing time needed to set up for simulation and simulate from a

FIV AR(1, ~d) with d = (0.1, 0.4), Σ = (1, 0.5, 0.5, 2), and A1 = (0.6,−0.1, 0.2, 0.8).

Estimates for the setup time are based on 100 repetitions; estimates for the simu-

lation times are based on 1000 repetitions.
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T Sowell

Setup

Sowell

Simulation

Circulant

Setup

Circulant

Simulation

M

4 0.005 0.010 0.230 0.006 27

8 0.013 0.023 0.153 0.006 27

16 0.052 0.053 0.414 0.016 81

32 0.168 0.107 0.367 0.013 81

64 0.470 0.285 0.762 0.040 243

128 1.599 0.713 2.125 0.109 729

256 7.424 2.425 2.529 0.107 729

512 24.251 7.763 6.096 0.310 2187

Table 12: Processing time needed to set up for simulation and simulate from a

V ARFI(1, ~d) with d = (0.1, 0.4), Σ = (1, 0.5, 0.5, 2), and A1 = (0.6,−0.1, 0.2, 0.8).

Estimates for the setup time are based on 100 repetitions; estimates for the simu-

lation times are based on 1000 repetitions.
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2.9.1 Useful parameterizations for maximum likelihood estimation

To ensure that our parameter estimates are associated with a stationary and in-

vertible model, we must ensure that |d| < 0.5, that Σ is positive definite, and that

A(L) has all of its roots outside the unit circle. The constraints on d can be im-

plemented directly with box constraints. To ensure that Σ is positive definite, we

follow the standard practice of constraining the diagonal element of its Cholesky

decomposition to be positive. In the case where A(L) = I − A1L, A(L) has all of

its roots outside the unit circle if and only if all of the singular values of A1 are less

than one. In order for the covariance computation methods described in section

2.5 to work, we must bound the singular values away from one; if they approach

one too closely, M in Algorithm 2.4 or 2.5 will tend towards infinity. In order to

constrain the singular values of A1, we use a modified version of the parameteri-

zation of Ansley and Kohn [1986], in which we ensure that the singular values of

A1 never exceed a given σ < 1 (0.99 in our algorithm). This parameterization re-

sults in a matrix, P , which is unconstrained and which can be mapped one-to-one

onto the space of matrices with singular values less than σ. The algorithms to

reparameterize A1 and to return it to its original form are given below:

Algorithm 2.11 Conversion of a matrix, A1, to the Ansley-Kohn parameteriza-

tion, with maximum singular value, σ.

1. Compute Ã = 1
σ
A1.

2. Set B equal to the Cholesky decomposition of IK − ÃÃT , where IK is the

identity matrix of size K.

3. Return (B−1)TP1.
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Algorithm 2.12 Conversion of a matrix, P , from the Ansley-Kohn parameteri-

zation with maximum singular value σ to its original form.

1. Set B equal to the Cholesky decomposition of IK + PP T , where IK is the

identity matrix of size K.

2. Set Ã = (B−1)TP .

3. Return σP .

In Ansley and Kohn’s original paper, they set σ = 1; Algorithms 2.11 and 2.12

reduce to their algorithm in that case. Given these parameterizations, we may

implement maximum likelihood using simple box constraints.

2.9.2 The effects of the determinant approximation

We begin by studying the effects of the determinant approximation on the com-

puted parameter estimates. In this section, we will compare three estimation

methods: exact maximum likelihood using Sowell’s algorithm, maximum likeli-

hood in which the determinant is approximated in the most naive way by |Σ|T ,

and maximum likelihood using the regression approximation to the determinant

presented in Algorithm 2.8. To compare the three estimation methods, we simulate

datasets of length T = 100 and 200 from FIVAR and VARFI processes with pa-

rameters d = (0.1, 0.4), Σ =

 1 0.5

0.5 2

, and A1 =

 0.6 −0.1

0.2 0.8

. Because of

the processing time required to compute the maximum likelihood estimates using

Sowell’s algorithm, all of our results are based on 100 simulated datasets.

In Tables 13, 14, 15, 16, and 17, we report the mean and standard deviation of

the difference between the estimated parameter values using each approximation
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method and the estimated values using exact maximum likelihood. If our approxi-

mations were exact, then all of the means and standard deviations would be 0. For

the regression approximation for FIVAR models, the mean difference never exceeds

0.003 in absolute value, and the standard deviation of the difference exceeds 0.01

only once. In contrast, the means and standard deviations of the differences be-

tween the parameter estimates using the naive approximation and the parameter

estimates from exact maximum likelihood are quite large, especially for the esti-

mates of the elements of Σ. For a more graphical illustration, in Figure 14, we show

boxplots of the differences in the estimates of d for a FIVAR process with T = 100.

The boxplots confirm that the regression approximation estimates deviate slightly

from the estimates from exact maximum likelihood, while the naive approximation

estimates often differ dramatically from the exact maximum likelihood estimates.

For VARFI models, our regression approximation again does well, though some

of the standard deviations of the differences are higher for the estimates of the

elements of Σ. As before, the naive approximation is a much less successful ap-

proximation, though its problems in estimating Σ are less marked than for FIVAR

models. These results provide further evidence that our regression approximation

to the determinant works well and that the traditional approximation of |Ω| by

|Σ|T is not a close enough approximation.

2.9.3 Comparing maximum likelihood estimation to the Whittle esti-

mator

We now run a larger Monte Carlo in which we compare the performance of our max-

imum likelihood estimates with the determinant approximation to the performance

of the Whittle estimator. We will test these methods on both FIVAR and VARFI

processes with a variety of sample sizes and parameter configurations. Here, we
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Parameter Regression Approximation Naive Approximation

A11 -0.0018 (0.0042) -0.1221 (0.3771)

A21 -0.0001 (0.0021) -0.0869 (0.4036)

A12 0.0022 (0.0068) 0.0674 (0.3987)

A22 0.0010 (0.0057) -0.2130 (0.4312)

Σ11 0.0002 (0.0015) 656.6 (2189.6)

Σ12 -0.0002 (0.0078) -334.9 (37447.6)

Σ22 0.0007 (0.0078) 531204.2 (1885517)

d1 0.0016 (0.0107) -0.1328 (0.2876)

d2 -0.0008 (0.0069) 0.0797 (0.0560)

Log likelihood -0.0213 (0.1114) 38.65 (60.47)

Table 13: Mean and standard deviation of the difference between the parameter

estimate using the determinant approximation and the parameter estimate from

exact maximum likelihood for a FIVAR model with T = 100. Standard deviations

are given in parentheses. Estimates based on 100 repetitions.
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Figure 14: Boxplots of the differences between Sowell’s exact maximum likelihood

estimates and the two approximations in the estimates for d.
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Parameter Regression Approximation Naive Approximation

A11 -0.0016 (0.0029) -0.1268 (0.3713)

A21 0.0000 (0.0002) -0.1202 (0.3367)

A12 0.0017 (0.0020) 0.0290 (0.3319)

A22 0.0012 (0.0026) -0.1676 (0.3951)

Σ11 0.0001 (0.0002) 294.635 (1306.914)

Σ12 -0.0001 (0.0003) 8157.117 (129832.9)

Σ22 0.0000 (0.0004) 3884703 (24760393)

d1 0.0001 (0.0024) -0.1213 (0.2880)

d2 -0.0010 (0.0022) 0.0596 (0.0436)

Table 14: Mean and standard deviation of the difference between the parameter

estimate using the determinant approximation and the parameter estimate from

exact maximum likelihood for a FIVAR model with T = 200. Standard deviations

are given in parentheses. Estimates based on 100 repetitions.
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Parameter Regression Approximation Naive Approximation

A11 -0.0017 (0.0122) -0.1924 (0.1458)

A21 -0.0000 (0.0055) 0.0858 (0.1220)

A12 0.0001 (0.0033) 0.0934 (0.1280)

A22 0.0003 (0.0038) -0.3252 (0.1331)

Σ11 0.0018 (0.0238) -1.4827 (0.5943)

Σ12 -0.00058 (0.0266) 0.8976 (0.4249)

Σ22 0.0012 (0.0158) 99.05134 (1000.237)

d1 -0.0014 (0.0257) -0.0571 (0.1656)

d2 -0.0004 (0.0081) -0.0297 (0.1449)

Table 15: Mean and standard deviation of the difference between the parameter

estimate using the determinant approximation and the parameter estimate from

exact maximum likelihood for a VARFI model with T = 100. Standard deviations

are given in parentheses. Estimates based on 100 repetitions.
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Parameter Regression Approximation Naive Approximation

A11 0.0004 (0.0078) -0.1904 (0.1349)

A21 -0.0003 (0.0023) 0.0912 (0.0804)

A12 0.0002 (0.0025) 0.0910 (0.1099)

A22 -0.0003 (0.0069) -0.3219 (0.1300)

Σ11 -0.0008 (0.0091) 1.5684 (30.0022)

Σ12 0.0054 (0.1151) -13.1160 (137.6588)

Σ22 -0.0036 (0.0861) 63.4455 (629.2669)

d1 -0.0005 (0.0090) -0.0870 (0.1863)

d2 0.0009 (0.0054) -0.0768 (0.1283)

Table 16: Mean and standard deviation of the difference between the parameter

estimate using the determinant approximation and the parameter estimate from

exact maximum likelihood for a VARFI model with T = 200. Standard deviations

are given in parentheses. Estimates based on 100 repetitions.
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Parameter Regression Approximation Naive Approximation

A11 -0.0016 (0.0221) -0.1999 (0.0897)

A21 0.0018 (0.0119) 0.0918 (0.0434)

A12 -0.0006 (0.0120) 0.0817 (0.1209)

A22 0.0003 (0.0125) -0.3481 (0.0971)

Σ11 0.0044 (0.0450) -1.5867 (0.2511)

Σ12 -0.0010 (0.0332) 0.9767 (0.2225)

Σ22 0.0005 (0.0191) 4.2831 (52.8383)

d1 0.0013 (0.0197) -0.1048 (0.1238)

d2 -0.0000 (0.0077) -0.0905 (0.1100)

Table 17: Mean and standard deviation of the difference between the parameter

estimate using the determinant approximation and the parameter estimate from

exact maximum likelihood for a VARFI model with T = 400. Standard deviations

are given in parentheses. Estimates based on 100 repetitions.

Model Sowell Time Regression

Approxima-

tion Time

Naive Ap-

proximation

Time

VARFI, T = 100 599.386 204.838 43.614

VARFI, T = 200 1977.928 390.172 77.807

VARFI, T = 400 8694.996 694.9787 131.9069

Table 18: Average processing time needed to compute the maximum likelihood

estimators for each algorithm, for a variety of models.
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T MLE With Regression Approximation Whittle

50 (0.156, 0.106) (0.318, 0.152)

100 (0.150, 0.076) (0.235, 0.135)

200 (0.149, 0.086) (0.234, 0.135)

Table 19: Root mean squared errors of d estimates from a FIVAR model, based

on 500 replications.

report preliminary results from simulations with T = 50, 100, and 200, K = 2, and

parameters d = (0.1, 0.4), Σ =

 1 0.5

0.5 2

, and A1 =

 0.6 −0.1

0.2 0.8

. All of

these estimates are based on 500 simulated datasets.

In Tables 19, 20, and 21, we report the root mean squared error of each pa-

rameter estimate for each estimation method. These results show that maximum

likelihood using the regression approximation performs the best in estimating both

d and Σ, but the Whittle estimator does better in estimating the element of A1,

particularly the off-diagonal elements. Furthermore, we see from these results that

the root mean squared error seems to be decreasing slowly as the sample size

increases.

We now repeat the experiment with VARFI models. The results are given in

Tables 23, 24, and 25. As in the FIVAR models, the Whittle estimator has the

lower root mean squared error for some parameter estimates while our maximum

likelihood estimator has lower root mean squared errors for others. For a number

of parameters, such as the elements of d and A1, the Whittle estimator performs

better in the smallest sample, but the maximum likelihood estimator has a smaller

RMSE for larger samples. Oddly, the Whittle estimator is dramatically better for

one of the diagonal entries of Σ while the maximum likelihood estimator is dra-

matically better for the other. Examination of the mean estimates (not reported)
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Figure 15: Boxplot of the estimated values of d, using maximum likelihood with

the regression approximation and the Whittle estimator. The true values are 0.1

for d1 and 0.4 for d2.
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T MLE With

Regression

Approxima-

tion

Whittle

50 (0.213, 0.522,

0.522, 0.537)

(0.840, 0.423,

0.423, 1.494)

100 (0.158, 0.507,

0.507, 0.459)

(0.843, 0.423,

0.423, 1.584)

200 (0.158, 0.508,

0.508, 0.459)

(0.840, 0.422,

0.422, 1.580)

Table 20: Root mean squared errors of Σ estimates from a FIVAR model, based

on 500 replications.

T MLE With

Regression

Approxima-

tion

Whittle

50 (0.214, 0.159,

0.717, 0.127)

(0.160, 0.069,

0.199, 0.098)

100 (0.186, 0.146,

0.713, 0.093)

(0.158, 0.055,

0.137, 0.096)

200 (0.185, 0.145,

0.713, 0.092)

(0.158, 0.053,

0.138, 0.097)

Table 21: Root mean squared errors of A1 estimates from a FIVAR model, based

on 500 replications.
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T MLE with Regression Approximation Whittle

50 137.1381 33.971

100 209.4684 73.24466

200 416.3902 163.9263

Table 22: Average processing time needed for estimation of a VARFI model over

500 repetitions.

T MLE With Regression Approximation Whittle

50 (0.217, 0.228) (0.197, 0.167)

100 (0.210, 0.096) (0.190, 0.132)

200 (0.194, 0.059) (0.211, 0.106)

Table 23: Root mean squared errors of d estimates from a VARFI model, based

on 500 replications.

shows that the Whittle estimates of the elements of Σ are biased toward zero, while

the maximum likelihood estimates of the diagonal elements have an upward bias.

Thus, the Whittle estimator fares better when for the smaller diagonal element,

while the maximum likelihood estimator is more successful for the larger diagonal

element.

Using a more extensive set of simulations, with a variety of parameter values

for d and A1, we find that the estimates of d using maximum likelihood with the

regression approximation generally have smaller root mean squared errors than

those from the Whittle estimator. As before, we found that the estimates of Σ

from the Whittle estimator were biased toward 0, with estimates of the diagonal

elements of Σ equal to 18% of their true values on average. In contrast, the

estimates using maximum likelihood with the regression approximation had bias

under 0.1 in most cases and root mean squared errors under 0.2. Results for
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Figure 16: Boxplot of the estimated values of d, using maximum likelihood with

the regression approximation and the Whittle estimator. The true values are 0.1

for d1 and 0.4 for d2.
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T MLE With

Regression

Approxima-

tion

Whittle

50 (1.467, 1.481,

1.481, 0.430)

(0.539, 0.779,

0.779, 1.505)

100 (1.521, 1.505,

1.505, 0.303)

(0.567, 0.715,

0.715, 1.588)

200 (1.520, 1.501,

1.501, 0.224)

(0.581, 0.690,

0.690, 1.626)

Table 24: Root mean squared errors of Σ estimates from a VARFI model, based

on 500 replications.

T MLE With

Regression

Approxima-

tion

Whittle

50 (0.162, 0.188,

0.250, 0.113)

(0.149, 0.134,

0.256, 0.105)

100 (0.134, 0.092,

0.221, 0.086)

(0.143, 0.093,

0.225, 0.097)

200 (0.099, 0.070,

0.211, 0.063)

(0.127, 0.069,

0.205, 0.080)

Table 25: Root mean squared errors of A1 estimates from a VARFI model, based

on 500 replications.
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estimates of A1 were mixed in terms of bias and RMSE. The Whittle estimator

generally had lower bias and RMSE for the off-diagonal elements of A1, while the

two estimators were evenly matched on the diagonal elements. Overall, we find that

maximum likelihood with the regression approximation performs better, though

computing estimates from both estimators could be helpful in some applications.

2.10 Data Analysis

In this section, we apply FIVAR and VARFI models to three different datasets.

First, we apply our models to the components of inflation. Second, we discuss an

application to a macroeconomic model of unemployment and inflation. Finally, we

discuss an application in meteorology.

2.10.1 Goods and Services Inflation

We now consider a model for inflation in the goods and services sectors. While

inflation is often considered as a single number, it is actually composed of the price

changes across all goods and services produced in the economy. The relationship

of the inflation rates across different sectors can be helpful for predicting inflation

and for understanding how price changes in one sector affect price changes in other

parts of the economy. Peach et al. [2004] modeled inflation in the goods and services

sectors, excluding food and energy, as cointegrated time series, without allowing

for fractional differencing. In this section, we estimate FIVAR and VARFI models

based on overall goods and services inflation, as measured by the Consumer Price

Index, for the period February 1956 through January 2008. The data are available

online from the Bureau of Labor Statistics. The data are show in Figure 17.

We first fit univariate ARFIMA(1, d, 0) models to the two series using max-

imum likelihood. The estimates are given in Table 26. According to these esti-

98



Figure 17: Annualized goods and services inflation rates, February 1956-January

2008.

mates, both series are fractionally integrated. Goods inflation is estimated to have

a differencing parameter of 0.2265, while the differencing parameter of services

inflation is estimated to be 0.4837, making it almost non-stationary. We use these

estimates as starting values for our estimation of FIVAR models, setting all initial

off-diagonal elements of A1 and Σ to 0.

We estimate a FIVAR model based on the demeaned data, using both maximum

likelihood and the Whittle estimator. Results are reported in Tables 27. As we

found in the Monte Carlo simulations, the estimates of the covariance matrix based

on Whittle estimator are much closer to 0 than the estimates from maximum

likelihood are. Both estimators find that services inflation has a larger differencing

parameter than goods inflation, with the services differencing parameter quite close

to 0.5. In Figures 20 and 21, we plot the logged modulus of the cross-periodogram
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Figure 18: Empirical cross-correlation function of goods and services inflation rates.

Goods Services

A1 0.1053 (0.0032) -0.3165 (0.0013)

Σ 21.2703 (1.4529) 7.0842 (0.1523)

d 0.2265 (0.0016) 0.4837 (0.0000)

Log Likelihood -1266.140 -924.7657

Table 26: Maximum likelihood estimates for goods and services inflation, as uni-

variate series. Approximate asymptotic standard errors in parentheses.

100



Figure 19: Log modulus of the cross-periodogram of goods and services inflation

rates.

101



Maximum Likeli-

hood with Regres-

sion Approximation

Exact Maximum

Likelihood

Whittle Approx-

imation

A11 0.1024 (0.0034) 0.1023 0.1865 (0.0041)

A21 -0.0204 (0.0006) -0.0204 0.0993 (0.0005)

A12 0.1510 (0.0104) 0.1509 -0.0053 (0.0045)

A22 -0.3101 (0.0022) -0.3103 -0.3354 (0.0025)

Σ11 21.0912 (0.0003) 21.0909 3.3864 (0.0371)

Σ12 0.6260 (0.3120) 0.6257 0.1358 (0.0062)

Σ22 7.0812 (0.0763) 7.0804 1.0947 (0.0039)

d1 0.2281 (0.0017) 0.2282 0.1410 (0.0020)

d2 0.4770 (0.0006) 0.4771 0.4875 (0.0018)

Log likelihood -2187.109 -21887.095 -4501.032

Table 27: FIVAR estimates for goods and services inflation data. The Whittle

log likelihood is the regression approximation to the likelihood at those parameter

values. Approximate asymptotic standard errors are given in parentheses for all

estimators except for Sowell’s exact estimator.

and the logged modulus of the implied cross-spectral densities based on the two

estimators. The spectral density based on the maximum likelihood estimates seems

to fit the cross-periodogram more closely.

We now fit a VARFI model to this data, again using both estimators. The

estimated covariance matrices are similar, but the maximum likelihood estimate

of the smaller differencing parameter has dropped from 0.22 to 0. This does not

mean that goods inflation is now estimated to have short memory; on the contrary,

under the VARFI model the two series are estimated to have the same memory
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Figure 20: Log modulus of the cross-periodogram of goods and services inflation

rates and of the implied cross-spectral density of the estimated FIVAR model.
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Figure 21: Log modulus of the cross-periodogram of goods and services inflation

rates and of the implied cross-spectral density of the estimated FIVAR model,

using the Whittle estimator.
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Maximum Likeli-

hood with Regres-

sion Approximation

Exact Maximum

Likelihood

Whittle Approx-

imation

A11 0.3027 (0.0014) 0.3027 0.1613 (0.0048)

A21 -0.0237 (0.0005) -0.0237 0.0544 (0.0005)

A12 0.4245 (0.0027) 0.4245 0.0881 (0.0065)

A22 -0.3085 (0.0018) -0.3085 -0.3211 (0.0026)

Σ11 20.2342 (0.8669) 20.2342 3.3736 (0.0366)

Σ12 0.4605 (0.2275) 0.4605 0.1313 (0.0065)

Σ22 7.0783 (0.1619) 7.0783 1.1178 (0.0040)

d1 0.0000 (0.0000) 0.0000 0.1512 (0.0034)

d2 0.4835 (0.0004) 0.4835 0.4890 (0.0018)

Log likelihood -2174.263 -2174.249 -4372.655

Table 28: VARFI estimates for goods and services inflation data. The Whittle

log likelihood is the regression approximation to the likelihood at those parameter

values. Approximate asymptotic standard errors are given in parentheses for all

estimators except for Sowell’s exact estimator.

parameter. In contrast, the Whittle estimates of d are almost unchanged. As

before, we compare the cross-periodogram to the implied cross-spectral densities

from the two estimates in Figures 22 and 23.

Since the FIV AR(1, ~d) and V ARFI(1, ~d) have the same number of parameters,

we may compare their log likelihoods to choose between them. In this case, the

VARFI model has a higher log likelihood. We may write the VARFI model in a

form analogous to a VAR, where the errors driving the VAR are no longer white
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Figure 22: Log modulus of the cross-periodogram of goods and services inflation

rates and of the implied cross-spectral density of the estimated VARFI model.
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Figure 23: Log modulus of the cross-periodogram of goods and services inflation

rates and of the implied cross-spectral density of the estimated VARFI model.
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noise:

goodst = 0.3027goodst−1 + 0.4245servicest−1 + u1t

servicest = −0.0237goodst−1 − 0.3085servicest−1 + u2t u1t

(1− L)0.4835u2t

 ∼ Normal

0,

 20.2342 0.4605

0.4605 7.0783


Though the goods equation is driven by shocks that have short memory, long mem-

ory in goods inflation is induced by the lagged services inflation. In the services

equation, lagged services inflation has a negative coefficient; however, services in-

flation is persistent because of the persistence in the shock process. While lagged

services inflation has a significant influence on goods inflation, lagged goods infla-

tion has little effect on services inflation.

Rewriting the first equation in the VARFI model, we find that wt = goodst −

0.3027goodst−1−0.4245servicest−1 is estimated to be white noise. To confirm this,

we compute wt over the sample period and plot it in Figure 24. This series ap-

pears to be approximately white noise, though there are some periods of increased

volatility, particularly near the end of the sample period. The log periodogram,

shown in Figure 25, confirms that all long memory has been removed by this linear

combination.

For comparison, we also fit a short memory vector autoregressive model to the

data. We consider two lag lengths. First, we use a V AR(2), since that model

has only two more parameters than a FIV AR(1, ~d) or V ARFI(1, ~d) model does.

Second, we use the AIC to choose a lag length, and a vector autoregressive model

with 10 lags is chosen. We plot the log modulus of the cross-periodogram and the

log modulus of the spectral density implied by the estimates of these two models

in Figures 26 and 27. When only two lags are included, the fact that the spectral

density is finite at 0 is quite evident; the model cannot match the peak in the

108



Figure 24: Time series of the linear combination of lagged goods and services

inflation that the VARFI model implies is white noise.
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Figure 25: Log periodogram of the linear combination of lagged goods and services

inflation that the VARFI model implies is white noise.
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Figure 26: Log modulus of the cross-periodogram of goods and services inflation

rates and of the implied cross-spectral density of the estimated VAR(2) model.

periodogram at 0. When 10 lags are included, the model fits the peak, but the

spectral density is less smooth, suggesting overfitting.

As a final comparison among the models, we compute out-of-sample predictions

for February through May 2008. For goods inflation, the V AR(2) performed best;

for services inflation, the VARFI model with the maximum likelihood estimates

performs best. In both cases, the V AR(10) was by far the worst performer. In

Figure 28, we plot the forecasts and realization of services inflation. At the end of
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Figure 27: Log modulus of the cross-periodogram of goods and services inflation

rates and of the implied cross-spectral density of the estimated VAR(10) model.
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Goods Services

FIVAR-MLE 5.264 1.236

FIVAR-Whittle 5.189 1.256

VARFI-MLE 5.211 1.215

VARFI-Whittle 5.194 1.280

VAR(2) 5.008 1.327

VAR(10) 6.263 2.232

Table 29: Root mean squared errors for out-of-sample from February to May 2008.

the sample, services inflation had been below its mean for 26 consecutive months.

The long memory structure of the VARFI and FIVAR models could model this

persistence, and predicted that inflation would move very slowly toward its mean.

In contrast, the predictions based on the V AR(2) returned to the mean at an

exponential rate. This difference accounts for the improved performance of the

long memory models for services inflation.

2.10.2 Phillips Curve Data

One of the most basic models in macroeconomics is the Phillips curve, which

relates the unemployment rate to inflation. (See a macroeconomics textbook, such

as Hall and Taylor [1997] for more background.) The simplest form of the Phillips

curve states that an increase in the slack in the economy, as measured by the

unemployment rate, leads to a decrease in inflation. Empirically, we see that

inflation is generally persistent (see Figure 29); this is often explained in models

by assuming that people have expectations about inflation, and that the effect of

the unemployment rate on inflation is relative to the expectations. The simplest

form of inflation expectations sets the expectation for tomorrow equal to today’s
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Figure 28: Realized out-of-sample services inflation and forecasts from the

V AR(2), VARFI and FIVAR models.

inflation (for example, Wooldridge, 2000, example 11.5). Such a model implies a

relationship between the level of the unemployment rate and the first difference

of the inflation rate; if the unemployment rate were constant, this would imply a

unit root in inflation. However, as we see Figure 29, the unemployment rate is also

persistent, while inflation is persistent but is also likely to be mean-reverting; this

suggests that a multivariate long memory model might be a better description of

the data. We will not justify the use of a FIVAR or VARFI model using economic

theory, but only as a useful description of the data. In this estimation, we use

annual data on the unemployment rate and the inflation rate from 1948 to 1996.1

The estimated cross-correlation function for this data is given in Figure 30. This

figure shows that past inflation is strongly correlated with the future unemployment

rate, which runs counter to the usual understanding of the Phillips curve, in which

the slack in the economy, as measured by the unemployment rate, would affect

future inflation.

1This dataset is available from the website of Jeffrey Wooldridge at

http://www.msu.edu/ ec/faculty/wooldridge/book2.htm, as Phillips.RAW.
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Figure 29: Annual unemployment rate and inflation rate used for estimating the

Phillips curve.
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Figure 30: The empirical cross-correlation function of the unemployment rate and

the inflation rate.

116



Maximum Like-

lihood with Re-

gression Approx-

imation

Exact Maximum

Likelihood

Whittle Approx-

imation

A1 (-0.1085, 0.0668,

0.9360, 0.3120)

(-0.1075, 0.0670,

0.9361, 0.3119)

(-0.1788, 0.2524,

0.3441, 0.4774)

Σ (2.3052, -1.3910,

-1.3910, 4.9402)

(2.3056, -1.3912,

-1.3912, 4.9398)

(0.3000, -0.2941,

-0.2941, 1.1282)

d (0.3601, 0.3364) (0.3595, 0.3365) (0.4900, 0.0137)

Log likelihood -105.3 -105.2991 -357.2535

Table 30: FIVAR estimates for Phillips curve data. The Whittle log likelihood is

the regression approximation to the likelihood at those parameter values.

We first fit FIVAR models to these data using maximum likelihood with the

regression approximation, exact maximum likelihood using Sowell’s method, and

Whittle’s approximation to the likelihood. The estimated parameter values are

given in Table 30. Using our default initial values, the estimates from Sowell’s

method failed to converge; when we used the FIVAR estimates as the initial values,

the estimates converged to the values that we report. While the exact maximum

likelihood estimate and the estimate from the regression approximation match

quite closely, as we would expect from section 2.9.2, the Whittle estimate is very

different, and the Whittle estimate for d1 is on the boundary of the parameter

space. In the maximum likelihood estimates, the estimated differencing parame-

ters are quite close. Since the FIVAR and VARFI models are identical when the

differencing parameters are equal, this suggests that the VARFI model will have

similar parameter estimates.
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Maximum Like-

lihood with Re-

gression Approx-

imation

Exact Maximum

Likelihood

Whittle Approx-

imation

A1 (-0.2228, 0.0449,

0.9020, 0.3601)

(-0.2226, 0.0449,

0.9020, 0.3601)

(-0.0110, 0.2807,

0.2600, 0.1255)

Σ (2.2248, -1.4736,

-1.4736, 4.9647)

(2.2252, -1.4741,

-1.4741, 4.9643)

(0.3195, -0.3231,

-0.3231, 1.1791)

d (0.4480, 0.2402) (0.4480, 0.2411) (0.4677, 0.3831)

Log likelihood -104.0927 -104.0907 -315.5599

Table 31: VARFI estimates for Phillips curve data. The Whittle log likelihood is

the regression approximation to the likelihood at those parameter values.

To check this hypothesis, we estimate a VARFI model with the same data.

The estimates are reported in Table 31; the estimates for both maximum likeli-

hood methods use the FIVAR estimates as initial values. In this case, the Whittle

estimates of the parameters are somewhat closer to the maximum likelihood esti-

mates, though the estimates of the elements of Σ are still much closer to 0 than

the maximum likelihood estimates of Σ.

We have estimated two distinct models based on the same data. Comparing

the maximum likelihood estimates from the two models, we see that the VARFI

estimates of the differencing parameters differ by more than the FIVAR estimates

do, but that the averages of the estimated differencing parameters are almost

identical (0.344 for the VARFI model and 0.348 for the FIVAR model). The

estimates of the innovation variances match closely, while the estimates of the

autoregressive parameters are of the same signs and similar magnitudes. Because
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these two models have the same number of parameters, we may choose between

them based on the log likelihoods. Using this criterion, we prefer the VARFI

model to describe the relationship between the unemployment rate and inflation.

In Figure 31, we plot the implied cross-covariances based on the VARFI model.

The asymmetric pattern of slowly decaying cross-covariances is captured nicely by

the VARFI model.

As we discussed in Section 2.2.2, a VARFI model is a vector autoregression

driven by fractionally integrated white noise. That means that we may write this

VARFI model as:

unemp(t) = 0.223unemp(t− 1)− 0.045infl(t− 1) + u1t (2.17)

infl(t) = −0.902unemp(t− 1)− 0.360infl(t− 1) + u2t (2.18)

where (u1t, u2t) are distributed as fractionally integrated white noise with co-

variance matrix

 2.225 −1.473

−1.473 4.965

 and differencing parameters (0.448, 0.240).

Equation 2.18 matches the traditional intuition about the Phillips curve: an in-

crease in the unemployment rate is associated with a decrease in the inflation rate

in the next period. We also find that an increase in inflation is associated with a

decrease in the unemployment rate in the next period. In this model, though, the

“shocks” are correlated across time, which leads to more persistence in both in-

flation and the unemployment rate, despite the negative coefficients on the AR(1)

parameter in Equation 2.18. Thus, the VARFI model matches the basic economic

theory of the Phillips curve but can also match the empirical persistence in the

cross-covariances.

For comparison, we also fit a vector autoregressive model to this data. The

Akaike Information Criterion suggests a lag length of 2 for this data. The pa-

rameter estimates for a vector autoregressive model of order 2 are given in Ta-
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Figure 31: The cross-correlation function of the unemployment rate and the infla-

tion rate implied by the VARFI model.
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Unemployment Rate Inflation

Unemployment Rate - Lag 1 0.67779 (0.15544) -0.5224 (0.3526)

Inflation - Lag 1 0.14147 (0.05766) 0.7737 (0.1308)

Unemployment Rate - Lag 2 -0.07806) (0.13205 0.5458 (0.2995)

Inflation - Lag 2 0.05758 (0.06735) -0.0297 (0.1528)

Table 32: Parameter estimates from a VAR(2) model for the Phillips curve data.

Standard errors are given in parentheses.

ble 32. The estimated covariance matrix for the innovations in this model is 0.7929 −0.3482

−0.3482 4.0797

. Notice that the estimated covariance matrix entries lie

between the maximum likelihood estimates and the Whittle estimates of Σ. While

we cannot compare the VAR coefficients to the VARFI coefficients in the same

way, we can compare the implied autocovariance functions. The cross-covariance

function implied by the VAR(2) is given in Figure 32. In contrast to the covari-

ances from the VARFI model, the covariances from the VAR model start lower and

decay to 0 quite quickly. We also note that the conditional log likelihood of the

VAR(2) is -154.783. Since this VAR has been estimated conditional on the first

two periods, we must add on the likelihood of the initial observations in order to

make the likelihood comparable to the unconditional likelihood given in Table 31.

Using the unconditional covariances of a VAR(2), we find that the likelihood of the

first two observations is -22.5925. Summing the two parts of the log likelihood, we

find that the VAR model has a log likelihood of -177.3755, which is lower than the

likelihood of the VARFI model, despite including two more estimated parameters.

Thus, the VARFI model is a better fit to these data than a vector autoregression

is.
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Figure 32: The cross-correlation function of the unemployment rate and the infla-

tion rate implied by the VAR(2) model.
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2.10.3 Great Lakes Precipitation

We now model data on precipitation in the Great Lakes. This data, from Hipel and

McLeod2, measures the annual precipitation, in inches, on Lakes Huron, Michigan,

and Superior from 1900 to 1986. The autocorrelation functions of the three series,

in Figure 33, suggest that the series for Lakes Huron and Superior have some long

memory, while Lake Michigan’s series has short memory or a differencing parameter

very close to zero. Furthermore, the cross-correlation function of Lakes Huron and

Superior, shown in Figure 33 seems to decay slowly. The two cross-correlation

functions with Lake Michigan decay more quickly.

In Tables 33 and 34, we report the estimated parameter values for the FIVAR

and VARFI models. Because the likelihood of the FIVAR model is dramatically

higher than that of the VARFI model, we focus on the FIVAR model as the

better description of the data. According to the maximum likelihood estimates of

the FIVAR model, the precipitation at Lake Superior has the largest differencing

parameter, while the differencing parameter of the precipitation at Lake Michigan

is almost 0. The cross-covariances between Lake Huron and Lake Superior are

plotted in Figure 34.

2.11 Conclusion

This paper has discussed two multivariate generalizations of fractionally integrated

autoregressive models. While the two models appear similar at first glance, their

implications differ dramatically. One model leads to series with different orders of

integration, while the other can lead to series which have the same order of inte-

gration but a relationship like cointegration among them. We have also described

2These data are available online from http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/

in the meteorology section.
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Figure 33: The empirical auto-correlation and cross-correlations function of the

annual precipitation at Lakes Superior, Huron, and Michigan.
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Maximum Like-

lihood with

Regression Ap-

proximation

Exact Maximum

Likelihood

Whittle Approxi-

mation

A1 (-0.03, -0.06, -0.01,

0.17, -0.40, 0.19, -

0.25, 0.11, 0.18)

(-0.03, -0.06, -0.01,

0.17, -0.40, 0.19, -

0.25, 0.11, 0.18)

(0.03, 0.28, -0.18, -

0.33, 0.65, 0.26, -

0.36, 0.36, 0.31)

Σ (9.83, 5.69, 6.77,

5.69, 10.05, 5.53,

6.77, 5.53, 9.68)

(9.83, 5.69, 6.77,

5.69, 10.05, 5.53,

6.77, 5.53, 9.68)

(1.39, 0.78, 0.83,

0.78, 1.69, 0.75,

0.83, 0.75, 1.26)

d (0.0004, 0.2464,

0.0982)

(0.0000, 0.2460,

0.0980)

(-0.1832, -0.4900, -

0.2468)

Log like-

lihood

-380.3562 -380.3556 -1159.296

Table 33: FIVAR estimates for the precipitation data. All log likelihoods are the

exact log likelihoods computed using Sowell’s algorithm at the estimated parameter

values.
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Figure 34: The cross-covariance function between precipitation at Lake Huron and

Lake Superior implied by the maximum likelihood estimate of the FIVAR model.
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Maximum Likelihood

with Regression Approxi-

mation

Whittle Approximation

A1 (-0.2081, -0.3401, -0.8997,

-0.7509, -0.4554, 0.3307, -

0.4317, 0.4014, -0.0602)

(-0.2798, 0.3268, -0.0757,

-0.4089, 0.2689, 0.3370, -

0.4194 0.3236, 0.1464)

Σ (2.8295, 3.3341, 3.4696,

3.3341, 3.9288, 4.1146,

3.4696, 4.1146, 11.0970)

(1.4674, 0.8552, 0.9218,

0.8552, 1.6725, 0.8563,

0.9218, 0.8563, 1.4106)

d (-0.4900, -0.3196, 0.1498) (0.0533, -0.2027, 0.0698)

Log likelihood -583.5166 -926.7704

Table 34: VARFI estimates for the precipitation data. All log likelihoods are the

exact log likelihoods computed using Sowell’s algorithm at the estimated parameter

values.
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computationally efficient methods for using these two models. The algorithms for

simulation and computing the quadratic form can be applied to any multivariate

model, not just FIVAR and VARFI models. Finally, we have fit these models to

data.

Much research remains to be done, because these models are relatively new.

There are likely to be theoretical results on the growth of the condition number

of Ω, just as there are in the univariate case. It make also be possible to prove

whether it is always possible to simulate if sufficiently many covariances are used.

It is also unknown whether there is a more elegant algorithm for computing the

determinant. Work also remains to be done on cointegration in these models. We

hope that finding algorithms which make computation with these models faster

will allow them to enter wider use, so that long memory can be addressed in a

multivariate context.
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3 Power laws in phase and coherency for bi-variate

long-memory time series

3.1 Introduction

Semiparametric models for univariate long-memory time series have been explored

in detail in existing literature, but the multivariate case presents additional chal-

lenges that have not yet been fully surmounted. Of the previous work in multivari-

ate long-memory time series, we are not aware of any that focuses on power laws in

phase and coherency, but power laws or other powers of the frequency, λ, in either

or both of these may affect convergence rates of estimators of other quantities,

such as cointegrating parameters or memory parameters of the individual series

(see Section 3.2.1 and Table 36 for details). Power laws and powers of λ in the

phase and coherency have been allowed by some (but not all) authors, but their

implications have not been discussed as far as we know.

After a brief review of long memory, phase and coherency, we introduce a semi-

parametric long-memory time series model in Section 3.2 that allows for power laws

in the phase and coherency, discussing how previous authors approached phase and

coherency in Section 3.2.1 and providing a number of time-domain examples in Sec-

tions 3.2.2 through 3.2.7. In Section 3.3, we discuss some of the problems that arise

in estimating power laws in coherency in a long-memory context and show that

the averaged periodogram estimator (APE) is consistent in these cases, under cer-

tain conditions. Unfortunately, high variability of the estimators in small samples

makes power laws in the coherency hard to detect with the APE. In Section 3.4, we

will show how the properties of the phase and coherency affect a number of coin-

tegration estimators, including the narrow-band least squares estimator (NBLS)

of Robinson [1994], Robinson and Marinucci, 2003] and Christensen and Nielsen
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[2006] and the local Whittle estimator of Robinson [2008]. For the appropriate

choice of the number of frequencies used in estimation, each of these estimators

would require knowledge of the exponents in any power laws and any other powers

of λ in the phase and coherency in a neighborhood of zero frequency; in light of

the apparent difficulties of estimating such power laws when the sample size is not

exceedingly large, requiring such knowledge seems problematic. We will prove in

Section 3.4.1 that the cointegration estimator of Chen and Hurvich [2003], which

we will call the very-narrow-band least-squares estimator (VNBLS), is not affected

by such behavior in the phase and coherency, allowing for robust estimation of

the cointegrating parameter without knowledge of the exponents in the powers of

λ in the phase and coherency of the underlying series. In Section 3.5, we apply

the APE to a bivariate time series of two components of the money supply and

VNBLS to estimating cointegration between daily high and low stock prices.

3.1.1 Basic properties of long memory and the phase and coherency

In a univariate weakly stationary long-memory process, the spectral density obeys

f(λ) ∼ C|1 − e−iλ|−2d as λ → 0+, for C > 0 and d < 1
2
; we say that the cor-

responding process is I(d). One strand of the long-memory literature focuses on

semiparametric methods, modeling the spectral density only in a neighborhood of

zero, in order to estimate d. Estimation methods in the univariate case include the

averaged periodogram estimator (APE) [Robinson, 1994, Lobato and Robinson,

1996], the log periodogram (GPH) estimator [Geweke and Porter-Hudak, 1983,

Robinson, 1995a], and the Gaussian semiparametric estimator (GSE) [Kunsch,

1987, Robinson, 1995b].

In this paper, we will focus on real-valued bivariate time series, Xt = (x1t, x2t)
′,
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with a spectral density matrix given by:

f(λ) =

 f11(λ) f12(λ)

f21(λ) f22(λ)

 , λ ∈ [−π, π]

where f ∗(λ) = f(λ) and f(−λ) = f(λ), with A∗ denoting the conjugate transpose

of a matrix A. The cross-spectrum, f12(λ), can be decomposed into the phase,

φ(λ), the coherency, ρ(λ), and terms involving the auto-spectra:

f12(λ) =
√
f11(λ)f22(λ)ρ(λ)eiφ(λ) (3.1)

where the coherency is a real, even function with 0 ≤ ρ(λ) ≤ 1 and the phase

is an odd function that we assume lies in the interval (−π, π]. When f11(λ0) or

f22(λ0) is zero or infinite for some λ0, as may happen with λ0 = 0 long-memory

time series, φ(λ0) is not uniquely defined. (Terminology regarding the coherency

varies. Some authors, such as Brillinger [1981], use the term coherency for the

quantity ρ(λ)eiφ(λ), which Priestley [1981] calls the “complex coherency.” Others,

such as Koopmans [1974], Bloomfield [1976], Brockwell and Davis [1993], discuss

only ρ(λ)2, which they call either the squared coherence or the squared coherency.)

To interpret the coherency, we use the spectral representation for the coor-

dinates, xjt =
∫ π
−π e

itλdZj(λ), j = 1, 2. The coherency is the modulus of the

complex correlation of dZ1(λ) and dZ2(λ). Koopmans [1974, page 142] describes

the squared coherency as “the proportion of power at frequency λ in either time

series ... which can be explained by its linear regression on the other.” As a very

simple example, the coherency of a white noise series, {εt}, with Cov(εt) = Σ is

given by ρ(λ) ≡ σ12√
σ11σ22

, where σjk is the (j, k) element of Σ. For general bivariate

time series, the strength of the relationship between the two series can vary by

frequency, allowing a practitioner to identify and interpret strong or weak rela-

tionships at particular ranges of frequencies. For example, Bernanke and Powell
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[1984, Table 10.7] focus on the coherency in the range of frequencies corresponding

to the business cycle, usually ranging from 2 to 8 years, trying to identify which

common measures of the business cycle are strongly related at those frequencies.

The phase is difficult to interpret directly, but the first derivative of the phase,

called the group delay by Hannan and Thomson [1973] and others, has a straight-

forward interpretation. Consider the case where x1t = x2,t−a + ut, for any real a,

with {ut} and {x2t} uncorrelated at all leads and lags, so that {x1t} lags {x2t} by

a periods. Then, the group delay is given by φ′(λ) ≡ a. (See, for example, Priest-

ley [1981, page 663-664] for more details.) In general, if φ′(λ) is not constant, we

say that {x1t} lags {x2t} by φ′(λ) periods at frequency λ, so that the group delay

varies by frequency. To compute the group delay given a cross-spectral density,

f12(λ) = c(λ) − iq(λ), where c(λ), q(λ) are real-valued, we take the derivative of

arctan(−q(λ)/c(λ)), though computing the phase itself might require the addition

or subtraction of π if c(λ) < 0. As with coherency, non-constancy in the group

delay can lead to hypotheses about the relationship between two time series, since

one may lead the other at high frequencies but lag at low frequencies. (See, for

example, Bernanke and Powell [1984, Table 10.8].)

Long-memory time series with components having different memory parameters

can have phase and coherency with power laws or that depend on powers of λ. Our

theoretical framework in Section 3.2 can lead to phase and coherency that satisfies

the following local models:

ρ(λ) = Cρλ
−2dρ + o(λ−2dρ) (3.2)

φ(λ) = φ0 + φ1λ
α + o(λα) (3.3)

where Cρ > 0, dρ ≤ 0, −π < φ0 ≤ π, and α > 0. We present examples in which dρ

and α can take on a variety of possible values in Section 3.2.4 through 3.2.7.

In this paper, we will use the fact that applying real-valued linear filters of the
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form
∑∞

u=−∞ ajuxj,t−u, for j = 1, 2, to the two time series individually will leave

their coherency at a frequency λ unchanged (see, for example, Priestley [1981, page

661], Koopmans [1974, page 149]). Furthermore, applying identical linear filters to

the two time series also leaves the phase of the time series unchanged. For example,

the differences of bivariate time series will have the same phase and coherency as

the original bivariate time series. This allows us to extend the concept of phase

and coherency to certain non-stationary time series by identifying them with the

phase and coherency of the stationary series that result from differencing them.

3.2 Some possible behaviors in the phase and coherency

We introduce a semiparametric model for a bivariate time series, {Xt}, that ex-

plicitly describes a rich variety of behavior in the phase and coherency. This model

is based on requiring {xjt}, for j = 1, 2, to be the sum of up to p component series,

where each component series may have a different memory parameter. Making this

representation explicit allows us to derive the phase and coherency, instead of as-

suming forms for the phase and coherency without reference to how they arose. In

addition, the semiparametric model makes the creation of time domain examples

particularly straightforward.

We assume that {Xt} has the infinite moving average representation

Xt =
∞∑

r=−∞

ψrεt−r (3.4)

where the real-valued 2 × p matrices, ψr, are specified below and εt = (ε1t, ...εpt)
′

is a p-variate, zero-mean series (p ≥ 2) that satisfies the following:

Assumption 3.1 {εt} is independent and identically distributed with:

• Cov(εt) = Σ, where Σ is positive definite.
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• E (ε4kt) <∞ for k = 1, ..., p.

Allowing for more than two driving innovation series allows for straightforward

descriptions of a rich variety of models (for example, those in Sections 3.2.5 and

3.2.6). Other authors, including Hannan [1970] and Robinson [2008], have also

allowed p > 2.

Equation (3.4) implies that {Xt} is the output of passing {εt} through a linear

filter with transfer function Ψ(λ) =
∑∞

r=−∞ ψre
−iλr, a 2 × p matrix with entries,

Ψjk(λ), for j = 1, 2 and k = 1, ..., p. For each (j, k), we generalize Chen and

Hurvich [2003] and consider transfer functions, Ψjk(λ) on [−π, π], that can be

written as:

Ψjk(λ) = (1− e−iλ)−δjkτjk(λ)eiϕjk(λ) (3.5)

with τjk(λ), δjk, ϕjk(λ) satisfying Assumptions 2-5 (3.5 appears after discussion of

Assumptions 2-4):

Assumption 3.2 For j = 1, 2 and k = 1, ..., p, τjk(λ) is a real, bounded, non-

negative, continuous, even function on [−π, π] that is differentiable on [−π, π] −

{0}, with τ ′jk(λ) = o(λ−1) as λ→ 0+. Furthermore, either τjk(0) > 0 or τjk(λ) = 0

for all λ ∈ [0, π]; for each j, τjk(0) > 0 for at least one k.

Assumption 3.3 δjk < 1/2 for all j = 1, 2 and k = 1, ..., p. When τjk(λ) = 0, δjk

is less than or equal to the smallest δjk′ with τjk′(λ) > 0.

Assumption 3.4 ϕjk(λ) is an odd, differentiable function on [−π, π]−{0}, where

limλ→0+ ϕjk(λ) exists and ϕ′jk(λ) is continuous at 0 or obeys ϕ′jk(λ) = o(λ−1) as

λ→ 0+.

The decomposition in Equation (3.5) separates the transfer function into three

different operations that transform the series {εkt} into a component of {xjt}. First,

134



(1− e−iλ)−δjk is the fractional integration operator of order δjk. Because δjk varies

with k, {xjt} consists of components with potentially different orders of integration.

Second, τjk(λ) is either a filter that changes the short-memory properties of the

resulting fractionally integrated or a filter that annihilates the component near the

zero frequency. Finally, ϕjk(λ) changes the phase of {xjt} relative to the original

{εkt}. For example, if ϕjk(λ) = −aλ, for some real a, then the component of {xjt}

that depends on {εkt} is lagged by a periods. More complicated phase shifts are

also possible.

The spectral density of {Xt} is simply:

f(λ) = Ψ(λ)ΣΨ(λ)∗, λ ∈ [−π, π]

Using the representation in Equation (3.5), the autospectral densities, f1(λ) and

f2(λ), are given for j = 1, 2, λ ∈ [−π, π] by:

fj(λ) =

p∑
k=1

p∑
l=1

(1− e−iλ)−δjk(1− eiλ)−δjlσklτjk(λ)τjl(λ)ei(ϕjk(λ)−ϕjl(λ))

where σkl is the (k, l) element of Σ. To define the power law in the auto-spectra,

it is helpful to rewrite the auto-spectrum for j = 1, 2, λ ∈ (0, π] as

fj(λ) =

p∑
k=1

σkk|1− e−iλ|−2δjkτjk(λ)2

+2

p∑
k=1

∑
l<k

|1− e−iλ|−δjk−δjlσklτjk(λ)τjl(λ)

× cos

(
ϕjk(λ)− ϕjl(λ) +

(δjl − δjk)(π − λ)

2

)
The power laws in the auto-spectra are defined by the largest δjk that have non-

zero coefficients, τjk(λ)2, in the first equation; the sum in the second line will not

change the power law in the auto-spectrum. Thus, we define

dj = max
k:τjk(0)>0

δjk
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This semiparametric model implies that, as λ→ 0+:

fj(λ) ∼ Cjλ
−2dj (3.6)

where Cj = limλ→0+

∑p
k=1

∑p
l=1 σklτjk(λ)τjl(λ)ei(ϕjk(λ)−ϕjl(λ))χ(δjk = δjl = dj) and

χ is the indicator function.

In describing the cross-spectrum, it will be convenient to separate the power law

into its modulus and argument. When λ ∈ (0, π], we use the identity (1− e−iλ) =∣∣2 sin λ
2

∣∣ ei(π−λ)/2 to rewrite Equation (3.5) as:

Ψjk(λ) =

∣∣∣∣2 sin
λ

2

∣∣∣∣−δjk τjk(λ)ei(ϕjk(λ)+(π−λ)δjk/2) (3.7)

Using Equations (3.5), (3.6), and (3.7), we find that for λ ∈ (0, π], the cross-spectral

density is given by:

f12(λ) =

p∑
k=1

p∑
l=1

(1− e−iλ)−δ1k(1− eiλ)−δ2lσklτ1k(λ)τ2l(λ)ei(ϕ1k(λ)−ϕ2l(λ))

=

p∑
k=1

p∑
l=1

∣∣∣∣2 sin
λ

2

∣∣∣∣−δ1k−δ2l σklτ1k(λ)τ2l(λ)ei(ϕ1k(λ)−ϕ2l(λ)+(π−λ)(δ1k−δ2l)/2)

In order to understand the power law behavior of the cross-spectrum, we decompose

the sum above into a sum of terms where the power, δ1k + δ2l, is constant. To do

this, partition the set of {(k, l) : k, l ∈ {1, ..., p} into sets S1, ..., SQ such that

δ1k + δ2l = δ1k′ + δ2l′ if and only if (k, l), (k′, l′) are in the same set. Define d12(q) to

be the value of 1
2
(δ1k + δ2l) for (k, l) ∈ Sq for q = 1, ..., Q, with d12(q) > d12(q + 1)

for all q = 1, ..., Q− 1. Note that d12(1) = d1 + d2. Then, for 0 < λ < π, we may

write:

f12(λ) =

Q∑
q=1

∣∣∣∣2 sin
λ

2

∣∣∣∣−2d12(q)

s(λ; q)
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where

s(λ; q) =
∑

(k,l)∈Sq

σklτ1k(λ)τ2l(λ)ei(ϕ1k(λ)−ϕ2l(λ)+(π−λ)(δ1k−δ2l)/2) (3.8)

s(0; q) = lim
λ→0+

s(λ; q) (3.9)

=
∑

(k,l)∈Sq

σklτ1k(0)τ2l(0) lim
λ→0+

(
ei(ϕ1k(λ)−ϕ2l(λ)+(π−λ)(δ1k−δ2l)/2)

)
(3.10)

To ensure that the power law behavior in the cross-spectral density is determined by

the terms containing
∣∣2 sin λ

2

∣∣−d12(q)
instead of by the s(λ; q), we make the following

assumption:

Assumption 3.5 There is at least one q such that s(0; q) 6= 0. Let q0 be the

smallest such q. Then, we define:

d12 = d12(q0) (3.11)

Whenever s(0; q) = 0, we require that:

s(λ; q) = o
(
λ−2(d12−d12(q))

)
Using this representation, we describe the power laws in the modulus of the

cross-spectrum and the coherency in a neighborhood of zero frequency. As λ→ 0+,

the absolute value of the cross spectrum and the coherency obey:

|f12(λ)| ∼ C12λ
−2d12 (3.12)

ρ(λ) ∼ C12√
C1C2

λ−2(d12− 1
2

(d1+d2)) (3.13)

where the power law of the cross-spectrum, d12, is defined by Equation (3.11),

C1, C2 are defined by Equation (3.6) and C12 = |s(0; q0)|. Since δ1k + δ2l ≤ d1 + d2,

d12 is bounded above by 1
2
(d1 + d2). The fact that d12 need not equal 1

2
(d1 + d2)

was mentioned by Lobato [1997, page 139], though he did not try to estimate d12.
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In the case where d12 <
1
2
(d1 + d2), the coherency will have power law decay in a

neighborhood of zero; we will call such behavior power law coherency. We define:

dρ = d12 −
1

2
(d1 + d2) (3.14)

The only decay rate of the cross-spectral density that will not lead to power law

coherency is d12 = 1
2
(d1 +d2). Thus, power law coherency will occur when s(0; 1) =

0. The examples given in Sections 3.2.5 and 3.2.7 show how this can occur. In

a sense, this is the opposite of cointegration (see Section 3.2.4), where there is a

very strong long-run relationship between two time series because the coherency

is 1 at frequency 0. Power law coherency will also affect forecasts for bivariate

time series. Consider a forecast for x1,T+h based on on x11, x21, ..., x1T , x2T . The

weights on x21, ...x2T will decay more quickly with h when there is power law

coherency than when there is no power law coherency. Thus, one should account

for the possibility of power law coherency before computing long-range forecasts

of bivariate time series.

Next, we write the phase, using the notation of Equation (3.8), for 0 < λ < π:

φ(λ) = arg

(
p∑

k=1

p∑
l=1

∣∣∣∣2 sin
λ

2

∣∣∣∣−δ1k−δ2l σklτ1k(λ)τ2l(λ)e
i
(
ϕ1k(λ)−ϕ2l(λ)+

(π−λ)(δ1k−δ2l)
2

))

= arg

(
Q∑
q=1

∣∣∣∣2 sin
λ

2

∣∣∣∣−2d12(q)

s(λ; q)

)

= arg

(
Q∑
q=1

∣∣∣∣2 sin
λ

2

∣∣∣∣−2(d12(q)−d12(q0))

s(λ; q)

)

where q0 is defined in Assumption 3.5. In the case of long-memory time series, the

phase is not uniquely defined at frequency zero, since the auto-spectral densities

are zero or infinite at that frequency. Because of this, we focus on the right-hand

limit of the phase and define φ0 = arg(s(0; q0)). As was discussed by Shimotsu

[2007], the phase need not be continuous at zero for long-memory time series, so
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that φ0 is not necessarily 0 or π. This is true for even the simplest bivariate long-

memory time series models (FIVAR models, discussed in Section 3.2.3); further

examples are discussed by Shimotsu [2007], Robinson [2008], and in Section 3.2.5.

Though the phase is not continuous at zero for long-memory models, the phase is an

odd function, so that φ′(λ) = φ′(−λ). Thus, when limλ→0+ φ′(λ) = limλ→0− φ
′(λ)

exists, we define the group delay at frequency 0 to be the limit of the derivative as

the phase approaches zero frequency.

In some long-memory models, such as fractional cointegration (Section 3.2.4)

and those described in Sections 3.2.6 and 3.2.7, the phase will include powers,

λα, where α > 0 to ensure the existence of a right-hand limit. This means that

group delay may be infinite at zero, if α < 1. Powers of λ in the phase arise

when
∣∣2 sin λ

2

∣∣−2(d12(q)−d12(q0))
s(λ; q) ∼ λα for some q; in the case where the power

depends on the term containing q0, the power must come from powers of λ in

s(λ; q0) itself. If we can write φ(λ) = φ0 + φ1λ
α + o(λα), the group delay is given

by φ′(λ) ∼ αφ1λ
α−1 as λ→ 0+, as long as the terms in o(λα) have derivatives of a

smaller order. Then, when 0 < α < 1, the group delay associated with a period of

T years is proportional to T 1−α as T increases; thus, one series leads the other by

increasing amounts at larger lags. When α > 1, the group delay approaches zero

at frequency 0 with power law behavior.

In some of our analysis, including our proof about the distribution of the VN-

BLS estimator in Section 3.4.1, we will apply linear filters to the series in order to

make the individual coordinates I(0), with a phase that is continuous at frequency

0. Generalizing Chen and Hurvich [2003, Equation 7], define:

Υ(λ) =

 (1− e−iλ)−d1 0

0 (1− e−iλ)−d2e−i(φ0+π
2

(d2−d1))sign(λ)

 (3.15)

If φ0 = π
2
(d1 − d2), then Υ(λ) is the transfer function of the linear filter that
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takes the d1 difference of the first series and the d2 difference of the second series;

this matches the definition of Chen and Hurvich. Allowing φ0 to vary allows for

alternative right-hand limits in the phase, as Robinson [2008] allows. Then, define

Ψ†(λ), f †(λ) by:

Ψ(λ) = Υ(λ)Ψ†(λ) (3.16)

f(λ) = Υ(λ)f †(λ)Υ∗(λ) (3.17)

f †12(λ) = e−i(φ0+π
2

(d2−d1))sign(λ)

p∑
k=1

p∑
l=1

|2 sin(λ/2)|d1−δ1k+d2−δ2lσkl (3.18)

×τ1k(λ)τ2l(λ)ei(ϕ1k(λ)−ϕ2l(λ)+(π−λ)(δ1k−d1−δ2l+d2)/2), λ > 0 (3.19)

f †(λ) is the spectral density of the bivariate time series obtained after fractionally

differencing the two series to make them I(0) with a phase that is continuous at

0. The bivariate series with spectral density f †(λ) have the same coherency as

the original series, but will have a different phase unless d1 = d2 and φ0 = 0. In

all cases, f †12(λ) is continuous at λ = 0, because the discontinuity in the phase

at 0 has been removed. In the case of power law coherency, the inclusion of

e−i(φ0+π
2

(d2−d1))sign(λ) does not affect the fact that f †12(λ) is continuous at frequency

0, since f †12(0) is zero.

3.2.1 Previous literature on the effects of phase and coherency on es-

timators

The bulk of previous literature about bivariate long-memory time series and frac-

tional cointegration has implicitly (or explicitly) approximated the phase and co-

herency by constants in a neighborhood of frequency 0. Many authors [Robinson,

1995a, Lobato, 1997, 1999, Shimotsu, 2007] write semiparametric models for the

cross-spectral densities of the following form:

f12(λ) = C12λ
−d1−d2 +O(λ−d1−d2+ξ)
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where ξ ∈ (0, 2] and assumptions about Cab vary. (See Table 36 for the precise

assumptions that authors use.) As Lobato [1997] notes, this semiparametric model

allows for a power law in the coherency if Cab is allowed to be 0. Because the

coherency and phase are not described explicitly, their properties will limit the

choices of ξ. Specifically, when dρ < 0, we must have ξ ≤ −2dρ. When the

phase is of the form given in Equation (3.3), we must have ξ ≤ α. Because dρ

and α can be arbitrarily close to 0, ξ may be required to be arbitrarily close to

0. All of the previously mentioned authors then use the semiparametric model

given to estimate d1, d2, and sometimes C12 in the equation above, together with

C1, C2 in the auto-spectra. For the convergence rates of the estimators of Robinson

[1995a], Lobato [1999] and Shimotsu [2007], the number of frequencies, m, used in

estimation must satisfy m1+2ξ

n2ξ → 0 as n→∞ (in some cases, additional powers of

log(m) are included in the numerator). This choice of m is required to control the

bias in the estimators. In all cases, values of dρ and α close to 0 limit the growth

rate of m and therefore the convergence rate. Nielsen [2004] makes the more

restrictive assumption that ξ = 2 to derive results about the phase and coherency

of cointegrated series; as we will show in Section 3.2.4, these assumptions are

unnecessary for his main results.

In the context of cointegration estimation, Christensen and Nielsen [2006] re-

quire that the Cab = 0 in the equation above, allowing for power law coherency

but ruling out ρ(0) > 0 (and therefore commonly used time series models like the

FIVAR). However, as in Robinson [1995a], Lobato [1997, 1999], dρ determines the

number of frequencies that can be used in estimation, with dρ close to 0 leading

to smaller choices of m.

Our semiparametric model generalizes that of Chen and Hurvich [2003], relax-

ing the following assumptions. First, they require that p = 2 and that δjj ≥ δjk
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for j = 1, 2. Second, Chen and Hurvich require that τjk(0) > 0 for all j, k. Finally,

they require that ϕjk(λ) be continuously differentiable in an interval containing

0. These assumptions allow for power laws in the coherency and powers of λ in

the phase in certain cases (such as example of Hosoya [1997] described Section

3.2.5), but limit the ways in which such power laws can occur. Because ϕjk(λ)

must be continuous at 0, the model requires that φ0 = π
2
(d1 − d2) when ρ(0) > 0.

In addition, their semiparametric model cannot produce fractional cointegration

at all (see Section 3.2.4) unless the resulting series are passed through a second

linear filter. As we will discuss in Section 3.4.1, because they hold the number of

frequencies, m, used in estimation fixed, the convergence rates of their estimators

are not affected by power law behavior or powers of λ in the phase and coherency.

Robinson [2008] suggested the use of local Whittle for cointegration estimation

in a context that allowed φ0 to take on any value in (−π, π]− {−π
2
, π

2
}. However,

Robinson (Assumption A6) explicitly ruled out ρ(0) = 0, which excludes power law

coherency. In addition, he requires that d1, d2 ∈ [0, 1
2
). As in the other papers using

local Whittle estimators, higher order terms in the phase are included in a term

of the form O
(
λξ
)

that will affect the number of frequencies that can be used in

estimation. To understand the effects of his assumptions, we compare our transfer

function in Equation (3.5) to his Assumption B1. Instead of Υ(λ), Robinson [2008,

page 2510] uses the operator Φ(λ;φ0) = diag(|λ|d1 , |λ|d2e−isign(λ)φ0); as λ→ 0+, the

two operators are identical, but they differ at higher frequencies since λ 6=
∣∣2 sin λ

2

∣∣.
In his Assumption B1, when δjk < dj for some k with τjk > 0, we must have

ξ < dj − δjk. In addition, the presence of group delay or a power law in the phase

leads to another upper bound on ξ. To demonstrate this, we will focus on the

case in which ϕjk(λ) = φ1λ
α + o(λα) as λ → 0+ for some 0 < α ≤ 1. To ensure

that any lack of smoothness comes from the phase, we require that δjk = dj and
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τjk = τjk(λ) for all j, k, λ. Then, A(λ) = Φ(λ)Ψ(λ) is a matrix with elements that

obey:

Ajk(λ) =

∣∣∣∣∣2 sin
(
λ
2

)
λ

∣∣∣∣∣
−dj

τjk(0)ei(φ1λα+djλ/2) + o(λα)

His Assumption B1 requires that there is some constant matrix, P , such that

A(λ)− P = O(λξ). Setting Pjk = Ajk(0), we find that:

Ajk(λ)− P = O
(∣∣1− ei(φ1λα+djλ/2)

∣∣)
= O

(√
2− 2 cos(φ1λα + djλ/2)

)
= O(φ1λ

α + djλ/2)

Even if α = 2, we have ξ ≤ 1, so that m can grow only as fast as n2/3. This

possibility occurs even for FIVAR processes, as will be discussed in Section 3.2.3.

If α < 1, then ξ ≤ α. Depending on the nature of the phase, ξ can be arbitrarily

close to 0, so that m must be chosen to grow arbitrarily slowly, just as occurred

with other estimators.

To illustrate the possible power laws and powers of λ in phase and coherency,

we will describe the phase and coherency in three well-studied time series models:

vector autoregressions, FIVAR models, and fractional cointegration. We will also

describe new time series models that illustrate how power law coherency and powers

of λ in phase can occur in the time domain.

3.2.2 Vector autoregressions

We begin by describing the phase and coherency of a simple, short-memory time

series model, the vector autoregression; this is a case in which there will not be

a power law in the coherency and the phase will be continuous at frequency 0.

A bivariate vector autoregression (VAR) is a short-memory time series model in
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which:

A(L)Xt = εt

where L is the lag operator, A(L) is a matrix polynomial of finite order, A(0) is

the 2 × 2 identity matrix, |A(L)| has all of its roots outside the unit circle, and

{εt} is bivariate white noise. The spectral density of a VAR is given by:

fV AR(λ) =
1

2π
A
(
e−iλ

)−1
Σ
(
A
(
e−iλ

)−1
)∗

(3.20)

for λ ∈ [−π, π]. For a VAR with a non-zero cross-spectrum, d1 = d2 = d12 = 0.

Because |A(L)| has all of its roots outside the unit circle, A(1)−1 is well-defined,

and we may write:

fV AR(0) =
1

2π
A(1)−1Σ

(
A(1)−1

)∗
Thus, fV AR(λ) is continuous and non-zero at 0. When the cross-spectrum is non-

zero at zero, φ(0) is 0 or π, depending on the sign of the (1, 2) element of fV AR,12(0).

The coherency at zero can be calculated from the expression above and the group

delay can be calculated from Equation (3.20), though neither has a simple closed

form in general.

3.2.3 FIVAR models

One of the most common parametric bivariate long-memory time series models

in the literature is the fractionally integrated vector autoregression (FIVAR), an

extension of the univariate ARFIMA model. FIVAR models are described by

Sowell [1989a], Hosoya [1996], Lobato [1997], Ravishanker and Ray [1997], Sela

and Hurvich [2009], among others. We will show that FIVAR models cannot have

power laws in the coherency, but that their phase is discontinuous at frequency 0

with φ0 = π(d1−d2)/2 (agreeing with the more general result of Shimotsu [2007]).
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{Xt} is a FIVAR process if we may write:

A(L)D(L)Xt = εt

where D(e−iλ) = diag
(
(1− e−iλ)−d1 , (1− e−iλ)−d2

)
and A(L), {εt} satisfy the as-

sumptions given in the previous section. The spectral density of a FIVAR model

is given by:

f(λ) = D
(
e−iλ

)−1
fV AR(λ)D

(
eiλ
)−1

for λ ∈ [−π, π], where fV AR(λ) is the spectral density of the vector autoregressive

process in Equation (3.20). Notice that D
(
e−iλ

)
= Υ(λ) with φ0 = π(d1 − d2)/2,

so that f †(λ) = fV AR(λ). In a FIVAR model, dρ = 0. (In fact, the coherency

of the FIVAR equals the coherency of the original VAR at all frequencies.) The

phase is given by φ(λ) = φV AR(λ) + (π− λ)(d1− d2)/2. Since the spectral density

of a VAR is well-defined, finite, and non-zero at 0, limλ→0+ = π(d1 − d2)/2 or

limλ→0+ = π(d1 − d2)/2 + π. At all frequencies, the group delay of a FIVAR is

−d1−d2
2

plus the group delay of the original VAR.

As a simple example showing the difference between the group delay of a FIVAR

and that of the corresponding VAR, consider the following time series:

x1t = ε1t (3.21)

x2t = ε2t − ε2,t−1 (3.22)

where {εt} = {(ε1t, ε2t)′} is white noise with covariance matrix Σ. This corresponds

to a FIVAR with A(λ) = I, d1 = 0, d2 = −1. In this case, the corresponding VAR

is a multivariate white noise series. If the off-diagonal element of Σ, Σ21, is non-

zero, then the phase of the FIVAR is defined except at frequency 0. The coherency

in this example is constant and equal to that of {(ε1t, ε2t)}, since {x2t} is the re-

sult of applying a linear filter to {ε2t}. In this case, the group delay is given by
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φ′(λ) = −1/2. This is intuitively reasonable, since x1t depends only on the contem-

poraneous value of the innovations while {x2t} depends on the contemporaneous

value and one lag with equal weights.

3.2.4 Fractional cointegration

Another well-studied model for bivariate long-memory time series is the fractional

cointegration model. In this section, we will show that the coherency of fractionally

cointegrated time series is 1 and that the phase is 0 or π at frequency 0; these

results agree with those of Nielsen [2004]. We will also show that the group delay

of fractionally cointegrated series may be infinite at frequency 0, under certain

conditions.

Two univariate time series, {xt}, {yt}, are fractionally cointegrated if {xt} and

{yt} are integrated of order dx but a linear combination, ut = yt − βxt, is inte-

grated of order du < dx. Fractionally cointegrated time series have been discussed

by a number of authors, including Robinson [1994], Robinson and Marinucci,

2003], Robinson and Hualde [2003], Chen and Hurvich [2003], and Christensen

and Nielsen [2006]. Here, we focus on the phase and coherency of fractionally

cointegrated time series. We will discuss the estimation of β in Section 3.4.

The Granger representation theorem [Engle and Granger, 1987] noted that

cointegrated series have a spectral density matrix of lower rank at frequency 0;

in the bivariate case, this implies that ρ(0) = 1. More recently, Nielsen [2004]

described the phase and coherency of fractionally cointegrated series, assuming

that 1/2 < dx < 3/2 and that −1/2 < du < 1/2 and that f †(λ) = Ω(1 + O(λ2))

as λ → 0+, where Ω is a constant. This rules out group delay in the fractionally

differenced time series at frequency zero and power law coherency with 0 > dρ >

−1.
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To compute the phase and coherency of fractionally cointegrated time series,

we assume that dx < 1/2. Since the phase and coherency of two time series are

unchanged if the same linear filter (in this case, differencing) is applied to both,

assuming that dx < 1/2 is not restrictive. To begin, we write our time series,

{xt}, {yt} in terms of {xt}, {ut}: 1 0

−β 1

 xt

yt

 =

 xt

ut


By assumption, {xt} is I(dx), {ut} is I(du), and β 6= 0. Let the spectral den-

sity of {(xt, ut)′} be given by f(λ) =

 f11(λ f12(λ)

f21(λ) f22(λ)

 for λ ∈ [−π, π]. Let

f̃ , ρ̃, φ̃ be the spectral density, coherency, and phase of the cointegrated time se-

ries, {(xt, yt)′}:

f̃(λ) =

 1 0

−β 1

−1 f11(λ) f12(λ)

f21(λ) f22(λ)



 1 0

−β 1

−1

′

=

 f11(λ) f12(λ) + βf11(λ)

f21(λ) + βf11(λ) β2f11(λ) + βf21(λ) + βf12(λ) + f22(λ)


ρ̃(λ) =

|f12(λ) + βf11(λ)|√
f11(λ)(β2f11(λ) + βf21(λ) + βf12(λ) + f22(λ))

φ̃(λ) = arg(f21(λ) + βf11(λ))

As λ → 0+, f11(λ) ∼ C1λ
−2dx and f12(λ) = O(λ−dx−du) = o(λ−2dx), so that the

terms containing f11(λ) will dominate the expressions above, so that ρ̃(0) = 1 and

φ̃0 ∈ {0, π}, with the choice of φ̃0 depending on the sign of β. To compute the
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group delay:

φ̃′(λ) =
(
(<(f21(λ)) + βf11(λ))2 + =(f21(λ))2

)−1

×

(
(<(f21(λ)) + βf11(λ))

d

dλ
=(f21(λ))

−=(f21(λ))

(
d

dλ
<(f21(λ)) + β

d

dλ
f11(λ)

))

=
f11(λ) d

dλ
=(f21(λ))−=(f21(λ)) d

dλ
f11(λ)

βf11(λ)2

+o

(
f11(λ) d

dλ
=(f21(λ))−=(f21(λ)) d

dλ
f11(λ)

βf11(λ)2

)

Thus, the group delay of fractionally cointegrated series depends in part on f11(λ) ∼

C1λ
−2d1 and =(f21(λ)) = O(λ−2d12); note that the latter bound need not be sharp.

The derivatives can have a variety of power laws in a neighborhood of zero, leading

to many possible values of the group delay at frequency 0.

In the commonly assumed case where {(xt, ut)′} follow a FIVAR model, we have

=(f21(λ)) ∼ CImλ
−2d12 , d

dλ
=(f21(λ)) ∼ CIm,dλ

−2d12−1, and d
dλ
f11(λ) ∼ C1,dλ

−2d1−1,

where CIm, CIm,d, C1,d are non-zero constants. Then, φ′(λ) ∼ Cλdx−du−1, for some

non-zero C, so that the group delay at frequency 0 is 0 when du > dx + 1, infinite

when du < dx+1, and finite and non-zero when du = dx+1. Even if the derivatives

had the same properties, these results would change if {(xt, ut)′} had power law

coherency; dρ < 0 means that smaller differences between dx and du would lead to

a group delay of 0 at frequency 0. In the extreme case of dρ = 1, any cointegrated

series would have a group delay of 0 between {xt} and {yt}. Alternative power

laws in the derivatives or cases in which =(f21(λ)) = o
(
λ−2d12

)
could also change

the group delay at frequency 0.
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3.2.5 Power law coherency

Because power law coherency has not been studied in existing literature, we present

two parametric models that have power law coherency. These models are particu-

larly simple and could be extended easily to allow for a richer variety of behavior

away from zero frequency. These models show how power law coherency could

occur in the time domain.

For our first bivariate time series with power law coherency, assume that d3 <

d2 ≤ d1 and that ε1t, ε2t, ε3t are independent white noise series with variances

σ2
1, σ

2
2, σ

2
3, respectively. Consider the time series model below.

x1t = (1− L)−d3ε3t + (1− L)−d1ε1t (3.23)

x2t = (1− L)−d3ε3t + (1− L)−d2ε2t (3.24)

As λ→ 0+:

f1(λ) ∼ σ2
1

2π
λ−2d1

f2(λ) ∼ σ2
2

2π
λ−2d2

f12(λ) ∼ σ2
3

2π
λ−2d3

ρ(λ) ∼ σ2
3

σ1σ2

λ−2(d3− 1
2

(d1+d2))

In this model, {x1t} and {x2t} are long-memory time series with a common com-

ponent that has a smaller memory parameter than either of the individual time

series. If we instead had d3 > max(d1, d2), then the two time series would be

cointegrated. For this reason, we will refer to this time series model as an anti-

cointegration model. In anti-cointegration (as in all cases of power law coherency),

the two time series are correlated in the “short run” (for frequencies away from

zero), but the strength of the relationship decays to zero at frequency zero. Thus,
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Figure 35: One simulated realization of 500 periods of the anti-cointegration model,

with d1 = d2 = 0.49, and d3 = 0.3.

the coherency is zero at frequency zero, instead of one at frequency zero, as occurs

with cointegration. This occurs because the common component has a smaller

memory parameter and is dwarfed by the more persistent idiosyncratic compo-

nents at low frequencies. In this model, φ(λ) = 0 and the group delay is zero,

because the common component enters the two time series contemporaneously. A

simulated realization is shown as a time series in Figure 35. The long-term move-

ments of the time series are not strongly related, since the levels drift separately

with longer memory, but the short-term movements are related.

Next, we discuss a time series model first described by Hosoya [1997, Example

2.3], in the context of quasi-log-likelihood estimation. Assume that d1 6= d2, with

152



0 < d1 < 1/2 and 0 < d2 < 1/2 and that {ε1t}, {ε2t} are independent white noise

series, each with variance σ2. Consider the following two time series:

x1t = (1− L)−d1ε1t + (1− L)+d2ε2t

x2t = (1− L)+d1ε1t + (1− L)−d2ε2t

The spectral densities and cross-spectral density of {Xt} satisfy:

f1(λ) =
σ2

2π

(
|1− e−iλ|−2d1 + |1− e−iλ|+2d2

)
∼ σ2

2π
λ−2d1 , λ→ 0+

f2(λ) =
σ2

2π

(
|1− e−iλ|+2d1 + |1− e−iλ|−2d2

)
∼ σ2

2π
λ−2d2 , λ→ 0+

f12(λ) =
σ2

2π

(
(1− e−iλ)+d1(1− e+iλ)−d1 + (1− e−iλ)−d2(1− e+iλ)+d2

)
for λ ∈ [−π, π]. For this time series, {xjt} is I(dj) for j = 1, 2, and limλ→0 |f12(λ)|

exists and is finite. Thus, the coherency has a power law with differencing param-

eter equal to −d1+d2
2

. Despite the finiteness of the limit of the absolute value of

the cross-spectrum, the phase is discontinuous at 0, so f12(λ) is not continuous at

0. Specifically, we have:

f12(λ) =
σ2

2π

(
(1− e−iλ)d1(1− eiλ)−d1 + (1− e−iλ)−d2(1− eiλ)d2

)
=

σ2

2π
(exp(id1(π − λ)) + exp(−id2(π − λ)))

lim
λ→0+

f12(λ) =
σ2

π
exp

(
iπ(d1 − d2)

2

)
Thus, whenever d1 6= d2, the phase is discontinuous at 0, even though the absolute

cross-spectral density is neither zero nor infinite. However, f †12(0) = 0 and therefore

f †12(λ) is continuous at 0. The phase and group delay are given by:

φ(λ) = arg (exp(id1(π − λ)) + exp(−id2(π − λ)))

=
(d1 − d2)(π − λ)

2

φ′(λ) =
d2 − d1

2

Thus, the group delay depends on the difference of the differencing parameters.
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3.2.6 Powers of the frequency in the phase

We have already seen that powers of λ can occur in the phase in some cases of

fractionally cointegrated time series. Here, we describe some other time series that

are not fractionally cointegrated but do have that property.

As an example of a parametric time series model, assume that d1, d2, d3 < 1/2,

that 0 < d2 − d3 < 1, that d1 6= d3, and that {ε1t}, {ε2t} are uncorrelated white

noise with variances σ2
1, σ

2
2 respectively:

x1t = (1− L)−d1ε1t + (1− L)−d1ε2t (3.25)

x2t = (1− L)−d2ε1t + (1− L)−d3ε1t (3.26)

These two time series are associated with the transfer function:

Ψ(λ) =

 (1− e−iλ)−d1 (1− e−iλ)−d1

(1− e−iλ)−d2 + (1− e−iλ)−d3 0


for λ ∈ [−π, π]. Notice that the coherency of {ε1t + ε2t} and {ε1t} is constant and

that {x1t} and {x2t} can be obtained by applying the linear filters (1− L)−d1 and

(1−L)−d1 + (1−L)−d2 , respectively, to those series. Thus, the coherency of these

two time series is constant and equal to:

ρ(λ) ≡ σ2
1√

σ2
1 + σ2

2

for λ ∈ [−π, π]. We compute the cross-spectral density to show that the group

delay is infinite at zero frequency. For λ ∈ (0, π]:

f12(λ) =
σ2

1

2π

∣∣∣∣2 sin
(
λ

2

)∣∣∣∣−d1−d2
(
ei(π−λ)(d1−d2)/2 +

∣∣∣∣2 sin
(
λ

2

)∣∣∣∣d2−d3 ei(π−λ)(d1−d3)/2

)

φ(λ) = arctan

(
sin
(

1
2(π − λ)(d1 − d2)

)
+
∣∣2 sin

(
λ
2

)∣∣d2−d3 sin
(

1
2(π − λ)(d1 − d3)

)
cos
(

1
2(π − λ)(d1 − d2)

)
+
∣∣2 cos

(
λ
2

)∣∣d2−d3 sin
(

1
2(π − λ)(d1 − d3)

)
)

φ′(λ) ∼ |λ|d2−d3−1 tan
(

1
2

(π − λ)(d1 − d3)
)
, λ→ 0+
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Figure 36: One simulated realization of 500 periods of the model with powers of λ

in the phase, with d1 = 0.4, d2 = 0.3, and d3 = 0.2.

Thus, φ(λ) obeys the condition in Equation (3.3) with α = d2−d3. One realization

of this time series is shown in Figure 36.

As another example of powers of λ appearing in the phase, without an explicit

time domain model, suppose that the cross-covariances of a bivariate time series

have different decay rates for positive lags and for negative lags. Specifically,

assume that the cross-covariances follow:

rXY (j) ∼

 Cl|j|2dl−1 j < 0

Cr|j|2dr−1 j > 0
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with Cl, Cr > 0 and 0 < dr < dl < 1/2. Applying Equation (2.1) of Zygmund and

Fefferman [2002, Chapter V, Section 2], we find that, as λ→ 0+:

fXY (λ) =
1

2π

∞∑
j=−∞

rXY (j)e−ijλ

∼ 1
2π

 −1∑
j=−∞

Cl|j|2dl−1e−ijλ +
∞∑
j=1

Cr|j|2dr−1e−ijλ


=

1
2π

∞∑
j=1

(
j2dl−1 cos(jλ) + j2dr−1 cos(jλ) + ij2dl−1 sin(jλ) + ij2dr−1 sin(jλ)

)
∼ 1

2π

(
λ−2dlΓ(2dl) sin

(π
2

(1− 2dl)
)

+ λ−2drΓ(2dr) sin
(π

2
(1− 2dr)

)
+iλ−2dlΓ(2dl) cos

(π
2

(1− 2dl)
)

+ iλ−2drΓ(2dr) cos
(π

2
(1− 2dr)

))
Then, the phase and group delay are given by:

φ(λ) = arg
(
λ−2dlΓ(2dl)ei(

π
2

(1−2dl)) + λ−2drΓ(2dr)ei(
π
2

(1−2dr))
)

= arg
(

Γ(2dl)ei(
π
2

(1−2dl)) + λ2dl−2drΓ(2dr)ei(
π
2

(1−2dr))
)

φ′(λ) =
((

Γ(2dl) sin
(π

2
(1− 2dl)

)
+ λ2dl−2drΓ(2dr) sin

(π
2

(1− 2dr)
))2

+
(

Γ(2dl) cos
(π

2
(1− 2dl)

)
+ λ2dl−2drΓ(2dr) cos

(π
2

(1− 2dr)
))2 )−1

×
[ (

Γ(2dl) sin
(π

2
(1− 2dl)

)
+ λ2dl−2drΓ(2dr) sin

(π
2

(1− 2dr)
))

(2dl − 2dr)

×λ2dl−2dr−1Γ(2dr) cos
(π

2
(1− 2dr)

)
−
(

Γ(2dl) cos
(π

2
(1− 2dl)

)
+ λ2dl−2drΓ(2dr) cos

(π
2

(1− 2dr)
))

(2dl − 2dr)

λ2dl−2dr−1Γ(2dr) sin
(π

2
(1− 2dr)

) ]
∼

Γ(2dr)(cos
(
π
2 (1− 2dr)

)
− sin

(
π
2 (1− 2dr)

)
Γ(2dl)2

λ2dl−2dr−1

This provides another case of powers in the phase leading to group delay that is

infinite at 0.

3.2.7 Powers in the phase and coherency

Finally, we consider a bivariate time series with powers of λ in both the phase and

the coherency. Similar to the time-domain example with a power law in only the

156



phase, assume that d2 < d1 < d4 < 1/2, that d3 < 1/2, that d1 − d2 < 1, and that

{ε1t}, {ε2t} are uncorrelated white noise with variances σ2
1, σ

2
2 respectively:

x1t =
(
(1− L)−d1 + (1− L)−d2

)
ε1t + (1− L)−d4ε2t (3.27)

x2t = (1− L)−d3ε1t (3.28)

This bivariate time series is associated with the transfer function:

Ψ(λ) =

 (1− e−iλ)−d1 + (1− e−iλ)−d2 (1− e−iλ)−d4

(1− e−iλ)−d3 0


for λ → 0+. Based on the transfer function, we find that the auto-spectra satisfy

the following, as λ→ 0+:

f1(λ) ∼ σ2
2

2π
λ−2d4

f2(λ) ∼ σ2
1

2π
λ−2d3

For 0 < λ < π, the cross-spectrum is given by:

f12(λ) =
σ2

1

2π

(
(1− e−iλ)−d1(1− eiλ)−d3 + (1− e−iλ)−d2(1− eiλ)−d3

)
=

σ2
1

2π
(1− e−iλ)−d1(1− eiλ)−d3

(
1 + (1− e−iλ)d1−d2

)
so that, as λ→ 0+, the coherency and phase satisfy:

ρ(λ) ∼ σ1

σ2

λd1−d4

φ(λ) =
(π − λ)(d3 − d1)

2
+ arctan

 ∣∣2 sin λ
2

∣∣d1−d2 sin
(

(π−λ)(d2−d1)
2

)
1 +

∣∣2 sin λ
2

∣∣d1−d2 cos
(

(π−λ)(d2−d1)
2

)


=
π(d3 − d1)

2
+ sin

(
π(d2 − d1)

2

)
λd1−d2 + o(λd1−d2)

Thus, the coherency has a power law and the phase includes powers of λ. Further-

more, the power laws differ and do not depend on each other, since d2 and d4 can

be varied separately.
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3.3 Estimating the phase and coherency in a neighborhood

of zero

Next, we will estimate d12 and dρ in a semiparametric framework. Semiparametric

estimation methods are generally based on the periodogram matrix, defined as

I(λj) = J(λj)J(λj)
∗, where λj = 2πj

n
is the jth Fourier frequency and J(λj) =

1√
2πn

∑n
t=1 Xte

iλjt is the discrete Fourier transform of the bivariate series. Most

estimation methods use frequencies near 0; specifically, they use m frequencies

where m→∞ and m
n
→ 0.

In some cases, d1 or d2 may be less than −1/2; this may occur because the series

have been differenced because of possible non-stationarity or to remove a trend.

In this case, the raw periodogram or cross-periodogram is not a good estimator

of the spectral density because of leakage; thus, authors such as Velasco [1999],

Hurvich and Chen, and Hurvich et al. [2002] recommend tapering the series before

computing the cross-periodogram. We will apply the taper of Hurvich and Chen.

Using the notation of Hurvich et al. [2002], the taper is based on the sequence:

ht = (1− ei2πt/n), t = 1, ..., n (3.29)

If we assume that d1, d2, d12 ∈
(
−1

2
− s, 1

2

)
, perhaps because the {Xt} have been

differenced s times, we must first taper the data of order s. In that case, we

use the multivariate time series with (j, t) element equal to hstxjt. Then, the

tapered discrete Fourier transform is J(λj) = 1√
2πnas

∑n
t=1 h

s
tXte

itλj , with as =(
2s
s

)
= 1

n

∑n
t=1 |ht|2s, and the tapered periodogram is I(λj) = J(λj)J(λj)

∗. This

tapering reduces the leakage at the low frequencies and therefore reduces the bias

of estimators based on the periodogram.
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3.3.1 Previous estimation work for multivariate long-memory models

Extensive work has been published on estimating the spectral density, phase, and

coherency at a point where the auto- and cross-spectral densities are smooth. The

most common approaches first smooth the periodogram matrix and then estimate

the phase and coherency based on Equation (3.1). More information and a variety

of possible smoothers can be found in Bloomfield [1976, Section 10.2], Brillinger

[1981, Section 7.3] or Priestley [1981, Section 9.5]. Even estimation methods that

are not based directly on the smoothed periodogram, such as those of Hannan

and Thomson [1973] and Granger and Hatanaka [1964, Chapter 6], require that

the coherency and phase are smooth and continuous. Hidalgo [1996] shows that

the phase and coherency can be consistently estimated at any frequency where

f(λ) has two continuous derivatives, even when there are singularities elsewhere

in the spectrum. Thus, the coherency and phase of a bivariate long memory

process can be estimated away from zero frequency if we assume that they are

twice differentiable away from frequency 0.

However, the required smoothness assumptions are violated by long-memory

processes in a neighborhood of zero. Even when the auto-spectra are finite and

non-zero at zero, power law coherency could lead to a violation of this assumption

for the cross-spectra. Furthermore, the variability of the estimated phase is quite

large when the coherency is close to zero [see, for example, Brockwell and Davis,

1993, equation 11.7.9], meaning that power law coherency presents an additional

challenge to estimating the phase or group delay at zero. Though the smoothed

periodogram has many shortcomings, we will use it in data analysis in Section 3.5

to provide a graphical description of the phase and coherency away from frequency

zero, where it is consistent.

Many methods exist for estimating the memory parameter of a univariate long-
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memory time series based on the periodogram. One might consider applying sim-

ilar techniques to the cross-periodogram matrix. Unfortunately, some of these

methods will fail for estimating the memory parameter associated with the cross-

spectral density and therefore for detecting a power law in the coherency. The

most problematic method is that of Geweke and Porter-Hudak [1983], called the

GPH estimator. In the univariate case, they fit the linear regression:

log I11(λj) = β0 − 2d log λj + εj

In the multivariate case, it is always true that:

|I12(λj)|2 = |I11(λj)| × |I22(λj)|

Thus, applying the GPH estimator to the modulus of the cross-periodogram would

simply estimate 1
2
(d1+d2). Robinson [1995a] applies the GPH estimator in a multi-

variate context, but only to estimate and test hypotheses about the memory param-

eters of the auto-spectra. His Assumption 3 allows for power law coherency, which

leads to convergence rates that are worst when dρ is close to but not equal to 0, as

discussed in Section 3.2.1. One could consider smoothing the cross-periodogram

first and then applying the GPH estimator, as was suggested by Reisen [1994] in

a univariate context; we leave the exploration of this idea for future research.

Another common semiparametric estimation technique for long-memory time

series is the local Whittle estimator (also known as the Gaussian semiparametric

estimator), used by Robinson [1995b] in the univariate case, by Lobato [1999] and

Shimotsu [2007] in the multivariate case, and by Robinson [2008] in the multivariate

case of cointegration. The local Whittle estimator requires the specification of the

spectral density locally. For example, Shimotsu [2007, Assumption 1’] requires

that, as λ→ 0+:

f12(λ)− ei(π−λ)(d1−d2)λ−d1−d2G12 = O(λ−d1−d2+ξ)
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where G12 is a constant. When ξ is close to 0, fewer frequencies can be used

in estimation, so that the convergence rate is slower. In the case of power law

coherency, G12 = 0 and ξ ≤ −2dρ in the expression above. If there are powers

of λ in the phase, G12 is not restricted, and ξ ≤ α. As Deo and Hurvich [2001]

note in the context of the GPH estimator, including higher order terms in the

semiparametric description of the spectral density can improve the performance of

such local estimators. (Robinson [2008] does this in the context of cointegration,

as we will discuss in Section 3.4.) For example, one could apply local Whittle using

the parameterizations for the coherency and phase given in Equations (3.2) and

(3.3). Unfortunately, this increases the number of parameters in the model, and it

is generally unknown how many terms of the spectral density should be used. In

addition, estimation of the phase in the context of power law coherency continues

to be problematic because the coherency is close to 0 in the range of frequencies

of interest.

3.3.2 The averaged cross-periodogram estimator

To estimate the power law in the coherency and the right-hand limit of the phase

at zero, we adapt the averaged periodogram estimator (APE) of Robinson [1994],

which he applied in the univariate case when 0 < d < 1
2
. He assumes that, as λ→

0+, f(λ) ∼ L(1/λ)λ−2d, where L(x) is a function that is slowly varying at infinity.

He begins by estimating F (λ) =
∫ λ

0
f(θ)dθ using the averaged periodogram:

F̂ (λ) =
2π

n

[nλ/2π]∑
j=1

I(λj)

Omitting I(0) removes the effects of the mean. In his Theorem 1 (page 520),

he shows that, under certain conditions, F̂ (λm)/F (λm) →p 1 as n → ∞ and
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1
m

+ m
n
→ 0. Second, he uses the fact that, for any q, as λ→ 0+,

F (λ) ∼ L

(
1

λ

)
λ1−2d

1− 2d

F (qλ)

F (λ)
∼ q1−2d

L( 1
qλ

)

L( 1
λ
)

∼ q1−2d

to define the averaged periodogram estimator of the memory parameter of a uni-

variate series:

d̂ =
1

2
− log(F̂ (qλm)/F̂ (λm))

2 log q

where q ∈ (0, 1) and m must be chosen by the user. Lobato and Robinson [1996]

derived additional results about the limiting distribution of a suitably standardized

version of d̂ under various conditions, showing that it is normal when 0 < d <

1/4 and non-normal for 1/4 < d < 1/2. Lobato [1997] applied the averaged

periodogram estimator to estimating f †(0) in the multivariate case. While he

did note (on page 139) the possibility of power law coherency, he was focused on

estimating f †(0) and the memory parameters of the auto-spectra, not a power law

in the coherency in a neighborhood of 0; in his Condition C1, he required that

ρ(0) > 0. In contrast, we are particularly interested in estimating the power law

of the cross-spectral density. Thus, we extend the consistency results of Robinson

[1994] and Lobato [1997] in two ways: to the case in which d < 0 and to the

estimation of d12. In order to do this, we first extend the definition of a slowly-

varying function to the case where L(z) may be complex-valued.

Definition 3.6 Let L : R+ → C. We say that L(z) is slowly varying at infinity

if L(z) is bounded away from 0 for sufficiently large z and for all t > 0:

lim
z→∞

L(tz)

L(z)
= 1
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A complex-valued function, g(z), is regularly varying at infinity if g(z) = L(z)za,

for some a ∈ R, with L(z) is slowly varying at infinity. A complex-valued function,

f(z), is regularly varying at zero if g(z) = f(1/z) is regularly varying at infinity.

Definition 3.7 Let f(λ), g(λ) be complex-valued functions for λ ∈ (0, π). We say

that

f(λ) ∼ g(λ)

as λ→ 0+ if

lim
λ→0+

f(λ)

g(λ)
= 1

Any function that has a limit as z →∞ is slowly varying at infinity. Since the

assumptions given in Section 3.2 imply that f12(λ)λ+2d12 has a non-zero limit as

λ→ 0+, fab(λ) is regularly varying at zero for a, b = 1, 2.

The lemma below extends Karamata’s Theorem, a result on real regularly

varying functions. (Vuilleumier [1976] discusses the properties of complex functions

of complex variables, but those results are not relevant in this case.)

Lemma 3.8 Suppose f12(λ) = L
(

1
λ

)
λ−2d12 is a complex-valued regularly varying

function at 0. Define F12(λ) =
∫ λ

0
f12(θ)dθ. Then, F12(λ) ∼ 1

1−2d12
L
(

1
λ

)
λ1−2d12 as

λ→ 0+.

In order to prove some results about the averaged periodogram estimator (with

or without tapering), we require a mild additional assumption about the product

τjk(λ)eiϕjk(λ). (This assumption is based on Definition 2 of Hurvich et al. [2002,

page 316], but we use the letter γ instead of ρ.) This assumption requires that

Ψ†jk(λ) is well-behaved away from frequency 0. As Chen and Hurvich [2006, page

2948] note, the fact that only frequencies in a neighborhood of zero frequency are

used may allow for more general behavior away from 0.
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Definition 3.9 For some µ > 1, γ ∈ (1, 2], let L∗(µ, γ) be the set of continuously

differentiable functions, u(λ), on [−π, π]− {0}, such that, for all 0 < |x|, |y| < π,

max0≤z≤π |u(z)|
min0≤z≤π |u(z)|

≤ µ

|u(x)− u(y)|
min0≤z≤π |u(z)|

≤ µ
|y − x|

min(|x|, |y|)
|u′(x)− u′(y)|
min0≤z≤π |u(z)|

≤ µ
|y − x|γ−1

[min(|x|, |y|)]γ

Assumption 3.10 For all j, k, either τjk(λ) = 0 for all λ ∈ [0, π], or τjk(λ)eiϕjk(λ) ∈

L∗(µ, γ) for some µ > 1, γ ∈ (1, 2].

This assumption restricts the behavior of the phase and coherency away from

zero frequency. The examples given in previous sections all have γ = 2.

Finally, we will consider consistency results under two different assumptions

about the growth of the number of frequencies used in estimation as the sample

size grows. The first is standard [for example, Robinson, 1994, Condition B] and

is sufficient for the estimation of the memory parameters of the auto-spectra.

Assumption 3.11

1

m
+
m

n
→ 0

as n→∞.

Assumption 3.12 As n→∞:

• If d1 + d2 >
1
2
,

n
−4dρ

2−4d12

m
→ 0

• If 1− γ
2
< d1 + d2 ≤ 1

2
,

n
−2dρ

1−2d12

m
→ 0
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• If d1 + d2 < 1− γ
2
,

n
−2dρ

γ/2−2dρ

m
→ 0

Notice that the growth rates above change continuously, since −4dρ
2−2d12

= −2dρ
1−2d12

when d1 + d2 = 1
2

and −2dρ
1−2d12

= 2dρ
2dρ−γ/2 when d1 + d2 = 1− γ

2
. The required growth

rates for three choices of d1 + d2 are shown in Figure 37. Unlike most assumptions

on the growth rate of m in the context of long memory, Assumption 3.12 requires a

lower bound on the growth rate of m. (Hurvich et al. [2005, Equation (3.9)] is one

other paper that requires a lower bound on the growth rate of m.) In practice, this

assumption is likely to be problematic because it depends on d12 and dρ, which are

what we are trying to estimate. Larger growth rates of m are generally associated

with increased finite-sample bias in estimation. Furthermore, theorems establish-

ing limiting normality of the estimated memory parameter generally require that

the growth rate of m be bounded above, with a tighter bound when the spectral

density is less smooth. [See, for example, Lobato and Robinson, 1996, Condition

C3.] These opposing requirements are likely to cause problems for the averaged

periodogram estimator for the cross-spectral density when dρ is very negative. The

next assumption requires that the data have been tapered to a high enough order.

Assumption 3.13 We assume that d1, d2 ∈
(
−1

2
− s, 1

2

)
, for some non-negative

integer, s, and that the data are tapered of order s.

Theorem 3.14 If fab(λ) is a regularly varying complex-valued function at 0 with

da, db < 1/2 for a, b ∈ {1, 2} and Assumptions 3.10, 3.11, and 3.13 hold,

F̂ab(λm)− Fab(λm) = op(λ
1−da−db
m ) (3.30)

If a 6= b and we also assume that Assumption 3.12 holds as well, then we also have:

F̂ab(λm)− Fab(λm) = op(λ
1−2dab
m ) (3.31)
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Figure 37: Minimum growth rate of m required by Assumption 3.12 as a function

of dρ.

The theorem applies to the estimation of the integrated auto-spectrum; this

extends the result of Robinson [1994] to the case where da < 0 and tapering

may be used. In that case, the second part of the theorem is irrelevant and no

lower bound on m is necessary. When the theorem is applied to the estimation of

the cross-spectrum, power law coherency will affect the choice of m, with a more

negative dρ placing a more stringent requirement on m.

Proof. As in Chen and Hurvich [2006], define j̃ = j + s
2

to be the shifted Fourier

frequency. Define Iε(λ) to be the periodogram of εt, with (a, b) element Iε,ab(λ).

Let Ψa(λ) be the ath row of Ψ(λ). Generalizing the proofs of Robinson [1994,

Theorem 1] and Lobato [1997, Theorem 1], we decompose the difference between
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the estimated averaged periodogram and the true averaged periodogram as:

F̂ab(λm)− Fab(λm) =
2π

n

m∑
j=1

(
Iab(λj)−Ψa(λj̃)

′Iε(λj)Ψb(λj̃)
)

(3.32)

+
2π

n

m∑
j=1

(
Ψa(λj̃)

′Iε(λj)Ψb(λj̃)− fab(λj)
)

(3.33)

+
2π

n

m∑
j=1

fab(λj)− Fab(λm) (3.34)

Lemma 3.22 shows that the first term is o(λ−daa−dbbm ) without Assumption 3.12

and o(λ−2dab
m ) if we do require Assumption 3.12. Lemma 3.24 shows the same for

the second term. Lemma 3.25 shows that the last term is o(λ−2dab
m ) and therefore

o(λ−daa−dbbm ).

The result in Equation (3.36) can be used directly in Theorem 3 of Robinson

[1994] to show that the averaged periodogram estimator is consistent for the mem-

ory parameter of the cross-spectral density under Assumption 3.12. As before,

we estimate the memory parameter of the cross-spectral density by using the fact

that:

F12(λ) ∼ L

(
1

λ

)
λ1−2d12

1− 2d12

Because L(1/λ) is complex, there are two possible ways to estimate d12 based

on F12(λ). First, one could apply Robinson’s formula to the modulus of F12(λ).

Second, one could apply the formula separately for the real and imaginary parts

of F12(λ) and take a weighted average based on φ0. We recommend using the

modulus; simulations have shown that it performs somewhat better than taking

an average, especially since the optimal weights are likely to be unknown.

Theorem 3.15 Define

d̂ab =
1

2
−

log
(∣∣∣F̂ (qλm)

∣∣∣ / ∣∣∣F̂ (λm)
∣∣∣)

2 log q
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For a = b, if fab(λ) is a regularly varying complex-valued function at 0 with da <

1/2 and Assumptions 3.10, 3.11, and 3.13 hold,

d̂aa(λm)− daa = op(1) (3.35)

For a 6= b, if we also assume that Assumption 3.12 holds, then:

d̂ab(λm)− dab = op(1) (3.36)

We may then estimate d̂ρ = d̂12 − 1
2
(d̂1 + d̂2), where d̂12, d̂1, d̂2 are estimated

using the averaged periodogram estimator; thus d̂ρ is consistent. Alternatively,

d̂1, d̂2 could be estimated with another estimator that is consistent for univariate

memory parameters. However, the convergence rate of d̂ρ will generally depend

on the worst convergence rate of the three estimators. To be precise, suppose that

d̂12 = Op(n
−α12) and d̂j = Op(n

−αj); then, d̂ρ = Op(n
−min(α12,α1,α2)). As we will

see in simulations in the next section and in Section 3.5.1, this can lead to large

variability in small samples.

The averaged periodogram can be applied to estimating the jump in the phase

at 0 as well as the memory parameters of the auto- and cross-spectra. If the

right-hand limit of φ(λ) is φ0 and Equation (3.36) holds, then

F12(λ) =

∫ λ

0

f12(θ)dθ

=

∫ λ

0

|f12(θ)| cos(φ(θ))dθ + i

∫ λ

0

|f12(θ)| sin(φ(θ))dθ

≈ cos(φ0)

∫ λ

0

|f12(θ)|dθ + i sin(φ0)

∫ λ

0

|f12(θ)|dθ

arg(F12(λ)) → φ0, λ→ 0+

This suggests a simple estimator for the jump in the phase:

φ̂0 = arg(F̂12(λm)) (3.37)
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Notice that this estimator requires the user to choose m but not q, since only one

periodogram ordinate is needed for estimation. Robinson [2008, Remark 3, page

2518] suggested this estimator of the phase as well.

Corollary 3.16 Under Assumptions 3.10, 3.12, and 3.13, if φ0 6= π, then

φ̂0 − φ0 = o(1)

Proof. Since F̂12(λm) →p F12(λm) by Theorem 3.14 and Arg(x) is continuous

in x when x 6= π, we may apply the continuous mapping theorem to show that

φ̂0 = arg(F̂12(λm)) →p arg(F12(λm)). As λm → 0+, since the phase is right-

continuous, arg(F12(λm))→ arg(F12(0)) = φ0.

3.3.3 Simulation results for APE

We now assess the performance of the APE in finite samples through simulation.

We will test the APE for d12 and dρ in four cases:

• FIVAR: A FIV AR(0, (d1, d2)) model with the innovation variance of the

vector autoregression equal to

 1 0.5

0.5 1

.

• Semilagged FIVAR: In this case, (x1t, x2,t−5) follow a FIV AR(0, (d1, d2))

model with the innovation variance of the vector autoregression equal to 1 0.5

0.5 1

. This increases the group delay by 5.

• Power law coherency: The anti-cointegration model given in Equation (3.23)

with d3 = d2 − b, where b = 0.1 or b = 0.5. In this case, d12 = d2 − b and

dρ = 1
2
(d2 − d1)− b.

• An anti-cointegration model in which there are two common components,

one of which is I(du − b) and the other of which is I(du − b− 0.5).
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• λα in the phase: The model given in Equation (3.27) with d1 = d2, d3 = d1−b

where b = 0.1 or b = 0.5. In this case, α = b.

All simulations are based on the algorithm described by Sela and Hurvich [2009].

We allow d1, d2, and the number of observations to vary. We choose m = ng, where

g ∈ {1/6, 1/3, 1/2, 2/3, 4/5}. In all cases, we use q = 1
2
, since Lobato [1997] showed

that this choice worked well for a variety of values of d1, d2. All results are based

on 1000 replications. Here, we will focus on the case where d1 = 0.2, d2 = 0. In

that case, when there is power law coherency, with b = 0.1 and dρ = −0.2, the

lower bound on the growth rate required to ensure consistency is 2dρ
2dρ−1

= 1
3
. Using

b = 0.5 so that dρ = −0.6, the required growth rate is 2dρ
2dρ−1

= 5
9
. We will focus on

results based on the FIVAR model and the power law coherency models; results

from other models are available from the authors.

We first describe the performance of the APE for the cross-spectral density for

anti-cointegration models. The root mean squared error of the estimated values

of d12 are shown in Tables 37, 38, and 39 when the data generating processes

are the FIVAR model and the two anti-cointegration models. Table 40 shows the

same when the data-generating process has a power of λ in the phase. Figure 38

presents boxplots of the estimated values of d12 in the anti-cointegration models

when n = 32, 768. Notice that the bias and variance of the estimators are much

smaller for m = n2/3, n4/5 when b = 0.1 and for m = n4/5 when b = 0.5, relative to

smaller values of m. This occurs because the growth rates required by Assumption

3.12 differ in the two cases. The lower bound on the growth rate of m can also

be seen by contrasting the two boxplots in Figure 39. The left boxplot shows a

case in which m grows as n1/2, which is less than the growth rate required for

consistency; the bias and variability of d̂12 do not decrease with n. In contrast, the

right boxplot shows that, when m grows more quickly (in this case, as n4/5), the
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n m = n1/6 m = n1/3 m = n1/2 m = n2/3 m = n4/5

128 1.237 0.972 0.781 0.626 0.514

512 1.309 0.840 0.593 0.333 0.225

2048 1.435 0.713 0.388 0.211 0.124

8192 0.957 0.582 0.247 0.126 0.072

32768 1.045 0.536 0.179 0.077 0.042

Table 37: Root mean squared error of the averaged periodogram estimator for the

memory parameter of the cross-spectrum for a FIVAR model with d1 = 0.2, d2 = 0.

n m = n1/6 m = n1/3 m = n1/2 m = n2/3 m = n4/5

128 1.335 1.178 1.022 0.835 0.682

512 1.327 1.195 0.969 0.586 0.362

2048 1.358 1.214 0.938 0.545 0.216

8192 1.314 1.264 0.861 0.332 0.131

32768 1.222 1.271 0.857 0.236 0.081

Table 38: Root mean squared error of the averaged periodogram estimator for the

memory parameter of the cross-spectrum for a power law coherency model with

d1 = 0.2, d2 = 0, dρ = −0.2.

bias and the variance of the estimator decrease with n. Thus, the lower bound on

the growth rate of m is necessary for consistency.

Figure 40 present boxplots of the estimated values of dρ when n = 32, 768,

setting the estimated value to 0 when the d̂12 − 1
2
(d̂1 + d̂2) > 0, since dρ cannot be

positive. Figure 41 shows how d̂ρ changes as n increases for different growth rates

of m. As before, estimates of dρ based on m = n1/2 have approximately constant

bias and variability as n grows. When m = n4/5, the variability and bias decrease

as n increases, but the estimated values of dρ are biased upward and remain quite
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n m = n1/6 m = n1/3 m = n1/2 m = n2/3 m = n4/5

128 1.862 1.854 1.793 1.454 0.991

512 1.829 1.840 1.818 1.501 0.718

2048 1.666 1.878 1.897 1.533 0.602

8192 1.862 1.914 1.920 1.637 0.543

32768 1.798 1.961 1.936 1.624 0.414

Table 39: Root mean squared error of the averaged periodogram estimator for the

memory parameter of the cross-spectrum for a power law coherency model with

d1 = 0.2, d2 = 0, dρ = −0.6.

n m = n1/6 m = n1/3 m = n1/2 m = n2/3 m = n4/5

128 1.143 0.906 0.721 0.558 0.457

512 1.174 0.880 0.608 0.348 0.236

2048 1.345 0.714 0.395 0.224 0.138

8192 0.989 0.554 0.271 0.126 0.093

32768 1.050 0.441 0.176 0.090 0.067

Table 40: Root mean squared error of the averaged periodogram estimator for

the memory parameter of the cross-spectrum with a power of λ in the phase with

d1 = 0.2, d2 = 0, α = 0.1.
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Figure 38: Estimated power law in the cross-spectral density using the averaged

periodogram estimator when the true data-generating process has power law co-

herency, with d1 = 0.2, d2 = 0, n = 32, 768 and varying choices of m. dρ = −0.2 in

the left panel; dρ = −0.6 in the right panel.
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Figure 39: Estimated power law in the cross-spectrum when the true data-

generating process has power law coherency with d1 = 0.2, d2 = 0, dρ = −0.6,

and varying n. m = n1/2 in the left panel and m = n4/5 in the right panel.
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Figure 40: Estimated power law in the coherency using the averaged periodogram

estimator when the true data-generating process has power law coherency with

d1 = 0.2, d2 = 0, n = 32, 768 and varying choices of m. dρ = −0.2 in the left panel;

dρ = −0.6 in the right panel.

variable. This occurs because d̂ρ depends on three different averaged periodogram

estimators. Furthermore, since x1t and x2t contain two components with different

memory parameters, the estimators of the memory parameters of the auto-spectra

may be particularly badly behaved.

While the estimator is inconsistent whenm grows too slowly, it is biased in finite

samples when m grows too quickly. To see this more clearly, we apply the APE

to data generated by an anticointegration model in which the common component

is of the form (1 − L)d2−b + (1 − L)d2−b−0.5. In this case, the cross-spectrum is

not well approximated by λd2−b away from frequency 0. In Figure 42, we plot the

estimated values of d̂12 for three different growth rates of m. In the left panel, m

grows too slowly, so the estimator, while consistent in this case, is biased and quite
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Figure 41: Estimated power law in the coherency when the true data-generating

process has power law coherency with d1 = 0.2, d2 = 0, dρ = −0.6, and varying n.

m = n1/2 in the left panel and m = n4/5 in the right panel.
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Figure 42: Estimated power law in the cross-spectrum when the true data-

generating process has power law coherency with d1 = 0.2, d2 = 0, dρ = −0.6,

based on two common components with different memory parameters, and vary-

ing n. m = n1/2 is in the left panel, m = n4/5 is in the middle panel, and m = n0.95

is in the right panel.

variable. In the middle panel, m grows at a pace that leads to good performance.

In the right panel, m grows so quickly that finite-sample bias is evident. In Figure

43, we plot the estimated values of the coherency in the same cases. Again, the

estimator performs badly if the growth rate is chosen to be too large or too small,

making the choice of the m problematic in data analysis. In Figure 44, we plot d̂12

and d̂ρ for varying choices of m, holding n fixed. In this plot, we can see that the

variability of the two estimators decreases with m, but that the bias first decreases

and then increases with m. Furthermore, the bias in d̂ρ is minimized for a different

choice of m, since the biases of d̂1 and d̂2 vary with m as well, making the choice

of m more difficult.

Next, we compare the distribution of the estimated power laws in the cross-

spectrum and coherency in the cases where there is and is not power law coherency,
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Figure 43: Estimated power law in the coherency when the true data-generating

process has power law coherency with d1 = 0.2, d2 = 0, dρ = −0.6, based on two

common components with different memory parameters, and varying n. m = n1/2

is in the left panel, m = n4/5 is in the middle panel, and m = n0.95 is in the right

panel.
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Figure 44: Estimated power laws in the cross-spectrum and coherency when the

true data-generating process has power law coherency with d1 = 0.2, d2 = 0, dρ =

−0.6, n = 32768, based on two common components with different memory pa-

rameters. d̂12 is in the left panel and d̂ρ is in the right panel.

holding d1, d2 and n constant. In Figure 45, we show the distribution of the

estimated memory parameter of the cross-spectral density, with m = n4/5, a large

enough growth rate that d̂12 will be consistent in all three cases. As dρ increases,

the estimated values of d12 become more variable. In Figure 46, the estimated

values of dρ are shown across the three models. Notice that d̂ρ < 0 for over 75%

of the simulated realizations when b = 0.1, suggesting that the point estimate

would lead to the correct conclusion about power law coherency in this case. For

dρ = −0.6, d̂ρ < 0 for all realizations. However, the estimated values are quite

variable. Furthermore, if m is chosen too small (as seen in the left-hand panel

of Figure 41) or if n is small, detection of a power law in the coherency is more

problematic. This shows that detecting power law coherency could be quite difficult

in practice.
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Figure 45: Estimated memory parameter of the cross-spectral density using the

averaged periodogram estimator with and without power law coherency.
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Figure 46: Estimated memory parameter of the coherency using the averaged

periodogram estimator with and without power law coherency.
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3.4 The effect of the phase and coherency on cointegration

estimators

The cointegrating parameter between two fractionally cointegrated series can also

be estimated based on the averaged periodogram. Suppose, as in Section 3.2.4, that

we observe two series, {xt}, {yt} such that both are I(dx) with a linear combination,

ut = yt−βxt, that is integrated of order du < dx. One could estimate β in a variety

of ways. First, one could regress yt on xt. However, Robinson [1994] showed that

the resulting estimator is inconsistent in certain cases when Cov(xt, ut) 6= 0. As

an alternative, Robinson [1994] proposed the narrow-band least squares (NBLS)

estimator, given by:

β̂m =
<(F̂xy(λm))

F̂xx(λm)
(3.38)

This estimator is reasonable because Fxy(λm) ∼ β
∫ λm

0
f11(λ)dλ as λm → 0+, so

that Fxy(λm)

Fxx(λm)
→ β as λm → 0+, as mentioned in Section 3.2.4. Since cointegration is

ultimately a description of the long-run relationship between two series, estimating

the cointegrating parameter in a neighborhood of frequency zero makes intuitive

sense.

A number of authors have discussed the performance of this estimator under the

assumption that m→∞ and m
n
→ 0 as n→∞. Robinson [1994] assumed that 0 <

du < dx and showed that β̂NBLS is consistent as long as m
n

+ 1
m
→ 0. Christensen

and Nielsen [2006] described the convergence rate of the estimator in the presence

of power law coherency (or, more generally, when fxu(λ) = O(λ−dx−du+ξ) as λ→ 0+

for some ξ > 0). Specifically, in the bivariate case, if 0 ≤ du < dx and du+dx < 1/2,

they found that 1/m+m1+2ξ/n2ξ → 0 implied that
√
mλdu−dxm (β̂m− β) tends to a

normal distribution with mean 0. Suppose we choose m = ng for some g < 2ξ
2(1+2ξ)

.

Then, we find that β̂−β = Op

(
ng(−

1
2

)+(1−g)(du−dx)
)

, so that the exponent on n is a
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weighted average of −1
2

and du−dx, where the weight on −1
2

is smaller for smaller

choices of ξ. For arbitrarily small ξ, we have β̂−β = Op(n
du−dx). If there is power

law coherency, then we must have ξ ≤ −2dρ; ξ also depends on the smoothness of

the autospectra and the phase. Thus, ξ can be made arbitrarily small by choosing

dρ close to 0.

If ξ is chosen to be too large, then the mean of the asymptotic distribution will

not go to zero and may be infinite [Christensen and Nielsen, 2006, Equation 26,

page 364]. Specifically, the requirement is given by (in our notation):

√
mλdx+du−1

m

1

n

m∑
j=1

<(Ψ1(λj)Ψ
∗
2(λj)) = O

(
m1+2ξ

n2ξ

)
In finite samples, choosing m too large is likely to lead to bias, as we will see in

simulations in Section 3.4.2. This shows that the growth rate of m can be limited

both by powers of λ in the phase and by power law coherency, which are likely to

be unknown.

Robinson and Marinucci [2003] consider the more general case where 0 ≤

du < dx < 1/2 and ρ(0) need not be zero; they show in their Theorem 3.1 that

β̂m − β = Op(λ
dx−du
m ), which matches the Christensen and Nielsen result for arbi-

trarily small ξ. Further, they conjecture (page 341) that λdu−dxm (β̂−β) will converge

in probability to a non-zero constant. Robinson and Marinucci, 2003] also apply

the NBLS estimator to the case where dx ≥ 1/2 and du ≥ 0, so that the observed

processes are non-stationary. A number of their results [such as, Robinson and

Marinucci, Theorems 4.1-4.5 and Propositions 6.1-6.2] have limits of normalized

expected values and some limiting distributions that depend on f †12(0). This sug-

gests that their convergence rates or other results may change in the presence of

power law coherency, but we will not pursue that here.

Robinson [2008] suggested a different semiparametric approach to estimate the

cointegrating parameter. He applied a local Whittle estimator to the spectral
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density matrix of (xt, yt)
′, parameterizing it locally using β, dx, du, and φ0 and

then estimating all four parameters. In order to ensure that φ0 was identified, he

required that ρ(0) > 0, ruling out power law coherency. He also required that

φ0 6= ±π
2
. As long as 1

m
+ m

n
→ 0, his estimator satisfies β̂ − β = op

((
m
n

)dx−du)
[Robinson, 2008, Theorem 3]. Robinson’s Theorem 4 states that

√
mλdu−dxm (β̂−β0)

converges to a normal distribution. Based on the calculations in Section 3.2.1,

n2ξ/(1+2ξ) is an upper bound on the growth rate of m. Thus, the convergence rate

is bounded above by n
1

1+2ξ
(dx−du)+ 2ξ

2(1+2ξ) , just as that of Christensen and Nielsen

[2006] is; in both cases, the estimator appears to exploiting information about

whether the coherency is zero or non-zero (which may not be known in practice)

to gain efficiency. As before, ξ is also unlikely to be known. Furthermore, as we

will see in Section 3.4.2, Robinson’s estimator does not work well for small sample

sizes.

3.4.1 A robust cointegration estimator

Chen and Hurvich [2003] estimating β using Equation (3.38) with m fixed. We will

call the resulting estimator the very narrow-band least squares estimator (VNBLS).

For the reasons discussed in Section 3.3, they recommend differencing when the

series may be non-stationary or there may be polynomial trends. As in Section 3.3,

the series must be tapered if they have been differenced or if they are suspected

to have dx, du < −1/2. Here, we generalize their results to allow for p driving

innovation series and arbitrary φ0 in the cross-spectral density of xt, ut. To begin,

we require one mild assumption on f †(λ), in addition to those stated in Section

3.2 (we do not require the assumptions from Section 3.3).

Assumption 3.17 f †(λ) is positive definite except on a set of measure 0.
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Next, we compute some quantities that will help describe the asymptotic per-

formance of β̂m. These definitions generalize those of Chen and Hurvich [2003] to

the semiparametric model given in Section 3.2. First, we compute the derivative

of the transfer function:

Ψ′jk(λ) = −iδjk(1− e−iλ)−δjk−1e−iλτjk(λ)e−ϕjk(λ)

+(1− e−iλ)−δjkτ ′jk(λ)eiϕjk(λ) + (1− e−iλ)−δjkτjk(λ)iϕ′jk(λ)eiϕjk(λ)

= (1− e−iλ)−δjkeiϕjk(λ)

×
(
−iδjkτjk(λ)e−iλ(1− e−iλ)−1 + τ ′jk(λ) + iτjk(λ)ϕ′jk(λ)

)
If τjk(λ) = 0 for λ ∈ [0, ε], then Ψ′jk(λ) = 0. As λ → 0+, the term including

(1 − e−iλ)−1 dominates, since τ ′jk(λ), ϕ′jk(λ = o(λ−1) by Assumptions 3.2 and 3.4.

Thus, as λ→ 0+,

Ψ′jk(λ) ∼ −i(1− e−iλ)−δjk−1eiϕjk(λ)δjkτjk(0)

∼ −δjkτjk(0)|λ|−δjk−1ei(ϕjk(λ)+πδjk/2)

If δjk = 0, then the derivative is given by:

Ψ′jk(λ) = eiϕjk(λ)
(
τ ′jk(λ) + iϕ′jk(λ)τjk(λ)

)
Generalizing Chen and Hurvich [2003, page 101], we define the spectral measure

of (xt, ut)
′ to be:

G(dλ) = f(λ)dλ

We then normalize the spectral measure:

Gn(dx) = nΛnG

(
dx

n

)
Λn

= ΛnΨ
(x
n

)
ΣΨ∗

(x
n

)
dx
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where Λn = diag
(
ndx , ndu

)
= diag

(
nd1 , nd2

)
. As n → ∞, we find that the (j, k)

element of ΛnΨ
(
x
n

)
is:[

ΛnΨ
(x
n

)]
jk

= n−dj(1− e−i
x
n )−δjkτjk

(x
n

)
eiϕjk(

x
n)

= n−dj
∣∣∣x
n

∣∣∣−δjk ( |2 sin x
2n
|∣∣x

n

∣∣
)−δjk

τjk

(x
n

)
ei(ϕjk( x

n
)−δjk(π− x

n
)/2)

= nδjk−dj |x|−δjk
( |2 sin x

2n
|

|x
n
|

)δjk
τjk

(x
n

)
ei(ϕjk( x

n
)−δjk(π− x

n
)/2)

If dj = δjk, as n→∞ with x fixed, we have:[
ΛnΨ

(x
n

)]
jk
∼ |x|−djτjk(0)e

i
(
φ0,jk−

δjkπ

2

)

where φ0,jk = limλ→0+ ϕjk(λ). If dj > δjk, as n→∞ with x fixed, nδjk−dj → 0 and

[ΛnΨ(x
n
)]jk → 0. Therefore, Gn(S)→ G0(S), where:

G0(dx) = Π(x)f †(0)Π∗(x)dx

where

Π(x) = diag
(
e−idxπ/2|x|−dx , e−i(du

π
2

+φ0+π
2

(dx−du))|x|−du
)

= e−idxπ/2diag
(
|x|−dx , e−iφ0|x|−du

)
and φ0 is defined as in Section 3.2.

We also require a spectral representation for both the p-variate innovations

process, which implies a spectral representation for (xt, ut):

εt =

∫ π

−π
eiλtdZε(λ)

aS(r) =
1

2π

∫
S/n

e−irxΨ(x)dx

Zn(S) =
√
nΛn

∞∑
r=−∞

aS(r)εr =
√
nΛn

∫
S/n

Ψ(x)dZε(x)
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where S ⊂ R is a bounded subset. The properties for dZε(λ) are identical to those

given in Chen and Hurvich [2003, Equations 11 and 12], except that Σ is now a

p×p matrix. Given these definitions, we restate and generalize the proof of Lemma

1 of Chen and Hurvich.

Lemma 3.18 If S1, ..., SM are intervals in R with nonzero endpoints and ±S1, ...,±SM

are disjoint, then:

(Zn(S1), ..., Zn(SM))→d (ZG0(S1), ..., ZG0(SM))

where for any Borel set, S̃ ⊂ R, the 2 × 2 matrix measure, G0(S̃) is defined as

above, and ZG0 is the bivariate, complex, Gaussian random measure satisfying:

E(ZG0(S̃)) = 0

E(ZG0(S̃)Z∗G0
(S̃)) = G0(S̃)

ZG0(−S̃) = ZG0(S̃)

E(ZG0(S̃1)Z∗G0
(S̃2)) = 0

when S̃1 ∩ S̃2 = ∅.

Proof. The following facts from Lemma 1 of Chen and Hurvich [2003] are un-

changed by our more general assumptions:

Zn(Sj) = Zn(−Sj)

E(<(Zn(Sj))<(Z ′n(Sk))) = E(<(Zn(Sj))=(Z ′n(Sk)))

= E(=(Zn(Sj))<(Z ′n(Sk)))

= E(=(Zn(Sj))=(Z ′n(Sk)))

= 0

for j, k = 1, ...,M with j 6= k. We now apply the Cramer-Wold device, study-

ing an arbitrary linear combination: a′<Zn(S) + b′=Zn(S). Since we still have
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E(Zn(S)Z∗n(S)) = Gn(S) → G0(S), with G0(S) positive definite by Assumption

3.17,

Var(a′<Zn(S) + b′=Zn(S)) = Var(a′<ZG0(S) + b′=ZG0(S))

= σ2
0 > 0

Using the expressions for Υ(λ) and f †(λ) given in Section 3.2, Chen and Hur-

vich’s proof of Lemma 1 can be generalized to our formulation of Ψ(λ) by rewriting

their equations A.1 and A.2 as:

|a∆(r, n)1k| ≤ Cnδ1k
1

|r|
≤ Cndx

1

|r|

|a∆(r, n)2k| ≤ Cnδ2k
1

|r|
≤ Cndu

1

|r|

Then, α<(Zn(S)) + β′=(Zn(S)) =
∑∞

s=−∞Wnr. The properties of Wnr given in

their equations A.3 and A.4 can be easily generalized:

Wnr =

p∑
k=1

(
n1/2−dx(α1<(aS(r)1k) + β1=(aS(r)1k))

+n1/2−du(α2<(aS(r)2k) + β2=(aS(r)2k))
)
εrk

E(Wnr) ≤ C
(
n1−2dx

p∑
k=1

|aS(r)1k|2 + n1−2du

p∑
k=1

|aS(r)2k|2
)

≤ Cn/r2

so that the bounds required in Lemma 1 continue to hold.

Theorem 3.19 Suppose that −s− 1/2 < du < dx < 1/2 and m is a fixed positive

integer. Then,

{Λnwj,s}mj=1 →
d

{∫
R

∆s(x+ 2πj)dZG0(x)

}m
j=1
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as n→∞, where

Λn = diag(n−dx , n−du)

∆s(x) =

(
2s

s

)−1/2 s∑
k=0

(
s

k

)
(−1)k∆(x+ 2πk)

∆(x) =
eix − 1√

2πix

and ZG0 is the bivariate complex Gaussian measure defined in Lemma 3.18.

Proof. The proof in the more general case is identical to that of Chen and Hurvich

[2003, pages 115-120], because Yn and the related quantities in the proof depend

only on the autospectra and therefore are not affected by the phase and coherency.

Corollary 1 of Chen and Hurvich [2003] continues to hold when we use our

more general definition of G0(dx):

Corollary 3.20

ndx−du
(
β̂m − β

)
→d

∑m
j=1 (AxjAuj +BxjBuj)∑m

j=1

(
A2
xj +B2

xj

)
where {Axj, Auj, Bxj, Buj}mj=1 are jointly normal random variables with zero mean

and covariances determined by:

E(AjA
′
k) =

1

2
<(L1(j, k) + L2(j, k))

E(BjB
′
k) =

1

2
<(L2(j, k)− L1(j, k))

E(AjB
′
k) =

1

2
=(L1(j, k)− L2(j, k))

L1(j, k) =

∫
R

∆s(x+ 2πj)∆s(−x+ 2πk)G0(dx)

L2(j, k) =

∫
R

∆s(x+ 2πj)∆s(x+ 2πk)G0(dx)

with Aj = (Axj, Auj)
′ and Bj = (Bxj, Buj)

′ for j, k = 1, ..,m.
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Remark 3.21 Using the definition of G0(dx), we find that:

L1(j, k) =

∫
R

∆s(x+ 2πj)∆s(−x+ 2πk)Π(x)f †(0)Π∗(x)dx

L2(j, k) =

∫
R

∆s(x+ 2πj)∆s(x+ 2πk)Π(x)f †(0)Π∗(x)dx

When [f †(0)]12 = 0 (or, equivalently, ρ(0) = 0, as would happen with power

law coherency), we have E(AxjAuk) = E(AxjBuk) = E(BxjBuk) = 0 for all

j, k = 1, ...,m. Since Axk, Auk, Bxk, Buk are multivariate Gaussian, zero covari-

ances imply independence, so that:

E

(∑m
j=1 (AxjAuj +BxjBuj)∑m

j=1

(
A2
xj +B2

xj

) )
=

m∑
k=1

[
E(Auk)E

(
Axk∑m

j=1

(
A2
xj +B2

xj

))

+E(Buk)E

(
Bxk∑m

j=1

(
A2
xj +B2

xj

))]
= 0

so that the mean of the asymptotic distribution of VNBLS is 0 when [f †(0)]12 = 0,

just as the mean of the distribution of NBLS is 0 under the conditions of Chris-

tensen and Nielsen [2006].

When ρ(0) > 0, the asymptotic distribution may have a non-zero mean, just

as Robinson and Marinucci [2003] conjecture will occur with NBLS. However, the

presence of power laws in the coherency or in the phase does not appear here,

demonstrating that VNBLS estimator are not affected by the lack of smoothness,

unlike the NBLS estimator.

The result in Corollary 3.20 can be used in inference. In order to perform

inference, one must estimate f †(0), φ0, dx, and du; local Whittle estimates like those

of Robinson [2008] could be adapted for this purpose. Given these estimates, one

can then estimate the variances and covariances of Aj and Bk using numerical

integration. Then, one could simulate from the distribution given in the corollary
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to find cutoffs for inference. We leave the details of these calculations and an

exploration of its performance to future research.

3.4.2 Simulation results for cointegration estimators

We compare the performance of the VNBLS and NBLS estimators to the perfor-

mance of Robinson’s local Whittle estimator in finite samples using simulation.

As in Section 3.3.3, we will consider four data-generating processes for (xt, ut)
′:

a FIVAR model, a semilagged FIVAR model, with (xt, ut−5) following a FIVAR

model, anti-cointegration to create power law coherency, and the model in Section

3.2.6 that leads to powers of λ in the phase. We then create yt = xt + ut, so that

β = 1. We apply the VNBLS and NBLS estimators and the local Whittle (LW)

estimator of Robinson [2008] to (xt, yt)
′ to estimate β. All results are based on

1000 replications.

In this section, we will report results when dx = 0.4, du = 0.2. In that case,

the results of of the previous section and of Robinson and Marinucci [2003] imply

that β̂ − β = Op(n
−0.2) for VNBLS and NBLS. Local Whittle when ρ(0) > 0 and

NBLS when ρ(0) = 0 will be Op(n
g(−0.5)+(1−g)(−0.2)), where m = ng, with g bounded

above by 2ξ
1+2ξ

. Notice that choosing dx, du such that dx − du is larger will reduce

the difference between the two convergence rates and improves the performance of

all of the estimators.

In all of these cases, Cov(xt, ut) 6= 0, so that OLS is asymptotically biased; this

is quite evident in simulations (not shown). The bias is smaller in the case of the

semilagged FIVAR model because the contemporaneous covariance is smaller.

In Tables 41, 42, and 43, we report the root mean squared errors for the three

estimators when (xt, ut)
′ are a FIVAR process with dx = 0.4, du = 0.2. In this

case, the NBLS and VNBLS estimators are Op(n
−0.2). Because of the group delay
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n m = 4 m = 20 m = 36

128 0.277 0.263 0.279

512 0.264 0.214 0.226

2048 0.166 0.170 0.180

8192 0.133 0.136 0.144

Table 41: Root mean squared error of the VNBLS, when (xt, ut)
′ are generated by

a FIVAR process with dx = 0.4, du = 0.2.

in the FIVAR model, we must have g < 2
3
, which means that the local Whittle

convergence rate is at best Op(n
−0.4); smaller growth rates of m will lead to smaller

convergence rates. Even with this simple data generating process, the VNBLS and

NBLS estimators performs best in finite samples. Furthermore, in larger samples,

the root mean square errors are lower for small growth rates of m and for small

fixed m. Local Whittle performs very badly in small samples, and even with

n = 8192 has a much larger root mean squared error than the VNBLS and NBLS

estimators. As shown in Figure 47, the VNBLS and NBLS estimators are biased

downward, with VNBLS with m = 4 having the least bias (though slightly more

variability). In contrast, the local Whittle estimator, shown in the bottom row

of Figure 47, is biased upward and quite variable, especially in smaller samples.

In Figure 48, we plot the same estimators on the same scale in the case where

n = 8192. The left-hand boxplot shows that the local Whittle estimator is biased

upward and quite variable relative to the NBLS and VNBLS estimators. The right

boxplot shows the same VNBLS and NBLS estimators on a smaller scale. Again,

we see that VNBLS with m = 4 has the least bias and more variability.

Tables 44, 45, and 46 show the root mean squared errors of the cointegration

estimators for semilagged FIVAR processes, in which (xt, ut−5) follow a FIVAR
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n m = n1/6 m = n1/3 m = n1/2 m = n2/3 m = n4/5

128 0.748 0.274 0.251 0.269 0.288

512 0.626 0.203 0.215 0.24 0.264

2048 0.176 0.164 0.184 0.213 0.242

8192 0.133 0.136 0.159 0.192 0.225

Table 42: Root mean squared error of NBLS, when (xt, ut)
′ are generated by a

FIVAR process with dx = 0.4, du = 0.2.

n m = n1/2 m = n2/3 m = n4/5

128 30.214 27.595 24.205

512 22.076 19.111 18.071

2048 13.969 10.117 8.771

8192 7.273 2.135 2.212

Table 43: Root mean squared error of the local Whittle cointegration estimator

with m growing with n, when (xt, ut)
′ are generated by a FIVAR process with

dx = 0.4, du = 0.2.
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Figure 47: Estimated values of β when xt, ut follow a FIVAR model with dx = 0.4

and du = 0.2.
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Figure 48: Estimated values of β for the FIVAR model with dx = 0.4 and du =

0.2, n = 8192. The right panel excludes the local Whittle estimator so that the

distribution of the VNBLS and NBLS estimators is visible.
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n m = 4 m = 20 m = 36

128 0.252 0.144 0.125

512 0.239 0.21 0.183

2048 0.168 0.175 0.186

8192 0.133 0.138 0.147

Table 44: Root mean squared error of VNBLS, when (xt, ut)
′ are generated by a

semilagged FIVAR process with dx = 0.4, du = 0.2.

process. As before, VNBLS and NBLS are Op(n
−0.2) while the local Whittle esti-

mator is Op(n
−0.4) in the best case. The performance of VNBLS for a semilagged

FIVAR process is almost identical to its performance for a FIVAR process. NBLS

also performs similarly for FIVAR and semilagged FIVAR processes, except that

it performs much better for semilagged FIVAR processes with m = n4/5. The local

Whittle estimator performs much better for semilagged FIVAR processes than for

FIVAR processes when m = n2/3, n4/5. This result is unexpected, since one might

expect that increased group delay would hurt the performance of estimators that

used more frequencies. However, even with the improvement in performance, the

NBLS and local Whittle estimators is only somewhat smaller than that of VN-

BLS. Figure 49 shows boxplots of the three estimators for varying choices of m.

As before, VNBLS has the least bias of any estimator. As before, the local Whittle

estimator is quite variable for smaller samples. Also, the bias of the local Whittle

estimator is not strictly decreasing with the sample size.

Figure 50 compares the performance of the estimators when (xt, ut) follow a

FIVAR model to when (xt, ut) follow a semilagged FIVAR model. Both the local

Whittle estimator with m = n2/3 and NBLS with m = n4/5 perform better for

the semilagged FIVAR model than for the FIVAR model. However, this local
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n m = n1/6 m = n1/3 m = n1/2 m = n2/3 m = n4/5

128 1.613 0.237 0.18 0.135 0.111

512 0.325 0.211 0.208 0.115 0.108

2048 0.232 0.168 0.189 0.165 0.11

8192 0.133 0.138 0.164 0.182 0.092

Table 45: Root mean squared error of NBLS, when (xt, ut)
′ are generated by a

semilagged FIVAR process with dx = 0.4, du = 0.2.

n m = n1/2 m = n2/3 m = n4/5

128 19.386 15.455 17.117

512 15.324 0.255 5.271

2048 14.348 0.169 0.12

8192 7.232 0.109 0.177

Table 46: Root mean squared error of the local Whittle cointegration estimator

withm growing with n, when (xt, ut)
′ are generated by a semilagged FIVAR process

with dx = 0.4, du = 0.2.
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Figure 49: Estimated values of β when (xt, ut) follow a semilagged FIVAR model

with dx = 0.4 and du = 0.2.

198



Figure 50: Estimated values of β when (xt, ut) follow a FIVAR model or a semi-

lagged FIVAR model with dx = 0.4, du = 0.2, and n = 8192.

Whittle estimator was chosen specifically because it had the best performance. In

addition, the boxplots shown in Figure 49 suggest that the bias of the local Whittle

and NBLS estimators is not monotonically descreasing, leaving the possibility that

their performance could degrade for some larger n. In contrast, the performance

of VNBLS and NBLS with a smaller growth rate for m are robust to the addition

of the lag in the data generating process.

Next, we report the RMSE of the VNBLS and NBLS estimators when (xt, ut)
′

have power law coherency. We will focus on the results when d12 = 0.1, so that

dρ = −0.2. While VNBLS continues to be Op(n
−0.2) in this case, the results of

Christensen and Nielsen [2006] require that ξ ≤ −2dρ = 0.4, so that the estimator is

Op(n
−0.32). Power law coherency is not allowed by Robinson’s assumptions and the

local Whittle estimator performs badly, so we report only limited results. Tables
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47 and 48 show the root mean squared errors for VNBLS and NBLS, respectively.

In this case, slightly larger values of fixed m perform better. Figure 51 presents

boxplots of the various estimators, including that of the local Whittle estimator.

Even with m = 4, the estimator generally performs quite well, with very little bias

in the larger samples; this likely occurs because the limiting distribution given in

Corollary 3.20 has mean zero. However, there are two large outliers in the smaller

samples. Since dρ = −0.2, allowing m = n4/5 would yield a growth rate that is

too fast to satisfy the conditions of Christensen and Nielsen [2006]; it also leads to

larger root mean squared errors because the bias decays quite slowly, as seen in the

second row and column of Figure 51. The first column in the second row instead

uses m = n1/6, which is a growth rate that would be allowed by the smoothness

of the coherency according to Christensen and Nielsen [2006]. This choice of m

leads to a large number of outliers for smaller n but very little bias. The local

Whittle estimator continues to be quite variable when m = n1/6 and has a very

large upward bias when m = n4/5.

In Figure 52, we compare the performance of VNBLS and NBLS for two dif-

ferent values of dρ. The bias of NBLS estimators is smaller when dρ = −0.6 than

when dρ = −0.6, with the bias almost 0 for m = n1/2. This occurs because the

spectral density is smoother when dρ = −0.6 than when dρ = −0.2. The per-

formance of VNBLS does not change substantially between the two values of dρ,

providing another example of the robustness of VNBLS to the behavior of the

cross-spectral density near 0.

Now, we consider the performance of the VNBLS, NBLS and local Whittle

estimators in the case where (xt, ut)
′ have a power of λ in the phase, with α = 0.5.

(The results when α = 0.1 have somewhat larger root mean squared errors across

all the estimators, but the same patterns occur.) As before, VNBLS and NBLS
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n m = 4 m = 20 m = 36

128 1.63 0.241 0.269

512 0.833 0.156 0.176

2048 0.188 0.101 0.106

8192 0.133 0.073 0.068

Table 47: Root mean squared error of VNBLS, when (xt, ut)
′ have power law

coherency with dx = 0.4, du = 0.2, dρ = −0.2.

n m = n1/6 m = n1/3 m = n1/2 m = n2/3 m = n4/5

128 2.408 0.317 0.223 0.25 0.284

512 2.445 0.165 0.158 0.205 0.253

2048 0.267 0.108 0.11 0.159 0.221

8192 0.133 0.073 0.076 0.128 0.196

Table 48: Root mean squared error of NBLS, when (xt, ut)
′ have power law co-

herency with dx = 0.4, du = 0.2, dρ = −0.2.
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Figure 51: Estimated values of β when (xt, ut) have power law coherency with

dx = 0.4, du = 0.2, dρ = −0.2.
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Figure 52: Estimated values of β when (xt, ut) have power law coherency with

dx = 0.4, du = 0.2, n = 8192, for different values of dρ.

are Op(n
−0.2). In this case, the local Whittle estimator requires that ξ < α = 0.5,

so his estimator must be Op(n
−0.35) at best. In Table 49, we find that smaller

fixed values of m are preferable in both the smallest and largest samples. Figure

53 shows boxplots of the various estimators. As before, VNBLS and NBLS are

biased downward; the bias is greatest when m = n4/5. Table 50 shows that smaller

growth rates of m have lower root mean squared errors as the sample size grows,

as we have seen before. The local Whittle estimator continues to perform badly,

as shown in Table 51, but its performance improves with the sample size, as can

be seen in the bottom row of Figure 53.

Figure 54 plots the estimated values from VNBLS and NBLS for α = 0.1 and

α = 0.5. The performance is similar across the two values of α, but the bias of

NBLS is larger when α = 0.1. In the same cases, the local Whittle estimator (not

shown) is biased upward, more variable than VNBLS and NBLS, with the bias and
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n m = 4 m = 20 m = 36

128 0.283 0.324 0.366

512 0.23 0.241 0.26

2048 0.205 0.182 0.195

8192 0.133 0.14 0.149

Table 49: Root mean squared error of VNBLS, when (xt, ut)
′ are generated by a

process with a power of λ in the phase with dx = 0.4, du = 0.2, α = 0.5.

n m = n1/6 m = n1/3 m = n1/2 m = n2/3 m = n4/5

128 0.6 0.282 0.296 0.338 0.392

512 6.812 0.22 0.244 0.287 0.345

2048 0.225 0.173 0.2 0.246 0.306

8192 0.133 0.14 0.168 0.213 0.273

Table 50: Root mean squared error of NBLS, when (xt, ut)
′ are generated by a

process with a power of λ in the phase with dx = 0.4, du = 0.2, α = 0.5.

variability larger when α = 0.1 than when α = 0.5. As before, the performance of

VNBLS is robust, in this case to changes in α.

In order to compare the performance of the estimators when the cross-spectral

density is unknown, we compute the maximum root mean squared error of each

estimator over all of the cases described above. Then, for each n, we determine

which estimator has the smallest maximum (minimax) RMSE. When n = 128,

the estimator with the minimax RMSE is NBLS with m = n1/2. When n = 512,

the estimator with the minimax RMSE is NBLS with m = n1/3. When n = 2048

and when n = 8192, the minimax estimator is VNBLS with m = 4. In all cases,

the maximum occurs when λ0.1 appears in the phase. Thus, in small samples,

NBLS with relatively small powers is most robust to a variety of behaviors of the
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Figure 53: Estimated values of β for cointegration when (xt, ut) follow a process

with a power of λ in the phase with dx = 0.4, du = 0.2, α = 0.5.

205



n m = n1/2 m = n2/3 m = n4/5

128 33.274 36.904 38.419

512 23.253 21.523 28.66

2048 16.116 10.826 19.335

8192 6.182 2.129 7.324

Table 51: Root mean squared error of the local Whittle cointegration estimator

with m growing with n, when (xt, ut)
′ are generated by a process with a power of

λ in the phase with dx = 0.4, du = 0.2, α = 0.5.

Figure 54: Estimated values of β for cointegration when (xt, ut) follow a process

with a power of λ in the phase with dx = 0.4, du = 0.2, n = 8192, for varying values

of α.
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cross-spectral density. For larger samples, VNBLS with a small choice of m is most

robust.

3.5 Data analysis

3.5.1 Phase and coherency in practice: Money supply growth

We examine monthly estimates of money stock from January 1959 to September

20093 (608 observations). We focus on two different supplies of money. M1 consists

of easily accessible money, such as currency and demand deposits, while M2 con-

sists of M1 together with forms of money that require more time to access, such as

savings deposits and money market accounts. In order to remove the component

common to M1 and M2, we focus on describing the relationship between M1 and

M2 less M1. Both series have clear upward trends in their levels; we will work with

the difference in logs, shown in Figure 55. The plot shows some common move-

ments, such as a period of comovement in the late 1960’s and mid-1970’s. However,

the long run movements are less related, with M1 growing faster in the mid-1980’s

and mid-1990’s but M2 less M1 growing faster in other periods. The autocor-

relation functions (shown in Figure 56) decay slowly, with the cross-correlation

function appearing to decay more quickly. Also, the peak cross-covariance occurs

at a lag of about 9, suggesting that group delay might occur. The logarithms

of the auto-periodograms (Figure 57) have an approximately linear relationship

with the log frequency near frequency zero, suggesting that the individual series

have long memory; it is unclear from this figure which series has a larger memory

parameter. GPH estimates of the memory parameters of the individual series are

quite sensitive to the number of frequencies used; a variety of choices of m are

shown in Table 52. The GPH estimates suggest the presence of long memory in

3Source: Federal Reserve, http://www.federalreserve.gov/releases/h6/hist/h6hist1.txt
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Figure 55: Time series of differences in logs of M1 and M2-M1.

the individual series. We could test for equality of the memory parameters using

the results of Robinson [1995a], but those results would be limited in the presence

of power law coherency or powers of λ in the phase, as discussed in Section 3.2.1.

To estimate the coherency and phase, we first smooth the periodogram, using

the spgram function in R [R Development Core Team, 2008] with modified Daniell

smoothers of widths (21, 21). Though the smoothing is likely to be problematic

close to the zero frequency because of the long memory, it gives us a general idea

of the shape [Hidalgo, 1996]. The coherency of the two series is not significantly

different from zero except at frequencies ranging from approximately 0.01(2π) to
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Figure 56: ]

Auto- and cross-correlation functions of the differences in logs of M1 and M2-M1.

dM1 dM2−M1

n1/2 = 24 0.115 (0.241) 0.426 (0.142)

n3/5 = 46 0.081 (0.126) 0.323 (0.099)

n2/3 = 71 0.157 (0.089) 0.342 (0.083)

n3/4 = 122 0.291 (0.060) 0.237 (0.060)

n4/5 = 168 0.457 (0.061) 0.174 (0.045)

Table 52: GPH estimates of d for M1 and M2-M1 for varying powers of n. Standard

errors from regression given in parentheses.
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Figure 57: Log auto-periodograms of the differences in logs of M1 and M2-M1

versus the log frequency.
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approximately 0.09(2π) (periods ranging from just under 1 year to just over 8

years). The coherency peaks just above 0.35 around frequency 0.06(2π), which

corresponds to a period of just over 16 months. This suggests that only the longer

run movements of M1 and M2-M1 (with periods greater than 1 year) are related.

However, the coherency decreases toward zero at the zero frequency, suggesting

power law coherency, so that very long-run movements are not related. The esti-

mated phase is shown in Figure 59. Because the coherency is close to zero over

most of the range, the phase estimates are quite noisy. In the range of frequencies

where the coherency is larger, the phase shows a clear upward slope, suggesting

that M1 growth leads growth in M2-M1.

The phase and coherency have straightforward economic interpretations. M1

and M2-M1 move together at business cycle frequencies, with M1 leading M2-M1.

M1 may lead M2-M1 because changes in the money stock might appear in short-

term deposits first. In the long-run, the relationship between the two declines;

this could occur because people’s preferences for holding M1 versus M2-M1 versus

other assets might change over long periods.

With this evidence for power law coherency, we can apply the averaged peri-

odogram estimator for varying choices of m, holding q fixed at 0.5. The estimated

values of the memory parameters of the individual series are in the range of the

GPH estimates and vary less as m changes. However, the estimated power law in

the cross-spectrum is always larger than the mean of the two auto-memory param-

eters, which appears to rule out power law coherency. As we saw in Section 3.3.3,

identification of power law coherency is quite challenging even when n = 8192; in

this case, n = 608. Thus, it is not clear that we can rule out power law coherency,

even though d̂ρ = 0.

To provide further evidence that the averaged periodogram estimator may not
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Figure 58: Estimated coherency of the differences in logs of M1 and M2-M1

(smoothed using spans = (21, 21)).

Figure 59: Estimated phase of the differences in logs of M1 and M2-M1 (smoothed

using spans = (21, 21)).
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m d̂M1 d̂M2−M1 d̂M1,M2−M1

n1/2 = 24 0.347 0.375 0.409

n3/5 = 46 0.326 0.285 0.335

n2/3 = 71 0.335 0.300 0.425

n3/4 = 122 0.206 0.336 0.329

n4/5 = 168 0.269 0.379 0.358

Table 53: APE estimates of dM1, dM2−M1, and dM1,M2−M1 for varying choices of

m.

be able to find evidence of a power law in the coherency in this dataset, we simulate

1000 datasets with n = 608, d1 = 0.15, d2 = 0.3, and varying values of dρ, using the

anti-cointegration model. For each dataset, we estimated dρ for the values of m

used in Table 53. In Table 54, we report the proportion of times that d̂ρ < 0 in the

sample; the probability is highest for n4/5 when dρ = −0.675, and that probability

is only 0.8. In many cases, the probability that the point estimate is non-zero is

under 0.5. In Figure 60, we plot the estimated values of dρ for varying true values

of dρ. The estimated values become more spread out for more negative values

of dρ. In all cases, the estimates are biased upward, with the bias particularly

pronounced for more negative values of dρ. This shows that the performance of

the APE is quite poor in a sample of this size.

This dataset provides graphical evidence based on the smoothed periodogram

that power law coherency may exist. However, the averaged periodogram estimator

is not able to identify power law coherency in a sample of this size, as shown in

simulation.
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dρ n1/2 = 24 n3/5 = 46 n2/3 = 71 n3/4 = 122 n4/5 = 168

0 0.239 0.186 0.183 0.135 0.095

0 0.181 0.173 0.146 0.086 0.058

-0.025 0.271 0.228 0.210 0.159 0.133

-0.125 0.293 0.324 0.402 0.394 0.387

-0.225 0.278 0.368 0.447 0.520 0.586

-0.325 (0.218) 0.298 0.426 0.626 0.745

-0.425 (0.208) (0.271) 0.371 0.653 0.799

-0.675 (0.191) (0.192) (0.221) 0.514 0.804

-0.925 (0.148) (0.161) (0.209) (0.437) 0.731

Table 54: Proportion of simulations in which d̂ρ < 0. Numbers in parentheses

indicate that the power of n used is too small for the APE to be consistent for the

particular dρ.
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Figure 60: Estimated values of dρ in simulations for varying values of dρ.

215



3.5.2 Cointegration: High and low stock prices

Now, we test for cointegration between daily high and low stock prices for the S&P

500 index from January 1962 through October 2009 (12025 observations after dif-

ferencing). Cheung [2007] considered the possibility of cointegration between high

and low stock prices, assuming that prices were I(1) and looking for cointegrating

relationships that were I(0). However, it is possible that fractional cointegration

occurs instead. In particular, the log range, defined as the difference between the

log of the high stock price and the log of the low stock price over an interval, is an

estimator of stock volatility [Alizadeh et al., 2002], which is often thought to have

long memory [Breidt et al., 1998, Hurvich and Soulier, 2009, among many others].

Figure 61 shows the unsmoothed periodograms of the difference in the logs of

the high and low stock prices. The two series appear to be I(0) and close to white

noise, as would be expected for stock prices. Figure 62 plots the log periodograms

versus the log frequencies; this plot also suggests that the series are I(0). At the

higher frequencies, the periodograms are not quite flat, suggesting that the log

differences in high and low prices are not quite white noise (they need not be,

since they are not stock returns). In Figure 63, we plot the estimated coherency

of the two series. The estimated coherency is one at the zero frequency, providing

graphical evidence of cointegration. The coherency then declines until it is zero

at the high frequencies, suggesting that the high and low stock prices are almost

unrelated at high frequencies. We plot the phase in Figure 64. The phase is flat

at low frequencies, suggesting that the high and low stock prices move together,

as one would expect. At higher frequencies, the phase is quite variable; as before,

the low coherency leads to variable estimates of the phase.

We now estimate the cointegrating relationship between the two series. Esti-

mated values of β for a variety of choices of m are given in Table 55 for the NBLS
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Figure 61: Auto-periodograms of the log differences of daily high and low stock

prices.

and local Whittle estimator. The estimated values are all close to one, as one

might expect. In contrast, the OLS estimate is β̂ = 0.800 with a standard error of

0.007, demonstrating the bias of OLS in this case.

Next, we consider the log range, defined to be the log high less the log low; this

is the cointegrating relationship if β = 1. We now study the relationship between

the log high and the log range. Figure 65 shows the unsmoothed logged peri-

odogram of the log range after differencing and tapering; the log periodogram has

an approximately linear relationship with the log frequency for smaller ordinates,

suggesting that the memory parameter of the log range is negative. This provides

graphical evidence that cointegration does exist. Table 56 shows the estimated

memory parameters of the auto-spectra and cross-spectrum for various choices of

m; we taper the data because we have differenced it once. The estimated memory

parameter of the log high is around 0, while the estimated memory parameter of
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Figure 62: Log periodograms of the log differences of daily high and low stock

prices versus the log frequency.

m β̂NBLS β̂NBLS,taper β̂LW

4 1.004 0.999 -

10 0.997 1.002 -

n1/3 = 23 0.991 0.997 1.015

n1/2 = 110 0.968 0.980 1.011

n2/3 = 525 0.938 0.953 1.012

n4/5 = 1837 0.936 0.963 1.010

Table 55: NBLS and local Whittle estimates of the cointegrating relationship

between high and low stock prices for varying values of m.
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Figure 63: Estimated coherency of the log differences of daily high and low stock

prices; smoothing with spans = (91, 91).
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Figure 64: Estimated phase of the log differences of daily high and low stock prices.
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APE Local Whittle

d̂High d̂Range d̂High,Range d̂High d̂Range

n1/2 = 109 0.021 -0.748 -0.232 0.034 -0.460

n3/5 = 280 0.064 -0.552 0.021 -0.016 -0.425

n2/3 = 524 0.013 -0.606 -0.172 -0.018 0.450

n3/4 = 1148 -0.038 -0.548 0.032 -0.040 -0.482

n4/5 = 1836 0.018 -0.668 -0.021 -0.032 -0.490

Table 56: APE estimates of dHigh, dRange, and dHigh,Range for varying powers of

m. Local Whittle estimates for dHigh and dRange using the estimator of Robinson

[2008]. Data are tapered with the Hurvich and Chen taper of order 1 for the APE.

the log range ranges from -0.75 to -0.55, dramatically lower than 0 but higher than

-1, indicating fractional cointegration. Figure 66 shows the coherency between the

log range and the log high. The coherency is highest at high frequencies, drops

to zero, and then increases to about 0.2 near zero frequency. Figure 67 shows the

phase between the log range and the log high. The phase is approximately zero for

the high frequencies and then approaches π at frequency zero. Thus, in the short

run, the range and the high are positively related, while in the long run the range

and the high are negatively related. In addition, Figure 67 suggests the possibility

of a power of λ in the phase at zero. Figure 68 plots the log phase, adjusted to

center it at zero and make the slope positive, versus the log frequency. There

does appear to be a straight line relationship; α̂ = 0.975 (with a standard error

of 0.002), based on a linear regression on the first 30 Fourier frequencies. Since

α̂ is approximately one, there may be finite, non-zero group delay at frequency

0, instead of a power of λ that would lead to infinite group delay at frequency 0.

Some of the behavior may be an artifact of smoothing.
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Figure 65: Log periodogram versus log frequency for the differenced log range.
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Figure 66: Coherency of the differenced log range and differenced log high with

spans = (251, 251).

Figure 67: Phase of the differenced log range and differenced log high with spans =

(251, 251).
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Figure 68: Log of π − φ̂(λ) versus log frequency for frequencies up to 0.05π.

224



3.6 Conclusion

In this paper, we have discussed the possibility of a power law in coherency and

powers of λ in the phase for bivariate long-memory time series. We have described

the implications for the interpretation of the time series behavior and provided

time-domain examples. The average periodogram estimator provides a possible

estimator for the power law in the coherency, but can be quite variable in small

samples. We have also discussed the challenges of estimating the cointegrating re-

lationship between two time series when there is possible power of λ in the phase or

power law coherency; the very narrow-band least squares estimator provides solves

the problem of needing to restrict the growth rate of m to accommodate unknown

powers in the phase and coherency. Finally, we have applied our estimators to two

bivariate time series: money stock measures and high and low stock prices.

Because the phase and coherency have not received much attention in the recent

literature, many possibilities for future research remain. First, better estimation

techniques may exist; either GPH based on the smoothed cross-periodogram or

local Whittle estimators that explicitly describe the local-to-zero behavior of the

phase and coherency may be useful in some cases. Second, this paper has been

limited to the study of bivariate time series; more challenges may appear when

there are three or more time series.

The phase and coherency can provide important insights into the relationships

of two time series, which can help to understand the underlying mechanisms that

generate them. Powers of λ and power laws in the phase and coherency arise natu-

rally in the context of long-memory time series, allowing for particularly interesting

relationships. Plots of the phase and coherency should be included among those

used by practitioners and their behavior should be considered before choosing an

estimator whenever possible.

225



3.7 Technical Lemmas

Proof of Lemma 3.8. Given any ζ ∈ (−π, π], define LR
(

1
λ
; ζ
)

= <
(
L
(

1
λ

)
eiζ
)

and LI
(

1
λ
; ζ
)

= =
(
L
(

1
λ

)
eiζ
)
, so that f12(λ) = e−iζ

(
LR
(

1
λ
; ζ
)

+ iLI
(

1
λ
; ζ
))
λ−2d12 .

Then,

F12(λ) = e−iζ
[∫ λ

0

LR

(
1

λ
; ζ

)
θ−2d12dθ + i

∫ λ

0

LI

(
1

λ
; ζ

)
θ−2d12dθ

]
(3.39)

Choose ζ such that limλ→0+ LR
(

1
λ
; ζ
)
6= 0 and limλ→0+ LI

(
1
λ
; ζ
)
6= 0. Since L(z)

is bounded away from 0, such a ζ always exists. Then, LR
(

1
λ
; ζ
)
, LI

(
1
λ
; ζ
)

are

both slowly varying functions. Applying Karamata’s theorem [see, for example,

Bingham et al., 1989],∫ λ

0

LR

(
1

λ
; ζ

)
θ−2d12dθ ∼

LR
(

1
λ
; ζ
)

1− 2d12

λ1−2d12∫ λ

0

LI

(
1

λ
; ζ

)
θ−2d12dθ ∼

LI
(

1
λ
; ζ
)

1− 2d12

λ1−2d12

Substituting these integrals into the right-hand-side of Equation (3.39), we find

that:

F12(λ) ∼ e−iζ
λ1−2d12

1− 2d12

(
LR

(
1

λ
; ζ

)
+ iLI

(
1

λ
; ζ

))
=

λ1−2d12

1− 2d12

L

(
1

λ

)

Lemma 3.22 Under the conditions of Theorem 3.14, excluding Assumption 3.12,

E

(
2π

n

m∑
j=1

∣∣I(λj)−Ψ(λj̃)Iε(λj)Ψ
∗(λj̃)

∣∣) = o
(
λ1−daa−dbb
m

)
If we further assume that Assumption 3.12 holds and a 6= b,∣∣∣∣∣E

(
2π

n

m∑
j=1

(
Iab(λj)−Ψa(λj̃)Iε(λj)Ψ

∗
b(λj̃)

))∣∣∣∣∣ = o
(
λ1−2dab
m

)
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Proof. A proof very similar to that of Lemma 18 of Chen and Hurvich [2006]

shows that:

E
(∣∣Iab(λj)−Ψa(λj̃)Iε(λj)Ψ

∗
b(λj̃)

∣∣) ≤ Cλ−daa−dbbj j−γ/2

(Their Assumption 2 is similar to our Assumption 3.10, but uses Ψ†jk(λ) instead

of τjk(λ)eiϕjk(λ). Because the results are proved for each (j, k) separately, we can

allow δjk to vary with j, k when we apply the univariate results from Hurvich et al.

[2002] in the proof of that lemma.)

Then, with C being an arbitrary non-zero constant that may change from one

line to the next, we find the expected modulus of the sum in (3.32):

E

(
2π

n

m∑
j=1

∣∣Iab(λj)−Ψa(λj̃)Iε(λj)Ψ
∗
b(λj̃)

∣∣) (3.40)

≤ C

n

m∑
j=1

λ−daa−dbbj j−γ/2 (3.41)

= Cn−1+daa+dbb

m∑
j=1

j−daa−dbb−γ/2 (3.42)

Based on the value of −daa − dbb − γ/2, we have three cases:

Case 1: −daa − dbb − γ/2 < −1. In this case,
∑m

j=1 j
−daa−dbb−γ/2 = O(1).

Because daa + dbb < 1,

n−1+daa+dbb

m∑
j=1

j−daa−dbb−γ/2 = O
(
n−1+daa+dbb

)
= O

(
λ1−daa−dbb
m mdaa+dbb−1

)
= O

(
λ1−2dab
m n−2dρm2dab−1

)
Since daa+dbb < 1 by stationarity, Equation (3.43) is o

(
λ1−daa−dbb
m

)
. If Assumption

3.12 holds, then Equation (3.43) is o
(
λ1−2dab
m

)
.

Case 2: −daa − dbb − γ/2 = −1. Then,
∑m

j=1 j
−daa−dbb−γ/2 =

∑m
j=1

1
j

=
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O(log(m)), and we have:

n−1+daa+dbb

m∑
j=1

j−daa−dbb−γ/2 = O
(
n−1+daa+dbb log(m)

)
(3.43)

= O
(
λ1−daa−dbb
m mdaa+dbb−1 log(m)

)
(3.44)

= O
(
λ1−2dab
m n−2dρm2dab−1 log(m)

)
(3.45)

As before, daa + dbb < 1 by stationarity, so mdaa+dbb−1 log(m) = o(1) and Equa-

tion (3.44) is o
(
λ1−daa−dbb
m

)
. If Assumption 3.12 holds, then Equation (3.45) is

o
(
λ1−2dab
m

)
.

Case 3: −daa − dbb − γ/2 > −1. In this case, we rewrite:

Cn−1+daa+dbb

m∑
j=1

j−daa−dbb−γ/2 = O

(
n−γ/2

n

m∑
j=1

λ
−daa−dbb−γ/2
j

)
(3.46)

= O
(
n−γ/2λ1−daa−dbb−γ/2

m

)
(3.47)

= O

(
1

mγ/2
λ1−daa−dbb
m

)
(3.48)

= O

(
λ

2dρ
m

mγ/2
λ1−2dab
m

)
(3.49)

Since m→∞, (3.48) is o(λ1−daa−dbb
m ). If n

2dρ
2dρ−γ/2

m
→ 0, then m−γ/2λ

2dρ
m = o(1) and

(3.49) is o(λ1−2dab
m ).

The next lemma is closely related to Lemma 19 of Chen and Hurvich [2006],

generalizing the result to the case where εt is non-Gaussian. In certain cases,

the bound on |E (Sab(λj)Sab(λk))| could replace −daa − dbb by −2dab; however,

this will happen only for values of the fourth cumulants and E
(
Jε,u1(λj)Jε,v2(λj)

)
×E

(
Jε,u2(λk)Jε,v1(λk)

)
that preserve the power law coherency properties.

Lemma 3.23 Let Iε,u,v(λj) be the (u, v) element of the cross-periodogram of p-

variate white noise. Let λj̃ be the shifted Fourier frequency. Let 1 ≤ j, k ≤ n/2.
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Define

S(λj) = Ψ(λj̃)Iε(λj)Ψ
∗(λj̃)− f(λj)

Let Sab(λj) be the (a, b) element of S(λj). Then,

E |Sab(λj)Sab(λk)| ≤

 C|λj̃λk̃|−(daa+dbb) +O
(

1
n
|λj̃λk̃|−(daa+dbb)

)
|j − k| ≤ s

O
(

1
n
|λj̃λk̃|−(daa+dbb)

)
|j − k| > s

Proof. Following Chen and Hurvich [2006], we write:

E (Sab(λj)Sab(λk)) (3.50)

=

p∑
u1=1

p∑
u2=1

p∑
v1=1

p∑
v2=1

Ψau1(λj̃)Ψau2(λk̃) Ψbv1(λj̃)Ψbv2(λk̃) (3.51)

×E ((Iε,u1v1(λj)− σu1v1) (Iε,u2v2(λk)− σu2v2)) (3.52)

with

E ((Iε,u1v1(λj)− σu1v1) (Iε,u2v2(λk)− σu2v2))

= cum
(
Jε,u1(λj), Jε,u2(λk), Jε,v1(λj), Jε,v2(λk)

)
+E

(
Jε,u1(λj)Jε,v2(λj)

)
E
(
Jε,u2(λk)Jε,v1(λk)

)
and

E
(
Jε,u1(λj)Jε,v2(λj)

)
E
(
Jε,u2(λk)Jε,v1(λk)

)
= Cχ(|j − k| ≤ s)

229



Next, we compute the cumulant:

cum
(
Jε,u1(λj), Jε,u2(λj), Jε,v1(λj), Jε,v2(λj)

)
= cum

(
1√
2πn

n∑
t=1

εu1,te
itλj ,

1√
2πn

n∑
t=1

εu2,te
itλk ,

1√
2πn

n∑
t=1

εv1,te
−itλj ,

1√
2πn

n∑
t=1

εv2,te
−itλk

)

=
1

(2πn)2
cum

(
n∑
t=1

εu1,te
itλj ,

n∑
t=1

εu2,te
itλk ,

n∑
t=1

εv1,te
−itλj ,

n∑
t=1

εv2,te
−itλk

)

=
1

(2πn)2

n∑
t=1

cum(εu1,te
itλj , εu2,te

itλk , εv1,te
−itλj , εv2,te

−itλk)

=
1

(2πn)2

n∑
t=1

cum(εu1,t, εu2,t, εv1,t, εv2,t)

=
1

(2π)2n
cum(εu1,1, εu2,1, εv1,1, εv2,1)

which is O
(

1
n

)
by Assumption 3.1.

Substituting these results into Equation (3.52), we find that:

E|Sab(λj)Sab(λk)|

= O

((
χ(|j − k| ≤ s) +

1

n

) p∑
u1=1

p∑
u2=1

p∑
v1=1

p∑
v2=1

∣∣Ψau1(λj̃)Ψau2(λk̃)Ψbv1(λj̃)Ψbv2(λk̃)
∣∣)

= O

((
χ(|j − k| ≤ s) +

1

n

)
|λj̃λk̃|

−(daa+dbb)

)

Lemma 3.24 Let S(λj) = Ψ(λj̃)Iε(λj)Ψ
∗(λj̃) − f(λj). Under the conditions of

Theorem 3.14, excluding Assumption 3.12,

E

(
4π2

n2

m∑
j=1

m∑
k=1

Sab(λj)Sab(λk)

)
= o

(
λ2−2daa−2dbb
m

)
If a 6= b and Assumption 3.12 holds,

E

(
4π2

n2

m∑
j=1

m∑
k=1

Sab(λj)Sab(λk)

)
= o

(
λ2−4dab
m

)

230



Proof. Applying Lemma 3.23, the expected square of the sum in 3.33:

E

(
4π2

n2

m∑
j=1

m∑
k=1

Sab(λj)Sab(λk)

)
(3.53)

≤ 4π2

n2

m∑
j=1

m∑
k=1

E
(
Sab(λj)Sab(λk)

)
(3.54)

= O

(
1

n3

m∑
j=1

m∑
k=1

λ−daa−dbb
j̃

λ−daa−dbb
k̃

(3.55)

+
1

n2

m∑
j=1

m∑
k=1

|λj̃λk̃|
−daa−dbbχ(|j − k| ≤ s)

)
(3.56)

Because daa + dbb < 1:

1

n3

m∑
j=1

m∑
k=1

λ−daa−dbb
j̃

λ−daa−dbb
k̃

=
1

n

(
1

n

m∑
j=1

λ−daa−dbb
j̃

)2

= O

(
1

n
λ2−2daa−dbb
m

)
We rewrite Equation (3.56) as:

1

n2

m∑
j=1

m∑
k=1

|λj̃λk̃|
−daa−dbbχ(|j − k| ≤ s)

= O

(
1

n2

m∑
j=1

λ−2daa−2dbb
j̃

)

= O

(
n−2+daa+dbb

m∑
j=1

j−2daa−2dbb

)

As in Lemma 3.22, there are three cases, now based on the value of −2daa − 2dbb.

Case 1: −2daa − 2dbb < −1. In this case,
∑m

j=1 j
−2daa−2dbb = O(1) as m→∞.

Thus,

n−2+daa+dbb

m∑
j=1

j−2daa−2dbb = O
(
n−2+daa+dbb

)
(3.57)

= O
(
λ2−2daa−2dbb
m m2daa+2dbb−2

)
(3.58)

= O
(
λ2−4dab
m n−4dρm4dab−2

)
(3.59)
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Under Assumption 3.11, the expression in Equation (3.58) is o(λ2−2daa−2dbb
m ) because

daa + dbb < 1 and m → ∞. Under Assumption 3.12, the expression in Equation

(3.59) is o(λ2−2dab
m ).

Case 2: −2daa − 2dbb = −1. In this case,
∑m

j=1 j
−2daa−2dbb = O(log(m)) as

m→∞. Then,

n−2+daa+dbb

m∑
j=1

j−2daa−2dbb = O
(
n−2+daa+dbb log(m)

)
(3.60)

= O
(
λ2−2daa−2dbb
m m2daa+2dbb−2 log(m)

)
(3.61)

= O
(
λ2−4dab
m n−4dρm4dab−2 log(m)

)
(3.62)

Under Assumption 3.11, the expression in Equation (3.61) is o(λ2−2daa−2dbb
m ) because

daa + dbb < 1 and m → ∞. Under Assumption 3.12, the expression in Equation

(3.62) is o(λ2−2dab
m ).

Case 3: −2daa − 2dbb > −1. Then, we have

n−2+daa+dbb
∑
j=1

j−2daa−2dbb = O

(
1

n
λ2−2daa−2dbb
m + λ1−2daa−2dbb

m

)
(3.63)

= O

(
1

m
λ2−2daa−2dbb
m

)
(3.64)

= O

(
λ

2dρ
m

m
λ2−2dab
m

)
(3.65)

Since m→∞, (3.64) is o(λ
2(1−daa−dbb)
m ). If n

2dρ
2dρ−1

m
→ 0, then λ

2dρ
m

m
= o(1) and (3.65)

is o
(
λ

2(1−2dab)
m

)
.

The following lemma applies whenever fab(λ) is a regularly-varying complex

function with dab < 1/2; it does not require that L(1/λ) has a limit as λ→ 0+ or

that it is in L∗.
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Lemma 3.25 Let fab(λ) be regularly varying at 0 with dab < 1/2.

2π

n

m∑
j=1

fab(λj)− Fab(λm) = o(Fab(λm))

Proof. Robinson [1994, Proposition 1, page 525] has already proven this result in

the case that 0 ≤ dab < 1/2.

Following the proof of Robinson [1994, Proposition 1, page 525], for large

enough n,

2π

n

m∑
j=1

fab(λj)− Fab(λm) ≤

∣∣∣∣∣
m∑
j=1

∫ λj

λj−1

(
L

(
1

λj

)
λ−2dab
j − L

(
1

λ

)
λ−2dab

)
dλ

∣∣∣∣∣
+o

(
1

n

m∑
j=1

L

(
1

λj

)
λ−2dab
j +

∫ λm

0

L

(
1

λ

)
λ−2dab

)
We decompose the first term into two parts:∣∣∣∣∣

m∑
j=1

∫ λj

λj−1

(
L

(
1

λj

)
λ−2dab
j − L

(
1

λ

)
λ−2dab

)
dλ

∣∣∣∣∣
≤

m∑
j=1

∣∣∣∣∣L
(

1

λj

)∫ λj

λj−1

(
λ−2dab
j − λ−2dab

)
dλ

∣∣∣∣∣
+

m∑
j=1

∣∣∣∣∣
∫ λj

λj−1

λ−2dab

(
L

(
1

λj

)
− L

(
1

λ

))
dλ

∣∣∣∣∣
For the first term, we use a Taylor series expansion to find:∫ λj

λj−1

(
λ−2dab
j − λ−2dab

)
dλ =

(
2π

n

)1−2dab

j−2dab − 1

1− 2d

(
λ1−2dab
j − λ1−2dab

j−1

)
=

(
2π

n

)1−2dab
[
j−2dab − 1

1− 2dab

(
j1−2dab − j1−2dab

+(1− 2dab)j
−2dab +O(j−1−2dab)

)]
= O

(
1

j2
λ1−2dab
j

)
Then, ∣∣∣∣∣L

(
1

λj

)∫ λj

λj−1

(
λ−2dab
j − λ−2dab

)
dλ

∣∣∣∣∣ = O

(
1

j2
L

(
1

λj

)
λ1−2dab
j

)
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Summing over j,

m∑
j=1

∣∣∣∣∣L
(

1

λj

)∫ λj

λj−1

(
λ−2dab
j − λ−2dab

)
dλ

∣∣∣∣∣ = O

(
1

m
L

(
1

λm

)
λ1−2dab
m

)
For the second term, Seneta [1970, page 7] notes that we can choose the slowly

varying function, L(z), to be differentiable with zL′(z)
L(z)

→ 0. Using integration by

parts, we may write:∫ λj

λj−1

λ−2dabL

(
1

λ

)
dλ =

1

1− 2dab

(
L

(
1

λj

)
λ1−2dab
j − L

(
1

λj−1

)
λ1−2dab
j−1

)
+

1

1− 2dab

∫ λj

λj−1

(
1

λ
L′
(

1

λ

))
λ−2dabdλ

The last term is of a smaller order as n→∞ because
1
λ
L′( 1

λ
)

L( 1
λ

)
→ 0. Thus,

∫ λj

λj−1

λ−2dab

(
L

(
1

λj

)
− L

(
1

λ

))
dλ =

L
(

1
λj

)
1− 2dab

(
λ1−2dab
j − λ1−2dab

j−1

)
− 1

1− 2dab

(
L

(
1

λj

)
λ1−2dab
j

−L
(

1

λj−1

)
λ1−2dab
j−1

)
+ o

(
λ1−2dab
j

)
=

λ1−2dab
j−1

1− 2dab

(
L

(
1

λj

)
− L

(
1

λj−1

))
+o
(
λ1−2dab
j

)
= o

(
λ1−2dab
j

)
since L

(
1
λj

)
− L

(
1

λj−1

)
= o(1). Thus, summing over j,

m∑
j=1

∣∣∣∣∣
∫ λj

λj−1

λ−2dab

(
L

(
1

λj

)
− L

(
1

λ

))
dλ

∣∣∣∣∣ = o (Fab(λm))
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4 RE-EM Trees: A New Data Mining Approach

for Longitudinal Data

4.1 Introduction

Some response data are one dimensional: observations over time or across individ-

uals. However, panel or longitudinal data, in which we observe many individuals

over multiple periods, offers a particular opportunity for understanding, as we

observe the different paths that a variable might take across individuals. Such

opportunities are especially attractive with large amounts of data, as this allows

us to fit complex or highly structured models to the data. In this paper, we

present a data mining approach that is specialized for longitudinal data. This

method combines the flexibility of data mining methods with the specific nature

of a longitudinal dataset.

Suppose we observe a panel of individuals i = 1, ..., I at times t = 1, ..., Ti.

Throughout this paper, we will refer to a member of the panel, i, as an individual,

and a single observation period for an individual, (i, t), as an observation. That

is, one individual is associated with multiple observations. The covariates may be

constant over time, constant across individuals, or varying across time and individ-

uals. For each observation, we observe a vector of covariates, xit = (xit1, ..., xitK)′,

and a response, yit. Our model also includes a known design matrix, Zit, which

may vary each period and depend on the covariates, and a vector of unknown time-

constant, individual-specific effects, bi. In the case where only the intercept varies

across individuals, Zi is a matrix of ones and bi is the individual-specific intercept.

The inclusion of a general design matrix allows for the individual effects to be

more complicated, since the effects may depend on the observed characteristics of
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individuals. Consider a general effects model with additive errors:

yit = Zitbi + f(xit1, ..., xitK) + εit (4.1)
εi1
...

εiTi

 ∼ Normal(0, Ri) (4.2)

Throughout this paper, we assume that the errors, εit, are independent across

individuals. Depending on our assumptions about bi and f , the general model

may reduce to different well-known models. Consider the case where Zit = 1 so

that bi is an individual-specific intercept. If f is a known function that is linear

in the parameters and the bi are taken as fixed or potentially correlated with the

predictors, then this is a fixed effects model. Under the same assumptions on

f , if we instead assume that bi are random variables that are uncorrelated with

the predictors, then the model is a random effects model. If Zi includes one or

more covariates and bi is again taken to be uncorrelated with the predictors, this

becomes a random parameters model.

Random effects models, when appropriate, are more efficient than fixed effects

models, because the number of parameters estimated in a fixed effects model in-

creases with the addition of more individuals. This is especially important when

Ti is small relative to I. Furthermore, fixed effects models with individual-specific

intercepts (by far the most common kind) do not allow the inclusion of predic-

tors that are always constant for individuals, such as gender. Finally, because

the distribution of the fixed effects, bi, is not estimated, we have no basis for

estimating the individual-specific effects in predictions for individuals not in the

sample. Wooldridge [2002, Section 10.2.1] discussed the differences between these

two models in more detail.

Fixed and random effects models typically assume a parametric form for f ,
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which might be too restrictive an assumption. The functional form of f is fre-

quently unknown, and assuming a linear model may not be the best option. Fur-

thermore, K may be very large, so that including all of the predictors directly may

lead to overfitting and therefore poor predictions. A variety of nonparametric and

data mining methods exist to estimate f in the case when bi is constant across

individuals, including ridge regression, splines, and myriad others. We focus on

regression trees, as described by Breiman et al. [1984]. One could fit a regres-

sion tree to a longitudinal data set, ignoring the longitudinal data structure and

assuming that bi = 0 for all i. However, just as fitting a linear model without

fixed or random effects to a longitudinal dataset can lead to incorrect estimates

and inference, applying a nonparametric method designed for cross-sectional data

directly to longitudinal data may be misleading. Instead, we propose a method

that accounts for the additional longitudinal structure in the data.

We continue in section 4.2 with a review of random effects models, regression

trees, and the existing literature on data mining methods for longitudinal data. In

section 4.3, we present our model and estimation method. In sections 4.4 and 4.5,

we apply this method to datasets on traffic fatality rates and on Amazon third

party transactions, respectively. In section 4.6, we use Monte Carlo simulations

to explore the efficacy of the method. Section 4.7 concludes with a discussion of

potential future work.
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4.2 Previous Work

4.2.1 Random Effects Models

The parametric random effects model is given by:
yi1
...

yiT

 = Zibi +


f(xi11, ..., xi1K)

...

f(xiT1, ..., xiTK)

+


εi1
...

εiti




εi1
...

εiti

 ∼ Normal(0, Ri)

bi ∼ Normal(0, D)

where f(xit1, ..., xitK) = β1xit1 + ...+ βKxitK is a parametric linear function. This

model assumes that the random effects and the errors are independent of each

other and of the covariates.

The parameters, β = (β1, ..., βK), can be estimated using standard regression

techniques. These techniques treat both the individual-specific random effects

and the observation-specific errors as part of the errors term of the regression.

A linear regression of yit on xit· will yield consistent and unbiased estimates of

the parameters of f , since we assume that neither the effects nor the errors are

correlated with the covariance. However, the estimated β from linear regression

will not have the minimum variance because of the covariance structure in Zibi+εi.

Using generalized least squares accounts for the correlation in the error terms. For

more information on the GLS approach, see Wooldridge [2002, section 10.4].

The two-stage approach to fitting random effects models, described by Harville

[1977a], yields estimates of the random effects, bi, instead of including them in the

error terms. While maximum likelihood estimation can be applied directly to the
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two-stage approach, we focus instead on the EM algorithm for two-stage random

effects models given by Laird and Ware [1982]. To apply the EM algorithm, they

note that, given estimates for the parameters defining Ri and D, one can estimate

the bi and therefore expected values of sufficient statistics for Ri and D. At

the same time, one can estimate Ri and D given their sufficient statistics. This

suggests a specialization of the EM algorithm to random effects estimation [Laird

and Ware, 1982]:

1. Initialize the random effects, b̂i, to zero and the covariance matrices, D̂, R̂i,

to identity matrices of the correct sizes.

2. Iterate through the following steps until the estimated random effects, b̂i,

converge:

(a) Estimate a linear regression to fit β, based on the target variable, yit −

Zitb̂i, and predictors, xit· = (xit1, ..., xitK), for i = 1, ..., I and t =

1, ..., Ti.

(b) Estimate the new random effects, b̂i, and errors, ε̂i, given the covariance

matrices, D̂, R̂i, and β.

(c) Estimate the covariance matrices, D̂, R̂i, using the new estimates of the

random effects and errors.

The resulting estimated random effects are the empirical Bayes estimates.

This estimation method for a random effects linear model can be modified in a

number of different ways. Laird and Ware [1982, section 5] describe how the EM al-

gorithm can be used for restricted maximum likelihood (REML) estimation as well

as maximum likelihood estimation of the random effects model. REML accounts

for the degrees of freedom lost in estimating I random effects by using maximum
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likelihood on linear combinations of the original data, called error contrasts, that

are chosen to be linearly independent. This leads to an unbiased estimate of the

variance of the random effects, which is generally preferable. [See Patterson and

Thompson, 1971, Harville, 1977a, Laird and Ware, 1982, for more information.]

A generalization of the linear random effects model allows for autocorrelation

in the error terms, with the most common structure an autoregressive model of

order one. However, Verbeke and Molenberghs [2000, pages 28-29] note that esti-

mating the autocorrelation parameter can be challenging for linear random effects

models, even for simple autocorrelation models. Despite this limitation, models

including autocorrelation may be helpful in some cases. To test for autocorrelation

in a linear random effects model, we can use a likelihood ratio test. Let l0 be the

log likelihood of a linear random effects model with no autocorrelation and lAR be

the log likelihood of a linear random effects model with autocorrelation modeled

using p parameters. Then, −2(l0 − lAR) ∼ χ2
p, as in any likelihood ratio test. We

can also test whether including autocorrelation in a linear random effects model is

useful by comparing the predictive power of the model with and without autocor-

relation. Score tests for autocorrelation and heteroskedasticity for linear models

with random effects have been suggested by Chi and Reinsel [1989], Verbeke and

Molenberghs [2003], and Lin and Wei, among others.

Afshartous and de Leeuw [2005] discuss prediction for linear random effects

models. They describe three different models: an “OLS model” in which a model is

fitted separately for each individual, a “prior model” which is a Bayesian version of

fitting a linear model that ignores the random effects, and a “multilevel model” that

is a Bayesian random effects model. In simulations, they find that the multilevel

model performs best, and that the performance of the OLS model approaches that

of the multilevel model as the number of observations per individual increases from

240



5 to 100. They find that the prior model performs quite badly.

4.2.2 The Regression Tree Framework

Regression trees were originally popularized by Breiman et al. [1984], though they

dated the use of tree structures in regression to the Automatic Interaction De-

tection Program of Morgan and Sonquist [1963]. We use the implementation of

regression trees in the rpart package [Therneau and Atkinson, 2006] of the statis-

tical software package R [R Development Core Team, 2008]. A regression tree is

a binary tree, where each non-terminal node is split into two nodes based on the

values of a single predictor. To find the predicted value for a response, one finds

the correct terminal node, g, based on the predictors and then takes the mean of

all the response values in that node, µ(g). To construct such a tree, we measure

the “impurity” of responses at a node, g, by:

SS(g) =
∑
i∈g

(yi − µ(g))2

Given any node, g, and any possible split, s, of the node into two daughter nodes,

gL and gR, we define the split function as

φ(s, g) = SS(g)− SS(gL)− SS(gR)

At each step, the split is chosen to maximize SS(s, g) over all possible splits at all

existing terminal nodes.

This splitting continues until all of the elements of each node have the same

response value or the number of observations in each node reaches a given minimum

value. The resulting tree is overly complex. The next step is to “prune” the tree

by removing some of the branches. To quantify the desired amount of pruning,
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Breiman et al. [1984] defined the error complexity of a tree as:

Rα(T ) =
∑
g∈|T̃ |

SS(g) + α|T̃ |

where T̃ is the set of terminal nodes. This expression combines a measure of the

in-sample accuracy of the tree with a penalty for the number of nodes. The value

of the complexity parameter, α, helps to determine the size of the resulting tree by

weighting the penalty for the size of the tree. Varying the complexity parameter

leads to a sequence of nested trees, ranging from a tree that has only a root to

the unpruned, overly complex tree. The complexity parameter could be chosen by

cross-validation; for simplicity, we use the default value given in the rpart package.

Unlike linear models, regression trees are capable of handling missing predictor

values using surrogate split. When predictors are missing, the best split, s∗, is

found based on all cases where the predictor is not missing. A second “surrogate”

split, s̃, can also be chosen such that the probability that s∗ sends an observation to

the same node as s̃ is maximized. This surrogate split can be used for observations

where a particular predictor value is missing. For more information about the

performance of surrogate split and other missing data methods in the case of

classification trees, see Ding and Simonoff [2010].

4.2.3 Previous applications of trees to longitudinal data

Segal [1992] and De’Ath [2002], apparently independently, proposed the first ap-

plication of regression trees to longitudinal data, in the case where Ti = T for all i.

Both created trees in which the response variable was the vector yi = (yi1, ..., yiT ).

At each node, a vector of means, µ(g), was produced, where µt(g) is the estimated

value for yit at node g. Changing the response variable in this way required that

the split function be modified. Segal suggested two alternatives. Only the first is

242



applicable to the model we have presented4. At each node, define

SS(g) =
∑
i∈g

(yi − µ(g))′V (θ, g)−1(yi − µ(g))

where θ is a vector of parameters describing the covariance matrix, V , of the

observations within a group. Note that V (θ, g) can be any covariance matrix

that depends on a small number of parameters, such as the covariance matrix for

AR(1) errors or for the exchangeable (compound symmetry) model that implies

constant correlation in the errors. As with traditional regression trees, the split

function splits node g into daughter nodes gL and gR to maximize φ(s, g) = SS(g)−

SS(gL)−SS(gR). Notice that the same V must be used in computing SS(gL) and

SS(gR) to ensure that φ(s, g) ≥ 0, but V can be updated in each node after a

split has been chosen. De’Ath [2002] also estimated a mean function at each node.

Since his work was based on observations of multiple species in a single location,

instead of the same individual across time, he assumed that V (θ, g) was the identity

matrix. His version is available as the R package mvpart [De’ath, 2006]. Larsen

and Speckman [2004] proposed a similar approach in which they estimated V as

the sample covariance matrix over the full dataset. Abdolell et al. [2002] discussed

the use of trees to find clusters based on a single predictor and a longitudinal

outcome variable. Hsiao and Shih [2007] also estimated a vector of means using a

tree structure; they use an extension of GUIDE [Loh, 2002].

Notice that the approach of Segal and De’Ath and others depends on a single

set of predictors for all of the observation periods. This requires that the values of

time-varying predictors observed after the first period cannot be used to predict

4Segal’s second method was based on identifying heterogeneity in the covariances, and required

that the means be fitted through another method. Since the function of interest to us, f , describes

the relationship of the covariates to the mean value, fitting the means through another method

would not make sense in our model.

243



any observations. This could lead to a loss of information and therefore poorer

predictions. Alternatively, all of the periods of time-varying predictors could be

used for predicting every observation; this would likely not make sense in practice,

since that would allow for covariate values from future time periods to be used

in predicting response values from earlier time periods. Furthermore, these trees

cannot be used for the prediction of future periods for the same individuals. That

is, if we observe only yi1, ..., yi,T−1 for each i, this model will not be able to predict

yiT , since the means for period T must be constructed based on observations for

that period. These two limitations are quite serious in the applications we will

present.

More recent work by Galimberti and Montanari [2002] developed a way to cre-

ate trees that include both time-varying covariates and a longitudinal data struc-

ture. While their underlying model is similar to ours, their implementation was

much more complex. They first assumed that the covariances of the errors and the

random effects were estimated outside their procedure. They then modified the

split function to account for the correlation structure. Because they allowed for

time-varying covariates, different observations for the same group could appear in

different nodes; this made the split function particularly complicated. Their algo-

rithm is not generally available in software. Furthermore, there is no way to handle

observations with missing predictors. Finally, because the group-specific effects are

never estimated, one could not predict future observations for individuals already

included in the sample. This paper will present an algorithm that accomplishes

their goal in a more direct way, while also overcoming these weaknesses.

Other papers have also applied the tools of data mining to longitudinal data.

Some followed the approach of Segal [1992], applying his method to other types

of responses. Zhang [1998] considered the case of binary response variables; these
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are classification trees instead of regression trees. Lee [2005, 2006] and Lee et al.

[2005] used generalized estimating equations to fit trees for general types of re-

sponse variables; their trees were not the traditional regression trees. Instead,

they estimated a model using maximum likelihood at each node and then split

based on the residuals from estimation. These models also depend on a single set

of predictors for all periods and cannot predict future observations for individuals

in the sample. Other papers have considered data mining methods other than

trees for longitudinal data. Zhang [1997] used adaptive splines to fit longitudinal

data models, while Evgeniou et al. [2006] used ridge regression to fit models of

consumer heterogeneity. We do not pursue either of these methods further.

4.3 The RE-EM Tree Estimation Method

Consider a version of the model with additive individual effects given above, in

which we impose additional structure on the effects:
yi1
...

yiT

 = Zibi +


f(xi11, ..., xi1K)

...

f(xiT1, ..., xiTK)

+


εi1
...

εiti



εi =


εi1
...

εiti

 ∼ Normal(0, Ri)

bi ∼ Normal(0, D)

We propose an estimation method that uses a tree structure to estimate f , but

also incorporates individual-specific random effects, bi. In this method, the nodes

may split based on any covariate, so that different observations for the same in-

dividual may be placed in different nodes. However, our method ensures that the

longitudinal structure in the errors is preserved.
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To estimate this model, we must estimate f and D, as well as Ri and bi

for each i. Our estimation method is based on the ideas of the Expectation-

Maximization (EM) algorithm of Laird and Ware [1982], where the M-step is based

on using a regression tree instead of traditional parametric maximum likelihood

methods. This method is analogous to fitting a parametric random effects using

the EM algorithm, and for that reason we call it a Random Effects-Expectation

Maximization (RE-EM) Tree.

Algorithm 4.1 Estimation of a RE-EM Tree.

1. Initialize the random effects, b̂i, to zero and the covariance matrices, D̂, R̂i,

to identity matrices of the correct sizes.

2. Iterate through the following steps until the estimated random effects, b̂i,

converge:

(a) Estimate a regression tree approximating f , based on the target variable,

yit − Zitb̂i, and predictors, xit· = (xit1, ..., xitK), for i = 1, ..., I and

t = 1, ..., Ti.

(b) Estimate the new random effects, b̂i, and errors, ε̂i, given the covariance

matrices, D̂, R̂i, and the tree.

(c) Estimate the covariance matrices, D̂, R̂i, using the new estimates of the

random effects and errors.

This method differs from Laird and Ware only in step 2a; they fit a parametric

model rather than a regression tree. Like fixed effects estimation methods, this

method estimates the individual effects. Like the random effects model, the indi-

vidual effects are assumed to be independent of the predictors; the design matrix,
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Zi, can include predictors, which would relate the predictors to the individual-

specific intercept in a known way.

The relationship between the covariance matrices and the random effects and

errors will depend on the specification of the covariance matrices. Laird and Ware

allow D to be a general covariance matrix and assume that Ri = σ2Ini×ni , where

Ini×ni is the identity matrix. If the random effects and the errors were observed,

the sufficient statistics for Ri and D, respectively, would be:

t1 =
m∑
i=1

εTi εi

t2 =
m∑
i=1

bib
T
i

To use the EM algorithm, we compute the expectations of these sufficient statistics,

given f̂ , the predictor values, and the response values from:

Wi(θ̂) = (Ri(θ̂) + ZiD(θ̂)ZT
i )−1 (4.3)

b̂i = D(θ̂)ZT
i Wi(θ̂)(yi − f̂(xi)) (4.4)

ε̂i = yi − f̂(xi·)− Zib̂i (4.5)

t̂1 =
m∑
i=1

(
ε̂Ti ε̂i + tr(V ar(ε̂i|yi, f̂ , θ̂))

)
(4.6)

t̂2 =
m∑
i=1

(
b̂ib̂

T

i + V ar(b̂i|yi, f̂ , θ̂)
)

(4.7)

These formulas match those of Laird and Ware, except that our f̂(xi) is a regression

tree instead of a linear function. While this method is similar in spirit to the

EM algorithm, it does not maximize a likelihood and therefore is not a true EM

algorithm and does not necessarily have the same properties.

As an alternative approach, we may estimate the random effects associated with

a regression tree using a traditional random effects linear model with fixed effects

corresponding to the fitted values, f̂(xi). Estimation methods for such models are
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included in most statistical packages. Then, we can subtract the estimated random

effects from the target variable and estimate a new regression tree, as before. This

yields an alternative estimation method.

Algorithm 4.2 Estimation of a RE-EM Tree.

1. Initialize the random effects, b̂i, to zero.

2. Iterate through the following steps until the estimated random effects, b̂i,

converge:

(a) Estimate a regression tree approximating f , based on the target variable,

yit − Zitb̂i, and predictors, xit· = (xit1, ..., xitK), for i = 1, ..., I and t =

1, ..., Ti. Use this regression tree to create a set of indicator variables,

I(xit· ∈ gp), where gp ranges over all of the terminal nodes in the tree.

(b) Fit the linear random effects model, yit = Zitbi + I(xit· ∈ gp)µp + εit.

Extract b̂i from the estimated model.

In this version of the algorithm, Step 2b contains its own optimization, in order

to estimate the random effects from the linear model. Including the optimization

within this step often leads to fewer iterations for the algorithm, as the estimated

random effects converge more quickly.

The linear model with random effects in Step 2b can be estimated using max-

imum likelihood or using restricted maximum likelihood (REML). In most of the

results we present, we estimate the linear model with REML, because it yields

unbiased estimates for the variance. As we show in Section 4.6.5, using maximum

likelihood instead of REML has a very small effect on the resulting estimates.

Using a linear model with random effects directly also allows us to account

for autocorrelation using existing estimation methods for linear models. Allowing
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for autocorrelation can lead to different estimated effects and therefore different

trees. Therefore, testing for autocorrelation is not as straightforward as for para-

metric models because different trees have different implied linear models. In this

paper, we test for autocorrelation using two different likelihood ratio tests, one

in which the linear model being estimated corresponds to the RE-EM tree where

autocorrelation is not allowed and one corresponding to the RE-EM tree where

autocorrelation is allowed. In the examples we consider in Sections 4.4 and 4.5,

the two tests lead to the same conclusions.

Given a RE-EM tree, the associated random effects, and the estimated co-

variance matrices, we can predict out-of-sample observations. Suppose the tree is

estimated on data for individuals i = 1, ..., N1 for periods t = 1, ..., T1; for nota-

tional simplicity, we are assuming that all individuals have the same number of

observations, though this is not required. The first type of out-of-sample predic-

tion is predicting future observations for individuals in the sample; that is, t > T1

for 1 ≤ i ≤ N1. For this sort of prediction, we predict f(xit1, ..., xitK) using the

estimated tree and then add on Zib̂i, which is known from the estimation process.

The second sort of prediction is for individuals for whom there are no observations

of the response; that is, i > N1. Then, we have no basis for estimating bi, so we

set it to 0. Therefore, our best predictor is f(xit1, ..., xitK). Finally, we might wish

to predict future observations for new individuals; that is, i > N1 but the target is

observed for t = 1, ..., T1 and we wish to predict for t > T1. Then, we can use the

observations in the first T1 periods to estimate b̂i. Estimating the new random

effect uses equations (4.3) and (4.4), with Zi equal to the design matrix for the new

individual and Ri equal to the covariance matrix for the individual based on the

estimated parameters from the original model. We then proceed with prediction

as before.
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To illustrate our method, consider the artificial data given in Figure 69. This

is a panel of six individuals observed over three periods each. These data are

generated according to the model:

yit = bi + 2xi + 3I(t > 2 ∩ xi = 1) + εit

bi ∼ Normal(0, 1)

εit ∼ Normal(0, 1)

where I(·) is the indicator function which is 1 if the statement is true and 0

otherwise. We define xi as a time-invariant covariate which is 1 for i = 1, 2, 3 and

zero for i = 4, 5, 6. This model corresponds to a tree structure with two splits: the

first is based on xi, and the second is in the branch where xi = 1 and based on

whether t > 2.

To estimate the RE-EM tree for this data using Method 1, we set Zi = 14 to

be a vector of length 4 consisting of ones for each i, and we set D̂ = I1×1, b̂i = 0,

R̂i = I4×4, where In×n is an n × n identity matrix. Since b̂i = 0, in the first step

we apply rpart to the dataset with predictors t and xi and observed values yit, for

all i and t. In this simple case, the tree in the initial estimation matches the true

tree structure, though the means at the nodes are not identical to the true means

because of the random effects and random errors. Because t takes on only integer

values, the split t < 2.5 is equivalent to splitting on t ≤ 2 and t > 2. Given this

tree, we first compute the weighting matrix:

Wi = (I4×4 + 14I1×11
T
4 )−1

=


0.8 −0.2 −0.2 −0.2

−0.2 0.8 −0.2 −0.2

−0.2 −0.2 0.8 −0.2

−0.2 −0.2 −0.2 0.8
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Using this weighting matrix, we compute the estimated random effects, b̂i, and

errors, ε̂it for all observations and periods. The errors are shown in Figure 70. The

estimated random effects are

(−1.2431335, 1.446752,−0.2036185,−1.5737146, 0.4378226, 1.135892)

Given the estimated errors and random effects, we then estimate the covariance

matrices that they imply:

D = [2.273075]

Ri = 1.567379I4×4

A new tree is then estimated based on the target variable, yit − b̂i. The sec-

ond estimate of the tree is identical to the first. The new values of D,Ri, and

the tree lead to a new weighting matrix and new estimates for the errors and

random effects. The estimates for the errors are shown in Figure 71. The al-

gorithm continues through additional iterations until the estimates of the ran-

dom effects change by only a small amount from one iteration to the next. In

this case, three iterations are required, the final estimated random effects are

(−1.41, 1.64,−.023,−1.79, 0.50, 1.29), and the final estimated errors are given in

Figure 72. The estimated variance of the random effects is D = [2.780], which

is lower than the true variance of 4. The estimated error covariance matrix is

Ri = 0.903I4×4, which is close to the true covariance matrix of I4×4. These errors

are no longer separated by group and no longer show a pattern with respect to

time. In this particular case, the tree structure, given in Figure 73 does not change

at each iteration, though the random effects estimates do. In fact, because the ran-

dom effects are constrained to sum to 0, the estimated means at the nodes do not

change either in this simple case. In more complicated cases, the tree structure and

251



Figure 69: Data for the simple example of RE-EM trees.

the means at the nodes may change many times as the estimated random effects

evolve.

We repeat this exercise using Method 2. As before, we initialize the random

effects to 0, so that we fit our first regression tree to the original data, ignoring

the panel data structure. Next, instead of computing D̂ and R̂i directly, we fit a

linear random effects model to the data. This model has three predictors, which

are indicator variables for the three terminal nodes of the fitted tree. That is, the

predictors for the linear model are I(xi = 0), I(xi = 1, t < 2.5), and I(xi = 1, t >

2.5). The fitted linear model estimates D̂ = 2.7801 and R̂i = 0.9025965I4×4. The

estimated random effects after the first round are

(−1.4478475, 1.6849971,−0.2371496,−1.8328674, 0.5099214, 1.3229460)

and the estimated errors are shown in Figure 74. For the second iteration of

the algorithm, we fit the tree again, using the target variable less the estimated

random effects. Because the fitted tree is identical in this simple case, the estimated

random effects are identical, and the algorithm converges in two steps instead of

three. Notice that the estimated trees are identical and the estimated random
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Figure 70: Estimated errors after the first iteration of the RE-EM procedure for

the simple example.

Figure 71: Estimated errors after the second iteration of the RE-EM procedure for

the simple example.
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Figure 72: Estimated errors after the final iteration of the RE-EM procedure for

the simple example.

Figure 73: Estimated RE-EM tree for the simple example.
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Figure 74: Estimated errors after the final iteration of the RE-EM procedure for

the simple example, using Method 2.

effects are similar across the two methods.

In more complicated cases, the tree structure may change from one iteration to

the next, so that the estimated random effects change each iteration. Even though

this occurs, we have found that Method 2 often converges in fewer iterations than

Method 1 does, with similar results, as we will show in Section 4.6.5. Therefore,

unless otherwise stated, we will use Method 2 in the remainder of this paper.

4.4 Application to State Traffic Fatality Rates

As our first application, we consider data on traffic fatality rates for the forty-eight

contiguous states from 1982-1999. These data were first studied by Dee and Sela

[2003] using a variety of parametric longitudinal data models to find the effect of

increased highway speed limits on the traffic fatality rates for different demographic

groups. In this paper, we focus on three traffic fatality rates: the overall traffic

fatality rate per 100,000 in population, the traffic fatality rate for drivers aged 16

to 24, and the traffic fatality rate for drivers aged 65 and older. These two age
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groups are usually of the most interest to policy-makers, since they have higher

traffic fatality rates than the rest of the population. Most of the predictors that

Dee and Sela used were traffic law variables, such as seat belt regulations, drunk

driving laws, and the state maximum speed limit; the state unemployment rate

was also a predictor, to proxy for the effect of the economy. (See Dee and Sela

[2003, Section 2] for more information about the predictors used.) In addition to

those predictors, we include the proportion of the population that falls into the

different demographic groups, by both age and gender, the number of vehicle miles

traveled, and the total population of the state.

In addition to the variables included, we might expect time-constant, state-

level effects for a variety of reasons. The geographic location may affect traffic

fatalities, because of the dangers of colder or wetter weather. The amount of

urbanization may affect the amount that people drive and therefore the chances of

traffic fatalities. These two factors are likely to affect the estimated effects for all

three groups. States that have a large number of visitors or part-year residents,

such as Florida, may have higher traffic fatality rates, because these drivers are

not counted as part of the population. This factor might affect the random effects

for the different groups by different amounts, depending on the types of people

who visit these areas.

In the original work using these data, Dee and Sela showed that the inclusion of

state and year fixed effects has a dramatic effect on the conclusions drawn from the

data. With neither state nor year effects, raising the speed limit from 55 to 65 miles

per hour or to a higher speed limit was associated with a large, significant increase

in the overall traffic fatality rate. However, a model with state effects, year effects,

state-specific time trends, and the previously mentioned control variables showed

a small but significant decline in the traffic fatality rate associated with increasing
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the speed limit from 55 to 65 miles per hour and a small and insignificant increase

in the traffic fatality rate associated with raising the speed limit from 55 miles per

hour to 70 or above. In regressions with the same predictors and effect structure,

they found statistically insignificant speed limit effects for the 16-24 age group,

but a statistically significant increase in the traffic fatality rate for people 65 and

over associated with the change from a 55 mile per hour speed limit to a speed

limit of 70 or more.

We first estimate two linear random effects models and one linear model that

does not include state-level fixed or random effects with the data. One linear

random effects model allows for autocorrelation in the form of an autoregression

of order one in the errors, while the other does not. For the estimation of the

linear models, we include only those variables used in Dee and Sela, since the

demographic variables are highly collinear. The parameter estimates are given in

Tables 58, 60 and 62. When there are no random effects, the speed limit effects

are estimated to be large, positive, and significant, as Dee and Sela found. The

results when random effects are included are similar to those of Dee and Sela, who

included fixed effects instead of random effects. In the case of the overall traffic

fatality rate, all of the estimates have the same signs as the results from the fixed

effects model, but the negative effect of the 65 mile per hour speed limit is no longer

statistically significant, while the positive effect of the 70 mile per hour speed limit

is now marginally significant in the case of no autocorrelation. As Dee and Sela

found, the inclusion of state-level effects reverses our interpretation of the safety

impact of increasing the speed limit to 65 MPH. Inclusion of an autoregressive

component in the errors inflates the standard errors but does not change the esti-

mated coefficients appreciably. Likelihood ratio tests comparing the models with

and without autocorrelation strongly favor models with autocorrelation (p < 10−12
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for all three demographic groups).

The traditional regression tree for the overall traffic fatality rate is given in

Figure 75, while the RE-EM tree for the overall traffic fatality rate is given in

Figure 76. The regression tree is dramatically more complicated than the RE-EM

tree, because it must account for state effects within the tree structure. The RE-

EM tree splits primarily on demographic variables, such as the percentage of the

population that is young and female (16-19 or 20-24) or that over 65 and female;

this makes sense since those are the two age groups that have the highest traffic

fatality rates and since the fatality rates can vary by gender as well. The number of

vehicle miles traveled also has an influence in one branch. Interestingly, no traffic

law variables are included in this tree.

In Figure 77, we plot the estimated autocorrelation function for the residuals

from the RE-EM tree. This plot suggests that there is autocorrelation in the

residuals, with a pattern of decay that suggests an autoregressive model of order

1. Therefore, we re-fit the RE-EM tree allowing for AR(1) autocorrelation in the

model for the effects. The resulting RE-EM tree is given in Figure 78. The fitted

tree is similar to the tree that does not allow for autocorrelation; the initial splits

are identical, but the later splits differ. In this tree, two traffic law variables,

both related to drunk driving, appear in later splits in the tree. The estimated

autocorrelation parameter is 0.682. Likelihood ratio tests reject the model that

does not allow for autocorrelation (p < 10−20). Figure 79 shows that including

autocorrelation in the effects model has removed most of the autocorrelation from

the residuals, although the fitted model has apparently induced a small negative

autocorrelation at lag 1.

We compare a variety of diagnostic measures for the linear model with random

effects and the RE-EM tree, based on the residuals when we allow for AR(1)
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Overall Youth Elderly

(Intercept) 98.66507***

(8.97076)

190.8942***

(14.7963)

57.11093***

(8.65138)

Year -0.69219***

(0.08948)

-1.3406***

(0.1476)

-0.35718***

(0.08629)

Speed Limit = 65 7.15477***

(0.67118)

11.9351***

(1.107)

5.66071***

(0.64729)

Speed Limit = 70 12.90605***

(1.21727)

19.0259***

(2.0078)

10.41544***

(1.17394)

Speed Limit = 75 15.80194***

(1.29147)

20.6055***

(2.1301)

12.9224***

(1.24549)

No Speed Limit 20.79805***

(3.27849)

31.0482***

(5.4075)

16.92129***

(3.16177)

Drinking Age -1.42971

(1.44402)

-0.7947

(2.3818)

-1.75325

(1.39261)

Table 57: Estimates for a linear model without random effects on traffic fatality

data. * - Significantly different from zero at the 10% level. ** - Significantly

different from zero at the 5% level *** - Significantly different from zero at the 1%

level.
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Overall Youth Elderly

Effective Drinking

Age

0.46987

(1.44639)

-1.0881

(2.3857)

1.39135

(1.39489)

Seatbelt Law -0.46292

(0.32517)

-0.6311

(0.5363)

-0.13931

(0.31359)

Zero Tolerance -0.60897

(0.62563)

-1.5543

(1.0319)

0.1275

(0.60335)

Illegal at 0.10 or

higher BAC

-1.60223**

(0.64641)

-3.4322***

(1.0662)

-0.75947

(0.62339)

Illegal at 0.08 or

higher BAC

-2.83248***

(0.92259)

-5.0305***

(1.5217)

0.08456

(0.88974)

Administrative Li-

cense Revocation

0.99472*

(0.50959)

1.9489**

(0.8405)

0.49321

(0.49145)

State Unemploy-

ment Rate

47.2114***

(12.04553)

30.7516

(19.8677)

21.14483*

(11.61668)

Table 58: Estimates for a linear model without random effects on traffic fatality

data (continued). * - Significantly different from zero at the 10% level. ** -

Significantly different from zero at the 5% level *** - Significantly different from

zero at the 1% level.
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Overall Youth Elderly

(Intercept) 62.42159***

(4.146223)

131.82208***

(9.868981)

14.30351**

(7.10903)

Year -0.43682***

(0.037717)

-0.94767***

(0.091593)

0.00889

(0.066439)

Speed Limit = 65 -0.44886

(0.296813)

0.64592

(0.720802)

-0.3143

(0.522835)

Speed Limit = 70 1.00679**

(0.519861)

2.67542**

(1.262892)

0.92691

(0.916517)

Speed Limit = 75 0.32998

(0.545555)

-0.82559

(1.325681)

-0.26072

(0.962492)

No Speed Limit 1.05358

(1.283375)

-3.15316

(3.122235)

5.60697**

(2.270924)

Drinking Age 0.13975

(0.509252)

0.94384

(1.240274)

-0.61686

(0.903617)

Table 59: Estimates for a Linear Model With Random Effects on Traffic Fatality

Data. * - Significantly different from zero at the 10% level. ** - Significantly

different from zero at the 5% level *** - Significantly different from zero at the 1%

level.
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Overall Youth Elderly

Effective Drinking

Age

0.15512

(0.513689)

-0.74626

(1.250999)

1.12263

(0.911339)

Seatbelt Law -0.10496

(0.144242)

-0.24742

(0.350382)

-0.04974

(0.25425)

Zero Tolerance 0.67259**

(0.27076)

-0.02206

(0.657761)

0.92016*

(0.477361)

Illegal at 0.10 or

higher BAC

-1.19929***

(0.32447)

-3.25404***

(0.786506)

-0.45141

(0.568881)

Illegal at 0.08 or

higher BAC

-1.95985***

(0.490386)

-4.5206***

(1.187307)

-0.5522

(0.857278)

Administrative Li-

cense Revocation

-1.19046***

(0.283271)

-1.53646**

(0.685298)

-1.12318**

(0.494211)

State Unemploy-

ment Rate

-72.84035***

(6.024733)

-

143.87058***

(14.60634)

-36.37834***

(10.567461)

Table 60: Estimates for a Linear Model With Random Effects on Traffic Fatality

Data (continued). * - Significantly different from zero at the 10% level. ** -

Significantly different from zero at the 5% level *** - Significantly different from

zero at the 1% level.
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Overall Youth Elderly

(Intercept) 62.01909***

(5.266569)

128.06005***

(11.720584)

17.914821**

(8.341541)

Year -0.40661***

(0.049783)

-0.92632***

(0.110499)

0.002843

(0.078992)

Speed Limit = 65 -0.22177

(0.329678)

0.32622

(0.815068)

0.121079

(0.587671)

Speed Limit = 70 0.78943

(0.594690)

2.48954*

(1.440762)

1.472234

(1.037760)

Speed Limit = 75 0.38165

(0.663700)

-0.81324

(1.551812)

0.586569

(1.114612)

No Speed Limit -0.50025

(1.774208)

-1.89094

(3.862005)

3.851167

(2.760424)

Drinking Age 0.18101

(0.420657)

0.62095

(1.193983)

-0.857127

(0.879430)

Effective Drinking

Age

-0.06150

(0.448331)

-0.36043

(1.231629)

1.176236

(0.904367)

Table 61: Estimates for a Linear Model With Random Effects that allows for

autocorrelation in the errors. * - Significantly different from zero at the 10% level.

** - Significantly different from zero at the 5% level *** - Significantly different

from zero at the 1% level.
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Overall Youth Elderly

Seatbelt Law 0.00366

(0.167905)

-0.17236

(0.405913)

0.005488

(0.291941)

Zero Tolerance 0.54450*

(0.314691)

0.04536

(0.760825)

0.775221

(0.547556)

Illegal at 0.10 or

higher BAC

-3.17865***

(0.862268)

-3.25404***

(0.786506)

-0.430758

(0.621078)

Illegal at 0.08 or

higher BAC

-3.96598***

(1.353713)

-4.5206***

(1.187307)

-0.583449

(0.967941)

Administrative Li-

cense Revocation

-1.73787**

(0.803572)

-1.53646**

(0.685298)

-0.958228*

(0.571800)

State Unemploy-

ment Rate

-58.49532***

(7.408274)

-

134.14615***

(17.219815)

-30.436739**

(12.295101)

Autoregressive Pa-

rameter

0.5833092 0.3185156 0.2893601

Table 62: Estimates for a Linear Model With Random Effects that allows for

autocorrelation in the errors (continued). * - Significantly different from zero at the

10% level. ** - Significantly different from zero at the 5% level *** - Significantly

different from zero at the 1% level.
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Figure 75: Estimated tree without random effects for the overall traffic fatality

rate.
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Figure 76: Estimated RE-EM tree for the overall traffic fatality rate.
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Figure 77: Estimated autocorrelation function of the estimated residuals for each

state for the overall traffic fatality rate, when there is no autoregressive component

in the RE-EM tree.
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Figure 78: Estimated RE-EM tree with autocorrelation for the overall traffic fa-

tality rate.
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Figure 79: Estimated autocorrelation function of the estimated residuals for each

state for the overall traffic fatality rate, when there is an autoregressive component

in the RE-EM tree.
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autocorrelation in the errors. First, we plot the fitted values versus the residuals

for each model in Figures 80 and 82. Both show evidence of heteroskedasticity,

with a larger variance associated with larger fitted values. The difference is more

pronounced for the linear model than for the RE-EM tree. In Figures 81 and 83,

we plot the residuals for each state. The variability of residuals differs across states

in both models, with New Mexico and Wyoming having the most variable residuals

in both models. Montana’s residuals from the linear model have more variability

than its residuals from the RE-EM tree. These three states have three of the

four highest average fatality rates (Mississippi is third), which suggests that the

differences in variability across states can be attributed to the increased variability

when the fitted values are higher. To check for normality, Figures 84 and 85 show

quantile-quantile plots by state. In both models, there are some deviations from

normality in the upper tails of the distributions of residuals for Wyoming, New

Mexico and Montana. The heteroskedasticity and the deviations from normality

in the tails suggest that taking logs might be helpful in modeling. We will do that

later in this section.

The RE-EM trees without autocorrelation for the youth and for the elderly are

given in Figures 86 and 88, respectively. As with the trees for the overall traffic

fatality rate, the RE-EM trees are dramatically more parsimonious than the trees

without random effects, which we do not present here. The RE-EM trees that

allow for autocorrelation, given in Figures 87 and 89, have initial splits that are

identical to the RE-EM tree without autocorrelation, but later splits differ. This

again matches what we found in the case of the overall tree. As before, likelihood

ratio tests strongly reject the model without autocorrelation, though the estimated

autocorrelations are smaller (0.276 for youth and 0.211 for the elderly). In the

youth RE-EM tree, only year and demographics matter. Most of the demographic
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Figure 80: Plots of the residuals versus the fitted values from the RE-EM tree for

the overall traffic fatality rate.
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Figure 81: Boxplots of the estimated residuals from the RE-EM tree for each state

for the overall traffic fatality rate.
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Figure 82: Plots of the residuals versus the fitted values from the linear model

with random effects for the overall traffic fatality rate.
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Figure 83: Boxplots of the estimated residuals from the linear random effects model

for each state for the overall traffic fatality rate.
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Figure 84: Quantile-quantile plots of the estimated residuals from the RE-EM tree

for each state for the overall traffic fatality rate.
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Figure 85: Quantile-quantile plots of the estimated residuals from the linear ran-

dom effects model for each state for the overall traffic fatality rate.
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splits seem to be accounting for the fact that age matters in traffic fatalities for

this group; the tree splits on the percentage of the population that is 15-19 or

16-19 and either male or female, while the percentage of the population that is

over 65 appears in one split in the tree for the youth traffic fatality rate. The

RE-EM tree for older drivers depends on a wide range of variables, including

demographic variables, the unemployment rate, and speed limits. This suggests

that the other types of drivers on the road, or perhaps the other type of people in

the community, influence the traffic fatality rates of specific demographic groups.

Speed limits appear in the branch of the tree corresponding to states with a higher

percentage of women; this suggests that the traffic fatality rate of older women is

most affected by increased speed limits, a finding that agrees with Dee and Sela. As

with the other demographic groups, a RE-EM tree that allows for autocorrelation

is quite similar. In this case, the split on the number of vehicle miles traveled is

removed, but the structure of the tree is identical otherwise.

We can compare the six models that we have fit by computing the root mean

squared error of the in-sample fits. We report these in Table 63. These in-sample

results show that estimating random effects, whether in a linear model or in a tree,

reduces the in-sample RMSE. This is not surprising, since the errors include the

random effects if those effects are not estimated. The RE-EM tree has a lower in-

sample RMSE than the linear effects model for both the youth and elderly traffic

fatality rates, but a slightly higher RMSE for the overall rate. Despite the likeli-

hood ratio tests’ rejection of models without autocorrelation, the in-sample RMSE

is similar for the two linear models, and the in-sample RMSE of the RE-EM tree

without autocorrelation is noticeably smaller in the case of the overall traffic fatal-

ity rate, even though the estimated autocorrelation is highest in this model. This

may be related to the observation of Verbeke and Molenberghs [2000] that esti-
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Figure 86: Estimated RE-EM tree for the traffic fatality rate for people aged 16

to 24.
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Figure 87: Estimated RE-EM tree for the traffic fatality rate for people aged 16

to 24, allowing for autocorrelation in the error terms.
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Figure 88: Estimated RE-EM tree for the traffic fatality rate for people 65 and

older.
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Figure 89: Estimated RE-EM tree for the traffic fatality rate for people 65 and

older, allowing for autocorrelation in the error terms.
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Overall Youth Elderly

Linear Model 6.234 10.283 6.012

Linear Model with Random Effects 2.063 5.027 3.666

Linear Model with Random Effects

and Autocorrelation

2.103 5.043 3.683

Regression Tree 3.880 7.104 4.123

RE-EM Tree 2.070 4.949 3.460

RE-EM Tree with Autocorrelation 2.339 4.937 3.415

Table 63: In-sample root mean squared error for traffic fatality data.

mating the level of autocorrelation is difficult in random effects models. As we can

see from the autocorrelation function in Figure 79, the estimated autocorrelation

function of the normalized residuals has negative autocorrelation at the first lag.

It is possible that the linear model overestimated the amount of autocorrelation,

leading to worse in-sample fit.

In Figures 90, 91, and 92, we map the estimated random effects from the RE-

EM trees without autocorrelation. Darker shading corresponds to larger estimated

random effects. Note that the estimated random effects for the three different fa-

tality rates are highly correlated; the effects for the overall traffic fatality rate have

a correlation of 0.954 with the youth fatality rate and 0.831 with the elderly fatality

rate. This suggests that the effects largely measure a characteristic that is common

to the state, not to the particular demographic group within the state. In partic-

ular, we notice that the random effects are generally highest in the Southeastern

states, in Arizona, and in New York. The correlation between the random effects

from the linear model and the random effects from the corresponding RE-EM tree

is also high, as reported in Table 64, while scatter plots of the effects are given in
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Figure 90: Estimated random effects from the RE-EM tree without autocorrelation

for the overall traffic fatality rate.

Figures 93 through 98. The relationship between the estimated effects from the

linear model and the estimated effects from the RE-EM tree is quite strong; the

clear outlier in the plots is Wyoming, which is estimated to have a large effect by

the linear model but which is instead split off into its own branch in the RE-EM

tree. This indicates that the linear and tree models estimate the underlying rela-

tionship in similar ways for most states. We also compare the estimated random

effects from each model to the state-specific means, ignoring the covariates. While

there is some positive linear relationship between the state mean fatality rates

and the estimated random effects from the RE-EM tree, the relationship is quite

weak. The RE-EM tree random effects are less correlated with the state means,

suggesting that the RE-EM tree is fitting more than simply the state means.

We also measure the out of sample performance of the various models. We re-

estimate the models excluding the last two periods of data (1998 and 1999) for each

state and then use the model to predict the traffic fatality rates in 1998 and 1999.

The root mean squared errors of prediction are given in Table 65. The RE-EM
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Figure 91: Estimated random effects from the RE-EM tree without autocorrelation

for the traffic fatality rate for people aged 16 to 24.

Figure 92: Estimated random effects from the RE-EM tree without autocorrelation

for the traffic fatality rate for people aged 65 and older.
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Overall Youth Elderly

State Means and RE-EM Tree Effects 0.356 0.341 0.338

State Means and Linear Model Effects 0.387 0.351 0.403

RE-EM Tree Effects and Linear Model Effects 0.907 0.886 0.885

Table 64: Correlations of state means and state-level effects for the RE-EM tree

without autocorrelation and linear model without autocorrelation.

Figure 93: Scatterplot of random effects from the RE-EM tree without autocor-

relation versus those from the linear random effects model for the overall traffic

fatality rate.
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Figure 94: Scatterplot of random effects from the RE-EM tree without autocor-

relation versus those from the linear random effects model for the youth traffic

fatality rate.
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Figure 95: Scatterplot of random effects from the RE-EM tree without autocor-

relation versus those from the linear random effects model for the traffic fatality

rate for people aged 65 and older.
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Figure 96: Scatterplot of state-specific mean overall fatality rates and random

effects from the RE-EM tree without autocorrelation for the overall traffic fatality

rate.
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Figure 97: Scatterplot of state-specific mean youth fatality rates and random ef-

fects from the RE-EM tree without autocorrelation for the youth traffic fatality

rate.
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Figure 98: Scatterplot of state-specific mean elderly fatality rates and random

effects from the RE-EM tree without autocorrelation for the elderly traffic fatality

rate.
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Overall Youth Elderly

Linear Model 5.692 8.564 5.855

Linear Model with Random Effects 2.326 5.654 3.746

Linear Model with Random Effects

and Autocorrelation

2.626 5.561 3.793

Regression Tree 5.425 8.971 5.186

RE-EM Tree 2.767 7.109 4.037

RE-EM Tree with Autocorrelation 2.630 7.005 3.990

Table 65: Root Mean Squared Error of Traffic Fatality Predictions. The root mean

squared error is based on estimating a model through 1997 and using the estimated

model to predict the observations for 1998 and 1999 for each state.

tree outperforms the tree without random effects for all three traffic fatality rates;

paired signed rank tests show that the squared prediction errors are statistically

significant in all three cases, though the differences for the youth and the elderly

traffic fatality rates are only marginally significant (p = 0.012 and p = 0.036

respectively). The linear random effects model does slightly better than the RE-

EM tree, with the difference in squared prediction errors statistically significant

only for the youth traffic fatality rate. The linear model without random effects

has significantly higher squared prediction error in all cases. This suggests that a

linear model is reasonable in this case, as long as that model includes state-specific

random effects. These results show the importance of accounting for state-specific

effects in the traffic fatality rate and demonstrate that the nonparametric approach

of a RE-EM tree can be as useful as a linear model, without the need to choose a

structure beforehand.

In their original paper, Dee and Sela estimate the parametric models using the
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logarithm of the traffic fatality rate instead of the level. The heteroskedasticity that

we have observed also suggests that the logarithm of the traffic fatality rate will

be more useful. Therefore, we repeat the out-of-sample experiment using logged

traffic fatality rates. The resulting plots of residuals versus fitted values, given in

Figures 99 and 100 for the two models, show that this operation has removed the

heteroskedasticity. The root mean squared errors for the logged models are shown

in Table 67. When logged traffic fatality rates are used, the linear model with

random effects outperforms the RE-EM tree for the overall traffic fatality rate,

and the difference is marginally statistically significant for youth traffic fatality

rates (p = 0.039); the two models are statistically indistinguishable for the elderly

traffic fatality rate. These results suggest that the models based on levels instead of

logarithms were misspecified. When a model is correctly specified, we expect that

the parametric model will perform at least as well as the RE-EM tree. However,

the relative performances when we do not take logarithms shows that the RE-EM

tree can perform well in a wide variety of situations, such as when the model is not

correctly specified, and still generally outperforms a tree that does not incorporate

random effects.
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Figure 99: Plots of the residuals versus the fitted values from the RE-EM tree for

the overall traffic fatality rate.

Overall Youth Elderly

Linear Model 0.2755 0.2721 0.2773

Linear Model with Random Effects 0.0838 0.1242 0.1633

Linear Model with Random Effects

and Autocorrelation

0.0858 0.1246 0.1640

Regression Tree 0.1895 0.1887 0.1964

RE-EM Tree 0.0863 0.1206 0.1543

RE-EM Tree with Autocorrelation 0.0872 0.1194 0.1581

Table 66: In-sample root mean squared error for traffic fatality data.
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Figure 100: Plots of the residuals versus the fitted values from the linear model

with random effects for the overall traffic fatality rate.
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Overall Youth Elderly

Linear Model 0.2771 0.2760 0.2482

Linear Model with Random Effects 0.1017 0.1573 0.1509

Linear Model with Random Effects

and Autocorrelation

0.1151 0.1547 0.1520

Regression Tree 0.2512 0.2515 0.2051

RE-EM Tree 0.1407 0.2131 0.1775

RE-EM Tree with Autocorrelation 0.1267 0.2260 0.1669

Table 67: Root Mean Squared Error of Traffic Fatality Predictions. The root mean

squared error is based on estimating a model through 1997 and using the estimated

model to predict the observations for 1998 and 1999 for each state.
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4.5 Application to Transactions Data

We now apply this method to a much larger dataset on third-party sellers on

Amazon Web Services. (See Ghose et al. [2005] for background on this dataset and

its first use.) Our data consist of 9484 transactions for 250 distinct software titles;

thus, there are 250 individuals in the panel with a varying number of observations

per individual. (While there are also some sellers who are included more than

once, our longitudinal structure is based only on the products.) In this exercise,

our target variable is the price premium that a seller can command; this is the

difference between the price at which the good is sold and the average price of

all of the competing goods in the marketplace. We also model the relative price

premium, which is the ratio of those two quantities, and the logarithm of the

relative price premium. Predictors include both the seller’s own reputation and

the characteristics of its competitors. The seller’s reputation is measured by the

total number of comments and the number of positive and negative comments

received from buyers over different time periods. The length of time that the

seller has been in the marketplace is also a predictor. Other predictors include

the number of competitors, the quality of competing products, and the average

reputation of the competitors, and the average prices of the competing products.

We first fit a tree without random effects and a RE-EM tree to the data. The

estimated regression tree without random effects is shown in Figure 101, while the

RE-EM tree is shown in Figure 102. The trees split on a variety of variables, and

the structures of the two trees are quite different. Unlike in the previous example,

the complexity of the two trees is similar; the RE-EM tree has 11 terminal nodes

while the tree without random effects has 15. For this data, a RE-EM tree that

allows for autocorrelation, shown in Figure 103, has the same structure as a RE-EM

tree that does not allow for autocorrelation. Only one split differs; both trees split
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Figure 101: Estimated tree without random effects for the price premium in the

transactions data.

on SellerLife but they split at different values. Because the effects models differ,

the estimated values at the nodes differ slightly. The autocorrelation parameter is

estimated to be 0.313 and the model without autocorrelation is strongly rejected

(p < 10−100 when we use either tree to compute the random effects model).

For comparison, we fit linear models with and without random effects. Because

some of the predictors have missing values, we cannot fit linear models that include

all of the possible predictors, even though both RE-EM trees and regression trees

without random effects can handle predictors with missing values using surrogate

split as discussed in section 4.2.2. In addition, some of the predictors are strongly

collinear. Instead, we fit linear models that include all of the predictors that ap-
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Figure 102: Estimated RE-EM tree for the price premium in the transactions data.
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Figure 103: Estimated RE-EM tree with autocorrelation for the price premium in

the transactions data.
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pear in the RE-EM tree, since it happened that none of the predictors chosen for

the RE-EM tree had missing values. The parameter estimates from these mod-

els are given in Table 68. Few variables are statistically significant in the linear

model without random effects, while all of the variables are at least marginally

statistically significant when random effects are included. Two of the variables

that are statistically significant in the model without random effects, the average

competitor price and the number of competitors, are statistically significant with

the opposite signs when random effects are included. This underscores the impor-

tance of including random effects in the estimation of parameters. The average

competitor price appears in the RE-EM tree twice; in one branch, lower competi-

tor prices are associated with higher premiums, while in the other branch lower

prices are associated with lower premiums. This ambiguous effect is impossible for

a linear model without interactions to pick up and may explain why the coefficient

changed sign from the linear model without random effects to the linear model

with random effects.

We look at some diagnostic plots of the linear model with random effects and

the RE-EM tree, to check whether our assumptions hold. Figure 104 plots the

residuals against the fitted values from the RE-EM tree. This plot highlights some

observations with particularly low fitted values; there seems to be more variability

about that fitted value. There is also a single observation with a large fitted value

and a zero residual. This observation corresponds to the right-most branch of

the RE-EM tree. The same pattern appears in the corresponding plot for the

linear model with random effects, in Figure 105. Certain titles seem to have larger

variance than others, as shown in Figures 106 and 107. Quantile-quantile plots

for the two models, shown in Figures 108 and 109, show that the distribution of

residuals is highly non-normal, with very fat tails. Thus, the usual parametric
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Variable Linear

Model

Random Ef-

fects Model

Random Ef-

fects - AR(1)

(Intercept) 88.800**

(34.895)

501.756***

(52.742)

330.62***

(44.60)

Average Competitor

Price

0.064***

(0.004)

-1.654***

(0.031)

-1.367***

(0.027)

Average Condition of

Competing Goods

-0.218

(4.943)

12.231*

(7.323)

14.760**

(6.292)

Average Rating of

Competitors

7.168

(4.764)

-22.043***

(6.044)

-17.078***

(4.985)

Life of the Seller 0.001

(0.001)

0.002**

(0.001)

0.001*

(0.0006)

Number of Competi-

tors

2.115***

(0.160)

-1.099***

(0.418)

-0.864**

(0.345)

Lifetime Positive

Comments

-1.659***

(0.099)

-1.615***

(0.084)

-0.661***

(0.084)

Number of Com-

ments in the Last

Year

-0.001

(0.001)

-0.002*

(0.001)

-0.0015

(0.001)

Table 68: Parameter estimates for the linear models for the price premium with

and without random effects. Standard errors are reported in parentheses. * -

Significantly different from zero at the 10% level. ** - Significantly different from

zero at the 5% level *** - Significantly different from zero at the 1% level.
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Figure 104: Plot of residuals versus fitted values from the estimated RE-EM tree

for the price premium in the transactions data.

assumptions required for the linear model fail. Because of this, we conclude that

we must consider alternative functional forms of the target variable for the linear

model to be useful (as we will do later in this section) or that we must abandon

the linear model altogether.

The autocorrelation functions for the two models without autocorrelation are

given in Figures 110 and 111. These plots show unmodeled autocorrelation in the

residuals; the autocorrelation is slightly larger in the linear model. The same plots

when the models include autocorrelation are given in Figures 112 and 113; these

plots show that the autocorrelation has been removed, but this has led to some

negative autocorrelation at the first lag.
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Figure 105: Plot of residuals versus fitted values from the estimated linear random

effects model for the price premium in the transactions data.
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Figure 106: Plot of residuals for each software title from the estimated RE-EM

tree for the price premium in the transactions data.
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Figure 107: Plot of residuals for each software title from the estimated linear

random effects model for the price premium in the transactions data.
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Figure 108: Quantile-quantile plot of residuals from the estimated RE-EM tree for

the price premium in the transactions data.
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Figure 109: Quantile-quantile plot of residuals from the estimated linear random

effects model for the price premium in the transactions data.
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Figure 110: Autocorrelation function of the residuals from the estimated RE-EM

tree without autocorrelation for the price premium in the transactions data.
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Figure 111: Autocorrelation function of the residuals from the estimated linear

random effects model without autocorrelation for the price premium in the trans-

actions data.
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Figure 112: Autocorrelation function of the residuals from the estimated RE-EM

tree with autocorrelation for the price premium in the transactions data.
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Figure 113: Autocorrelation function of the residuals from the estimated linear ran-

dom effects model with autocorrelation for the price premium in the transactions

data.
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Change RE-EM Tree Linear Effects Model

Omit 33.53 76.13

Change to 750 7.14 58.92

Change to 1300 2.71 60.57

Table 69: Root mean squared difference between the fitted values using the original

data and the fitted values with the influential observation modified.

In the linear model, the observations with the largest fitted value are likely to

be influential. In this dataset, nine observations have the target value equal to

1016.34; the next largest target is 647.1. In the RE-EM tree, these observations

are partitioned off by themselves, which means that changing their value will have

a smaller effect on the estimated values for the other observations, as long as they

stay in a separate node. Because the coefficients from the linear random effects

model depend on all of the observations, the estimated values for other observations

will be more strongly influenced by the target values for influential observations.

We can quantify the effect of the influential observations by omitting them or by

changing their target value, re-estimating each model, and measuring the changes

in the fitted values of the other observations. The results are shown in Table 69.

In every case, the fitted values for the other observations change less when we

use a RE-EM tree than when we use a linear random effects model. The change

for the RE-EM tree is particularly small when we increase the target value of the

influential observations. Thus, using a regression tree instead of a linear model

helps to mitigate the effect of influential observations.

We use the tree models and the linear models to compute three different types

of root mean squared errors; all are reported in Table 70. First, we compute the

RMSE of the fitted values when the tree is fit to the complete sample. Because of
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the complex nature of the data, the trees have lower in-sample root mean squared

errors. Second, we use leave-one-out cross-validation to measure out-of-sample

prediction performance. To measure the performance when a random effect can

be estimated, we exclude one transaction (observation) at a time, allowing the tree

to estimate a random effect corresponding to an observation based on the other

observations for that individual. To measure the performance for new individuals,

we repeat the leave-one-out cross-validation by excluding all of the observations

for a single individual at each iteration. For each type of cross-validation, we

measure performance by the root mean square error of prediction for the omitted

observation(s). In-sample and when single observations are excluded, the linear

model not including random effects has the largest root mean squared error, while

the RE-EM tree has the smallest RMSE. When all of the observations for an

individual are excluded, the linear model with random effects performs much worse.

We will see this behavior again in our Monte Carlo experiments in Section 4.6 and

will discuss it there. Again, the RE-EM tree performs best, though its RMSE is

not very different from the RMSE of a regression tree without random effects.

Given the observed non-normality and heteroskedasticity, we repeat this analy-

sis using the relative price premium, which is the sale price divided by the average

price of the competing products. The fitted trees with and without random effects

are given in Figures 114, 115, and 116. The RE-EM tree without autocorrelation

splits primarily on variables describing the amount of feedback. The tree without

random effects and the RE-EM tree with autocorrelation look similar but differ

greatly from the RE-EM tree without autocorrelation. These two trees split less

frequently on the feedback variables and more on the characteristics of the com-

peting products, such as the number of competitors and the average price and

condition of competing products.
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Model In-sample Excluding

Observations

Excluding

Titles

Linear Model 95.71 95.88 96.92

Linear Model with Random Ef-

fects

70.90 73.62 461.48

Linear Model with Random Ef-

fects - AR(1)

72.21 74.75 387.18

Tree without Random Effects 66.08 69.66 89.38

RE-EM Tree 58.48 64.54 88.53

RE-EM Tree - AR(1) 58.90 63.88 87.90

FE-EM Tree 58.64 65.67 91.10

Table 70: In-sample root mean squared errors and root mean squared errors from

cross-validation leaving out one observation or one software title at a time, using

the transactions data, using the price premium.
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Figure 114: Estimated tree without random effects for the relative price premium

in the transactions data.
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Figure 115: Estimated RE-EM tree for the relative price premium in the transac-

tions data.
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Figure 116: Estimated RE-EM tree with autocorrelation for the relative price

premium in the transactions data.
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For this target variable, some of the variables used in the trees have missing

values. Therefore, we cannot use those variables in the linear models. Instead,

we consider one model that uses all of the variables with no missing values chosen

by any of the trees for the price premium, relative price premium and another

that uses only the variables with no missing values chosen by the trees based on

the relative price premium. Based on leave-one-out cross-validation, we choose to

use the larger model. The coefficients for the estimated linear models are given

in Table 72. These linear models have a number of variables which are estimated

to be statistically significant. The coefficients on the number of lifetime positive

comments, the number of negative comments in the last year, and the average

competitor price are significantly less than zero in all three models. The sign on

the number of lifetime positive comments is unexpected; it seems more likely that

positive comments would lead to the ability to command higher price premiums.

The average competitor price appears in all three estimated trees as well; however,

it has a positive relationship with the relative price premium in the RE-EM tree

without autocorrelation, a negative relationship in the RE-EM tree with autocor-

relation, and positive and negative relationships in different branches in the tree

without random effects. Other predictors, such as the average rating of competi-

tors and the number of hours posted, are statistically significant in more than one

model but take on different signs in the different models. These results show the

difficulty of fitting a linear model to a complicated dataset.

The root mean squared errors of in-sample fits and leave-one-out cross-validation

experiments are given in Table 73. As before, the RE-EM tree has the lowest root

mean squared error in all three cases while the linear model with random effects

has a very high RMSE in the case where titles are excluded. As before, the tree

without random effects outperforms all three linear models, again suggesting that
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Variable Linear Model Random Ef-

fects Model

Random

Effects -

AR(1)

(Intercept) 2.431***

(0.168)

3.813***

(0.211)

2.479***

(0.144)

Average Rating of Com-

petitors

0.086***

(0.018)

-0.070***

(0.026)

4.024E-3

(0.016)

Number of Lifetime Pos-

itive Comments

-0.020***

(0.0001)

-0.016***

(0.001)

-3.676E-

3***

(7.427E-

4)

Number of Comments in

the Last Year

9.080E-6

(9.132E-6)

1.8E-5**

(8.58E-6)

5.1E-6

(6.49E-6)

Hours Posted -1.941E-4***

(2.177E-5)

-1.51E-4***

(2.069E-5)

1.017E-4***

(1.391E-5)

Number of Negative

Comments in the Last

Year

-7.550E-5***

(2.254E-3)

-8.4E-5***

(2.073E-5)

-3.99E-5***

(1.392E-5)

Number of Lifetime Neg-

ative Comments

-8.184E-3***

(1.367E-3)

-5.023E-

3***

(1.251E-

3)

-1.110E-3

(8.394E-4)

Table 71: Parameter estimates for the linear models for the relative price premium

with and without random effects. Standard errors are reported in parentheses. * -

Significantly different from zero at the 10% level. ** - Significantly different from

zero at the 5% level *** - Significantly different from zero at the 1% level.
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Variable Linear Model Random Ef-

fects Model

Random

Effects -

AR(1)

Number of Comments in

the Last Thirty Days

8.349E-5**

(4.046E-5)

7.2E-5*

(3.707E-5)

7.05E-5***

(2.433E-5)

Seller Life 6.569E-6

(4.029E-6)

4E-6

(3.72E-

6)

1E-7

(2.60E-

6)

Average Competitor

Price

-1.204E-4***

(1.440E-5)

-1.326E-

3***

(8.821E-

5)

-1.605E-

3***

(7.818E-

5)

Number of Competitors 4.390E-3***

(5.878E-4)

3.347E-3*

(1.719E-3)

-3.390E-4

(1.115E-3)

Average Condition of

Competing Goods

-3.953E-4

(0.018)

-0.159***

(0.030)

-0.176***

(0.021)

Table 72: Parameter estimates for the linear models for the relative price premium

with and without random effects (continued). Standard errors are reported in

parentheses. * - Significantly different from zero at the 10% level. ** - Significantly

different from zero at the 5% level *** - Significantly different from zero at the 1%

level.
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Model In-sample Excluding

Observations

Excluding

Titles

Linear Model 0.3517 0.3533 0.3560

Linear Model with Random Ef-

fects

0.3066 0.3219 0.4874

Linear Model with Random Ef-

fects - AR(1)

0.3250 0.3361 0.5692

Tree without Random Effects 0.2551 0.2676 0.2987

RE-EM Tree 0.2109 0.2270 0.2968

RE-EM Tree - AR(1) 0.2208 0.2390 0.2927

FE-EM Tree 0.2102 0.2267 0.3016

Table 73: In-sample root mean squared errors and root mean squared errors from

cross-validation leaving out one observation or one software title at a time, using

the transactions data, using the relative price premium.

a linear model is not appropriate for this dataset.

We also consider diagnostic plots. Plots of the fitted values versus the residuals

(Figures 117 and 118) show that using the relative price premium removes the

group of observations that are well below the bulk of the observations. However,

a few observations with fitted values well above the others remain. Also, because

the relative price premium cannot be negative, the residuals cannot go below the

negative of the fitted value, leading to the lower corner of the plot of the residuals

versus fitted values having no values. This pattern is particularly evident for the

linear random effects model. Figures 119 and 120 plot the residuals by title for

the RE-EM tree and the linear random effects model respectively. The variability

of residuals by title has been reduced by using the relative price premium, par-
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Figure 117: Plot of residuals versus fitted values from the estimated RE-EM tree

for the transactions data fit to the relative price premium.

ticularly for the RE-EM tree. Quantile-quantile plots (Figures 121 and 122) show

that the distribution of residuals continues to be non-normal, particularly because

of outliers. The autocorrelation functions of the two models that do not model

autocorrelation (Figures 123 and 124) show that there is autocorrelation in the

residuals. Fitting the two models and allowing for autocorrelation removes the

autocorrelation, but again induces a slight negative autocorrelation, as we see in

Figures 125 and 126.
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Figure 118: Plot of residuals versus fitted values from the estimated linear random

effects model for the transactions data fit to the relative price premium.
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Figure 119: Plot of residuals for each software title from the estimated RE-EM

tree for the transactions data fit to the relative price premium.
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Figure 120: Plot of residuals for each software title from the estimated linear

random effects model for the transactions data fit to the relative price premium.

325



Figure 121: Quantile-quantile plot of residuals from the estimated RE-EM tree for

the transactions data fit to the relative price premium.
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Figure 122: Quantile-quantile plot of residuals from the estimated linear random

effects model for the transactions data fit to the relative price premium.

327



Figure 123: Autocorrelation function of the residuals from the estimated RE-

EM tree without autocorrelation for the transactions data fit to the relative price

premium.
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Figure 124: Autocorrelation function of the residuals from the estimated linear

random effects model without autocorrelation for the transactions data fit to the

relative price premium.
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Figure 125: Autocorrelation function of the residuals from the estimated RE-EM

tree with autocorrelation for the transactions data fit to the relative price premium.
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Figure 126: Autocorrelation function of the residuals from the estimated linear

random effects model with autocorrelation for the transactions data fit to the

relative price premium.
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Because of the continued heteroskedasticity in the residuals, we now model the

logarithm of the relative price premium. The fitted trees without random effects,

with random effects, and with random effects and autocorrelation are plotted in

Figures 127, 128, and 129, respectively. In this case, the trees differ very little. The

one difference in the tree structure is that the tree without random effects splits

at SellerLife = 4805.5 while the RE-EM trees with and without autocorrelation

split at SellerLife = 4653.5. The estimated means at the nodes differ slightly

across the trees, since subtracting the estimated random effects changes the values

slightly. In these trees, the amount of feedback in the last year and the life of

the seller are the main predictors, while characteristics of the competitors (the

number, the average rating, and their average price) and the number of hours

that the listing has been posted appear in other splits. The likelihood ratio test

for autocorrelation rejects the hypothesis of no autocorrelation (p < 10−200), and

the autocorrelation functions associated with the RE-EM trees with and without

autocorrelation, shown in Figures 132 and 133, respectively, demonstrate that

there is autocorrelation in the residuals that is removed when the autocorrelation

is included in the model. As before, allowing for autocorrelation leads to a slightly

negative autocorrelation at the first lag.

As before, we fit linear models with and without random effects to these data,

using the predictors chosen by the RE-EM tree. (As with the price premium, none

of the chosen predictors have missing values.) Many of the predictors chosen by

the RE-EM tree have coefficients that are not significantly different from zero in

the linear models. The number of hours posted and the average competitor price

are the only predictors that are statistically significant in all three models, and

coefficient on the number of hours posted switches sign when the model allows for

autocorrelation. The estimated autocorrelation function of the residuals, given in
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Figure 127: Estimated tree without random effects for the logged relative price

premium in the transactions data.
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Figure 128: Estimated RE-EM tree for the logged relative price premium in the

transactions data.
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Figure 129: Estimated RE-EM tree with autocorrelation for the logged relative

price premium in the transactions data.

335



Figure 130: Autocorrelation function of the residuals from the estimated RE-

EM tree without autocorrelation for the transactions data fit to the relative price

premium.
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Figure 131: Autocorrelation function of the residuals from the estimated RE-EM

tree with autocorrelation for the transactions data fit to the relative price premium.
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Figure 132: Autocorrelation function of the residuals from the estimated random

effects linear model without autocorrelation for the transactions data fit to the

logged relative price premium.

Figure 132, shows that autocorrelation is present in the residuals; the amount of

autocorrelation in the linear model is slightly less than the autocorrelation in the

estimated RE-EM tree. A plot of the autocorrelation function when autocorrela-

tion of autoregressive order one is included in the model is given in Figure 133.

As before, accounting for autocorrelation greatly reduces the amount of autocor-

relation in the residuals but induces a slight negative autocorrelation at the first

lag.

Diagnostic plots for the models for the logged relative price premium show
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Variable Linear

Model

Random Ef-

fects Model

Random Ef-

fects - AR(1)

(Intercept) 0.277***

(0.089)

0.034

(0.132)

0.129 (0.092)

Number of Comments in

the Last Year

-4.275E-6

(1.035E-5)

1.289E-5

(9.95E-6)

9.55E-6

(7.60E-6)

Number of Hours Posted -4.033E-

4***

(2.455E-

5)

-2.516E-

4***

(2.416E-

5)

1.171E-4***

(1.686E-5)

Seller Life 6.404E-6

(4.386E0-6)

2.7E-7

(4.16E-6)

-2.70E-6

(2.91E-6)

Number of Competitors -1.047E-3

(6.661E-4)

-1.267E-4

(1.789E-3)

-1.541E-3

(1.288E-3)

Number of Negative

Comments in the Last

Years

-7.401E-6

(1.659E-5)

-3.005E-5*

(1.590E-5)

-1.256E-5

(1.253E-5)

Average Competitor

Price

-3.327E-5**

(1.634E-5)

-4.510E-

4***

(6.181E-

5)

-6.545E-

4***

(6.405E-

5)

Average Rating of Com-

petitors

-0.054***

(0.020)

7.124E-3

(0.029)

-0.014

(0.019)

Table 74: Parameter estimates for the linear models for the logged relative price

premium with and without random effects. Standard errors are reported in paren-

theses. * - Significantly different from zero at the 10% level. ** - Significantly

different from zero at the 5% level *** - Significantly different from zero at the 1%

level.
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Figure 133: Autocorrelation function of the residuals from the estimated random

effects linear model with autocorrelation for the transactions data fit to the logged

relative price premium.
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that taking the logarithm has reduced the heteroskedasticity somewhat, but that

non-normality and outliers remain. Plots of the residuals versus the fitted values

are given in Figures 134 and 135 for the RE-EM tree and linear random effects

model respectively. Both show a large negative outlier, but little evidence of het-

eroskedasticity. Plots of the residuals by title, given in Figures 136 and 137 for

the two models, show some heteroskedasticity and outliers, but less than we saw

before taking logs. Omitting the outlier and re-estimating the models has little ef-

fect on the estimates. Quantile-quantile plots, shown in Figures 138 and 139, show

that the residuals are not normally distributed in this model either. The residuals

for the linear random effects model have a slightly more normal distribution than

those of the RE-EM tree.

Again, we compute the root mean squared error for predictions using leave-

one-out cross validation in which we omit one observation at a time and then one

title at a time. The results are given in Table 75. Again, the three tree models

outperform the three linear models. In this case, the tree without random effects

has a slightly lower root mean squared error than the trees with random effects

in the case in which we exclude all the observations for the title. This is a case

in which we might expect their performance to be similar, since excluding all the

observations for a title removes the possibility of estimating a title-specific random

effect. When we exclude single observations and therefore can estimate the random

effects, the RE-EM trees perform better than the tree without random effects.

In this section, we have modeled three different functions of the price premium.

We have found that the underlying model cannot be well approximated by a linear

model with random effects with either functional form of the target variable. Trees

without random effects perform better than linear models, but they are not able

to use the additional title-specific information when it is available for predictions.
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Figure 134: Plot of residuals versus fitted values from the estimated RE-EM tree

for the transactions data fit to the logged relative price premium.
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Figure 135: Plot of residuals versus fitted values from the estimated linear random

effects model for the transactions data fit to the logged relative price premium.
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Figure 136: Plot of residuals for each software title from the estimated RE-EM

tree for the transactions data fit to the logged relative price premium.
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Figure 137: Plot of residuals for each software title from the estimated linear

random effects model for the transactions data fit to the logged relative price

premium.
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Figure 138: Quantile-quantile plot of residuals from the estimated RE-EM tree for

the transactions data fit to the logged relative price premium.
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Figure 139: Quantile-quantile plot of residuals from the estimated linear random

effects model for the transactions data fit to the logged relative price premium.
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Model In-sample Excluding

Observations

Excluding

Titles

Linear Model 0.3643 0.4054 0.4069

Linear Model with Random Ef-

fects

0.3379 0.3758 0.4282

Linear Model with Random Ef-

fects - AR(1)

0.3592 0.3846 0.4607

Tree without Random Effects 0.2824 0.2845 0.2949

RE-EM Tree 0.2576 0.2708 0.2987

RE-EM Tree - AR(1) 0.2626 0.2713 0.2963

FE-EM Tree 0.2438 0.2686 0.3022

Table 75: In-sample root mean squared errors and root mean squared errors from

cross-validation leaving out one observation or one software title at a time, using

the transactions data, using the logged relative price premium.
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The flexibility of the RE-EM tree allows us to model the price premium without

worrying about the effect of the choice of functional form.

4.6 Simulations

4.6.1 Experimental design

We now use Monte Carlo simulations to assess the usefulness and effectiveness

of the RE-EM tree method. These simulations consider datasets that contain

I = 50, 100, 200 or 400 individuals, with the number of observations varying across

individuals, with averages of approximately 10, 25, or 38 observations per individ-

ual5. We consider three data generating processes, to assess cases in which the

tree model is only an approximation to reality. In each experiment, we compare

the performance of the RE-EM tree with a tree that does not account for ran-

dom effects and with parametric linear models that do and do not include random

effects.

Our data generation procedure is based on estimated models for the price pre-

mium fit to the full transactions dataset discussed in Section 4.5. This simulates

complex yet realistic data patterns. Specifically, the “true” models are a RE-EM

tree in the first round of experiments, a linear model with scalar random effects

in the second round, and a more complicated model in the third. In the third

case, we define f by estimating a linear model including all possible interactions

of the eight continuous variables that appeared in the trees, listed in Table 68,

together with the squares of AvgCompPrice, AvgCompLife, AvgCompCondition,

and AvgCompRating. All but the last of the squared variables has a statistically

significant coefficient, and some of the interactions terms have statistically signifi-

5The average number of observations per individual in the underlying dataset on which the

simulations are based is 38.
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cant coefficients as well. Each model is estimated based on the full dataset. This

estimation yields a prediction for any set of covariates as well as a list of estimated

random effects, b̂i, and estimated observation errors, ε̂it, for each individual. For

each sample size, I, we use the covariates from a random sample (with replace-

ment) of I individuals to compute the expected value, E(yit) of the target variable

given the true model. We use a random effect, b̂i, from one randomly chosen indi-

vidual, and choose the ε̂it for t = 1, ..., T from the set of all estimated errors. Then,

the new observed data consist of yit = E(yit)+ b̂i+ ε̂it together with the covariates.

Data are created in the same way for an additional 50 individuals who are used as

the hold-out sample. For each group of I + 50 individuals, we resample 50 times

in this way, which allows us to check for any effects of the covariates on predictive

performance. We then move on to a new sample of size I + 50 and repeat the

experiment for 50 different samples of individuals.

To measure performance both in- and out-of-sample, we fit each model to the

first 75% of observations for I individuals. We compute the in-sample RMSE based

on the observations that were included in the sample and then predict the future

observations for those individuals to estimate the out-of-sample performance of the

models for future observations for individuals used in estimation. For the addi-

tional sample of 50 individuals, we predict the first 75% of their observations using

just f̂ ; this allows us to measure the prediction performance for new individuals.

Finally, we use the original fitted model and the first 75% of observations for the

new individuals to predict the last 25% of observations for those individuals. This

allows us to measure the prediction performance for future observations of new

individuals. These results are discussed in Section 4.6.2. In that section, we also

test whether the root mean squared errors from RE-EM trees differ significantly

from those of other methods, using the Wilcoxon signed-rank test. Furthermore,
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since we know the true values of bi and f(xit·), we find the root mean squared

error of the estimates of these quantities in sample. We discuss these results in

Section 4.6.3. We also explore the effect of increased variability in the errors and of

autocorrelation in the errors in Section 4.6.4. We compute the root mean squared

differences between in-sample fits for different RE-EM estimation methods; we

discuss these results in Section 4.6.5.

Finally, we look at the performance of the estimators in balanced panels in

Section 4.6.6, which allows us to describe the performance of individual-specific

regressions and regression trees as well as the trees of Segal [1992] and De’Ath

[2002] (MVPART), using the MVPART package of De’ath [2006] in R.

4.6.2 Predictive Performance

In Tables 76, 77, and 78, we present the in-sample root mean squared errors for each

model when the true data generating processes are a RE-EM tree, a linear model

with random effects, and the more complicated model, respectively. In each table,

we present the results of estimating six different models: a linear model without

random effects (LM), a linear model with random effects and without autocorre-

lation (LME), a linear model with random effects and autocorrelation of order 1

(LME - AR(1)), a regression tree without random effects (RPART), a RE-EM tree

without autocorrelation (REEM), and a RE-EM tree with autocorrelation of order

1 (REEM - AR(1)). We also considered models fit to each individual separately, as

Afshartous and de Leeuw [2005] did. We found that these models performed quite

badly. While the linear model sometimes fit well in-sample (because the sample

size was small), RPART did not fit well in-sample and both models performed very

badly in the prediction of future values. Individual models would not be able to

be used at all for predictions for new individuals.
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Figure 140: In-sample root mean squared errors when the true data generating

process is a RE-EM tree.

When the true process is a RE-EM tree, given in Table 76, the RE-EM tree

without autocorrelation has the lowest RMSE in-sample. In the other two cases,

given in Tables 77 and 78, the linear model with random effects has the lower

in-sample root mean squared error. Figures 140 and 141 present the same results

graphically when the true data generating processes are the RE-EM tree and the

linear model with random effects. All of the differences between models for the

same sample sizes are statistically significant. The linear model without random

effects has the highest RMSE in all cases. The RMSE is generally constant or

decreasing as a function of the number of observations per group. This occurs in

part because of the larger total number of observations across all individuals.

Next, we consider the prediction error for future observations for individuals

that are already in the sample, reported in Tables 79, 80, and 81 for the three data

generating processes. As with the in-sample fits, the RE-EM tree has the lowest

RMSE when it is the true data generating process (Table 79), while the linear

model with random effects has the lowest RMSE in the other two cases (Tables

80 and 81). The difference between the linear model with random effects and the

RE-EM tree is not very large in a practical sense in the latter two cases, though
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I E(Ti) LM LME

LME -

AR(1) RPART REEM

REEM -

AR(1)

50 9.95 101.66 70.57 71.33 74.95 59.42 59.63

50 24.96 92.45 72.68 73.06 70.71 62.20 62.20

50 37.94 91.33 72.37 72.64 69.60 62.66 62.65

100 9.95 103.56 71.06 71.74 75.51 62.19 62.42

100 24.96 100.08 73.92 74.15 73.93 63.95 63.94

100 37.94 94.20 73.16 73.41 71.63 62.58 62.58

200 9.95 102.64 71.63 72.32 73.85 61.73 61.90

200 24.96 99.84 75.68 75.97 73.72 63.37 63.37

200 37.94 95.15 73.50 73.75 71.92 62.12 62.12

400 9.95 104.14 71.48 72.10 72.66 60.62 60.73

400 24.96 99.95 76.29 76.61 71.67 61.38 61.38

400 37.94 94.63 74.29 74.61 70.62 60.67 60.67

Table 76: In-sample root mean squared errors when the true data generating

process is a RE-EM tree.

Figure 141: In-sample root mean squared errors when the true data generating

process is a RE-EM tree.
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I E(Ti) LM LME

LME -

AR(1) RPART REEM

REEM -

AR(1)

50 9.95 345.03 69.67 69.70 232.35 88.76 88.79

50 24.96 344.13 73.25 73.25 201.36 94.79 94.60

50 37.94 339.47 74.25 74.25 192.27 91.60 91.60

100 9.95 362.10 70.54 70.56 271.01 85.29 85.26

100 24.96 358.22 73.75 73.75 249.65 87.43 87.52

100 37.94 356.53 74.47 74.47 241.20 86.38 86.39

200 9.95 370.64 71.22 71.23 315.89 81.19 81.19

200 24.96 370.31 74.02 74.02 305.87 82.42 82.46

200 37.94 365.81 74.78 74.78 295.44 81.96 81.95

400 9.95 372.90 71.68 71.69 353.27 77.66 77.70

400 24.96 373.27 74.07 74.07 349.56 79.56 79.60

400 37.94 371.12 74.71 74.71 343.59 79.20 79.18

Table 77: In-sample root mean squared errors when the true data generating

process is a linear model with random effects.
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I E(Ti) LM LME

LME -

AR(1) RPART REEM

REEM -

AR(1)

50 9.95 337.94 70.63 70.66 229.48 84.09 84.43

50 24.96 335.07 74.15 74.15 196.41 91.25 90.96

50 37.94 325.75 74.74 74.74 181.51 89.38 89.39

100 9.95 354.40 71.33 71.35 264.03 84.32 84.35

100 24.96 348.77 74.17 74.18 236.78 87.16 87.27

100 37.94 349.04 74.83 74.83 228.77 85.33 85.33

200 9.95 366.58 72.29 72.30 307.45 81.61 81.57

200 24.96 361.47 74.62 74.62 288.63 84.26 84.10

200 37.94 360.58 75.13 75.13 281.53 82.22 82.19

400 9.95 371.50 72.63 72.63 343.41 78.79 78.81

400 24.96 370.81 74.78 74.78 338.73 80.22 80.28

400 37.94 370.53 75.08 75.08 333.18 79.44 79.45

Table 78: In-sample root mean squared errors when the true data generating

process is a more complicated model.
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I E(Ti) LM LME

LME -

AR(1) RPART REEM

REEM -

AR(1)

50 9.95 96.03 92.16 91.60 83.37 80.99 80.90

50 24.96 88.70 77.82 78.04 74.63 70.88 70.87

50 37.94 98.09 87.80 88.06 78.94 74.07 74.04

100 9.95 94.57 88.84 88.37 79.72 75.29 75.27

100 24.96 93.55 79.80 79.82 75.23 68.41 68.41

100 37.94 98.80 86.95 87.24 76.94 69.77 69.77

200 9.95 94.53 88.95 88.45 75.93 70.37 70.33

200 24.96 94.13 80.33 80.47 75.83 68.03 68.02

200 37.94 98.30 86.47 86.77 74.32 66.39 66.39

400 9.95 96.37 89.82 89.30 73.49 67.45 67.45

400 24.96 93.44 80.83 80.99 72.80 64.92 64.95

400 37.94 98.29 87.22 87.61 71.35 63.08 63.08

Table 79: Out-of-sample root mean squared prediction errors for future observa-

tions when the true data generating process is a RE-EM tree.

it is statistically significant. In a few cases (in particular, when I = 200, 400 and

E(Ti) = 9.95 for a linear model and when I = 100 and E(Ti) = 9.95 for the

complicated linear model), the difference between the RMSE between the linear

model with random effects and the RE-EM tree is not statistically significant.

When the RE-EM tree is the true data generating process, a regression tree without

random effects outperforms the linear model without random effects in some cases,

presumably because the tree is closer to the true data generating process.

For new observations, prediction using RE-EM trees generally has the lowest

mean squared errors, though the linear model without random effects performs

about as well, particularly when the true data generating process is a linear model
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I E(Ti) LM LME

LME -

AR(1) RPART REEM

REEM -

AR(1)

50 9.95 348.41 80.14 80.20 281.39 107.95 108.17

50 24.96 344.50 77.10 77.10 232.31 101.87 101.69

50 37.94 339.79 76.84 76.84 217.09 97.49 97.54

100 9.95 362.98 80.57 80.61 314.46 99.28 99.26

100 24.96 358.44 77.34 77.34 273.78 92.24 92.34

100 37.94 356.58 76.91 76.92 261.91 90.69 90.73

200 9.95 370.14 80.47 80.48 342.01 92.44 92.47

200 24.96 370.09 77.91 77.91 319.81 87.07 87.09

200 37.94 365.47 77.06 77.06 306.45 85.40 85.41

400 9.95 371.62 81.21 81.22 360.97 88.15 88.19

400 24.96 372.76 77.69 77.69 353.33 83.45 83.48

400 37.94 370.42 77.19 77.19 346.49 82.21 82.17

Table 80: Out-of-sample root mean squared prediction errors for future observa-

tions when the true data generating process is a linear model with random effects.
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I E(Ti) LM LME

LME -

AR(1) RPART REEM

REEM -

AR(1)

50 9.95 341.65 81.75 81.81 275.44 106.28 106.50

50 24.96 335.32 76.84 76.85 225.39 98.09 97.83

50 37.94 325.51 77.04 77.04 208.19 95.81 95.82

100 9.95 354.80 81.22 81.25 304.76 99.31 99.51

100 24.96 348.21 77.79 77.79 263.50 92.42 92.56

100 37.94 348.82 77.50 77.50 252.51 90.01 89.98

200 9.95 365.84 81.77 81.79 337.30 93.39 93.44

200 24.96 361.02 77.83 77.83 305.59 88.72 88.57

200 37.94 359.65 77.59 77.59 295.91 86.07 86.05

400 9.95 369.87 81.91 81.93 356.56 89.57 89.59

400 24.96 370.27 78.07 78.07 345.12 83.93 83.99

400 37.94 369.96 77.80 77.80 338.76 83.14 83.15

Table 81: Out-of-sample root mean squared prediction errors for future observa-

tions when the true data generating process is a more complicated model.
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I E(Ti) LM LME

LME -

AR(1) RPART REEM

REEM -

AR(1)

50 9.95 114.35 114.26 114.00 104.40 97.64 97.65

50 24.96 101.02 155.49 151.22 98.37 92.39 92.47

50 37.94 97.81 169.15 165.39 94.24 89.36 89.36

100 9.95 108.86 110.06 109.74 92.38 90.26 90.22

100 24.96 102.00 190.25 188.16 86.83 85.40 85.39

100 37.94 91.28 180.68 175.52 81.29 79.48 79.48

200 9.95 111.54 113.22 112.97 88.91 89.44 89.35

200 24.96 101.22 202.51 197.00 85.33 85.00 85.04

200 37.94 95.16 214.96 204.20 76.74 76.32 76.32

400 9.95 103.03 103.79 103.71 76.72 77.06 77.04

400 24.96 99.36 183.10 177.68 75.09 74.92 74.92

400 37.94 94.41 182.10 171.50 73.85 74.06 74.06

Table 82: Out-of-sample root mean squared prediction errors for new observations

when the true data generating process is a RE-EM tree.

with random effects. Full results are given in Tables 82, 83, and 84. The differ-

ence between the root mean squared errors for the linear model and the RE-EM

tree are not statistically significant (at the p = 0.01 level) for five parameter con-

figurations when the true data generating process is a linear model with random

effects and for another five when the true process is the more complicated linear

model. The difference between the root mean squared errors of prediction for the

regression trees with and without random effects is not statistically significant for

one parameter configuration.

Finally, we compare the predictions for individuals who were not in the original

sample, using some of their observations to estimate random effects. As before, the
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I E(Ti) LM LME

LME -

AR(1) RPART REEM

REEM -

AR(1)

50 9.95 389.97 427.45 427.30 462.81 390.54 390.48

50 24.96 390.77 482.34 482.34 472.75 391.76 391.57

50 37.94 388.99 486.33 486.35 466.38 387.46 387.44

100 9.95 379.54 425.21 425.05 449.48 382.34 382.26

100 24.96 378.83 473.14 473.14 455.95 383.75 383.85

100 37.94 374.03 480.44 480.42 453.98 377.03 377.05

200 9.95 369.20 420.81 420.65 418.96 371.29 371.26

200 24.96 370.13 479.10 479.10 426.25 374.86 374.86

200 37.94 366.47 501.59 501.59 426.06 371.75 371.67

400 9.95 371.02 417.28 417.17 391.71 372.92 372.94

400 24.96 363.72 496.29 496.28 390.61 368.75 368.72

400 37.94 361.90 501.69 501.69 393.39 367.12 367.05

Table 83: Out-of-sample root mean squared prediction errors for new observations

when the true data generating process is a linear model with random effects.
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I E(Ti) LM LME

LME -

AR(1) RPART REEM

REEM -

AR(1)

50 9.95 388.79 426.10 425.92 460.22 388.54 388.36

50 24.96 375.90 471.31 471.27 457.93 382.63 382.46

50 37.94 376.90 462.49 462.47 457.94 378.06 377.94

100 9.95 370.44 404.33 404.12 442.36 373.53 373.53

100 24.96 362.82 474.06 473.94 442.85 368.70 368.57

100 37.94 363.39 456.98 456.93 445.31 365.42 365.37

200 9.95 366.48 403.98 403.80 419.61 368.24 368.28

200 24.96 358.28 484.34 484.28 420.68 364.40 364.39

200 37.94 354.47 484.45 484.38 422.96 358.49 358.49

400 9.95 360.94 407.53 407.32 392.17 363.72 363.70

400 24.96 355.79 478.48 478.43 391.79 359.79 359.74

400 37.94 350.17 478.39 478.33 390.44 353.36 353.34

Table 84: Out-of-sample root mean squared prediction errors for new observations

when the true data generating process is a more complicated model.
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I E(Ti) LM LME

LME -

AR(1) RPART REEM

REEM -

AR(1)

50 9.95 100.29 91.52 91.45 93.40 80.79 80.88

50 24.96 93.19 80.59 80.80 93.87 75.15 75.17

50 37.94 99.87 90.86 91.21 93.31 77.35 77.36

100 9.95 94.41 89.89 89.87 82.27 75.03 75.09

100 24.96 95.92 83.24 83.42 85.75 75.74 75.71

100 37.94 96.87 86.54 86.91 81.87 71.53 71.53

200 9.95 97.28 92.95 92.93 78.14 74.07 73.92

200 24.96 93.17 82.61 82.80 85.74 74.01 74.01

200 37.94 96.87 86.83 87.18 76.49 67.36 67.36

400 9.95 95.25 88.49 88.49 74.07 68.56 68.53

400 24.96 93.32 82.39 82.67 76.20 67.54 67.54

400 37.94 95.49 86.23 86.74 72.11 63.84 63.84

Table 85: Out-of-sample root mean squared prediction errors for future observa-

tions for new individuals when the true data generating process is a RE-EM tree.

RE-EM tree performs best when it is the true data generating process, as shown in

Table 85. The linear model performs best in the other two cases, given in Tables

86 and 87. However, the difference between the linear model and the RE-EM tree

(which consistently performs second best) narrows considerably as the sample size

grows, and the RE-EM tree outperforms the linear model with random effects in

one case.

362



I E(Ti) LM LME

LME -

AR(1) RPART REEM

REEM -

AR(1)

50 9.95 385.91 80.28 80.30 461.29 101.15 101.00

50 24.96 389.05 77.48 77.48 471.97 96.81 96.69

50 37.94 387.42 76.81 76.81 465.31 96.15 96.13

100 9.95 375.42 79.70 79.71 447.52 93.09 93.04

100 24.96 377.09 77.13 77.13 454.41 92.08 92.07

100 37.94 373.47 76.19 76.19 453.25 88.61 88.66

200 9.95 364.47 79.51 79.52 414.69 88.59 88.49

200 24.96 368.33 77.10 77.10 422.94 86.03 86.06

200 37.94 365.28 76.36 76.36 424.33 84.33 84.38

400 9.95 366.84 79.26 79.27 387.96 84.31 84.45

400 24.96 362.30 76.05 76.05 388.37 81.93 81.94

400 37.94 360.50 76.55 76.55 391.76 82.74 82.72

Table 86: Out-of-sample root mean squared prediction errors for future observa-

tions for new individuals when the true data generating process is a linear model

with random effects.
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I E(Ti) LM LME

LME -

AR(1) RPART REEM

REEM -

AR(1)

50 9.95 381.86 81.94 81.95 453.62 101.77 101.98

50 24.96 375.39 77.83 77.84 456.08 97.64 97.67

50 37.94 376.39 78.06 78.06 455.80 96.70 96.68

100 9.95 365.10 80.91 80.92 439.32 94.52 94.36

100 24.96 361.18 78.02 78.02 440.59 90.71 90.84

100 37.94 361.67 77.80 77.80 443.32 90.64 90.66

200 9.95 361.67 79.92 79.93 416.34 88.36 88.26

200 24.96 355.93 77.48 77.48 418.84 85.94 85.99

200 37.94 353.05 77.10 77.10 421.63 84.64 84.60

400 9.95 356.87 80.75 80.76 388.12 87.02 87.01

400 24.96 353.88 76.98 76.98 390.12 82.55 82.55

400 37.94 348.45 76.67 76.67 388.52 81.73 81.73

Table 87: Out-of-sample root mean squared prediction errors for future observa-

tions for new individuals when the true data generating process is a more compli-

cated model.
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4.6.3 Estimation of the Underlying Function and Random Effects

In addition to assessing the predictive power of the models, we measure how well

the linear model with random effects and the RE-EM tree are able to estimate the

random effects, and how well each of the estimation methods are able to estimate

the fitted values. For all three data generating processes, the RE-EM tree has a

lower root mean squared error in estimating the random effects (Tables 88, 89, and

90). The RE-EM tree and the linear model without random effects generally have

the lowest root mean squared errors in estimated the values of f(xit) at each point

(Tables 91, 92, and 93). Furthermore, the performance of the linear model with

random effects generally deteriorates as the number of observations per individual

grows, while the performance of the RE-EM tree stays the same or improves.

The performance of the RE-EM tree seems to contradict the results of the

previous section, in which the linear model with random effects often performs

better for predicting future observations for individuals in the sample and outside

the sample. To better understand this phenomenon, we consider a decomposition

of the root mean squared prediction error. Consider a single new observation,

yit = αi+f(xi·t)+εit. The predicted value for that observation is ŷit = α̂it+ f̂(xi·t),

where f̂ is the estimated linear model or regression tree. Then, we may write the

squared error and its expected value as:

yit − ŷit = (αi − α̂i) + (f(xi·t)− f̂(xi·t)) + εit

(yit − ŷit)2 = (αi − α̂i)2 + (f(xi·t)− f̂(xi·t))
2 + ε2it

+2(αi − α̂i)(f(xi·t)− f̂(xi·t)) + 2(αi − α̂i)εit

+2(f(xi·t)− f̂(xi·t))εit

E((yit − ŷit)2) = E((αi − α̂i)2) + E((f(xi·t)− f̂(xi·t))
2) + E(ε2it)

+2E((αi − α̂i)(f(xi·t)− f̂(xi·t)))
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I E(Ti) LME LME- AR(1) REEM REEM - AR(1)

50 9.95 63.13 60.35 43.86 43.57

50 24.96 100.54 96.70 38.98 39.04

50 37.94 124.62 120.29 38.49 38.47

100 9.95 65.98 62.99 33.63 33.17

100 24.96 165.17 161.56 28.81 28.80

100 37.94 172.96 165.92 29.39 29.31

200 9.95 62.18 58.95 24.61 24.37

200 24.96 155.28 148.74 21.53 21.54

200 37.94 197.12 184.95 21.01 20.97

400 9.95 65.29 62.03 21.99 21.92

400 24.96 145.07 137.50 18.35 18.36

400 37.94 174.75 159.64 17.99 17.99

Table 88: Root mean squared errors of estimated random effects when the true

data generating process is a RE-EM tree.
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I E(Ti) LME LME - AR(1) REEM REEM - AR(1)

50 9.95 196.65 196.34 130.19 130.01

50 24.96 288.35 288.32 131.95 131.73

50 37.94 289.51 289.51 125.32 125.28

100 9.95 214.70 214.33 106.48 106.56

100 24.96 278.21 278.21 108.21 108.28

100 37.94 298.11 298.08 106.27 106.27

200 9.95 208.55 208.21 91.04 90.99

200 24.96 300.53 300.52 97.37 97.33

200 37.94 305.72 305.71 95.51 95.50

400 9.95 212.71 212.39 85.19 85.18

400 24.96 309.96 309.94 89.55 89.61

400 37.94 320.59 320.58 91.29 91.23

Table 89: Root mean squared errors of estimated random effects when the true

data generating process is a linear model.
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I E(Ti) LME LME - AR(1) REEM REEM - AR(1)

50 9.95 183.28 182.98 127.25 126.75

50 24.96 280.39 280.34 134.04 134.21

50 37.94 281.09 281.03 122.66 122.53

100 9.95 177.47 177.08 103.70 103.58

100 24.96 279.38 279.21 109.76 109.80

100 37.94 275.62 275.55 98.76 98.65

200 9.95 184.66 184.26 90.96 90.98

200 24.96 308.49 308.41 101.07 101.07

200 37.94 316.99 316.89 97.17 97.00

400 9.95 191.94 191.57 85.17 85.27

400 24.96 316.94 316.85 91.99 91.99

400 37.94 330.06 329.97 88.62 88.49

Table 90: Root mean squared errors of estimated random effects when the true

data generating process is the complicated model.
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I E(Ti) LM LME

LME -

AR(1) RPART REEM

REEM -

AR(1)

50 9.95 75.43 79.61 79.46 50.04 51.41 51.32

50 24.96 61.31 117.00 114.12 36.78 36.16 36.20

50 37.94 60.02 137.93 134.85 34.31 30.66 30.68

100 9.95 76.58 80.60 80.37 38.75 38.93 38.74

100 24.96 71.19 181.30 179.04 30.08 29.41 29.40

100 37.94 63.03 180.89 174.95 25.97 23.79 23.76

200 9.95 75.13 77.77 77.59 27.52 28.10 28.01

200 24.96 70.94 176.30 170.92 24.04 24.15 24.17

200 37.94 64.34 209.72 197.99 18.59 17.96 17.94

400 9.95 76.90 79.52 79.38 20.88 21.57 21.52

400 24.96 71.13 165.42 159.12 14.84 14.82 14.82

400 37.94 63.44 188.57 174.23 9.57 9.18 9.18

Table 91: Root mean squared errors of estimated values of f(x) when the true

data generating process is a RE-EM tree.
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I E(Ti) LM LME

LME -

AR(1) RPART REEM

REEM -

AR(1)

50 9.95 129.68 200.67 200.34 275.97 137.20 136.94

50 24.96 129.74 313.29 313.27 300.28 141.18 140.85

50 37.94 131.79 297.52 297.53 301.51 130.85 130.78

100 9.95 103.10 219.90 219.53 253.12 109.73 109.70

100 24.96 101.80 303.07 303.07 269.54 114.18 114.20

100 37.94 103.40 312.10 312.08 274.28 110.45 110.36

200 9.95 83.60 213.94 213.60 203.32 90.90 90.85

200 24.96 83.84 320.56 320.55 218.49 98.60 98.59

200 37.94 83.91 313.03 313.02 224.09 96.37 96.31

400 9.95 76.35 217.35 217.04 131.49 83.24 83.24

400 24.96 72.94 327.21 327.19 141.53 88.56 88.55

400 37.94 74.02 333.73 333.73 149.71 91.08 90.98

Table 92: Root mean squared errors of estimated values of f(x) when the true

data generating process is a linear model.
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I E(Ti) LM LME

LME -

AR(1) RPART REEM

REEM -

AR(1)

50 9.95 129.33 187.74 187.44 270.28 134.32 134.12

50 24.96 127.18 296.64 296.59 290.81 141.71 141.57

50 37.94 126.29 294.48 294.42 290.91 126.39 126.32

100 9.95 101.46 180.51 180.11 249.46 108.59 108.74

100 24.96 101.31 303.43 303.25 268.18 115.40 115.27

100 37.94 99.98 288.85 288.78 274.86 103.46 103.37

200 9.95 86.00 188.84 188.45 209.45 92.11 92.24

200 24.96 85.91 334.19 334.10 226.46 105.20 105.15

200 37.94 85.22 328.98 328.88 232.96 97.35 97.31

400 9.95 77.22 197.19 196.83 151.64 85.01 85.00

400 24.96 75.36 341.62 341.53 160.63 91.62 91.60

400 37.94 74.81 341.17 341.08 169.58 88.79 88.70

Table 93: Root mean squared errors of estimated values of f(x) when the true

data generating process is the complicated model.
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Notice that E(ε2it) is constant across the two models, while the simulations have

shown that both E((αi−α̂i)2) and E((f(xi·t)−f̂(xi·t))
2) are larger for linear models

with random effects than for RE-EM trees. In order for E((yit− ŷit)2) to be smaller

for linear models, we must have 2E((αi − α̂i)(f(xi·t) − f̂(xi·t))) smaller for linear

models as well. This term is the covariance between the errors in estimating the

random effects and the errors in estimating the values of f for the corresponding

individuals. In Tables 94, 95, and 96, we report the average correlation between

these two quantities for the models that do not include autoregressive components;

the correlations when autoregressive components are estimated are almost identi-

cal. The correlation is negative for both linear models with random effects and

RE-EM trees, but it is much closer to -1 for linear models with random effects.

It seems that the linear model has difficulty distinguishing between the functional

variation and the variation in the random effects. While this is not a problem when

the random effect can be estimated for an individual using previous observations,

it causes problems for prediction for new individuals, as we saw in Tables 82, 83

and 84. This also causes problems when the values of the underlying function, f ,

are of interest.
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I E(Ti) LME REEM

50 9.95 -0.7182 -0.5824

50 24.96 -0.6910 -0.5301

50 37.94 -0.7081 -0.5259

100 9.95 -0.7500 -0.4600

100 24.96 -0.8021 -0.4211

100 37.94 -0.7986 -0.4568

200 9.95 -0.7586 -0.3177

200 24.96 -0.8485 -0.3105

200 37.94 -0.9049 -0.3401

400 9.95 -0.7835 -0.2346

400 24.96 -0.8642 -0.2020

400 37.94 -0.9004 -0.2146

Table 94: Average correlation between the errors in estimating the random effects

and the errors in estimating the fitted values when the true data generating process

is a RE-EM tree.
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I E(Ti) LME REEM

50 9.95 -0.9687 -0.8057

50 24.96 -0.9961 -0.8519

50 37.94 -0.9976 -0.8632

100 9.95 -0.9844 -0.8131

100 24.96 -0.9975 -0.8684

100 37.94 -0.9985 -0.8923

200 9.95 -0.9875 -0.8183

200 24.96 -0.9981 -0.8942

200 37.94 -0.9987 -0.9102

400 9.95 -0.9891 -0.8507

400 24.96 -0.9984 -0.9062

400 37.94 -0.9990 -0.9292

Table 95: Average correlation between the errors in estimating the random effects

and the errors in estimating the fitted values when the true data generating process

is a linear model with random effects.
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I E(Ti) LME REEM

50 9.95 -0.9619 -0.8182

50 24.96 -0.9939 -0.8641

50 37.94 -0.9954 -0.8630

100 9.95 -0.9715 -0.8067

100 24.96 -0.9959 -0.8722

100 37.94 -0.9972 -0.8757

200 9.95 -0.9805 -0.8172

200 24.96 -0.9973 -0.8866

200 37.94 -0.9982 -0.9042

400 9.95 -0.9838 -0.8376

400 24.96 -0.9978 -0.9018

400 37.94 -0.9985 -0.9194

Table 96: Average correlation between the errors in estimating the random effects

and the errors in estimating the fitted values when the true data generating process

is a non-linear model.
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4.6.4 Varying Model Parameters

We now consider the effect of varying the properties of the model in two ways. In

our first experiment, we double the standard deviation of the errors, ε̂it. In our

second experiment, we add an autoregressive component to the errors, by setting:

ei1 = εi1

eit = ρei,t−1 +
√

1− ρ2εit

All of the results in Sections 4.6.2 and 4.6.3 use ρ = 0. Here, we use ρ = 0.5 and

ρ = 0.9 to explore the effects of autocorrelation on predictive performance.

When we double the standard deviation of the errors, we find similar results,

with the root mean squared errors being higher. (The root mean squared errors

are not necessarily doubled, since the effect variance is unchanged.) The success

of the models relative to each other is the same, so we do not present the results

here.

In Tables 97, 98 and 99, we present the in-sample root mean squared error for

the various estimators and data generating processes, holding the average number

of observations per individual fixed at 38. For almost all of the estimators, the

RMSE declines as ρ increases. This decrease is larger when the RE-EM tree is

the true data generating process and quite small when the linear model or the

more complicated linear model is the true data generating process. The difference

between the RMSE of the estimators that do and do not include the autoregressive

component is largest when α = 0.9, but it is small even then.

In Tables 100, 101 and 102, we present the in-sample root mean squared error

for the various estimators and data generating processes, holding the number of

individuals fixed at 100 and allowing ρ and E(Ti) to vary. Again, most of the in-

sample RMSE’s decline as the autoregressive parameter increases. In the case of
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I

α Model Type 50 100 200 400

0.0 LM 91.33 94.20 95.15 94.63

0.0 LME 72.37 73.16 73.50 74.29

0.0 LME-AR 72.64 73.41 73.75 74.61

0.0 RPART 69.60 71.63 71.92 70.62

0.0 RE-EM Tree 62.66 62.58 62.12 60.67

0.0 RE-EM-AR 62.65 62.58 62.12 60.67

0.5 LM 89.15 93.00 95.30 94.96

0.5 LME 71.30 71.46 72.35 73.24

0.5 LME-AR 72.93 72.62 73.31 74.10

0.5 RPART 67.64 71.11 71.41 70.68

0.5 RE-EM Tree 59.93 60.58 60.03 59.09

0.5 RE-EM-AR 60.63 61.23 60.68 59.80

0.9 LM 86.38 91.07 94.55 95.52

0.9 LME 61.96 64.35 64.04 65.12

0.9 LME-AR 67.17 67.73 66.40 66.78

0.9 RPART 62.14 67.75 71.44 70.81

0.9 RE-EM Tree 50.74 50.98 51.45 49.84

0.9 RE-EM-AR 54.13 54.99 55.17 55.49

Table 97: In-sample root mean squared error when the true data generating process

is a RE-EM tree as α and I vary. The expected number of observations per

individual, E(Ti), is fixed at 38. Model type is the type of model fitted to the

data.
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I

α Model Type 50 100 200 400

0.0 LM 339.47 356.53 365.81 371.12

0.0 LME 74.25 74.47 74.78 74.71

0.0 LME-AR 74.25 74.47 74.78 74.71

0.0 RPART 192.27 241.20 295.44 343.59

0.0 RE-EM Tree 91.60 86.38 81.96 79.20

0.0 RE-EM-AR 91.60 86.39 81.95 79.18

0.5 LM 340.16 357.92 366.03 371.28

0.5 LME 71.88 72.34 72.59 72.58

0.5 LME-AR 72.03 72.45 72.67 72.65

0.5 RPART 187.51 240.38 295.27 343.73

0.5 RE-EM Tree 91.50 84.73 79.53 77.34

0.5 RE-EM-AR 91.18 84.19 79.47 77.41

0.9 LM 338.23 356.40 367.39 372.17

0.9 LME 60.00 60.32 60.68 60.82

0.9 LME-AR 64.39 63.87 62.46 62.49

0.9 RPART 185.60 238.57 294.78 343.17

0.9 RE-EM Tree 78.50 72.48 69.31 66.45

0.9 RE-EM-AR 81.41 73.16 69.63 66.88

Table 98: In-sample root mean squared error when the true data generating process

is a RE-EM tree as α and I vary. The expected number of observations per

individual, E(Ti), is fixed at 38. Model type is the type of model fitted to the

data.
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I

α Model Type 50 100 200 400

0.0 LM 325.75 349.04 360.58 370.53

0.0 LME 74.74 74.83 75.13 75.08

0.0 LME-AR 74.74 74.83 75.13 75.08

0.0 RPART 181.51 228.77 281.53 333.18

0.0 RE-EM Tree 89.38 85.33 82.22 79.44

0.0 RE-EM-AR 89.39 85.33 82.19 79.45

0.5 LM 325.02 348.34 361.95 369.05

0.5 LME 72.30 72.61 72.94 72.95

0.5 LME-AR 72.43 72.72 73.03 73.03

0.5 RPART 184.48 227.54 284.90 332.71

0.5 RE-EM Tree 88.36 83.41 80.37 77.62

0.5 RE-EM-AR 88.04 82.94 80.36 77.55

0.9 LM 323.20 351.60 359.52 367.29

0.9 LME 60.65 61.20 61.01 61.44

0.9 LME-AR 63.28 63.64 62.46 62.77

0.9 RPART 175.57 226.27 280.81 330.38

0.9 RE-EM Tree 75.78 73.99 68.73 66.43

0.9 RE-EM-AR 79.69 76.30 68.25 67.05

Table 99: In-sample root mean squared error when the true data generating pro-

cess is the more complicated model as α and I vary. The expected number of

observations per individual, E(Ti), is fixed at 38. Model type is the type of model

fitted to the data.
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Figure 142: In-sample root mean squared error when the true data generating

process is a linear model with random effects. The number of individuals, I, is

fixed at 100. The autocorrelation of the errors is given in parentheses next to the

estimation method.

the linear model with random effects and an autoregressive component, the reverse

holds again. In this case, we see that the LME-AR model performs particularly

badly when the number of observations per individual is small, but its performance

improves rapidly as E(Ti) increases. The case in which this is most extreme is given

in Figure 142, when the true data generating process is a linear model.

380



E(Ti)

α Model Type 9.95 24.96 37.94

0.0 LM 103.56 100.08 94.20

0.0 LME 71.06 73.92 73.16

0.0 LME-AR 71.74 74.15 73.41

0.0 RPART 75.51 73.93 71.63

0.0 RE-EM Tree 62.19 63.95 62.58

0.0 RE-EM-AR 62.42 63.94 62.58

0.5 LM 98.76 95.69 93.00

0.5 LME 65.18 71.41 71.46

0.5 LME-AR 70.40 72.76 72.62

0.5 RPART 71.94 72.80 71.11

0.5 RE-EM Tree 54.38 60.92 60.58

0.5 RE-EM-AR 58.80 61.84 61.23

0.9 LM 101.06 96.45 91.07

0.9 LME 51.00 60.64 64.35

0.9 LME-AR 56.21 64.70 67.73

0.9 RPART 68.60 69.13 67.75

0.9 RE-EM Tree 37.00 47.62 50.98

0.9 RE-EM-AR 44.63 52.35 54.99

Table 100: In-sample root mean squared error when the true data generating

process is a RE-EM tree as α and E(Ti) vary. The number of individuals, I, is

fixed at 100. Model type is the type of model fitted to the data.
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E(Ti)

α Model Type 9.95 24.96 37.94

0.0 LM 362.10 358.22 356.53

0.0 LME 70.54 73.75 74.47

0.0 LME-AR 70.56 73.75 74.47

0.0 RPART 271.01 249.65 241.20

0.0 RE-EM Tree 85.29 87.43 86.38

0.0 RE-EM-AR 85.26 87.52 86.39

0.5 LM 364.28 359.86 357.92

0.5 LME 63.04 70.68 72.34

0.5 LME-AR 64.85 70.85 72.45

0.5 RPART 273.27 250.61 240.38

0.5 RE-EM Tree 79.91 85.85 84.73

0.5 RE-EM-AR 80.30 85.21 84.19

0.9 LM 361.62 363.48 356.40

0.9 LME 36.21 53.23 60.32

0.9 LME-AR 70.11 61.71 63.87

0.9 RPART 268.06 250.28 238.57

0.9 RE-EM Tree 57.52 70.39 72.48

0.9 RE-EM-AR 58.59 70.10 73.16

Table 101: In-sample root mean squared error when the true data generating

process is a linear model with random effects where α and E(Ti) vary. The number

of individuals, I, is fixed at 100. Model type is the type of model fitted to the

data.
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E(Ti)

α Model Type 9.95 24.96 37.94

0.0 LM 354.40 348.77 349.04

0.0 LME 71.33 74.17 74.83

0.0 LME-AR 71.35 74.18 74.83

0.0 RPART 264.03 236.78 228.77

0.0 RE-EM Tree 84.32 87.16 85.33

0.0 RE-EM-AR 84.35 87.27 85.33

0.5 LM 354.62 352.66 348.34

0.5 LME 63.88 71.09 72.61

0.5 LME-AR 64.94 71.26 72.72

0.5 RPART 265.97 237.95 227.54

0.5 RE-EM Tree 77.06 84.52 83.41

0.5 RE-EM-AR 77.54 84.50 82.94

0.9 LM 356.74 354.42 351.60

0.9 LME 38.65 54.55 61.20

0.9 LME-AR 52.28 59.73 63.64

0.9 RPART 264.38 240.90 226.27

0.9 RE-EM Tree 58.04 70.14 73.99

0.9 RE-EM-AR 60.09 70.91 76.30

Table 102: In-sample root mean squared error when the true data generating

process is the more complicated model where α and E(Ti) vary. The number of

individuals, I, is fixed at 100. Model type is the type of model fitted to the data.
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Figure 143: Root mean squared error of prediction for future observations of the

individuals included in the sample when the true data generating process is a linear

model with random effects. The average number of observations per individual is

fixed at 38. The autocorrelation of the errors is given in parentheses next to the

estimation method.

In Tables 103, 104 and 105, we present the root mean squared error of the

predictions for future observations of individuals in the sample, holding the average

number of observations per individual fixed. Figure 143 presents the root mean

squared errors graphically when the data generating process is a linear model.

Tables 106, 107 and 108 give the root mean squared error holding the number

of individuals fixed instead; Figure 144 presents the same information graphically

when the data generating process is a linear model. The patterns that we saw for

the in-sample root mean squared errors generally continue to hold. When the data

generating process is a RE-EM tree, the effect of changing ρ is most pronounced.

The linear model with random effects and an autoregressive component again

performs badly when ρ = 0.9 and the number of observations per individual is

small.

Next, we consider the root mean squared error of prediction for individuals not

in the sample. The resulting RMSE’s when the average number of observations is
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I

α Model Type 50 100 200 400

0.0 LM 98.09 98.80 98.30 98.29

0.0 LME 87.80 86.95 86.47 87.22

0.0 LME-AR 88.06 87.24 86.77 87.61

0.0 RPART 78.94 76.94 74.32 71.35

0.0 RE-EM Tree 74.07 69.77 66.39 63.08

0.0 RE-EM-AR 74.04 69.77 66.39 63.08

0.5 LM 96.65 98.32 98.77 98.48

0.5 LME 88.34 87.04 89.37 88.91

0.5 LME-AR 88.81 87.36 89.36 89.23

0.5 RPART 77.85 76.59 74.86 71.64

0.5 RE-EM Tree 73.29 70.18 67.51 64.08

0.5 RE-EM-AR 72.93 69.70 67.24 63.81

0.9 LM 93.99 97.16 97.78 99.38

0.9 LME 86.56 87.25 86.24 88.02

0.9 LME-AR 85.06 85.75 85.22 86.87

0.9 RPART 78.26 76.20 75.78 72.14

0.9 RE-EM Tree 74.06 69.64 68.63 64.48

0.9 RE-EM-AR 72.64 67.59 66.18 62.41

Table 103: Root mean squared error of prediction for future observations of indi-

viduals in the sample when the true data generating process is a RE-EM tree as

α and I vary. The expected number of observations per individual, E(Ti), is fixed

at 38. Model type is the type of model fitted to the data.
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I

α Model Type 50 100 200 400

0.0 LM 339.79 356.58 365.47 370.42

0.0 LME 76.84 76.91 77.06 77.19

0.0 LME-AR 76.84 76.92 77.06 77.19

0.0 RPART 217.09 261.91 306.45 346.49

0.0 RE-EM Tree 97.49 90.69 85.40 82.21

0.0 RE-EM-AR 97.54 90.73 85.41 82.17

0.5 LM 341.15 357.94 365.64 370.69

0.5 LME 77.70 78.23 78.20 78.29

0.5 LME-AR 77.30 77.90 77.87 78.00

0.5 RPART 214.90 260.73 307.00 346.90

0.5 RE-EM Tree 100.75 92.56 86.29 83.39

0.5 RE-EM-AR 100.10 91.61 85.92 83.15

0.9 LM 339.53 356.77 367.17 371.54

0.9 LME 77.27 78.13 78.40 78.40

0.9 LME-AR 75.98 76.22 74.98 74.88

0.9 RPART 215.18 260.96 307.11 346.59

0.9 RE-EM Tree 97.42 90.92 86.69 83.68

0.9 RE-EM-AR 97.67 88.74 84.35 81.36

Table 104: Root mean squared error of prediction for future observations of indi-

viduals in the sample when the true data generating process is a RE-EM tree as

α and I vary. The expected number of observations per individual, E(Ti), is fixed

at 38. Model type is the type of model fitted to the data.
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I

α Model Type 50 100 200 400

0.0 LM 325.51 348.82 359.65 369.96

0.0 LME 77.04 77.50 77.59 77.80

0.0 LME-AR 77.04 77.50 77.59 77.80

0.0 RPART 208.19 252.51 295.91 338.76

0.0 RE-EM Tree 95.81 90.01 86.07 83.14

0.0 RE-EM-AR 95.82 89.98 86.05 83.15

0.5 LM 325.34 347.94 361.28 368.30

0.5 LME 78.57 78.47 78.76 78.71

0.5 LME-AR 78.18 78.13 78.46 78.43

0.5 RPART 212.16 249.50 299.65 338.28

0.5 RE-EM Tree 98.53 90.99 87.10 83.87

0.5 RE-EM-AR 97.75 90.19 86.80 83.51

0.9 LM 323.65 351.38 358.76 366.56

0.9 LME 77.78 78.48 78.63 78.68

0.9 LME-AR 75.40 76.21 75.50 75.48

0.9 RPART 204.70 251.72 296.19 335.83

0.9 RE-EM Tree 96.07 91.92 86.56 83.88

0.9 RE-EM-AR 97.06 91.49 83.42 81.68

Table 105: Root mean squared error of prediction for future observations of individ-

uals in the sample when the true data generating process is the more complicated

model as α and I vary. The expected number of observations per individual, E(Ti),

is fixed at 38. Model type is the type of model fitted to the data.
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E(Ti)

α Model Type 9.95 24.96 37.94

0.0 LM 94.57 93.55 98.80

0.0 LME 88.84 79.80 86.95

0.0 LME-AR 88.37 79.82 87.24

0.0 RPART 79.72 75.23 76.94

0.0 RE-EM Tree 75.29 68.41 69.77

0.0 RE-EM-AR 75.27 68.41 69.77

0.5 LM 94.21 92.47 98.32

0.5 LME 88.17 78.83 87.04

0.5 LME-AR 86.35 78.78 87.36

0.5 RPART 78.96 76.47 76.59

0.5 RE-EM Tree 74.69 70.29 70.18

0.5 RE-EM-AR 73.44 69.63 69.70

0.9 LM 93.02 89.90 97.16

0.9 LME 78.31 77.28 87.25

0.9 LME-AR 76.87 75.95 85.75

0.9 RPART 76.90 74.71 76.20

0.9 RE-EM Tree 63.64 67.26 69.64

0.9 RE-EM-AR 62.58 64.39 67.59

Table 106: Root mean squared error of prediction for future observations of indi-

viduals in the sample when the true data generating process is a RE-EM tree as α

and E(Ti) vary. The number of individuals, I, is fixed at 100. Model type is the

type of model fitted to the data.

388



E(Ti)

α Model Type 9.95 24.96 37.94

0.0 LM 362.98 358.44 356.58

0.0 LME 80.57 77.34 76.91

0.0 LME-AR 80.61 77.34 76.92

0.0 RPART 314.46 273.78 261.91

0.0 RE-EM Tree 99.28 92.24 90.69

0.0 RE-EM-AR 99.26 92.34 90.73

0.5 LM 365.45 359.61 357.94

0.5 LME 81.35 78.90 78.23

0.5 LME-AR 80.91 78.37 77.90

0.5 RPART 316.54 274.86 260.73

0.5 RE-EM Tree 101.20 94.97 92.56

0.5 RE-EM-AR 100.11 93.75 91.61

0.9 LM 363.23 363.83 356.77

0.9 LME 58.88 75.49 78.13

0.9 LME-AR 83.30 75.63 76.22

0.9 RPART 311.91 276.61 260.96

0.9 RE-EM Tree 81.45 91.39 90.92

0.9 RE-EM-AR 79.69 87.71 88.74

Table 107: Root mean squared error of prediction for future observations of indi-

viduals in the sample when the true data generating process is a linear model with

random effects where α and E(Ti) vary. The number of individuals, I, is fixed at

100. Model type is the type of model fitted to the data.
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E(Ti)

α Model Type 9.95 24.96 37.94

0.0 LM 354.80 348.21 348.82

0.0 LME 81.22 77.79 77.50

0.0 LME-AR 81.25 77.79 77.50

0.0 RPART 304.76 263.50 252.51

0.0 RE-EM Tree 99.31 92.42 90.01

0.0 RE-EM-AR 99.51 92.56 89.98

0.5 LM 354.47 352.30 347.94

0.5 LME 82.06 79.53 78.47

0.5 LME-AR 80.78 79.01 78.13

0.5 RPART 306.79 264.02 249.50

0.5 RE-EM Tree 98.94 93.73 90.99

0.5 RE-EM-AR 97.67 93.06 90.19

0.9 LM 356.93 354.62 351.38

0.9 LME 61.11 76.19 78.48

0.9 LME-AR 67.60 74.49 76.21

0.9 RPART 307.59 267.39 251.72

0.9 RE-EM Tree 82.91 91.38 91.92

0.9 RE-EM-AR 81.78 88.34 91.49

Table 108: Root mean squared error of prediction for future observations of individ-

uals in the sample when the true data generating process is the more complicated

model where α and E(Ti) vary. The number of individuals, I, is fixed at 100.

Model type is the type of model fitted to the data.
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Figure 144: Root mean squared error of prediction for future observations of the

individuals included in the sample when the true data generating process is a linear

model with random effects. The number of individuals, I, is fixed at 100. The

autocorrelation of the errors is given in parentheses next to the estimation method.

fixed are given in Tables 109, 110 and 111 and in Figure 145. Tables 112, 113 and

114, as well as Figure 146, give the root mean squared errors when the number of

individuals is fixed. The linear model with random effects continues to have the

largest root mean squared errors of all the predictors, and its root mean squared

error increases as ρ increases. This suggests that autocorrelation exacerbates the

problems that the linear model has in distinguishing between the random effects

and the fixed function. The linear model with random effects that allows for

autocorrelation has root mean squared errors that are similar to or slightly worse

than the linear model with random effects that does not allow for autocorrelation.

The performance of the linear model without random effects and of all of the tree

models are not greatly affected by the autoregressive process in the errors.
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I

α Model Type 50 100 200 400

0.0 LM 97.81 91.28 95.16 94.41

0.0 LME 169.15 180.68 214.96 182.10

0.0 LME-AR 165.39 175.52 204.20 171.50

0.0 RPART 94.24 81.29 76.74 73.85

0.0 RE-EM Tree 89.36 79.48 76.32 74.06

0.0 RE-EM-AR 89.36 79.48 76.32 74.06

0.5 LM 96.19 96.35 95.68 94.05

0.5 LME 163.30 192.73 193.75 178.56

0.5 LME-AR 160.94 189.08 188.13 173.37

0.5 RPART 89.94 85.47 78.47 72.79

0.5 RE-EM Tree 85.50 84.41 77.91 72.78

0.5 RE-EM-AR 85.48 84.16 77.83 72.72

0.9 LM 94.57 97.79 91.71 94.60

0.9 LME 152.60 165.58 216.60 225.73

0.9 LME-AR 153.80 176.00 221.40 231.62

0.9 RPART 95.41 89.28 78.03 75.24

0.9 RE-EM Tree 87.63 86.31 77.60 75.17

0.9 RE-EM-AR 88.08 86.58 77.28 75.01

Table 109: Root mean squared error of prediction for new individuals when the

true data generating process is a RE-EM tree as α and I vary. The expected

number of observations per individual, E(Ti), is fixed at 38. Model type is the

type of model fitted to the data.
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I

α Model Type 50 100 200 400

0.0 LM 388.99 374.03 366.47 361.90

0.0 LME 486.33 480.44 501.59 501.69

0.0 LME-AR 486.35 480.42 501.59 501.69

0.0 RPART 466.38 453.98 426.06 393.39

0.0 RE-EM Tree 387.46 377.03 371.75 367.12

0.0 RE-EM-AR 387.44 377.05 371.67 367.05

0.5 LM 385.09 374.83 364.69 366.76

0.5 LME 467.94 491.80 476.45 493.21

0.5 LME-AR 475.44 499.55 483.11 499.66

0.5 RPART 468.40 453.76 423.49 397.45

0.5 RE-EM Tree 385.08 378.73 368.43 370.08

0.5 RE-EM-AR 384.38 378.33 368.08 369.76

0.9 LM 385.15 372.09 365.53 365.91

0.9 LME 491.36 498.25 498.49 499.75

0.9 LME-AR 513.85 517.04 512.91 512.89

0.9 RPART 467.43 450.34 425.26 399.38

0.9 RE-EM Tree 385.95 374.86 371.17 370.69

0.9 RE-EM-AR 387.08 374.55 370.16 369.93

Table 110: Root mean squared error of prediction for new individuals when the

true data generating process is a linear random effects model as α and I vary. The

expected number of observations per individual, E(Ti), is fixed at 38. Model type

is the type of model fitted to the data.
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Figure 145: Root mean squared error of prediction for new individuals when the

true data generating process is a linear model with random effects. The average

number of observations per individual is fixed at 38. The autocorrelation of the

errors is given in parentheses next to the estimation method.
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I

α Model Type 50 100 200 400

0.0 LM 376.90 363.39 354.47 350.17

0.0 LME 462.49 456.98 484.45 478.39

0.0 LME-AR 462.47 456.93 484.38 478.33

0.0 RPART 457.94 445.31 422.96 390.44

0.0 RE-EM Tree 378.06 365.42 358.49 353.36

0.0 RE-EM-AR 377.94 365.37 358.49 353.34

0.5 LM 374.74 358.51 354.98 350.64

0.5 LME 469.61 483.51 477.02 480.54

0.5 LME-AR 477.17 489.52 481.57 483.88

0.5 RPART 453.04 437.49 419.97 393.96

0.5 RE-EM Tree 373.90 361.02 358.47 354.67

0.5 RE-EM-AR 373.08 360.82 358.12 354.26

0.9 LM 380.67 361.42 352.68 355.77

0.9 LME 478.61 469.38 476.02 507.43

0.9 LME-AR 498.23 484.66 488.88 517.44

0.9 RPART 457.38 444.45 419.14 393.10

0.9 RE-EM Tree 381.79 363.29 356.78 361.14

0.9 RE-EM-AR 382.42 363.58 356.35 360.81

Table 111: Root mean squared error of prediction for new individuals when the

true data generating process is the more complicated model as α and I vary. The

expected number of observations per individual, E(Ti), is fixed at 38. Model type

is the type of model fitted to the data.
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E(Ti)

α Model Type 9.95 24.96 37.94

0.0 LM 108.86 102.00 91.28

0.0 LME 110.06 190.25 180.68

0.0 LME-AR 109.74 188.16 175.52

0.0 RPART 92.38 86.83 81.29

0.0 RE-EM Tree 90.26 85.40 79.48

0.0 RE-EM-AR 90.22 85.39 79.48

0.5 LM 107.23 105.84 96.35

0.5 LME 107.31 225.40 192.73

0.5 LME-AR 107.06 225.91 189.08

0.5 RPART 89.20 94.93 85.47

0.5 RE-EM Tree 87.11 93.21 84.41

0.5 RE-EM-AR 87.05 93.70 84.16

0.9 LM 110.92 102.27 97.79

0.9 LME 113.37 204.48 165.58

0.9 LME-AR 112.01 206.14 176.00

0.9 RPART 97.27 94.13 89.28

0.9 RE-EM Tree 91.89 90.58 86.31

0.9 RE-EM-AR 91.92 90.69 86.58

Table 112: Root mean squared error of prediction for new individuals when the

true data generating process is a RE-EM tree as α and E(Ti) vary. The number of

individuals, I, is fixed at 100. Model type is the type of model fitted to the data.
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E(Ti)

α Model Type 9.95 24.96 37.94

0.0 LM 379.54 378.83 374.03

0.0 LME 425.21 473.14 480.44

0.0 LME-AR 425.05 473.14 480.42

0.0 RPART 449.48 455.95 453.98

0.0 RE-EM Tree 382.34 383.75 377.03

0.0 RE-EM-AR 382.26 383.85 377.05

0.5 LM 376.06 375.18 374.83

0.5 LME 437.34 479.80 491.80

0.5 LME-AR 445.66 488.41 499.55

0.5 RPART 447.36 452.67 453.76

0.5 RE-EM Tree 378.81 379.17 378.73

0.5 RE-EM-AR 378.87 378.93 378.33

0.9 LM 377.23 376.46 372.09

0.9 LME 468.48 504.57 498.25

0.9 LME-AR 486.12 519.14 517.04

0.9 RPART 449.51 456.65 450.34

0.9 RE-EM Tree 378.42 384.62 374.86

0.9 RE-EM-AR 379.31 384.55 374.55

Table 113: Root mean squared error of prediction for new individuals when the

true data generating process is a linear model with random effects where α and

E(Ti) vary. The number of individuals, I, is fixed at 100. Model type is the type

of model fitted to the data.

397



E(Ti)

α Model Type 9.95 24.96 37.94

0.0 LM 370.44 362.82 363.39

0.0 LME 404.33 474.06 456.98

0.0 LME-AR 404.12 473.94 456.93

0.0 RPART 442.36 442.85 445.31

0.0 RE-EM Tree 373.53 368.70 365.42

0.0 RE-EM-AR 373.53 368.57 365.37

0.5 LM 372.89 362.43 358.51

0.5 LME 427.07 480.44 483.51

0.5 LME-AR 432.01 488.62 489.52

0.5 RPART 441.66 444.88 437.49

0.5 RE-EM Tree 375.98 367.55 361.02

0.5 RE-EM-AR 375.44 367.53 360.82

0.9 LM 372.38 363.97 361.42

0.9 LME 465.84 475.49 469.38

0.9 LME-AR 481.35 493.68 484.66

0.9 RPART 449.21 445.06 444.45

0.9 RE-EM Tree 377.06 367.81 363.29

0.9 RE-EM-AR 377.61 368.07 363.58

Table 114: Root mean squared error of prediction for new individuals when the

true data generating process is the more complicated model where α and E(Ti)

vary. The number of individuals, I, is fixed at 100. Model type is the type of

model fitted to the data.
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Figure 146: Root mean squared error of prediction for new individuals when the

true data generating process is a linear model with random effects. The number

of individuals, I, is fixed at 100. The autocorrelation of the errors is given in

parentheses next to the estimation method.
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Finally, we present the root mean squared errors for future observations for

individuals not in the sample when we fix the average number of observations

(Tables 115, 116 and 117) or the number of individuals (Tables 118, 119 and 120).

The resulting patterns are similar to those of future observations for individuals in

the sample.

Overall, we find that including autocorrelation or changing the error variance

does not affect our previous conclusions that the RE-EM tree performs better than

or almost as well as the best estimator in a wide variety of cases.
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I

α Model Type 50 100 200 400

0.0 LM 99.87 96.87 96.87 95.49

0.0 LME 90.86 86.54 86.83 86.23

0.0 LME-AR 91.21 86.91 87.18 86.74

0.0 RPART 93.31 81.87 76.49 72.11

0.0 RE-EM Tree 77.35 71.53 67.36 63.84

0.0 RE-EM-AR 77.36 71.53 67.36 63.84

0.5 LM 101.90 97.67 99.87 96.05

0.5 LME 91.86 88.08 90.80 87.85

0.5 LME-AR 93.18 89.09 91.90 89.04

0.5 RPART 91.64 83.25 80.49 72.46

0.5 RE-EM Tree 78.57 74.03 71.45 64.80

0.5 RE-EM-AR 78.59 73.71 71.34 64.70

0.9 LM 97.59 98.19 95.38 98.03

0.9 LME 88.03 90.65 86.26 87.54

0.9 LME-AR 89.83 91.46 87.53 88.59

0.9 RPART 95.26 86.86 78.12 74.38

0.9 RE-EM Tree 77.16 75.95 68.93 66.55

0.9 RE-EM-AR 77.58 75.66 68.53 66.09

Table 115: Root mean squared error of prediction for future observations for indi-

viduals not in the original sample. The true data generating process is a RE-EM

tree as α and I vary. The expected number of observations per individual, E(Ti),

is fixed at 38. Model type is the type of model fitted to the data.
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I

α Model Type 50 100 200 400

0.0 LM 387.42 373.47 365.28 360.50

0.0 LME 76.81 76.19 76.36 76.55

0.0 LME-AR 76.81 76.19 76.36 76.55

0.0 RPART 465.31 453.25 424.33 391.76

0.0 RE-EM Tree 96.15 88.61 84.33 82.74

0.0 RE-EM-AR 96.13 88.66 84.38 82.72

0.5 LM 383.93 373.29 362.96 365.49

0.5 LME 77.87 77.88 77.17 77.71

0.5 LME-AR 77.60 77.75 77.07 77.66

0.5 RPART 467.11 451.80 421.55 395.86

0.5 RE-EM Tree 97.43 90.47 85.02 83.33

0.5 RE-EM-AR 97.27 90.35 85.04 83.36

0.9 LM 384.18 371.64 363.94 365.21

0.9 LME 78.18 77.56 76.96 77.42

0.9 LME-AR 79.65 78.50 76.85 77.36

0.9 RPART 466.53 448.87 423.77 397.88

0.9 RE-EM Tree 96.27 88.70 83.88 82.70

0.9 RE-EM-AR 104.17 90.38 83.46 82.65

Table 116: Root mean squared error of prediction for future observations for indi-

viduals not in the original sample. The true data generating process is a RE-EM

tree as α and I vary. The expected number of observations per individual, E(Ti),

is fixed at 38. Model type is the type of model fitted to the data.
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I

α Model Type 50 100 200 400

0.0 LM 376.39 361.67 353.05 348.45

0.0 LME 78.06 77.80 77.10 76.67

0.0 LME-AR 78.06 77.80 77.10 76.67

0.0 RPART 455.80 443.32 421.63 388.52

0.0 RE-EM Tree 96.70 90.64 84.64 81.73

0.0 RE-EM-AR 96.68 90.66 84.60 81.73

0.5 LM 372.42 357.43 353.85 348.67

0.5 LME 78.50 78.86 78.24 78.56

0.5 LME-AR 78.24 78.72 78.14 78.50

0.5 RPART 451.79 435.66 418.80 391.14

0.5 RE-EM Tree 95.20 90.94 86.07 84.22

0.5 RE-EM-AR 94.72 90.95 85.87 84.07

0.9 LM 378.87 360.18 351.28 354.36

0.9 LME 78.83 78.68 78.03 78.07

0.9 LME-AR 79.22 78.83 77.91 78.02

0.9 RPART 455.07 442.45 416.37 391.87

0.9 RE-EM Tree 100.56 91.81 84.32 82.81

0.9 RE-EM-AR 113.23 96.61 84.47 82.71

Table 117: Root mean squared error of prediction for future observations for indi-

viduals not in the original sample. The true data generating process is the more

complicated model as α and I vary. The expected number of observations per

individual, E(Ti), is fixed at 38. Model type is the type of model fitted to the

data.
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E(Ti)

α Model Type 9.95 24.96 37.94

0.0 LM 94.41 95.92 96.87

0.0 LME 89.89 83.24 86.54

0.0 LME-AR 89.87 83.42 86.91

0.0 RPART 82.27 85.75 81.87

0.0 RE-EM Tree 75.03 75.74 71.53

0.0 RE-EM-AR 75.09 75.71 71.53

0.5 LM 95.77 99.09 97.67

0.5 LME 91.16 88.37 88.08

0.5 LME-AR 91.04 88.79 89.09

0.5 RPART 82.32 92.85 83.25

0.5 RE-EM Tree 76.11 82.19 74.03

0.5 RE-EM-AR 74.71 82.00 73.71

0.9 LM 102.08 97.90 98.19

0.9 LME 83.18 82.79 90.65

0.9 LME-AR 83.11 83.34 91.46

0.9 RPART 91.40 93.10 86.86

0.9 RE-EM Tree 68.67 76.57 75.95

0.9 RE-EM-AR 68.68 76.77 75.66

Table 118: Root mean squared error of prediction for future observations for indi-

viduals not in the original sample. The true data generating process is a RE-EM

tree where α and E(Ti) vary. The number of individuals, I, is fixed at 100. Model

type is the type of model fitted to the data.
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E(Ti)

α Model Type 9.95 24.96 37.94

0.0 LM 375.42 377.09 373.47

0.0 LME 79.70 77.13 76.19

0.0 LME-AR 79.71 77.13 76.19

0.0 RPART 447.52 454.41 453.25

0.0 RE-EM Tree 93.09 92.08 88.61

0.0 RE-EM-AR 93.04 92.07 88.66

0.5 LM 371.74 374.21 373.29

0.5 LME 80.71 78.71 77.88

0.5 LME-AR 81.23 78.54 77.75

0.5 RPART 444.12 451.11 451.80

0.5 RE-EM Tree 94.31 91.44 90.47

0.5 RE-EM-AR 94.67 91.06 90.35

0.9 LM 372.90 374.70 371.64

0.9 LME 58.91 74.93 77.56

0.9 LME-AR 69.00 78.55 78.50

0.9 RPART 446.66 454.61 448.87

0.9 RE-EM Tree 73.60 88.49 88.70

0.9 RE-EM-AR 75.15 89.47 90.38

Table 119: Root mean squared error of prediction for future observations for in-

dividuals not in the original sample. The true data generating process is a linear

model with random effects where α and E(Ti) vary. The number of individuals, I,

is fixed at 100. Model type is the type of model fitted to the data.
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E(Ti)

α Model Type 9.95 24.96 37.94

0.0 LM 365.10 361.18 361.67

0.0 LME 80.91 78.02 77.80

0.0 LME-AR 80.92 78.02 77.80

0.0 RPART 439.32 440.59 443.32

0.0 RE-EM Tree 94.52 90.71 90.64

0.0 RE-EM-AR 94.36 90.84 90.66

0.5 LM 367.67 361.18 357.43

0.5 LME 80.77 80.05 78.86

0.5 LME-AR 80.71 79.78 78.72

0.5 RPART 437.56 441.91 435.66

0.5 RE-EM Tree 93.23 94.42 90.94

0.5 RE-EM-AR 93.19 94.42 90.95

0.9 LM 366.72 362.11 360.18

0.9 LME 60.05 75.27 78.68

0.9 LME-AR 65.07 77.21 78.83

0.9 RPART 441.84 443.67 442.45

0.9 RE-EM Tree 76.27 87.14 91.81

0.9 RE-EM-AR 77.55 88.69 96.61

Table 120: Root mean squared error of prediction for future observations for indi-

viduals not in the original sample. The true data generating process is the more

complicated model where α and E(Ti) vary. The number of individuals, I, is fixed

at 100. Model type is the type of model fitted to the data.
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4.6.5 Stability of Tree Estimates

We assess the stability of our tree estimates by starting our estimation with al-

ternative initial values for the random effects. The results we have presented so

far fit RE-EM trees with initial values of 0 for all of the random effects. Here,

we fit trees in which the initial values for the random effects are the estimated

random effects from the first tree in random order. We also fit RE-EM trees where

the initial values are the estimated random effects in reverse order, so that the

group that had the largest (most positive) estimated random effect has an initial

random effect value equal to the smallest (most negative) random effect. As ad-

ditional comparisons, we fit trees using maximum likelihood instead of restricted

maximum likelihood when we estimate the linear model and using an alternative

optimization method in fitting the maximum likelihood. In this section, we also

fit trees using Method 1. We report the root mean squared error between the

fitted values of each tree estimated with these alternative methods and the fitted

values of the original tree for the three data generating processes, relative to the

in-sample RMSE of the baseline method in Tables 121, 122, and 123.

These tables show that the estimated fitted values are generally similar across

the different estimation possibilities. Changing the estimation method has the

largest impact on the estimated values, with the relative root mean squared errors

exceeding 1 in some cases when Method 1 is used and the true data generating

process is a linear model. This effect generally declines with sample size. Changing

the initial values of the random effects has a smaller impact, and the relative RMSE

between fitted values with different initial values declines steadily as the sample

size grows. The change in estimates based on using maximum likelihood instead

of REML to estimate the random effects is even smaller. There was almost no

change in estimates when an alternative optimization method is used for estimating
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I E(Ti) Random Ini-

tial Values

Reverse Ini-

tial Values

ML Optim Method 1

50 9.95 0.2879 0.3115 0.0829 0.0007 0.2484

50 24.96 0.2363 0.2706 0.0419 0.0000 0.1802

50 37.94 0.1858 0.2162 0.0306 0.0000 0.2635

100 9.95 0.2083 0.2551 0.0235 0.0001 0.1522

100 24.96 0.1523 0.2003 0.0103 0.0000 0.1077

100 37.94 0.1553 0.1985 0.0110 0.0000 0.2176

200 9.95 0.1239 0.1791 0.0059 0.0000 0.0872

200 24.96 0.0850 0.1321 0.0020 0.0000 0.0502

200 37.94 0.0744 0.1156 0.0018 0.0000 0.1080

400 9.95 0.0861 0.1542 0.0022 0.0000 0.0554

400 24.96 0.0519 0.1102 0.0006 0.0000 0.0228

400 37.94 0.0417 0.0879 0.0005 0.0000 0.0777

Table 121: RMSE between fitted values of original RE-EM tree and fitted values

of RE-EM trees with alternative initial values or linear model estimation meth-

ods, relative to the in-sample RMSE of the baseline process, when the true data

generating process is a RE-EM tree.

the linear model; the relative RMSE is under 0.0001 for all of the different data

generating processes and parameter configurations. This shows that the initial

values or estimation method chosen to fit a RE-EM tree have a limited effect on

the fitted values, especially for larger sample sizes. Also, the choices in fitting

the linear model, such as whether to use REML or maximum likelihood have very

small effects.
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I E(Ti) Random Ini-

tial Values

Reverse Ini-

tial Values

ML Optim Method 1

50 9.95 0.8344 0.8578 0.2315 0.0000 0.7507

50 24.96 0.7072 0.7053 0.1854 0.0000 0.7234

50 37.94 0.6465 0.6052 0.1722 0.0000 1.1293

100 9.95 0.6515 0.6577 0.2042 0.0000 0.6418

100 24.96 0.5426 0.5273 0.1397 0.0000 0.6112

100 37.94 0.4619 0.4422 0.0999 0.0000 1.2142

200 9.95 0.4956 0.4945 0.1484 0.0000 0.5207

200 24.96 0.3943 0.3621 0.0606 0.0000 0.4736

200 37.94 0.3274 0.2915 0.0435 0.0000 1.1737

400 9.95 0.2602 0.2846 0.0462 0.0000 0.3359

400 24.96 0.2303 0.2277 0.0149 0.0000 0.3223

400 37.94 0.2064 0.1880 0.0158 0.0000 0.8628

Table 122: RMSE between fitted values of original RE-EM tree and fitted values

of RE-EM trees with alternative initial values or linear model estimation meth-

ods, relative to the in-sample RMSE of the baseline process, when the true data

generating process is a linear model.
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I E(Ti) Random Ini-

tial Values

Reverse Ini-

tial Values

ML Optim Method 1

50 9.95 0.7743 0.7882 0.1924 0.0000 0.7227

50 24.96 0.6984 0.6971 0.1708 0.0000 0.7084

50 37.94 0.5687 0.5895 0.1369 0.0000 1.0863

100 9.95 0.6330 0.6298 0.1565 0.0000 0.6204

100 24.96 0.5219 0.5056 0.1096 0.0000 0.6138

100 37.94 0.4496 0.4356 0.0892 0.0000 1.1574

200 9.95 0.4784 0.4882 0.1157 0.0000 0.5233

200 24.96 0.3795 0.3617 0.0628 0.0000 0.4996

200 37.94 0.3214 0.3038 0.0424 0.0000 1.1637

400 9.95 0.2689 0.3061 0.0481 0.0000 0.3673

400 24.96 0.2406 0.2397 0.0205 0.0000 0.3524

400 37.94 0.2106 0.2025 0.0132 0.0000 0.9425

Table 123: RMSE between fitted values of original RE-EM tree and fitted values

of RE-EM trees with alternative initial values or linear model estimation meth-

ods, relative to the in-sample RMSE of the baseline process, when the true data

generating process is a non-linear model.
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4.6.6 Performance in balanced panels

We now describe the performance of trees with and without random effects, linear

models with and without random effects, MVPART, and individual-specific regres-

sions and regression trees in balanced panels. As in Section 4.6.2, we will compare

the root mean squared errors in-sample and for different types of predictions.

We first discuss the in-sample root mean squared errors for each method when

the true data generating processes are a RE-EM tree, a linear model with random

effects, and the more complicated model, respectively, omitting detailed results

to save space. In all cases, fitting individual linear regressions (for T = 10) or

individual regression trees (for T = 25, 50, 100) has the lowest RMSE in-sample.

Of those estimation methods that fit a single model to the full sample, the RE-EM

tree has the lowest in-sample RMSE when the true data generating process is a RE-

EM tree. When the true process is a linear model or a linear model with quadratic

terms, the linear model with random effects has the lowest in-sample root mean

squared error for T = 10 and the RE-EM tree has the lowest in-sample RMSE

for T = 25, 50, 100. The linear model without random effects has the highest

RMSE in all cases. The RMSE is generally constant or decreasing as a function

of the number of observations per group, except for individual linear regressions.

This occurs in part because of the larger total number of observations across all

individuals.

Next, we consider the prediction error for future observations for individuals

that are already in the sample, reported in Table 124 when the true data generating

process is a RE-EM tree and in Table 125 when the true data generating process

is a linear random effects model. Because MVPART cannot be used for predicting

future observations of individuals in the sample, it does not appear in the tables.

The results for the more complicated model are similar to those for the linear
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model, so they are omitted. The RE-EM tree has the lowest RMSE when it is

the true data generating process. The linear model with random effects has the

lowest RMSE for the other two data generating processes when T = 10, 25, or 50,

while the RE-EM tree performs better for T = 100. The difference between the root

mean squared errors is insignificant when T = 10 and I = 400, 2000 and significant

otherwise. When the RE-EM tree is the true data generating process, a regression

tree without random effects outperforms the linear models, presumably because

the tree is closer to the true data generating process. In all cases, fitting separate

linear models leads to very poor predictive performance, despite its sometimes

good in-sample performance. Fitting separate regression trees leads to the second-

worst predictive performance when the true data generating process is a RE-EM

tree (again despite good in-sample performance), but performs well when the true

process is a linear random effects model when T and I are both small. In the latter

case, the individual regression trees split very few times, using little information

about the covariates. Furthermore, individual regressions or regression trees do

not benefit from increases in I because they do not use the additional information

provided by observations from other individuals.

Next, we consider predictions for observations of new individuals. Because

individual-specific linear regressions and regression trees cannot be used for pre-

dictions for new individuals, no results for them can be included in these tables.

When the true data generating process is a RE-EM tree, prediction using RE-EM

trees generally has the lowest mean squared errors, though the regression tree with-

out random effects performs about as well. When the true process is a linear model

with random effects, linear regression and LME perform best for small values of I

and T , while the RE-EM tree performs best in most cases where I is at least 400.

Full results are given in Table 126 for the RE-EM tree and Table 127 for the linear
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I T LM LM-Ind LME RPART RPART-Ind REEM

50 10 90.22 1.29E+06 82.64 76.80 95.42 72.36

50 25 100.04 1.49E+05 94.84 80.42 97.47 74.99

50 50 105.88 1.90E+04 99.63 76.08 93.56 69.61

50 100 105.57 5.15E+03 102.88 76.71 118.84 69.60

100 10 90.98 2.07E+06 83.94 73.93 94.88 68.47

100 25 97.44 2.84E+05 91.46 76.10 98.75 70.47

100 50 106.29 2.79E+04 100.41 72.21 92.12 65.52

100 100 99.01 5.82E+03 97.23 71.70 112.99 64.24

200 10 90.82 2.34E+06 84.49 70.46 96.82 64.99

200 25 95.13 2.77E+05 90.11 70.47 98.37 64.04

200 50 104.99 4.10E+04 99.27 69.69 93.09 62.35

200 100 107.44 6.21E+03 104.40 69.03 117.15 61.16

400 10 89.89 2.42E+06 82.58 70.63 99.78 64.89

400 25 97.29 3.07E+05 92.44 73.64 101.47 66.97

400 50 103.59 4.30E+04 98.15 68.51 92.35 61.30

400 100 103.77 6.81E+03 100.88 68.56 116.99 60.83

1000 10 89.72 2.70E+06 83.46 70.32 97.37 64.56

1000 25 96.27 3.16E+05 91.32 73.15 101.23 66.68

1000 50 102.51 5.27E+04 97.29 68.68 93.08 61.39

1000 100 107.28 6.51E+03 104.11 68.33 115.12 60.62

2000 10 89.77 2.72E+06 83.61 70.46 96.36 64.79

2000 25 96.93 3.43E+05 91.62 72.27 102.43 66.13

2000 50 105.09 5.50E+04 99.08 68.52 93.17 61.07

Table 124: Out-of-sample root mean squared prediction errors for future obser-

vations when the true data generating process is a RE-EM tree with a balanced

panel.
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I T LM LM-Ind LME RPART RPART-Ind REEM

50 10 354.69 1.13E+06 93.06 305.60 100.69 133.99

50 25 362.45 1.87E+05 87.96 305.61 102.91 109.08

50 50 362.16 3.52E+04 95.06 314.19 104.26 99.17

50 100 365.89 4.00E+03 102.88 366.87 124.78 96.77

100 10 365.10 1.91E+06 92.85 336.96 102.23 120.48

100 25 368.32 2.80E+05 87.23 331.12 101.92 98.41

100 50 371.46 4.47E+04 94.38 343.33 105.81 93.50

100 100 374.75 5.24E+03 103.20 377.77 124.91 93.06

200 10 369.47 2.26E+06 93.76 354.78 102.75 102.55

200 25 374.41 3.45E+05 88.92 356.57 104.01 90.46

200 50 373.54 3.75E+04 95.43 360.88 106.00 90.00

200 100 372.23 5.35E+03 102.05 375.20 123.28 92.45

400 10 373.97 3.00E+06 93.64 369.02 103.44 95.77

400 25 375.56 3.68E+05 89.67 371.06 104.53 88.90

400 50 378.20 4.62E+04 93.83 375.67 105.39 89.63

400 100 378.71 5.75E+03 102.85 379.46 124.91 91.43

1000 10 376.12 3.65E+06 95.19 376.18 103.64 94.00

1000 25 378.38 3.94E+05 88.95 378.59 103.74 88.07

1000 50 377.30 6.68E+04 95.09 377.58 105.84 88.75

1000 100 380.23 5.93E+03 103.56 380.50 125.77 90.33

2000 10 375.58 3.45E+06 94.56 375.85 103.17 94.06

2000 25 373.89 4.06E+05 88.87 374.33 103.81 88.27

2000 50 380.91 5.54E+04 94.91 381.29 105.85 88.48

Table 125: Out-of-sample root mean squared prediction errors for future observa-

tions when the true data generating process is a linear model with random effects

with a balanced panel.
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model (again, the more complicated model results are similar to the those of the

linear model). The difference between the root mean squared errors for the linear

model without random effects and the RE-EM tree are not statistically significant

for some cases of larger I and T = 10, 25.

Finally, we examine the predictions for individuals who were not in the original

sample, using some of their observations to estimate random effects. As before, the

RE-EM tree performs best when it is the true data generating process, as shown

in Table 128. The linear model performs best for small samples and the RE-EM

tree performs best for larger samples in the other two cases, as shown in Table 129

for the linear model.

In all of the different types of prediction, the RE-EM tree estimation has the

best predictive performance when it is the true model and good performance oth-

erwise, especially for larger sample sizes. The success of the RE-EM tree when

it is not the correct model allows us to apply it to situations when the model

is unknown and is likely to be complicated, such as the transactions data. This

agrees with the leave-one-out cross-validation transactions study that found that

the RE-EM tree performed best for that dataset.

4.6.7 Summary of Monte Carlo Results

These simulations have found that including random effects dramatically improves

the accuracy of in-sample fits and forecasts of future observations for individuals in

the sample. The linear model with random effects performs best in certain tests;

it has the lowest root mean squared error in-sample and in predictions when a

random effect can be estimated, except when the true data generating process is a

RE-EM tree. However, the linear model with random effects performs badly when

predicting the target variable for new individuals when a random effect cannot be

415



I T LM LME RPART REEM MVPART

50 10 110.14 109.79 96.69 95.61 113.29

50 25 101.18 103.88 85.11 83.34 104.25

50 50 107.87 114.07 89.35 88.05 114.93

50 100 114.29 115.80 87.69 85.81 120.99

100 10 108.92 108.54 85.59 84.97 110.85

100 25 101.54 104.61 79.74 78.78 106.63

100 50 104.14 108.34 77.35 77.13 106.54

100 100 103.82 105.60 73.02 72.37 107.55

200 10 100.83 101.87 74.19 74.23 102.19

200 25 99.13 101.23 70.99 70.94 96.75

200 50 103.05 108.06 71.39 71.32 101.34

200 100 100.54 101.85 68.95 68.80 104.10

400 10 101.02 101.63 71.71 71.89 97.44

400 25 96.90 99.45 70.63 70.46 92.53

400 50 96.41 98.58 71.02 70.67 94.30

400 100 106.57 108.75 68.97 68.93 105.89

1000 10 104.79 104.97 71.44 71.50 88.44

1000 25 97.30 99.23 69.55 69.48 84.76

1000 50 101.49 105.29 68.71 68.69 91.28

1000 100 102.43 104.24 68.28 68.26 93.97

2000 10 111.35 112.23 68.21 68.28 81.62

2000 25 96.60 99.44 68.87 68.89 81.59

2000 50 96.99 100.99 67.64 67.64 86.60

Table 126: Out-of-sample root mean squared prediction errors for new observations

when the true data generating process is a RE-EM tree.

416



I T LM LME RPART REEM MVPART

50 10 391.35 385.68 482.42 404.66 433.33

50 25 387.76 377.63 475.71 391.28 432.39

50 50 379.24 371.52 457.46 373.94 427.74

50 100 384.02 377.45 443.65 376.77 435.58

100 10 378.55 375.65 460.33 389.34 418.70

100 25 374.05 370.12 448.79 375.75 417.39

100 50 365.32 362.58 418.20 364.36 406.13

100 100 368.65 365.44 405.17 362.15 415.64

200 10 373.57 372.40 423.93 376.45 401.48

200 25 374.82 373.45 410.65 372.87 403.78

200 50 377.37 376.78 405.64 374.83 405.67

200 100 366.91 365.76 382.46 362.31 399.06

400 10 373.15 373.48 387.69 373.00 390.53

400 25 369.18 369.80 379.80 368.62 388.74

400 50 367.50 368.88 372.25 365.95 382.94

400 100 373.38 373.16 375.24 369.25 391.25

1000 10 370.60 371.22 370.36 369.68 373.67

1000 25 368.02 368.60 367.77 367.27 373.56

1000 50 385.80 386.49 385.38 383.59 389.33

1000 100 383.33 384.12 383.54 380.47 385.82

2000 10 373.75 375.62 373.70 373.15 373.77

2000 25 353.82 355.53 353.71 353.96 353.72

2000 50 359.68 361.19 359.73 357.94 359.97

Table 127: Out-of-sample root mean squared prediction errors for new observations

when the true data generating process is a linear model with random effects.
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I T LM LME RPART REEM

50 10 94.18 88.34 88.66 80.94

50 25 89.82 83.75 82.48 73.82

50 50 106.98 100.09 88.47 79.04

50 100 117.40 115.03 85.15 77.55

100 10 91.97 89.70 77.82 72.20

100 25 96.48 92.78 78.42 71.23

100 50 107.04 101.22 76.25 68.82

100 100 103.71 102.34 71.71 63.91

200 10 91.90 82.73 68.38 63.19

200 25 95.00 91.64 73.80 67.52

200 50 107.45 100.98 77.22 69.36

200 100 107.05 103.03 69.31 61.65

400 10 88.68 82.01 68.72 63.92

400 25 93.09 88.84 72.06 65.24

400 50 104.77 100.05 71.03 62.98

400 100 106.47 104.11 68.53 60.61

1000 10 88.54 85.11 70.26 64.56

1000 25 92.95 89.87 71.80 65.56

1000 50 103.70 97.98 68.38 60.70

1000 100 108.97 106.06 68.58 61.35

2000 10 89.78 89.88 68.77 62.71

2000 25 98.87 94.96 71.53 65.28

2000 50 96.47 92.33 66.96 59.82

Table 128: Out-of-sample root mean squared prediction errors for future obser-

vations for new individuals when the true data generating process is a RE-EM

tree.
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I T LM LME RPART REEM

50 10 385.56 102.76 478.79 136.73

50 25 385.95 93.56 473.63 113.03

50 50 378.89 92.97 458.34 100.20

50 100 381.64 103.72 447.67 102.54

100 10 374.06 93.70 458.43 118.81

100 25 374.77 89.51 448.43 100.28

100 50 365.97 96.12 418.71 99.30

100 100 367.07 103.93 403.63 93.47

200 10 369.09 97.61 418.07 106.74

200 25 376.02 92.35 411.57 93.69

200 50 377.51 94.56 404.80 91.82

200 100 365.20 102.95 383.91 92.74

400 10 369.07 92.66 382.36 93.35

400 25 368.02 87.63 379.84 86.96

400 50 369.68 97.78 374.99 92.76

400 100 372.99 103.77 375.44 89.93

1000 10 367.10 95.01 367.46 94.74

1000 25 367.62 87.00 367.40 86.73

1000 50 387.21 97.55 386.94 91.12

1000 100 382.21 101.52 382.27 90.52

2000 10 369.90 94.28 369.73 93.14

2000 25 355.38 89.76 355.41 89.64

2000 50 361.88 95.49 362.18 89.43

Table 129: Out-of-sample root mean squared prediction errors for future observa-

tions for new individuals when the true data generating process is a linear model

with random effects.
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estimated. In Section 4.6.3, we found that the problem occurs because the linear

model with random effects estimates the random effects and fixed effects badly,

but errs in a way that keeps the total more accurate. The RE-EM tree does not

have this problem and therefore performs well in all of the different forecasting

tasks. The problems with the linear model are exacerbated when ρ moves toward

1, but reduced when the panel is balanced. Furthermore, we find that the difference

between the RE-EM tree and the linear model with random effects decreases as

the sample size grows for those tasks in which the linear random effects model

is best. Overall, the RE-EM tree is a successful estimation method in a variety

of situations and is the clear method of choice when the true relationship in the

population takes the form of a tree.

4.7 Conclusion and Future Work

In this paper, we have presented a new tool for data mining with longitudinal data.

The RE-EM tree preserves the structure of longitudinal data while providing the

flexibility to use time-varying covariates. Using datasets on traffic fatalities and

on web transactions, we have shown that RE-EM trees can improve predictive

performance and allow us to model our target variables without assuming that

linear models hold. In our Monte Carlo experiments, we have found that RE-EM

trees outperform trees that do not allow for random effects, are more effective

than other methods when the true relationship takes the form of a tree, and are

comparable to or better than linear models that include random effects, even when

a tree model is not true.

This paper has explored the basics of the RE-EM tree method. First, we have

used the default parameters for rpart throughout our estimation and simulation;

alternative values may be preferable for RE-EM trees. Second, methods such as
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bagging and boosting build on a tree structure as a way to improve predictive

performance [see for example, Hastie et al., 2001, Section 8.7 and Chapter 10].

We expect that the improvements from these methods would carry over when they

are applied to RE-EM trees as well. Further, these methods might generalize

to classification trees, which would extend their use to another class of models.

Finally, one could extend the existing consistency results for regression trees to

RE-EM trees, checking whether f or the random effects are estimated consistently.

Since these trees extend the use of data mining methods into the area of lon-

gitudinal data, a wide variety of potential applications exist. This tool will allow

researchers to move beyond fitting linear models to panel data and can uncover

interactions and non-linear relationships that could not be found before.
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