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Slowly decaying cross-covariances appear in meteorological data.

The estimated cross-correlation function of daily wind speeds in Valentia

and Rosslare, Ireland, from 1961 to 1978.
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They can also appear in macroeconomic data.

The estimated cross-correlation function of the unemployment rate and

the inflation rate, based on annual data from 1948 to 1996.
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The most commonly used multivariate model is a vector
autoregression.

A(L)Xt = εt

εt ∼ Normal(0,Σ)

All the roots of |A(L)| must be outside the unit circle for the
model to be stationary.

Xt − A1Xt−1 = εt

All the singular values of A1 must be less than one for the model
to be stationary.
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The covariances of a VAR decay at an exponential rate.

For a VAR(1), with A(L) = I − A1L,

vec(Var(Xt)) = (IK2 − A1 ⊗ A1)−1vec(Σ)

Cov(Xt ,Xt−r ) = Ar
1Var(Xt), r > 0

Cov(Xt ,Xt+r ) = Cov(Xt ,Xt−r )′

Since any VAR can be written as a VAR(1), the covariances of any
VAR decay exponentially fast.
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Vector autoregressive models cannot capture slowly
decaying cross-covariances.

Cross-covariances implied by a VAR(2) fit to the Phillips curve data.
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Long memory models allow for slowly-decaying
autocorrelations.

I Long memory models are defined in part by their differencing
parameter, d .

I If d = 0, the models do not have long memory. Autoregressive
models are one type of model with d = 0.

I If 0 < |d | < 1
2 , then the model is stationary, with

autocovariances which of the form, ω(r) ∼ C |r |2d−1.
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The simplest example of a univariate long memory model
is fractionally integrated white noise.

(1− L)dyt = εt

εt ∼ Normal(0, σ2)

(1− L)d =
∞∑
j=0

(−1)j

(
d

j

)
Lj

(
d

j

)
=

d(d − 1) · · · (d − j + 1)

j!

where 0 < |d | < 1
2 . The spectral density is:

σ2

2π
|1− e−iλ|−2d
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What fractionally integrated white noise looks like:
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We can combine fractionally integrated white noise and
ARMA models to create ARFIMA models.

We can have an ARMA model driven by fractionally integrated
white noise:

a(L)xt = b(L)[(1− L)−dεt ]

Equivalently, we can have an ARMA model which is then
fractionally integrated:

xt = (1− L)−d

(
b(L)

a(L)
εt

)
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Now, we define multivariate fractionally integrated white
noise.

D(L)Yt = εt

εt ∼ Normal(0,Σ)

D(L) =


(1− L)d1 0 . . . 0

0 (1− L)d2 . . . 0
...

...
. . .

...
0 0 . . . (1− L)dK
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What fractionally integrated multivariate white noise looks
like:

d = (0.1, 0.4),Σ =

(
1 0.5

0.5 1

)
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Now, there are two possible combinations of fractionally
integrated white noise and VAR models.

We can have a VAR model driven by fractionally integrated white
noise (VAR-FI):

A(L)Xt = D(L)−1εt

We can also have a VAR model which is then fractionally
integrated (FI-VAR):

Xt = D(L)−1
(
A(L)−1εt

)
These two models are not equivalent.
(The difference between the two types of models was first noted by
Lobato, 1997.)
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These models have different properties.

I FIVAR: A(L)D(L)Xt = εt
I The k th time series is integrated of order dk .
I There is no cointegration.

I VARFI: D(L)A(L)Xt = εt
I It is possible that each time series is integrated of order

max(~d).
I It is often possible to find a linear combination of present and

past values of the elements of Xt , with exponentially decaying
weights, which is integrated of order less than max(~d).
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Now that we have two models, we might want to:

I Compute the autocovariance and cross-covariance sequences.

I Simulate from it.
I Estimate it with Gaussian maximum likelihood, which will

require us to:
I Compute a quadratic form.
I Compute a determinant.
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For FIVAR processes, there are three possible ways to
compute the autocovariance sequence:

I We could use the relationship between the spectral density and
the autocovariances and apply numerical integration methods:

Cov(Xt ,Xt−h) =

∫ π

−π
e ihλfX (λ)dλ

I Sowell (1989b) worked out an exact expression for the
autocovariances of the FIVAR process, which depends on the
hypergeometric function.

Both of these methods are slow.
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We will generalize the “splitting method” of Bertelli and
Caporin (2002) instead.

Define

Xt = D(L)−1Zt =
∞∑
j=0

ΨjZt−j

Zt = A(L)−1εt

Cov(Xt ,Xt−h) = Cov

 ∞∑
i=0

ΨiZt−i ,

∞∑
j=0

ΨjZt−j−h


=

∞∑
i=0

∞∑
j=0

ΨiCov(Zt−i ,Zt−h−j)Ψ′j
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Since the Ψi are diagonal matrices, we may write the (k , l)
element of the sum as:

Cov(Xk,t ,Xl,t−h) =
∞∑
i=0

∞∑
j=0

ψ(i , dk)ψ(j , dl)Cov(Zk,t ,Zl,t−h−j+i )

=
∞∑

m=0

∞∑
j=m

ψ(j −m, dk)ψ(j , dl)Cov(Zk,t ,Zl,t−h−m)

=
∞∑

m=0

Cov(Zk,t ,Zl,t−h−m)

 ∞∑
j=m

ψ(j , dl)ψ(j −m, dk)


Sowell (1989b) gives a closed form for the second sum in terms of the

gamma function.
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We now approximate the infinite convolution by a
convolution of finitely many terms.

Cov(Xk,t ,Xl,t−h) =
∞∑

m=0

Cov(Zk,t ,Zl,t−h−m)

 ∞∑
j=m

ψ(j , dl)ψ(j −m, dk)


I Since Zt is a vector autoregressive process, its autocovariances

decay exponentially quickly.

I That means we may choose M such that their sum after beyond lag
M is less than any given error tolerance.

I We then truncate the sum by setting Cov(Zk,t ,Zl,t−h) = 0 for all
|h| > M.

Rebecca Sela Vector ARFIMA Models



The Problem of Slowly-Decaying Cross-Covariances
Introduction to multivariate and long memory models

Using multivariate long memory models
Monte Carlo results

Data analysis
Conclusion

Computing autocovariance sequences
Simulating from multivariate models
Maximum likelihood estimation

The splitting method dramatically reduces computing time.

Processing time needed to compute the autocovariances of a FIVAR process with d = (0.1, 0.4),
A1 = (0.7, 0.1, 0.2, 0.6), and Σ = (1, .5, .5, 2), using the Sowell method, the integral-based method and the
splitting method.

I The resulting computed values match to at least 8 decimal places; more precision could be achieved by
increasing M.

Rebecca Sela Vector ARFIMA Models



The Problem of Slowly-Decaying Cross-Covariances
Introduction to multivariate and long memory models

Using multivariate long memory models
Monte Carlo results

Data analysis
Conclusion

Computing autocovariance sequences
Simulating from multivariate models
Maximum likelihood estimation

A different computation must be used for VARFI processes.

I Using the spectral density, we may write the autocovariances
of a VARFI process as a convolution of terms that depend on
the eigenvalues of the autoregressive matrix and on the
fractionally integrated white noise process.

I As before, we truncate the convolution.

I Again, computations using this splitting method are much
faster than computations using the integral definition directly.
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Using our algorithms, we can compute the
cross-covariances of FIVAR and VARFI processes.

d = (0.1, 0.4),Σ =

(
1 0.5

0.5 1

)
,A1 =

(
0.7 0.1
0.2 0.6

)
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I Compute the autocovariance and cross-covariance sequences.

I Simulate from it.
I Estimate it with Gaussian maximum likelihood, which will

require us to:
I Compute a quadratic form.
I Compute a determinant.
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For multivariate models, there are two typical simulation
algorithms.

I Find an autoregressive representation of Xt , and then simulate
Xt+1 by adding a random error on to a linear combination of
past values.

I This would require truncation for long memory processes.

I Find a matrix, A, such that AA∗ = Var(X ).
I This matrix can be computed in O(T 2) steps using the

Durbin-Levinson algorithm (also presented by Sowell, 1989a).
I We present an alternative algorithm which requires only

O(T log T ) steps.
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Our algorithm use the structure of the covariance matrix
for all of the observations.

I Let X = (X1·, ...,XK ·)
′, where Xk· = (Xk1, ...,XkT )′.

I We know that Ω = Var(X ) has a block Toeplitz structure.

I We take advantage of this structure for simulation.

This idea was suggested by Davies and Harte (1987) for univariate
time series and extended by Wood and Chan (1994) to spatial time
series.
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We can embed a Toeplitz matrix in a circulant matrix.



c0 c1 · · · cT−1 c1−T · · · c−1

c−1 c0 · · · cT−2 cT−1 · · · c−2
...

...
. . .

...
...

. . .
...

c1−T c2−T · · · c0 c1 · · · cT−1

cT−1 c1−T · · · c−1 c0 · · · cT−2
...

...
. . .

...
...

. . .
...

c1 c2 · · · c1−T c2−T · · · c0
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Using circulant embedding on each block of the block
Toeplitz matrix yields a block circulant matrix.

I If the resulting block circulant matrix is positive definite, then
it is a covariance matrix, C .

I The properties of circulant matrices can be used to create
efficient algorithms to compute A such that AA∗ = C .

I We simulate using a representation for A and then extract the
observations that correspond to the original process.
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This new method is fast to initialize and fast for each
additional simulation.
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I Compute the autocovariance and cross-covariance sequences.

I Simulate from it.
I Estimate it with Gaussian maximum likelihood, which will

require us to:
I Compute a quadratic form.
I Compute a determinant.
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Likelihood computations have two parts.

l(θ|X ) = −1

2
log |Ω(θ)| − 1

2
X ′Ω(θ)−1X

I The second term can be computed using a version of the
preconditioned conjugate gradient algorithm given by Chan
and Olkin (1994).

I We present two approximations to the first term: one that is
commonly used and one which works much better.
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We start with a few facts about the determinant.

I According to the Durbin-Levinson algorithm,
|Ω(T )| =

∏T−1
r=0 |v(r)|, where v(r) = Var(Xt |Xt−1, ...,Xt−r ).

I |v(r)| is decreasing and bounded below by the innovation
variance, |Σ|.

I It is conjectured that |v(r)| ∼ |Σ| exp
(

α
r−1

)
, where α is a

constant that depends on ~d and other aspects of the process.
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This graph plots |v(r)| as a function of r for FIVAR and
VARFI processes.

Figure: |v(r)| for VARFI and FIVAR processes for r ranging from 1 to
199.
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The asymptotic behavior is more clear if we exclude the
first few lags.

Figure: |v(r)| for VARFI and FIVAR processes for r ranging from 11 to
199.
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A simple, widely used approximation is |Ω| = |Σ|T .

I This approximation is equivalent to setting |v(r)| = |Σ| for all
r .

I As we saw on the last few slides, this approximation is quite
wrong, especially for small values of r .

I In addition, how wrong the approximation is depends on the
parameter values.

I As we will see in the Monte Carlo results, this approximation
does not work well in estimation.

Rebecca Sela Vector ARFIMA Models



The Problem of Slowly-Decaying Cross-Covariances
Introduction to multivariate and long memory models

Using multivariate long memory models
Monte Carlo results

Data analysis
Conclusion

Computing autocovariance sequences
Simulating from multivariate models
Maximum likelihood estimation

We suggest an alternative approximation.

I Use the Durbin-Levinson algorithm to compute
|v(0)|, ..., |v(S)| for a small S .

I Use the preconditioned conjugate gradient algorithm to
compute |v(T − 1)|.

I Fit the relationship:

r
√
|v(r)| = α + βr

|v(r)| = β2 +
2αβ

r
+
α2

r 2

I Use the fitted values to approximate |v(r)| for
r = S + 1, ...,T − 2.
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The regression approximation is much closer for a variety
of parameter configurations.

T = 500,Σ =

(
1 0.5

0.5 1

)
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We now use Monte Carlo to check the performance of our
estimators.

I We will compare the difference in estimates based on the two
approximations for the determinant.

I Then, we will compare the performance of the Gaussian
maximum likelihood estimator to the Whittle estimator.
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A good approximation leads to closer estimates.

Figure: Boxplots of the differences between exact ML estimates and the
two approximations for |Ω| in a FIVAR process.
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The regression approximation is superior to the naive
approximation.

I The difference between the estimates from the naive
approximation and the estimates from exact Gaussian
maximum likelihood are quite variable.

I In a significant fraction of the trials, the estimated values of Σ
from the naive approximation were over 100.

I The difference between the estimates from the regression
approximation and the estimates from exact maximum
likelihood were generally small and had mean zero.

I These results held for both FIVAR and VARFI processes.
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In a second Monte Carlo, we look at the performance of
our estimator and the Whittle estimator.

The Whittle approximation to the log likelihood is:

−T

2
log |Σ| − 1

2

T∑
j=1

tr

(
f −1

(
2πj

T

)
I

(
2πj

T

))
where

I I (·) is the cross periodogram:

I (λ) =
1

2πT

T∑
t=1

T∑
s=1

XtX ′s exp(iλ(t − s))

I f is the spectral density of the process.
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We now compare the performance of the two estimators.
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Preliminary Monte Carlo results are mixed.

I The Whittle estimates of Σ appear to be biased toward 0.

I The maximum likelihood estimates for d generally have a
slightly smaller root mean squared error than the estimates
from the Whittle estimator.

I The off-diagonal elements of A1 are generally estimated better
by the Whittle estimator.

I With nine parameters being estimated, there is no clear
winner yet.
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The Phillips curve

The Phillips curve describes the relationship between
unemployment and inflation.

I The traditional Phillips curve implies that an increase in the
unemployment rate leads to a decrease in inflation.

I Because the inflation rate is persistent, most models suggest
that inflation would decrease relative to expected inflation.

I If expected inflation equaled inflation from the previous
period, this would suggest a unit root in inflation.
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The Phillips curve

However, both the unemployment rate and inflation seem
to be persistent but mean-reverting.

Figure: Annual unemployment rate and inflation rate for 1948-1996.

Rebecca Sela Vector ARFIMA Models



The Problem of Slowly-Decaying Cross-Covariances
Introduction to multivariate and long memory models

Using multivariate long memory models
Monte Carlo results

Data analysis
Conclusion

The Phillips curve

Since both series seem to have long memory, a FIVAR or
VARFI model might be useful.

The empirical cross-correlation function of the unemployment rate and

the inflation rate, based on annual data from 1948 to 1996.
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The Phillips curve

Comparing the log likelihoods at the maximum likelihood
estimates, a VARFI model is preferred.

unemp(t) = 0.223unemp(t − 1)− 0.045infl(t − 1) + u1t

infl(t) = −0.902unemp(t − 1)− 0.360infl(t − 1) + u2t(
(1− L)0.448u1t

(1− L)0.240u2t

)
∼ Normal

(
0,

(
2.225 −1.473
−1.473 4.965

))

I As predicted by the Phillips curve, low unemployment in one
period is associated with higher inflation in the next period.
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We have discussed two multivariate generalizations of the
univariate ARFIMA model.

I FIVAR and VARFI models can both be used to model long
memory time series, but they have different implications.

I We have discussed efficient algorithms for calculating their
autocovariances and simulating from the models.

I We have introduced an approximation to the determinant
which is preferable to the traditional determinant
approximation, |Σ|T .

I We have fit the models to macroeconomic data.
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There is much future work to be done.

I As I speak, I am running extensive simulations to further
understand the properties of the Whittle and maximum
likelihood estimators for these models.

I While the regression approximation to the determinant is
effective, it could be refined.

I There have been many applications of univariate long memory
models to data – there are also many potential applications
for FIVAR and VARFI models.
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