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Options on Leveraged ETFs: A Window on Investor Heterogeneity 

 

Abstract 

Investors have diverse expectations, risk preferences and other important characteristics.  But 
most models of security markets suppress heterogeneity by assuming a representative agent 
framework, which produces consistent market prices but has great difficulty explaining the 
volume of trading in real world markets, especially in zero net supply derivatives like options.  A 
risk-neutral probability distribution (RND) that reflects investors' probability beliefs and risk 
preferences can be extracted from options prices.  However, the RND for future S&P 500 returns 
generates an empirical pricing kernel that is inconsistent with rationality of the representative 
agent, while the anomalous shape can be generated easily in a model with heterogeneous 
investors facing limits to arbitrage.   

We explore investor heterogeneity via differences in RNDs extracted from options on three 
exchange traded funds with leveraged short and long exposures to the S&P 500 index.  For 
example, holders of ETFs with short exposure to the market place significantly higher value on 
payoffs in negative return states than those with long exposure do.  Separating predicted 
probabilities from risk premia requires further assumptions. We consider two polar cases: either 
homogeneous expectations but different risk preferences, or homogeneous risk attitudes and 
diverse probability beliefs.  The empirical results are largely consistent with the expectations 
differences we anticipate from investors who choose short or leveraged long market exposure.  
Changes in RNDs reveal that investors who have chosen different market exposures respond 
differently to realized returns.  For example, a large negative return raises the median future 
return expected by bulls but lowers it for bears.  Uncertainty over future returns increases for 
both types of investors when they are wrong and narrows when they are right. 

JEL Classifications:  G14, G13, G11 

Keywords:  investor heterogeneity; risk neutral density; exchange-traded funds 
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Introduction and Review of the Literature 

In standard asset pricing theory, an investor's demand for any financial asset is a function of his 
or her beliefs about the probability distribution for the payoff in each possible future state of the 
world, modulated by risk preferences.  The latter are represented by a stochastic discount factor 
or pricing kernel that captures the value the investor assigns today to a $1 payoff in each possible 
future state.  The investor assesses the fair value C for the asset by 

ܥ      ൌ ׬	 ݃ሺݔሻ	݌ሺݔሻ	݇ሺݔሻ	݀ݔ௑     (1) 

where g(x) is its payoff in future state x, x  X, where X denotes the state space; p(x) is (the 
investor's subjective estimate of) the true probability density over the states in X, and k(x) is the 
pricing kernel.  This function combines the time value of money and the investor's preferences 
over payoffs in different future states of the world.  In states with a high level of wealth, the 
marginal value of another dollar is relatively low while payoffs in states with low wealth will be 
valued more highly.  That is, k(x) reflects risk aversion across different wealth states and p(x) 
reflects the investor's beliefs about their probabilities. 

Harrison and Kreps (1979) proved a deep and important result for a market with no profitable 
arbitrage opportunities.  At the level of the individual investor it implies that beliefs about the 
true p(x) and any risk premium embedded in k(x) can be combined and represented by a 
modified "risk neutral density" (RND).  The RND has the property that a risk neutral investor 
facing this probability distribution would value every state-contingent payoff exactly the same 
way as the risk averse investor does, using his beliefs about the true density p(x) and his risk 
preferences contained in k(x).  The risk neutral density is often called the q-density and we will 
use the terms interchangeably.   

That is,  

ሻݔሺݍ      ൌ ݁௥೑்	݌ሺݔሻ	݇ሺݔሻ    (2) 

where rf is the riskless interest rate.  The ݁௥೑் term converts k(x), the present value of $1 
received in state x, into its equivalent in terms of a sure $1 received in the future when the payoff 
occurs. 

The market aggregates individual investor demands into an excess demand function that clears 
the market at the current equilibrium price. At that price, optimistic investors who calculate a 
high value for C will overweight the security in their portfolios and pessimistic investors will 
underweight it or even sell it short.  Heterogeneity in investors' objective probability beliefs, risk 
preferences, initial wealth, and any other factor that affects asset demand are averaged and 
reflected in the market equilibrium price, weighted by the size of each investor's trade. 
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Lintner (1969) showed that under general assumptions the result of this aggregation is a set of 
equilibrium prices that are the same as if the market were made up of identical individuals.  This 
"representative investor" holds beliefs and risk preferences equal to a weighted average of those 
of the heterogeneous investors, and is often simply referred to as "the market."  In this sense, it is 
reasonable to say "the market's" expectations and risk preferences are embodied in security 
prices.  The representative investor holds the market portfolio. 

Ross (1976) demonstrated how options can expand, and potentially complete, the market for 
payoffs that are contingent only on the price of some underlying asset.  Breeden and 
Litzenberger (1978) then showed how the risk neutral density q(x) over the future price of that 
asset can be extracted from the prices of a set of options with a continuum of strikes and a 
common expiration date T.  If C(x,T) is the current market price of a call option with exercise 
price x and maturity T, then 

ሻݔሺݍ      ൌ 	 ݁௥೑்
డమ஼ሺ௫,்ሻ

డ௫మ
    (3) 

The representative investor's RND for a future stock price x is equal to the second partial 
derivative of the call value function with respect to the strike price future-valued to the 
expiration date T.  The surprisingly simple derivation of this important result is shown in the 
Appendix.   

In a market with a range of traded options, the q-density can be observed, or more precisely, it 
can be closely approximated using (3).  One would like to be able to use the q-density to learn 
about investors' true probability expectations and/or their risk preferences.  Attempts to extract 
probability beliefs from the RND include Jackwerth and Rubinstein (1996), who looked at the 
S&P 500 index around the Crash of 1987; Gemmill and Saflekos (2000), who tried to learn about 
the market's expectations for the British election of 1997; Melick and Thomas (1997), who 
analyzed the behavior of the RND at the time of the first Iraq war in 1991; Breeden and 
Litzenberger (2013), who used cap and floor prices to assess the market's expectations about the 
future path of interest rates; and many others.  Both the U.S. Federal Reserve and the Bank of 
England compute RNDs from different markets in evaluating economic conditions.1  Papers 
focusing on using RNDs to explore investor risk preferences include Bliss and Panigirtzoglou 
(2004), Jackwerth (2004), Bates(2000), Liu et al (2007), and others. 

Although these efforts are suggestive, in general it is not possible to separate expectations from 
risk preferences in a risk neutral density without additional assumptions to constrain the problem.  
Some authors propose either a specific form for the p-density that allows k(x) to be computed, 
such as lognormal with fixed mean and standard deviation, or for the short run returns process, 

                                                 
1 See Federal Reserve Bank of Minneapolis (2014) and de Vincent-Humphreys and Noss (2012). 
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such as GARCH.2  Others, like Bliss and Panigirtzoglou (2004) model the representative agent's 
utility function as being of a certain form, typically with constant relative (CRRA) or absolute 
(CARA) risk aversion, and proceed to extract an implied p-density.  It is possible to estimate 
both the market's p- and  q-densities simultaneously with a large enough set of repeated 
observations on panels of option prices over time, as long as both are assumed to be constant in 
the data sample.3 

Much of the work in this area has focused on the S&P 500 index.  This index is widely chosen as 
a proxy for the U.S. stock market portfolio, and in turn as a proxy for total wealth.  In that case, 
higher stock prices correspond to greater overall wealth, and if the representative investor has a 
normal utility function, the marginal value of $1 goes down when wealth increases, producing a 
monotonically decreasing pricing kernel over S&P 500 index returns. 

Given a q-density extracted from option prices and an estimate of the market's beliefs about the 
true probability density p(x), the pricing kernel can be computed as 

     ݇ሺݔሻ ൌ 	 ݁ି௥೑்ݍሺݔሻ/݌ሺݔሻ    (4) 

 With these theoretical results and the development of an active market in stock index options, 
much research has been done to exploit and explore these relationships.4 

We have extracted RNDs from options on the SPDR exchange traded fund (ETF), often known 
by its ticker symbol SPY.  The SPY is a share in a stock portfolio designed to track the 
performance of the S&P 500 index.  It is an investment vehicle that allows a small investor to 
take a long position in the whole market portfolio in the same way that she might buy a share in a 
single company.  Options on the SPY with an extensive set of exercise prices and maturities are 
actively traded.   

We estimate the q-densities from SPY call and put options in a sample of 1440 trading days 
between 2007 and 2014.  In order to compute the pricing kernel from equation (4) we must 
assume a form for the p-density .  Despite its known shortcomings we use the lognormal, which 
is by far the most common choice to represent the returns distribution for the U.S. stock market.5  
The lognormal is fully defined by its mean and standard deviation.   

                                                 
2 Jackwerth and Rubinstein (1996) fit a binomial model for the S&P 500 but need to constrain the risk neutral 
density to be lognormal.  Rosenberg and Engle (2002) fit a GARCH model to returns.  Gemmill and Saflekos (2000)  
use a mixture of two lognormals to reflect two possible outcomes of the British election of 1997.  Rompolis and 
Tzavalis (2008) suggest the Gram-Charlier density approximation technique, while Eriksson et al (2009) prefer the 
Normal Inverse Gaussian, and many other alternatives have been explored in the literature. 
3 See Ait-Sahalia and Lo (1998, 2000) for an empirical demonstration and Ross (2014) for a formal proof of this 
proposition.  However, it is questionable whether the market's assessment of both the p-density and the pricing 
kernel remain constant over long periods. 
4 See reviews of the literature on risk neutral densities by Jackwerth (2004) or Figlewski (2010). 
5 Even if investors believe the true density is some p*(x) that is not lognormal, much of the analysis reported below 
using the lognormal p(x) as described here and shown more formally in the Appendix, will still go through.  By 
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The mean of the empirical distribution of stock returns should include an appropriate risk 
premium over the riskless rate and the volatility parameter should reflect the best available 
forecast of index volatility from the present through option expiration.  We therefore assume 
investors believe the annual mean is equal to the current riskless rate plus a risk premium of 
5.00%, which is about the median value found in surveys.6   

Investors must estimate average volatility through option expiration, between 16 and 52 days in 
our sample.  The two most important sources of volatility information to the market are the 
observed volatility in recent historical returns (empirically measured but backward-looking) and 
the VIX implied volatility index (forward-looking but risk neutral, so not unbiased as an estimate 
of empirical volatility).  For each date, we combine realized volatility over the previous three 
months and the current VIX index, using weights obtained from a regression of realized 
volatility on these variables.  This is the combination that would have given the most accurate 
predictions over past horizons of this length.  Although investors treat the density as 
conditionally lognormal over the current forecast horizon, with volatility that differs from day to 
day the empirical distribution from longer samples will have fat tails.  Details on the sample 
selection and data handling procedures are provided in the Appendix. 

Figure 1 plots the pricing kernel for May 2, 2008 based on the RND extracted from one-month 
options on the SPY ETF and the estimate of the p-density as just described.   The vertical dashed 
line is at the current level of the S&P index implied from the SPY.  The left portion of the curve 
shows how the representative investor would value an additional $1 in the range of S&P index 
returns representing a substantial loss relative to initial wealth.  It displays the expected negative 
relationship between the future index level and the kernel.  But there are an anomalous upward 
sloping portion around the current index level, and a hump in the region of gains.  On this date, 
the market was willing to pay more for a $1 payoff if the stock index at option expiration was 
100 points above today's level than if it was 100 points lower.  This pattern is not uncommon.  
Indeed, the hump was present for most of our sample days and it has been observed by many 
researchers in the past.7  It has been termed the "pricing kernel puzzle." 

[insert Figure 1 about here] 

                                                                                                                                                             
Girsanov's Theorem, there is a functional transformation between p(x) and p*(x), such that p(x) = (x) p*(x), where 
(x) is the Radon-Nikodym derivative.  Suppose equation (4) is used to calculate pricing kernels from the risk 
neutral densities obtained from two different groups of investors who share the same objective (non-lognormal) 
probability estimates p*(x).  By using the lognormal p(x) instead of p*(x), we get incorrect estimates of the two 
kernels, but the comparison between them need not be affected.  If we compare them by taking their ratio, (x) 
cancels out and we get the correct answer.  The discrepancy between p(x) and p*(x) does not cancel when we 
subtract one kernel from the other, but the sign of the difference is preserved at each point x so valid comparisons 
are still possible. 
6 This risk premium was chosen based on surveys reported by Fernandez and del Campo (2010) who found that for 
analysts and companies in the U.S. and Canada, the median expected risk premium over the riskless interest rate was 
5.0% in April 2010.  Other available surveys find similar values. 
7 See Hens and Reichlin (2013) or Brown and Jackwerth (2012), for example. 
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Like other such puzzles in finance, the pricing kernel puzzle has generated much research to 
explain it.  Ziegler (2007) considers several potential causes, including incorrect estimates of the 
p-density due to jumps and stochastic volatility in the returns process; problems in the market's 
aggregation of heterogeneous preferences among investors; and heterogeneous probability 
beliefs.  His results do not support the first two explanations, but are consistent with 
heterogeneous beliefs, although he does not consider the results with his version of heterogeneity 
especially compelling.  Christoffersen, Heston and Jacobs (2013) achieve modest success in 
explaining the u-shaped middle portion of the pricing kernel by introducing a second priced risk 
factor in the form of stochastic variance.  They do not try to model the entire shape like that 
shown in Figure 1.  Chabi-Yo (2012) also is able to generate anomalous u-shaped kernels by 
introducing higher order risk factors for volatility, skewness and kurtosis. 

The pricing kernel puzzle is a puzzle because the representative investor does not appear to be 
uniformly risk averse.  Ziegler suggests heterogeneous beliefs as the best potential explanation 
among those he considered, and indeed Shefrin (2008) and Barone-Adesi, Mancini, and Shefrin 
(2013) present models in which investor heterogeneity is intrinsic to the market.  They easily 
generate pricing kernels with the anomalous shape even though all investors are properly risk 
averse. 

In Shefrin's (2008) model, there are two classes of investors, optimists and pessimists.  They 
have identical CRRA utility functions but differ in their beliefs about both the mean and the 
standard deviation of the returns distribution.  The optimists expect higher mean returns, so they 
want more exposure to the market on the upside.  If they also expect lower volatility than the 
pessimists do, the resulting shape of the pricing kernel can look like Figure 1.8   

The standard representative agent assumption allows enormous simplification in pricing models 
and Lintner showed that it can produce the same prices as those in a world of heterogeneous 
investors.  This is true, but it misses key features of real world financial markets which are 
eliminated in a representative investor model.  The representative investor holds the market 
portfolio, in which the quantity of zero net supply assets is zero.  Although he will value options 
relative to their underlying stocks in exactly the same way they are priced under heterogeneous 
beliefs, he would never actually hold any options, futures, or other zero net supply securities in 
his portfolio.  In other words, the representative investor model can explain pricing in the real 
world, but not trading.   

This problem was discussed long ago by Aumann (1976) and it has been revisited by many 
others since then.  The general conclusion is that differences of opinion, and ones that persist 
even after the (possibly efficient) market price is known, are necessary to make a financial 
market as well as a horse race.   The conceptual difficulty is not just that there is open interest in 

                                                 
8  Barone-Adesi et al (2013) develop a somewhat different sentiment-based model with investors who are both over-
optimistic and over-confident, that is also capable of generating a pricing kernel with an anomalous upward sloping 
region. 
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real world zero net supply contracts, which might be explained in other ways, such as different 
initial endowments among otherwise identical investors.  Empirical evidence shows that market 
participants also don't update their beliefs as they would if they had different private information 
but agreed about the implications of widely held information.  Rather, investors regularly "agree 
to disagree", and this leads them to trade in the markets in ways that are inconsistent with a 
representative investor model.9  

Our goal in this paper is not to explain the pricing kernel anomaly, but rather to take its existence 
as evidence that one cannot easily explain what is really happening in a derivatives market 
without explicitly taking account of investor diversity.  Real world investors are heterogeneous 
in their returns expectations, risk preferences, initial portfolios, and every other important 
dimension.  There are also limits to arbitrage and other frictions that allow active trading in many 
zero net investment derivatives, even closely related instruments whose payoffs are based on the 
same underlying asset price.  These are redundant in a frictionless theoretical market, but may 
attract clienteles of specific subsets of real world investors.  We hope to learn about investor 
heterogeneity by examining RNDs extracted from exchange traded funds that provide different 
leveraged exposure to the same underlying S&P 500 index. 

The market for ETFs has expanded rapidly and now includes multiple contracts based on the 
same underlying index, but differing in the direction and leverage of the exposure.  In this paper, 
we focus on SPY and two other such ETFs, that will be identified by their ticker symbols: SSO, 
which tries to produce twice the daily returns on the S&P 500 index, and SDS, an "inverse" ETF 
that is designed to provide twice the daily return of a short sale of the index.  For example, if the 
S&P return on some date t is +1.0%, returns on the SPY, the SSO, and the SDS should be, 
respectively, +1.0%, +2.0%, and -2.0%.   

All three ETFs have traded options from which RNDs can be extracted.  In a completely 
frictionless market, arbitrage among the ETFs and the underlying portfolio of S&P 500 stocks 
should lead to perfectly consistent pricing, such that all of the derivatives would, in fact, be 
redundant.  As long as there is a perfectly elastic supply of arbitrage services to connect the 
markets, any pricing effects of investor heterogeneity will be eliminated. 

On the other hand, if the markets were completely separate with no interaction among them, 
prices would reflect the trading of three mutually exclusive clienteles, each with its own average 
probability beliefs and risk preferences.  In that world, options whose payoffs all depend on the 
behavior of the same underlying index could embed quite different valuation of a future payoff 
in the same state of the world without those differences being arbitraged away.  Moreover, since 
the options tied to each ETF are all in zero net supply, even within these more homogeneous 

                                                 
9 See Kandel and Pearson (1995), for example, who find much too much trading following the release of a corporate 
earnings report and strong evidence that professional forecasters respond to the news in ways that show they 
disagree about its implications. 
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groups of investors only differences among them will lead to trading, and one might well see 
anomalous pricing kernels.   

We do not think either of these polar cases holds.  In discussions with market makers in these 
ETFs, we were told that there is arbitrage trading across markets, based on the mathematical 
relationship among them that we present in the Appendix and use in converting RNDs extracted 
from the leveraged ETFs into their equivalent densities defined on the underlying S&P index.  
But bid-ask spreads are wide enough, and liquidity low enough, that the trade is potentially 
profitable only for market makers who are able to buy on their bid and sell on their ask prices.  
Limits to the arbitrage trade across these related markets may reduce the effects of heterogeneity 
among the investors in them, but arbitrage does not eliminate all pricing differences among these 
ETFs in the real world.  The flourishing trade in all three suggests that each attracts its own 
clientele of investors, who can be expected to differ in their probability beliefs and/or their risk 
attitudes in significant ways from those who are attracted to the other contracts, and market 
prices for contingent payoffs will reflect these differences.   

Computing implied volatilities from option prices is a long-established procedure.  Extracting the 
entire RND gives much greater insight into how the market values payoffs under different future 
states of the world and it does not require assuming the validity of a specific option pricing 
model.  But we are not able to separate the resulting RNDs into expectations and risk 
preferences, nor is there an easy to explore the heterogeneity in investors' probability beliefs 
directly, even though active trading in zero net supply contracts would almost certainly not exist 
without it.  One of the main contributions of this paper is to demonstrate that consistent and 
highly significant differences in the risk neutral probabilities over the same set of contingencies 
are produced by subpopulations of investors who are expected to have quite different 
expectations and perhaps risk preferences, as well.  For example, as one would expect, RNDs 
extracted from the double short SDS contracts have lower medians than those from SPY and 
SSO.  To analyze how two RNDs are related to one another over different regions of the returns 
space, we introduce a new tool, the Relative Demand Intensity (RDI).  The RDIs show that 
investors on the short side assign lower risk neutral probabilities to a future rise in the market 
than do longs, but both SPY and SSO investors value payoffs in negative states in which they 
would have severe losses more highly than the shorts do. 

Without trying to separate RNDs into expectations and risk preferences, we first obtain 
interesting results by considering alternative polar cases that weaken the homogeneous investor 
model.  Either investors in all three ETFs are assumed to have the same expectations about the p-
density but to differ in their risk tolerance, or the reverse: they all have the same risk aversion but 
different probability beliefs.   

Assuming identical p-density expectations produces three different pricing kernels for the three 
investor populations each day.  If investors only differ in risk aversion, SSO holders who take 
double long exposure are the most risk tolerant, then SPY, and finally SDS investors who use 
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contracts with short exposure as a hedge.  However, the results we find under this assumption are 
clearly inconsistent with this ordering.  Assuming the alternative polar case of equal risk 
tolerance, we imply out different probability beliefs from the RNDs.  The relationship between 
the p-densities for the long exposure contracts versus those for SDS are as anticipated, with the 
SSO and SPY investors assigning higher probabilities to up markets and SDS investor higher 
probabilities to future market declines.  However, the relationship between the single long SPY 
and the double long SSO p-densities is muddier.  This is one of several places where the 
empirical results show the differences between the two long exposure ETFs to be more 
ambiguous than anticipated.  

Moving beyond static comparisons of RNDs and the curves we extract from them, we then look 
at how investors in each set respond to the same price shock contained in the most recent market 
return.  Among several interesting results, we find that long exposure investors mostly raise 
(lower) the medians of their RNDs for future index returns following a positive (negative) 
realized return on date t, but SDS investors do the opposite.  The bulls react to a return by 
extrapolating it into higher valuation of further returns in the same direction.  The bears 
effectively "double down" on their previous exposure when they are wrong by valuing future 
returns on the upside even less than before, but when a negative return ratifies their prior 
expectations, they act as if it represents a partial correction of the market's previous mispricing 
and reduce their valuation of payoffs in negative return states. 

Having probability distributions, not just single parameters like implied volatilities, lets us 
explore the behavior of different quantiles of the distribution and higher risk neutral moments, 
which allows us to estimate more detailed changes in investors' expectations and also their 
confidence in those expectations.  We find, for example, that when investors are wrong, as when 
a double-short SDS holder sees a sharp increase in the index, the interquartile range of their 
RND (a nonparametric alternative to standard deviation) widens, and it narrows when they are 
right.   

The remainder of the paper proceeds as follows.  In Section 2, we briefly describe the data 
sample and our procedures for extracting risk neutral densities and converting them to a common 
base defined in terms of a standardized p-density so they can be compared.  The full details of 
these technical issues are presented in the Appendix.  In Section 3 we explore how the RNDs 
from the three ETFs differ when observed on the same date.  Section 4 looks at how each of 
them responds to the most recent realized return in the market.  Section 5 concludes.   

 

2.  Data & Methodology 

End-of-day market bid and ask prices for SPY, SDS and SSO options come from OptionMetrics. 
The two levered ETFs began trading in the middle of 2006, but options on them were only 
introduced towards the end of 2007. Our sample starts in October 2007 and ends in March 2014. 
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This gives us 1615 observations for SPY, 1614 observations for SSO and 1611 for SDS. After 
eliminating dates without adequate data to compute RNDs on all three ETFs, and removing days 
with obviously erroneous probability densities (mainly due to violation of no-arbitrage 
conditions in the reported prices) we have 1440 days with usable densities for each of the three 
ETFs. 

The ETF options' payoffs are based on expiration day prices for their underlying ETFs.  The 
Appendix describes in detail our procedure for extracting the risk neutral densities over future 
ETF values from these options.  To make them comparable between ETFs and also across RNDs 
from options with different times to expiration, we convert first into RNDs defined on the 
common support of S&P 500 index levels, and then into standardized returns expressed as 
standard deviations around the expected mean S&P index return.  In some of the analysis, we 
report average differences between curves over subintervals of the space of standardized returns.  
Table 1 shows the number of days with available observations for each ETF at points along a 
range from -3.0 to +3.0 standard deviations.  Because the stock market rose sharply over much of 
the sample period, there is very good coverage only in the intervals between -3.0 and +1.5, and 
even +1.5ߪො is a little thin for SDS. 

 

[insert Table 1 about here] 

 

Figure 2 shows the transformed RNDs for May 2, 2008 extracted from June options with T = 50 
days to expiration.  On this date, the S&P 500 index closed at 1413.90, up 0.32% from the 
previous day.  The VIX index was at a relatively moderate level of 18.18, down 0.70 from the 
day before, and the blended volatility used to construct the p-density and to convert RNDs on 
prices to their equivalents in returns was 15.75. 

 

[insert Figure 2 about here] 

 

The figure reveals several common features of the data.  The curves are roughly similar, but the 
qSPY density is available over a broader range than the others.  Also, all of the curves are 
truncated at the right end (higher S&P levels).  One problem in the analysis is that an RND can 
only be computed from the data in the range spanned by the option strike prices available in the 
market.  After a large move in the underlying index, new strikes are added to widen the range, 
but the new contracts may not extend very far into the tail of the density, especially for the less 
active leveraged contracts. 
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The inability to fit the tails from market data has led researchers to a variety of solutions to 
complete the densities.10  Without a complete density, it is not possible to compute the mean, 
standard deviation, or other moments.  However, it is possible to compute quantiles in the 
observed portion of the density and also the total probability in each tail.  Rather than depending 
on assumptions about the shape of the RND tails, in this work we focus on nonparametric 
statistics: the median, rather than the mean, and the interquartile spread in place of the standard 
deviation.  Many of our tests involve comparing average probabilities over different ranges of 
the observed portions of the curves. 

 

3.  Comparative Statics of Risk Neutral Densities and Related Functions 

Investors in these ETFs are entering into contracts that specify very different payoffs as a 
function of the realized future value of the same variable.  It is reasonable to expect these 
investors to differ in their beliefs about the true p-density and possibly in their risk attitudes, as 
well.  For example, an investor who buys a call option on the double short SDS ETF probably 
expects the S&P 500 index to be lower in the future than does a buyer of a call on the double 
long SSO.  Or he could be more averse to the risk of a fall in the index and is hedging by buying 
an option that will pay off in that unfavorable state of the world, while a more risk-tolerant SSO 
investor is increasing her exposure to stock market risk at the same time.  In this section we will 
propose and test a number of hypotheses about how the RNDs from the three ETFs relate to one 
another. 

Any discrepancy in the risk neutral densities extracted from derivative securities based on the 
same underlying asset indicates a theoretical arbitrage opportunity.  In a frictionless financial 
market, all such differences should be arbitraged away.  The first hypothesis, H0, is that there are 
no significant differences among the RNDs derived from options on the three ETFs.  As will be 
immediately clear, many such differences do exist and are highly statistically significant.  We 
will be able to conclude a fortiori that the hypothesis that arbitrage eliminates any discrepancies 
among the risk neutral densities in these markets is refuted. 

 

The Medians of the Risk Neutral Densities 

Since persistent RND differences do exist, the above reasoning suggests several hypotheses 
about their relative positions in the three markets. 

                                                 
10 Fitting a parametric density to the data imposes that density's shape on the tails by assumption.  Birru and 
Figlewski (2012) suggest extracting the middle portion of the RND nonparametrically from the options market and 
completing it with tails constructed from the Generalized Pareto distribution.  Bliss and Panigirtzoglou (2002, 2004) 
and others also use nonparametric estimation but effectively constrain the tails to be lognormal by assuming Black-
Scholes implied volatility is constant beyond the range of strikes available in the market.   
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H1a: The median of the qSSO-density will be higher than the median of the qSPY-density. 

H1b: The median of the qSSO-density will be higher than the median of the qSDS-density. 

H1c: The median of the qSPY-density will be higher than the median of the qSDS-density. 

The top portion of Table 2 shows the average and standard deviation of the RND medians from 
each of the three markets over the 1440 days in our sample. The median of the SPY q-density is 
a little above a return equal to the riskless rate (which would be 0.0 standard deviations here).  
The mean of the market's risk neutral density should equal the riskless rate, and if the density is 
left-skewed, as it is for the S&P 500, the median will be above the mean.  The SSO median is 
also positive but averages a little below the SPY median, while the average SDS median return is 
below the riskless rate (with a substantially higher standard deviation than for the other ETFs).  
The lower portion of the table provides more insight into these differences in medians.   

 

[insert Table 2 about here] 

 

The average of the medians over time can be influenced by days that rank as outliers, so we first 
simply report the fraction of days for which the median of the first listed ETF minus the median 
of the second was positive.  Here the median of the double long SSO's risk neutral density was 
above that of the SPY on only about 30% of the sample days, but medians for both ETFs with 
long exposure to the S&P index were above the median of the double short SDS more than 97% 
of the time, by more than one third of a standard deviation (of standardized return) on average.  
The standard deviation of the difference in medians across days was only 0.042 for SSO-SPY, 
but given the sample size, the average difference was still highly significant.  The differences 
between SSO and SPY versus SDS are much larger on average and highly significant but much 
more volatile. 

Table 2 strongly supports hypotheses H1b and H1c that the SPY and SSO medians are above the 
median of the double short SDS.  But the double long SSO's median is less than that of the SPY, 
contradicting H1a.  This interesting result illustrates the interplay between investors' expectations 
and risk aversion.  SSO buyers very likely believe the expected return on the S&P index is higher 
than SPY buyers think, but a given percentage fall in the S&P index produces losses twice as 
large for SSO than SPY investors, which suggests they might also place greater value on 
downside protection. 

The RNDs for May 2, 2008, plotted in Figure 2 are consistent with this line of reasoning.  In the 
region of gains, the SSO q-density is mostly above that for the SPY (and both are well above the 
SDS RND).  In the region of small losses that are less than one standard deviation below the 
mean, SSO is below SPY, suggesting that the double long investors think an outcome in this 
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range is less probable, or at least less worrisome, than SPY investors do.  But larger losses of two 
or three standard deviations in the index are much more painful for an SSO investor than an SPY 
investor and should cause him to value an "insurance" payoff in that state of the world more 
highly, which is what we see in Figure 2.  SDS investors weight payoffs in a falling market more 
highly than do investors in either of the long exposure ETFs. 

Relative Demand Intensity across the Returns Space 

To explore these issues in greater detail, we can compare average risk neutral probabilities over 
different regions of the returns space.  If buyers of the double long SSO are at least partly doing 
so because they anticipate higher returns on the market portfolio than the average investor does, 
we expect qSSO > qSPY in the region of gains and qSSO < qSPY in the region of (moderate) losses, 
and similar reasoning leads to equivalent hypotheses about the other comparisons among these 
RNDs.  But in the presence of risk aversion, the different exposures to stock market risk these 
contracts have may confound this pattern based on expectations. 

The ETFs we are examining are all tied to the S&P 500 Index, which is frequently taken to be a 
proxy for the representative investor's total wealth, as in discussions of the equity premium 
puzzle.  A nonmonotonic pricing kernel is a puzzle because the relationship between the index 
and total wealth is expected to be monotonically increasing.  But ETFs and other securities with 
leveraged exposures now exist for many underliers that cannot be considered as proxies for total 
wealth, including indexes covering narrower sectors of the stock market, as well as those based 
on other asset classes.11  We can explore relative intensities of demand for exposure to different 
portions of the returns space for these underlying assets by comparing the RNDs extracted from 
options on their leveraged and inverse ETFs. 

For two ETFs, A and B, with different exposures to the same underlier, define the two sets of 
investors' Relative Demand Intensity (RDI) for a payoff at a given return x by the ratio of their 
RNDs at x: 

ሻݔሺܫܦܴ      	ൌ 	  ሻ    (5)ݔ஻ሺݍ/ሻݔ஺ሺݍ

 

The Relative Demand Intensity shows how A and B investors differ in the way they value 
payoffs under the same contingency.  If they put the same value on a payoff when the 
standardized return on the underlying asset is x, then RDI(x) = 1.0.   

RDIs vary widely over time, even from one day to the next.  Figure 3 shows averages over the 
entire sample for three RDIs.  The dotted line is the relative demand intensity for the double 
short SDS relative to the unlevered SPY.  That is, in this case A and B in equation (5) represent 

                                                 
11 Examples that are currently available in the market include leveraged ETFs based on the Dow Jones, the Russell 
2000, and the NASDAQ 100 stock indexes, as well as on bonds, commodities, currencies and even real estate. 
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SDS and SPY, respectively.  RDI(x) above 1.0 indicates that SDS investors have stronger 
demand than SPY investors do for a payoff at a future S&P 500 level corresponding to a 
standardized return of x.  The interplay between expectations and risk tolerance can be seen 
clearly here. 
 

[insert Figure 3 about here] 

 

On the right, in the region of small to medium-sized gains on the S&P 500, SDS investors are 
less eager than SPY investors for exposure.  They consider a positive excess return on the index 
to be less likely than SPY investors expect.  But the losses SDS holders would experience with a 
big rise in the index should cause them to want to hedge against that event, and we see that the 
relative value they place on a payoff if the market rises begins to increase for returns above about 
2/3 of a standard deviation.  At the far right end of the graph, the double short investors may 
become more eager for a contingent payoff than are SPY investors with long exposure.  We have 
very few data points at standardized returns above 1.5, but those few do show RDIs for SDS 
relative to SPY that are well over 1.0. 

The reverse pattern holds on the downside.  SDS investors expect the market to fall, so they 
value payoffs in that region consistently higher than do SPY investors, until the losses are worse 
than -2.0 standard deviations.  At that point, SPY holders' aversion to very large losses leads 
them to want insurance, while SDS holders would be comfortably experiencing a substantial 
gain. 

By contrast, the dashed line displays the relative demand intensities for SSO double long 
investors relative to SPY investors who hold unlevered long exposure to the index.  The pattern 
here is weaker than when comparing short and long investors.  On the downside, the leveraged 
buyers are ready to pay more at all return levels than unlevered ones, consistent with aversion to 
the double-sized losses they will experience for any given negative x.  There is very little 
difference between the two in the region of small gains, but the graph suggests that SSO 
investors are a little more eager for payoffs for returns above one standard deviation. 

Finally, the solid line compares the preferences of SSO versus SDS investors.  For payoffs on 
moderate-sized returns we see strong relative demand differences in the expected direction, with 
SDS holders liking the downside and SSO holders liking the upside.  But interestingly, for 
extreme returns at both ends, their valuations come together, consistent with the idea that  SSO 
investors think a very large drop in the index is less likely than SDS investors do, but they will 
pay more for exposure to that contingency in order to mitigate the big losses they would sustain 
if it does happen.  The situation is reversed on the upside, where SDS investors would consider a 
moderate rise in the S&P to be less probable than SSO investors expect, but are ready to buy 
insurance against large losses in case of a strong rally. 
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Because of data limitations, as shown in Table 1, we cannot examine the full range of x-axis 
values.  We therefore focus on three regions of the S&P 500 return space, defined in terms of the 
current volatility forecast ߪො: small to medium gains (0.0 to +1.5 ߪො ), small to medium losses (-1.5 
to 0.0 ߪො ), and large losses  (below -1.5 ߪො ).  The general result we hypothesize is that 
expectations will dominate in the region of small gains and losses on the index, but risk 
preferences will dominate in the region of large losses. 

With three ETFs and three regions of returns, there are nine basic hypotheses. 

The specific hypotheses H2a - H2i are as follows. 

In the region of moderate gains (0.0 to +1.5 ߪො ), 
H2a:  RDI(x) > 1.0 for SSO/SPY; 
H2b:  RDI(x) < 1.0 for SDS/SPY; 
H2c:  RDI(x) > 1.0 for SSO/SDS. 

 
In the region of moderate losses (-1.5 to 0.0 ߪො ), 

H2d:  RDI(x) < 1.0 for SSO/SPY; 
H2e:  RDI(x) > 1.0 for SDS/SPY; 
H2f:  RDI(x) < 1.0 for SSO/SDS. 

 
In the region of large losses  (below -1.5 ߪො ), 

H2g:  RDI(x) > 1.0 for SSO/SPY; 
H2h:  RDI(x) < 1.0 for SDS/SPY; 
H2i:  RDI(x) > 1.0 for SSO/SDS. 

 
 
To be precise about the test statistics, the test of hypothesis H2a is as follows.  We want to look 
at the average value of RDI(x), defined as qSSO(x) / qSPY(x), over the range of standardized 
returns from 0.0 to +1.5.  For each date in the sample, RDI(x) is averaged over all x values in the 
range for which we have been able to extract risk neutral densities from the available options 
data.  In cases where a curve does not extend all the way to the end of the region, we compute 
the average differences over the available portions.  From the daily averages of RDIs in this 
interval we compute the fraction of days with RDIs above 1.0, their mean and standard deviation, 
and the t-statistic on the difference between the mean and 1.0.  Table 3 shows the results. 

 

[insert Table 3 about here] 

 

The results in Table 3 provide strong support for six out of the nine hypotheses.  H2a held that 
SSO investors would be more eager than unlevered SPY investors for exposure in the region of 
moderate gains.  Although this was true on 50.0% of the sample days, the average RDI(x) for 
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SSO/SPY was 0.997, significantly below 1.0 in a one-tailed test, so H2a is significantly rejected.  
This could mean that SPY investors had more optimistic expectations for returns on the market 
than SSO buyers had.  But another possible explanation is that SSO buyers' expectations were 
much more positive than those of SPY investors, so they may have estimated the probability of 
only a small positive return as being lower than what SPY investors expected. 

Similarly, hypothesis H2d that SSO investors would have lower demand relative to SPY 
investors for a payoff in the region of moderate losses was also refuted, more decisively than was 
H2a.  If SSO investors are more optimistic than SPY investors, the point at which expectations 
differences (SSO investors predict a smaller probability of a down market than SPY investors 
anticipate) are outweighed by risk aversion (SSO investors are hurt more by a drop of a given 
size) appears to occur at smaller losses than the region covered by H2d.   

H2h, the hypothesis that risk preferences would lead SPY investors to value payoffs for large 
down moves more highly than SDS investors do, was also refuted by the test on the average, 
even though H2h was true on 50% of the days.  Figure 3 suggests that this result could reflect 
higher average relative demand intensity for SDS over SPY for moderately large losses  

 but stronger demand from SPY investors in the region of very large losses ( ොߪ ො < x < -1.5ߪ 2.0-)
(x < -2.0 ߪො ). 

Pricing Kernels 

We would like to be able to separate the differences in these RNDs into the part due to different 
beliefs about the true p-density and the part that reflects different risk attitudes.  This is not 
possible without additional assumptions, but we are able to explore two polar cases: either all 
investors have the same beliefs about the true returns distribution but different risk preferences, 
or alternatively, investors all have the same utility functions and only differ in their expectations 
about the returns distribution.  We will examine these two cases in turn. 

In our setup, the pricing kernel k(x) gives the value to the investor of $1 received in T days if the 
stock price at that date St+T is x standard deviations away from the mean return, relative to the 
present value of $1 received for certain at date t+T.  If investors agree on the p-density but differ 
in how they risk-neutralize it, their different RNDs will produce different pricing kernels, which 
we will denote as kSPY(x),  kSSO(x), and  kSDS(x).   

We have computed pricing kernels from the three RNDs shown in Figure 2, using the same p-
density for each.  We assume investors agree that the p-density for the S&P 500 index is 
lognormal with a log mean equal to the current annualized riskless interest rate rf,t less the index 
dividend yield dt plus a risk premium of 5.0%, all scaled appropriately for a T-day horizon.  The 
annualized volatility input is calculated using equation (A18). 
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Using the q-densities extracted from the options market and the p-densities constructed as just 
described, we computed pricing kernels for our 1440 day sample.  Figure 4 displays these pricing 
kernels for the single day May 2, 2008.  Note that they all exhibit the anomalous nonmonotonic 
section in the region of moderate returns.  If the explanation for this shape is investor 
heterogeneity, Figure 4 shows that each market contains investors with diverse beliefs.  This is 
not really surprising, given that every option contract has to have a buyer and a seller. 

 

[insert Figure 4 about here] 

 

If all investors agree on the true density, differences in the kernels must be due to different risk 
preferences.  Consider an investor who takes a long position in the double long SSO versus one 
who buys the unlevered SPY ETF.  For a given drop in the underlying index the loss to the SSO 
is twice that on the SPY, and on the upside, the SSO gains twice as much as the SPY.  Given 
identical probability beliefs, investors would choose the SSO because they are less risk averse 
than SPY investors.12    Relative to SPY buyers, a less risk averse investor has less demand for a 
hedge against a given drop in the market, and more for exposure on the upside, since the 
marginal utility of wealth for a less risk averse investor falls off more slowly as wealth increases.   

The effects on the pricing kernels might be most visible for small and medium-sized moves, 
particularly on the downside where an SSO buyer could sustain a serious hit to wealth from a 
sharp drop in the market.  If we look far enough into the left tail, we would expect to find kSSO(x) 
rising above kSPY(x) for extreme losses.  Figure 4 shows that on this date, this transition 
happened at a loss level of around -1.0 standard deviations.   

Yet, these comparisons are ambiguous because a given move in the index produces different 
dollar returns to the two ETFs.  The loss an SPY holder experiences when the market return is 
1.0 standard deviations below expectations is what an SSO holder gets with an index loss half 
that size.  If an SSO buyer is only a little less risk averse than an SPY investor, he will be less 
concerned about a dollar loss of a given size, yet he might well want to pay more to mitigate the 
utility loss from a given negative S&P 500 return, which produces twice as bad a loss for him in 
dollars as for an SPY investor.  The issue is how quickly the SSO buyer's aversion to losses 
increases as they become larger, and similarly, how quickly his marginal utility of wealth falls as 
profits increase on the upside.  Given the offsetting influences, we will report the comparisons 

                                                 
12  They may also be more liquidity-constrained and willing to pay more for leverage.  For either of these to affect 
pricing, there must be limits to arbitrage that create some segmentation between the two markets, so that, for 
example, a risk averse SPY investor would not simply create the identical exposure to the index by taking a position 
half as large in SSO.  The evidence we present in this paper clearly demonstrates that the markets for options on 
these closely related ETFs are indeed somewhat segmented, particularly between the two ETFs with long exposure 
versus the double short SDS.  However, we also think the main difference between the clienteles for these 
instruments is more likely to be in their returns expectations than their risk preferences. 
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between kSSO(x) and kSPY(x) below, but will not try to specify formal hypotheses about how they 
should be related. 

Now consider kSDS(x).  It is reasonable to assume that regardless of what position is taken in 
these particular ETFs, nearly all investors have net positive exposure to the stock market overall.  
With identical expectations as SPY buyers about the p-density, an investor will only choose to go 
long in the double short SDS ETF as a hedge, because he is more risk averse than average.  He 
will pay more than an SPY or SSO investor to receive a payoff when the market goes down, and 
less for a payoff when the market is up.   

This reasoning leads to six hypotheses about the relative positions of the pricing kernels 
extracted assuming all investors agree on the true p-density within the three regions of the 
returns distribution we examined above.  SSO investors are the least risk averse, next the SPY 
investors and then those who go long the double short SDS. 

The specific hypotheses H3a - H3f are as follows. 

In the region of moderate gains (0.0 to +1.5 ߪො ), 
H3a:  kSDS(x) < kSPY(x); 
H3b:  kSSO(x) > kSDS(x). 

 
In the region of moderate losses (-1.5 to 0.0 ߪො ), 

H3c:  kSDS(x) > kSPY(x); 
H3d:  kSSO(x) < kSDS(x). 
 

 
In the region of large losses  (below -1.5 ߪො ), 

H3e:  kSDS(x) > kSPY(x); 
H3f:  kSSO(x) < kSDS(x). 

. 

 

[Table 4 about here] 

 

Table 4 contains results relevant to the six hypotheses listed above.  H3a and H3b, covering the 
region of moderate gains, are strongly confirmed, with the kernel from SDS lying well below 
those from SSO and SPY more than 70% of the time, by an average amount that is significant 
with a t-statistic around 30.  In the region of moderate losses on the S&P index, the SDS kernel 
is above the SPY kernel as hypothesized (H3c), but below the kernel from SSO, which should 
not happen if the only difference between the two sets of investors were risk aversion.  The 
supposedly less risk averse SSO investors also produce a kernel over negative returns 
significantly above that from SPY on average.  Finally, for extreme losses both of the long-
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exposure kernels are above the SDS kernel, refuting H3e and H3f.  These results call into 
question the joint hypothesis embedded in H3a - H3f, that the investors in the three ETFs project 
identical p-densities and only differ in risk tolerance.  If true, this ought to be reflected in the 
most risk averse investors, SDS buyers, placing the highest value on payoffs under extreme 
negative returns. 

Implied p-densities 

It is not really plausible that these leveraged and inverse ETFs were developed to cater to 
investors who have identical expectations about returns on the S&P 500 index and only differ in 
their risk aversion.  The alternative polar case is that investors have the same utility functions but 
different probability beliefs.  With identical risk preferences, all investors would transform a 
given p-density into the same RND and the pricing kernels from the three markets would be the 
same.  But we have just seen that there are significant differences in the RNDs and pricing 
kernels in these markets.   

If we assume investors all apply the same utility-based risk-neutralization, different pricing 
kernels must arise from different probability beliefs.  SPY investors transform their estimate of 
the p-density, which we have assumed is lognormal with annualized mean equal to the riskless 
rate plus 5% and volatility calculated as shown in (A18) into qSPY(x), which produces the kernel 
kSPY(x).  By inverting this transformation and applying it to the other two kernels, we can recover 
implied p-densities, pSSO-implied(x) and pSDS-implied(x).  For example, if SPY investors believed the 
true p-density was pSDS-implied(x), they would risk-neutralize it to generate the same pricing kernel 
as we extracted from the SDS market. 

Equation (6) shows this transformation. 

 

ሻݔௌ஽ௌ‐௜௠௣௟௜௘ௗሺ݌   	ൌ 		
௘షೝ೑೅௤ೄವೄሺ௫ሻ

௞ೄುೊሺ௫ሻ
		ൌ 		 ௤ೄವೄ

ሺ௫ሻ

௤ೄುೊሺ௫ሻ
 ሻ  (6)ݔሺݕݐ݅ݏ݊݁݀‐݌	

 

Figure 5 displays the assumed p-density and the two implied p-densities derived by applying this 
formula to the data from May 2, 2008. 

 

[insert Figure 5 about here] 

 

Intuitively, one expects that the primary differences among SSO, SPY and SDS investors are in 
their expectations about the future level of the S&P index.  Double long investors are more 
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bullish than average, SPY investors have expectations similar to the market average, and SDS 
investors expect negative returns.  Of course they may well differ in risk attitudes also, but there 
are many alternative ways to hedge market exposure, while options on these ETFs offer 
leveraged bets on specific portions of the returns distribution, which are not easily replicated in 
other ways. 

This reasoning leads to hypotheses about how the implied-p densities will relate to one another.  
In particular, the pSSO-implied density should show higher expected probabilities for large up 
moves and lower probabilities for losses than the other two, while the pSDS-implied density 
should indicate greater chance of losses and less for profits on the index than the SSO or SPY p-
densities.  Although the hypothesized relationships are the same for moderate and large losses, 
for consistency with earlier tables, we continue to break the loss region into two parts. 

In the region of moderate gains (0.0 to +1.5 ߪො ), 
H4a: pSSO-implied(x) > pSPY(x) 
H4b: pSDS-implied(x) < pSPY(x) 
H4c: pSSO-implied(x) > pSDS-implied(x) 

 
In the region of moderate losses (-1.5 to 0.0 ߪො ), 

H4d: pSSO-implied(x) < pSPY(x) 
H4e: pSDS-implied(x) > pSPY(x) 
H4f: pSSO-implied(x) < pSDS-implied(x) 

 
In the region of large losses  (below -1.5 ߪො ), 

H4g: pSSO-implied(x) < pSPY(x) 
H4h: pSDS-implied(x) > pSPY(x) 
H4i: pSSO-implied(x) < pSDS-implied(x) 

 

Table 5 presents statistics on the average differences in the implied probabilities. 

 

[Table 5 about here] 

 

Under the assumption that holders of the different ETFs only differ in their returns expectations, 
SDS investors should anticipate a lower probability of a moderate rise in the S&P 500 and higher 
probability of a drop.  These hypotheses, H4b, H4c, H4e and H4f, are all strongly confirmed in 
Table 5.  However, the relationship between the p-density (assumed as) reflecting the 
expectations of SPY investors and the p-density implied from SSO options violates all three 
hypotheses, H2a, H2d, and H2g.  The supposedly very bullish SSO investors are less eager than 
SPY investors to buy exposure on the upside and will pay more for payoffs that protect on the 
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downside.  This seemingly anomalous result could imply that many investors choose SSO over 
SPY because of the greater leverage, not because they are more bullish. 

We expect that excluding risk preferences from consideration, double short investors should 
anticipate higher probability of a sharp market drop than investors who have chosen long market 
exposure.  Table 5 indicates that this reasoning is correct on average for SDS versus SPY, 
although H4e is actually satisfied on only half of the days.  But in this region, the implied p-
density for double long SSO holders is significantly above that for SDS holders on average and 
on 57% of the sample days. 

The results in this section are largely consistent with the expectations differences one expects 
from different sets of investors who choose long versus very long versus double short exposure 
to the market index, but neither of the polar cases fully captures the effects of their heterogeneity. 

 

4.  Response of Risk Neutral Densities and Implied Probabilities to Market Returns 

So far we have explored differences in the risk neutral densities and associated curves from the 
three ETFs, averaged across the days in our sample.  Many interesting questions relate to how 
they respond to realized returns in the market.  Several different effects on both expectations and 
risk preferences might be at work.  First, if the most recent return is positive, it tends to confirm 
the beliefs of bullish investors but is opposite to what the bears were expecting.  Incorporating 
the new data point into their forecasting might lead all investors to modify their expectations 
about future returns and also their confidence in those expectations.  In addition, the bulls have 
just become wealthier and the bears are poorer, which could have an effect on their risk 
appetites.  Our data allows us to examine the differential impact that the same return shock to the 
underlying asset has on the risk neutral densities from ETFs with different exposures.  Moreover, 
because we are extracting a density from the market and not just a single price or return, we can 
investigate effects on tail behavior, expected variance (i.e., uncertainty),  and other properties of 
the RND along with the mean. 

We cannot obtain the full q-density from market option prices, so the only way to compute its 
moments like mean and variance would be to append tails to the middle portion of the density in 
some way.  As mentioned above, there are a variety of approaches in the literature to do this, but 
in all cases the tail shape is essentially imposed by the researcher's assumptions.  In this paper, 
we wish to avoid such subjectivity and rely as much as possible on what can be extracted from 
observed market data, for example focusing on medians rather than means in Table 2.  In this 
section, we will first report the impact of yesterday's return on the medians (as nonparametric 
proxies for means), the 25th and 75th percentiles (suggestive of tail behavior), and the 
interquartile spread (to reflect uncertainty over the expiration day level of the underlying index).  
We then explore the changes in the implied p-density in response to yesterday's market return.  
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Unlike equation (6), which is based on an assumption that investors in each ETF risk-neutralize a 
given p-density in the same way, here we only assume that they each do this transformation the 
same way as they did it the day before. 

To understand the dynamic behavior of the risk neutral densities we have calculated, one must 
keep in mind that the density is defined in terms of the standardized return from date t to date 
t+T, with 0 representing a (dividend-inclusive) return equal to the current riskless interest rate.  
In the canonical Black-Scholes asset market, where investors believe prices follow a 
semimartingale and they treat the equity risk premium and volatility as known constants, 
expectations about future returns or risk will not be affected by realized returns.  The RND 
expressed in terms of standardized returns should show no change in the median or any quantile 
regardless of the observed return.  But for investors with extrapolative expectations, a strong 
positive (negative) return predicts further excess returns in the same direction and all RND 
quantiles will rise (fall). On the other hand, if an investor's expectation is anchored on the 
underlying asset price rising to a particular level by option expiration, for example, a large 
positive return that takes it toward that level will reduce the rate of return expected in subsequent 
periods.  In that case, after an unexpectedly large positive return, an SSO investor's RND may 
show a reduction in the median and the 75th percentile.  With different reasoning but leading to 
the same result, the same positive return could make an SDS investor feel that the market was 
now even more overpriced than it was before and lead him to lower his expectations for the 
median return and left tail going forward. 

A second kind of expectations response one might anticipate from real world investors is a 
change in the degree of confidence they have in their prior beliefs, depending on whether the 
most recent return is consistent with or contrary to what they were expecting.  A large positive 
return may make SSO investors more confident that they are right, causing a narrowing of the 
interquartile spread, while the spread for SDS investors would widen.  If investors who choose 
leveraged exposures do so largely for speculative motives, these dynamic RND effects may be 
expected to be larger for SSO and SDS than for SPY. 

In addition to these possible effects on their expectations, yesterday's return impacts the wealth 
of investors in these ETFs in different ways, which could alter their risk appetites.  Other things 
equal, losing money should cause investors to want to reduce their exposure to the risk of further 
losses while a profit might encourage them to take on more risk.  In that case, SSO and SPY 
holders with long exposure will become somewhat more aggressive on the upside following a 
strong positive return, while SDS investors will prefer to reduce risk exposure.  This will show 
up as a relative increase in the RND quantiles on the right side (e.g., at the 75th percentile) for all 
three classes of investors.  SSO and SPY holders want to increase their positive exposure and 
SDS holders want to reduce their negative exposure.  However, for most investors the actual 
daily returns in this market should be small relative to their total wealth, so we expect wealth 
effects to be of second order relative to the changes in expectations. 
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This line of reasoning suggests a set of hypotheses for which the null is that the median and both 
the 25th and 75th percentiles of the q-density will be unaffected by the most recent return.  Table 
6 presents empirical results on the impact of the date t realized return on the risk neutral density 
for future returns.   But given the large number of comparisons we will simply describe the 
results rather than formulating and testing specific hypotheses.   

In presenting the results in this section, we introduce the following simple but potentially 
confusing notation.  The realized return on some specific date t, calculated as log(St/St-1) will be 
denoted rt; r with no subscript is the average return over the remaining period up to option 
expiration, which also defines a state of the world covered by the RND on the expiration date.  
Both of these are expressed in terms of standard deviations relative to the expected value of the 
return.  Thus, for example, qSDS,t (r) is the risk neutral density from the SDS ETF observed on 
date t for the event that the realized mean return from t to t+T is r standard deviations above the 
riskless rate.  The one-day return rt is standardized relative to yesterday's volatility forecast, ߪො௧ିଵ, 
while r from t to t+T is standardized using the updated ߪො௧. 

 

[Table 6 about here] 

 

The space of realized returns is split into six intervals, from less than -2.0 to more than +2.0 
standard deviations.  The first section of the table shows how the most recent observed return 
changes the median for each of the three ETF RNDs.  If SSO investors have extrapolative 
expectations, a strong positive return on the S&P index will cause them to anticipate higher mean 
returns in the future and the quantiles of their RND should shift upward.  The increase in wealth 
from today's profits should also raise the demand for upside exposure.  These effects should 
occur with the SPY RND too, but to a lesser extent since their expectations are presumably less 
bullish than for SSO and the profit per dollar invested in their ETF is only half as large.  By the 
same token, if yesterday's return was negative, the bulls may become less optimistic about sharp 
rises in the market in the immediate future and less eager to bear risk.  SDS holders will have the 
opposite reactions: less bearish expectations and greater risk aversion leading to a rise in the 
median expected future return following a positive return, and more bearish expectations on a 
day after the market drops. 

On the other hand, investors may not extrapolate a high positive return today into a higher mean 
for returns in the future.  If SSO investors are Bayesians in updating their expectations for the 
expiration day level of the index, their date t+T forecasts will not rise by the full amount of 
today's increase, which will translate into lower expected mean returns than they predicted the 
day before and a negative change in the median.  Extending this line of reasoning to SDS 
holders, it becomes the following: If the most recent return was in the direction they were 
expecting, and especially if it was large, they feel the market has probably overshot a little, so 
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they reduce the rate of excess return they anticipate over the remaining period to expiration.  In 
that case, the expectations effect and the wealth effect will operate in different directions. 

The first portion of Table 6 shows that SSO investors appear to exhibit the first behavior with a 
high degree of statistical significance:  a positive return increases the median of their RND and a 
negative return lowers it.  SPY investors behave somewhat similarly: positive responses to large 
positive excess returns and a negative response to a negative return between -1.0 and -2.0 
standard deviations, but the effects are smaller and less significant than for SSO.  By contrast, 
SDS investors' RNDs do exactly the opposite.  Their RND median increases when today's return 
is negative and drops when it is positive. 

The next two sections of Table 6 show how the 25th and 75th RND percentiles move in response 
to today's realized return.  For SSO, the 25th percentile behaves the same way as the median, 
rising after a positive return and falling after a negative one.  The situation for the 25th SPY 
percentile is almost the reverse of how the median behaved:  negative (positive) returns appear to 
raise (lower) it, although only three of six buckets show significant effects at the 5 percent level 
in a one-tailed test.  SDS follows the same pattern at the 25th and also at the 75th percentile as it 
did with the median: the RND moves in the opposite direction to the realized return.  For both 
SSO and SPY, the 75th percentile is ambiguous, with only three significant coefficients, of 
which two were in the most positive return bucket that only contains 26 observations. 

The last section of Table 6 is perhaps the most interesting, since it shows how the different ETF 
holders' confidence in their expectations about the future responds to current realized returns.   

If an investor is wrong about the market's direction, his confidence in his prior belief should 
drop, and the interquartile spread between the 25th and the 75th percentile should widen.  The 
larger the surprise, the bigger the effect should be.  Similarly, if the most recent return confirms 
his directional belief, an option holder is likely to become more confident and narrow his range 
of uncertainty for future returns.  So we expect negative average changes in the interquartile 
spreads for SSO and SPY following positive returns and for SDS holders following negative 
returns.  Spreads should widen for SSO and SPY when the market falls and for SDS when it 
rises.  Table 6 shows this pattern very strongly for the two leveraged ETFs, with SPY being 
largely consistent with SSO but not entirely so.  Moreover, the size of the effect does increase 
with the size of the return, except for returns in the extreme tails. 

These results still are subject to the problem that they combine both changes in expectations and 
in risk preferences.  In the previous section, we computed pricing kernels and implied p-densities 
under the assumption that investors in each of the three ETFs either had the same estimates of 
the p-density as holders of the other ETFs or they had the same utility functions.  Neither of 
these assumptions is particularly appealing.  Much more plausible would be to assume that 
investors in the different ETFs have different risk preferences and different expectations, but 
each investor's date t relative utility of a future payoff under each return scenario is the same as 
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on date t-1.  In other words, their RNDs change from one day to the next because their estimates 
of the p-density change, but they risk-neutralize their updated p-densities in the same way as they 
did the day before.13   

Specifically, adapting equation (2) to the standardized returns we have constructed, taking the 
SDS RND as an example, gives the following relationship on date t. 

ሻݎௌ஽ௌ,௧ሺݍ     ൌ  ሻ    (7)ݎ݇ௌ஽ௌ,௧ሺ	ሻݎௌ஽ௌ,௧ሺ݌	

For a single ETF, the ratio of the RND for date t relative to date t-1 produces another kind of 
relative demand intensity similar to those we considered above. 

ሻݎௌ஽ௌ,௧,௧ିଵሺܫܦܴ 	ൌ 	
ሻݎௌ஽ௌ,௧ሺݍ
ሻݎௌ஽ௌ,௧ିଵሺݍ

	ൌ 		
ሻݎௌ஽ௌ,௧ሺ݌
ሻݎௌ஽ௌ,௧ିଵሺ݌

		
݇ௌ஽ௌ,௧ሺݎሻ
݇ௌ஽ௌ,௧ିଵሺݎሻ

 

Assuming SDS holders will risk-neutralize today's expected empirical density approximately the 
same way as they did yesterday, the ratio of pricing kernels in this expression will be 1, giving 

ሻݎௌ஽ௌ,௧,௧ିଵሺܫܦܴ     	≅ 			
௣ೄವೄ,೟ሺ௥ሻ

௣ೄವೄ,೟షభሺ௥ሻ
	    (8) 

The ratio of the probability estimated on date t of a future standardized return of r, relative to that 
estimated probability on date t-1 is just the RDI constructed from that ETF's RNDs on the two 
dates.  Table 7 reports those results for the three ETFs. 

 

[Table 7 about here] 

 

Table 7 uses the same breakdown of realized returns as in Table 6 and the same ranges of the 
future returns state space as in Tables 3-5.  If there is no change in the p-density from t-1 to t, 
RDIt,t-1(r) will be 1.0 at every value of r.  An RDIt,t-1(r) greater (less) than 1.0 indicates an 
increase (decrease) in the expected probability for a return to expiration following a realized rt in 
the range for that column.  Since both p-densities must integrate to 1.0, an increase in expected 
probability in one region must be offset by a decrease in another.  (Note that this compensating 
change can be in the remote tails that we do not observe.)  For each combination of date t 

                                                 
13 Extending this reasoning over the whole sample would lead to constant risk preferences, which would allow p-
densities to be estimated directly from the RNDs, but it is much stronger than we would like.  Rather, we assume the 
investor's utility for a date t+T payoff in a state of the world corresponding to an average return of r % is only slowly 
time-varying and is largely independent of the predicted probability, so that the error we make in treating it as 
constant from one day to the next will be small and idiosyncratic. 
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realized return and future mean return, we report the average value of the RDIt,t-1, the t-statistic 
on the hypothesis that it is equal to 1.0, and the fraction of days on which it was greater than 1.0. 

Table 7 is clearly related to Table 6 and there are interesting comparisons to be made, but it is 
not easy to compare them directly.  Table 6 shows how the 25th, 50th, and 75th quantiles of an 
RND change after a realized return of a given size, while Table 7 reports on how the expected 
probability that the future mean return will be in a specified range changes.  Even so, the 
different perspective sheds additional light on some of the results we have just seen. 

First consider the effect of a negative date t return.  For SPY investors, the first and third panels 
show that the expected probability of a large loss in the future goes up and so does the 
probability of a future gain, while the chance of a subsequent moderate loss is reduced in the 
second panel.  SSO investors view any loss as an indication of higher probabilities of future 
losses and lower chance of future gains.  And interestingly, SDS investors' predicted 
probabilities change in the same way as for SSO even though their RND quantiles responded in 
opposite directions in Table 6. 

In the region of positive realized returns, large profits reduce the predicted chance of large losses 
in the future for SPY investors but increase the chance of moderate losses.  The effect a profit 
today has on the probability of moderate gains in the future is ambiguous.  For SSO, a gain today 
lowers the probability of losses in the future and increases the expected chance of a moderate 
gain.  Again, surprisingly, SDS investors' expectations change much the same way as for SSO.   

 

5.  Conclusion 

Extracting an implied volatility from an option's market price has long been standard practice, 
although the result contains a volatility risk premium along with the market's objective prediction 
of future volatility.  A set of options with the same expiration and different strikes provides a 
major increase in market completeness and also allows (nearly) an entire probability density for 
the underlying asset to be extracted from market option prices.  But like implied volatility, it is a 
risk-neutral density that impounds both the investors' true probability beliefs and their risk 
preferences. 

Investors are observably quite heterogeneous, but most finance theory invokes the assumption of 
a representative investor with the property that a homogeneous population of such investors 
would produce exactly the same market prices as are seen in the real world.  Applying this 
assumption to the stock index options market (in which truly homogeneous investors would not 
participate at all) consistently leads to the "puzzle" that the empirical pricing kernel is ill-
behaved.  The literature contains many efforts to explain its non-monotonic shape or to 
straighten it out, but one of the easiest and most plausible suggestions is that it can arise naturally 
from the combination of heterogeneous investors and limits to arbitrage.  In this study, we have 
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explored investor heterogeneity by comparing and contrasting RNDs implied by options on ETFs 
with different exposures to the same underlying market index. 

Analysis of RNDs from the three ETFs revealed highly significant differences among them, 
largely in the directions we anticipated, such as higher median expected returns for both the 
double long SSO and SPY relative to the double short SDS.  But we still faced the problem that 
separating expectations and risk preferences unambiguously is not possible without additional 
assumptions. Even so, it is useful to compare the relative demand for payoffs under different 
expiration date contingencies by looking at the ratio of RNDs from the different ETF investor 
populations over different portions of the state space of returns, which we have called the 
Relative Demand Intensity.  Relative to SPY investors, those who choose short exposure in the 
SDS ETF placed more value on payoffs in states with negative returns and less on positive 
returns, as expected, and the same held for SSO versus SDS for moderate sized returns.  But for 
large negative index returns, aversion to the double-sized losses SSO investors would experience 
was apparently enough to offset belief that such bad returns were unlikely and RDI for SSO over 
SDS rose significantly above 1.0 for returns more than 1.5 standard deviations below the mean. 

While such suggestive results can be obtained from studying RNDs, having three different 
densities over the same returns space let us investigate heterogeneous probability estimates 
versus risk preferences in three ways.  We first considered the polar case in which all investors 
were assumed to have the same probability beliefs and only to differ in risk preferences, which 
allowed us to compare three different pricing kernels.  The opposite polar case was to assume all 
investors had the same utility functions and would risk-neutralize any given empirical density in 
the same way, which allowed us to compare different implied p-densities for them.  Both polar 
cases produced results that were plausible under the assumed constraint but also some that were 
not.  The RNDs held by investors in these closely linked contracts appear to exhibit differences 
due to both heterogeneous probability beliefs and heterogeneous risk preferences. 

Perhaps more interesting than the static comparisons between RNDs is the ability to look at how 
market returns change the way investors value payoffs under different future return scenarios.  
One great value of extracting an entire density function from market prices is that along with 
their point estimates it becomes possible to look at how realized returns affect investors' 
confidence in their beliefs, as measured by the risk-neutral standard deviation, or the interquartile 
spread in this case. 

Focusing on RND changes led to the third way we tried to look at true probability expectations 
separate from risk aversion.  Instead of assuming all investors have the same utility functions, if 
each ETF's holder simply has the same risk preferences today as they did yesterday, their relative 
demand intensity for date t versus date t-1 reveals how their true probability beliefs have 
changed. 
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This first effort in this line of investigation has produced a number of intriguing results and 
suggests that exploring investor heterogeneity through options on leveraged ETFs using the 
kinds of methodological tools we have proposed should be a very fruitful line for future research. 
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Appendix 

This Appendix provides the details on extracting a risk neutral density from a set of options 
prices; the specific sample and data selection criteria we have used in this study; the procedure 
for converting risk neutral densities over the terminal values of the three ETFs into densities over 
the level of the Standard and Poor's 500 stock index on option expiration day, which is the true 
underlier for all three ETFs; and the procedure for converting each day's RND, that depends on 
the current volatility, riskfree interest rate, and number of days to option expiration into a 
common base defined in terms of a number of standard deviations around the expected mean 
return on the index, for the p-density, and around the riskless rate for the q-density. 

 

Extracting the RND 

In the following, the symbols C, S, x, rf, and T all have the standard meanings of option 
valuation: C = call price; S = time 0 price of the underlying asset; x = exercise price; rf = riskless 
interest rate; T = option expiration date, which is also the time to expiration. We will also use 
q(x) = the risk neutral probability density function, also denoted RND, and Q(x) = the risk 
neutral distribution function.  

The value of a call option is the expected value of its payoff on the expiration date T, discounted 
back to the present. Under risk neutrality, the expectation is taken with respect to the risk neutral 
probabilities and discounting is at the risk-free interest rate. 

    fr T
T T Tx

C e (S x)q(S )dS
        (A1) 

Taking the partial derivative in (A1) with respect to the strike price x and solving for the risk 
neutral distribution Q(x) yields:  

    fr T C
Q(x) e 1

x


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
   .   (A2) 

Taking the derivative with respect to x a second time gives the RND function: 

    f
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x





      (A3) 

In practice, we approximate the solution to (A3) using finite differences. In the market, option 
prices for a given maturity T are available at discrete exercise prices that can be far apart. To 
generate smooth densities, we interpolate to obtain option values on a denser set of equally 
spaced strikes. 
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Let {x1, x2, ..., xN} represent the set of strike prices, ordered from lowest to highest, for which we 
have simultaneously observed option prices, and denote the price of a call option with strike 
price xn as Cn.  To estimate the probability in the left tail of the risk neutral distribution up to x2, 

we approximate  
C

x




   at x2 and compute  

    Qሺxଶሻ 		≅ 	 e୰౜୘ 	
େయ	ି	େభ
୶య	ି	୶భ

	൅ 	1     (A4) 

The probability in the right tail from xN-1 to infinity is approximated by, 

  1 - Q(xN-1)    f fr T r TN N 2 N N 2

N N 2 N N 2

C C C C
1 e 1 e

x x x x
 

 

  
      

   .  (A5) 

The approximate density at a strike xn, q(xn), is given by:  

    fr T n 1 n n 1
n 2

C 2 C C
q(x ) e

( x)
  




    (A6) 

For the interpolation step, we use the mid-quote prices from the options market and transform 
them into equivalent Black-Scholes implied volatilities.  This greatly reduces the impact of 
heteroskedasticity that would be a large problem if we simply tried to smooth market option 
prices that can differ by up to two orders of magnitude between in the money and out of the 
money contracts.  We fit a 4th degree polynomial through the volatility smile curve for each of 
the ETFs.  Although ETF options are American, the Black-Scholes formula is only used here as a 
kind of transform to allow interpolation in volatility rather than strike price space.  The inverse 
transform is then applied to the interpolated volatility smile to calculate a dense set of option 
prices from which the risk neutral probabilities are calculated using Equation (A6). 

As is standard practice, we use only out of the money and at the money put and call options for 
our analysis. In the money options trade close to their intrinsic values and have higher bid/offer 
spreads, so the information they provide about probabilities is limited and noisy.  From the put-
call parity equation, it is easy to show that the second partial derivatives of the call and put value 
functions are equal at the same strike price, so (A6) can be applied directly to puts. 

However, it is common to find that despite the arbitrage constraint imposed by put-call parity, 
even at the money puts and calls can trade at somewhat different implied volatilities.  To avoid 
an artificial jump in the RND when moving from OTM puts to OTM calls, we blend the implied 
volatilities from puts and calls over a ± 5 point range around the ATM forward level to produce a 
smooth transition. 
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Data Sample 

SDS and SSO started trading in the middle of 2006, however, options on these leveraged ETFs 
only were introduced towards the end of 2007. For this study, we use the interval between 
October 2007 and March 2014, giving us 1615 potential observations for SPY, 1614 for SSO and 
1611 for SDS. There were several periods of market disruption within this time span in which 
option quotes were not available for a wide enough range of strike prices or were too noisy to 
produce proper RNDs, typically because price quotes violated no-arbitrage conditions.  The final 
sample contains 1440 usable RNDs for each of the three ETFs. 

It is important to use price quotes rather than transactions prices in extracting risk neutral 
densities because simultaneously observed prices are required across the whole range of strikes, 
which is never possible with just trades.  We use end-of-day market bid and ask quotes for SPY, 
SDS and SSO from OptionMetrics.  The bid price was required to be greater than 0.05. The 
maturity date is always in the next calendar month, which results in a time to maturity between 
16 and 52 days.  To calculate the forward levels for the ETFs, dividend and riskless interest rate 
data are obtained from OptionMetrics. 

 
Rescaling Densities  

Each of the three risk neutral densities has a different domain, determined by the market prices 
of the three ETFs. For instance, the following chart shows the RNDs for SDS, SSO and SPY as 
functions of the strike prices for options traded on May 2, 2008. 

Figure A1:  RNDs from SSO, SPY, and SDS before rescaling 
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Converting to a common domain based on the S&P 500 index, which is the true underlying asset 
for all three ETFs, is not a trivial task because of the need for a convexity correction.  Each ETF 
attempts to match the realized return on the S&P index times the ETF's leverage factor each day.  
The problem is not unlike trying to delta-hedge an option using daily rebalancing.  Hedging 
error, or tracking error in this case, is a function of the curvature of the value function and the 
realized volatility.   

An expression for the expected log return on a leveraged ETF as a function of the return on the 
underlying index can be easily derived for the case of a lognormal diffusion.  We will apply that 
approximation to convert the RNDs based on ETF prices to a common base in terms of S&P 500 
index returns.   

Let S be the underlying index, with instantaneous mean r and volatility . 

    dS   =   rS dt   +   S dz     (A7) 

d logS is given by Ito's Lemma: 
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Where Z is a N(0,1) random variable RS is the realized return on the index and RE is the realized 
return on the ETF. 

Taking the exponential gives the gross return on the index 
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We are interested in an ETF that is set up to return L times the instantaneous return on the index 
at all points in time.  Let E be the price of the ETF. 
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Applying Ito's Lemma as before, 
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Taking the exponential gives the gross return on the ETF, 
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From this equation we can see that the leveraged ETF has the highest return when the volatility 
of the underlying is zero. Any other level of volatility would give a lower return than the term 

	ሺ1	 ൅		ܴௌሻ	௅.  The exponential term in (A12) corrects for this convexity effect. 

The SSO "Double Long" ETF has L = 2 and the SDS "Double Short" ETF has L = -2.  We want 
to find the RND for future SPY levels that is implied from the RNDs extracted from the levered 
ETF option prices.   

Let ET be the future level of the ETF at date T and E0 be its initial level.  The RND for ET is 
extracted from options on the leveraged ETF.  We want to use the RND for ET to compute an 
RND for ST that is implied in the ETF options.  

We use the formula for a transformation of the density for a variable x, fx(x), to the density 
fY(Y), for Y, which is a function of x:  Y = g(x): 
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The ETF RND relates ETF option prices to the density for the future level of the ETF.  Consider 
first the transformation from the empirical density for the SPX index to the empirical density for 
the levered ETF. 

From (A12) we have  
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Solving for g-1(ET),  
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Taking the derivative in (A14) gives: 
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If the empirical density of the underlying index fx(ST) is lognormal with mean rT and volatility 

T , the empirical density of the ETF with leverage factor L,  ௅݂ሺ்ܧ
௅ሻ at some value EL* is given 

by 
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where  ்ܵ
∗ ൌ ݃ିଵሺ்ܧ

௅∗ሻ is the index level corresponding to a date T ETF value EL*. 

For example, applying the transformation in (A16), to the RNDs for May 2, 2008 gives the 
following plot, on the common base of the S&P 500 index divided by 10, which is the price of 
the SPY ETF: 
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Figure A2:  RNDs from SSO, SPY, and SDS after converting to a common price basis 

 

 

Normalizing the Domain 

With the normalization just described it is possible to compare the RNDs for the three ETFs on a 
given day, but not across days.  The RNDs on some date t are extracted from options that mature 
on the next expiration date, whose prices will depend on the number of days to expiration, the 
date t market interest rate, and investors' volatility forecasts.  We need to transform them again to 
allow comparisons across the full sample. 

We do this with a second transformation to a common base expressed in terms of return standard 
deviations.  Our assumption is that under the p-density for every date the log return is normal, 

with mean (rf,t + .05) T/365 and standard deviation  ߪ௧ෝඥܶ/365 where rf,t is the interpolated 

annual riskless rate on date t, T is the number of calendar days to expiration, and ߪ௧ෝ  is the 
market's volatility forecast.   

To obtain a value for  ߪ௧ෝ  we assume that in forecasting the volatility over the time to option 
maturity, investors take into account both historical volatility from recent returns as well as 
implied volatility represented by the VIX index.  More precisely, for each date t for which we 
extract a q-density from options maturing T days later, (i.e., on date t+T), we run the following 
regression on past data. 

,ሺ߬ݒ    ܶሻ ൌ 	ܿ ൅ ܽ	 ଺ܸଷ	ௗ௔௬ሺ߬ሻ ൅ ሺ߬ሻܺܫܸ	ܾ ൅ ,ሺ߬ߝ ܶሻ   (A17) 

where v(,T) is the volatility realized over the subsequent T days, from date +1 to +T;  
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V63 day () is realized volatility over the previous 63 trading days; and VIX() is the VIX index on 

date .  In each case, the regression sample period begins on Jan. 2, 1990 and ends on date t-T.  
A forecast of (annualized) volatility for the period t+1 to t+T is then computed from the 
estimated regression coefficients, 

ො௧ߪ     ൌ 	 ܿ̂ ൅ ොܽ	 ଺ܸଷ	ௗ௔௬ሺݐሻ ൅ ෠ܾ	ܸܺܫሺݐሻ    (A18) 

Hatted right hand side variables are the coefficient estimates from the (A17) regression fitted on 
all past data up to date t.  A given curve is approximated by a histogram of discrete St+T values 
and associated probabilities.  Each St+T is converted into a standardized value expressed as a 
number of standard deviations: 

   ܵ௧ା் 	→ 	
୪୭୥ሺௌ೟శ೅/ௌ೟ሻି൫௥೑,೟ିௗ೟ା଴.଴ହ൯	்/ଷ଺ହ

ఙ೟ෞඥ்/ଷ଺ହ
   (A19) 

where rf,t is the riskless rate, dt is the index dividend yield, and we have included a market risk 
premium of 5%, as discussed in the text.  The new common x-axis is divided into buckets of 
width 0.0025, with the original probabilities appropriately distributed into the new buckets.  The 
axis runs from -4.0000 to +4.0000 in steps of 0.0025, a total of 3200 buckets, which is wider 
than any of the actual curves in the sample. 

 

Evaluating the Accuracy of the Conversion Procedure 

The performance of leveraged and inverse ETFs is path-dependent, due to the discrete 
rebalancing that is inherent in trying to match the realized leveraged return each day.  There is no 
one-to-one correspondence between the realized unlevered and levered returns over a multiday 
holding period.  The analysis shown above is derived under the assumption of a lognormal 
returns process and continuous rebalancing.  Is it reasonable to assume that SSO and SDS 
investors form their beliefs about the returns distributions they face using the formulas shown 
above?  That is, for a given investor who believes index returns are generated by the standard 
logarithmic diffusion (A7) how closely should he expect the standardized density computed in 
equation (A16) for SSO and SDS to match the standardized density he expects from the 
unlevered returns on SPY?   

We address this issue using a simulation.  We consider 3 parameter values each for maturity, 
index volatility, and the drift: the average, the lowest and the highest value in the data sample.  
For each set of parameters, we simulated 1 million paths of unlevered and levered returns.  These 
were then converted to standardized returns using (A14), (A16), and (A19), and we compared 
the two densities at the 25th, 50th and 75th percentiles, which are the quantiles we focus on in 
the paper.  We also computed the differences in total probability in the 3 ranges of standardized 

returns considered in the paper, -3.0 to -1.5, -1.5 to 0, and 0 to 1.5.  If the return replication 
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and conversion to standardized returns procedure worked perfectly, the two resulting densities 
should be identical. 

Table A1, Panels A and B give the results for SSO and SDS under lognormal returns.  They 
show that the procedure is remarkably accurate.  The largest discrepancy among the quantiles in 
Panel A or B, even with annual volatility of 67%, is less than 7 one-thousandths of a standard 
deviation.  While path-dependence breaks the one-to-one link between levered and unlevered 
returns, the resulting probability distributions end up being very similar, after conversion to a 
common base. 

The procedure we use is derived under the assumption that returns are lognormal.  But real world 
returns are fat-tailed.  How much error does treating them as being generated by a thin-tailed 
lognormal process lead to?  We addressed this by repeating the simulation using returns 
generated by a Student-t process with 7 degrees of freedom.  This distribution is commonly felt 
to be a reasonable reflection of the degree of tail fatness exhibited by the S&P 500.  Panels C and 
D in Table A1 present the results.  As expected, the mismatch between the unlevered and the 
converted levered densities is larger with Student-t returns than with the lognormal, but the 
differences are still extremely small, even with very high volatility.  By focusing on the middle 
portions of the densities, between the 25th and 75th percentiles, we avoid having to consider the 
tails where the errors might be substantially larger. 

The simulation analysis provides strong support that the errors introduced by our procedure for 
extracting three standardized RNDs from SPY, SSO, and SDS options are likely to be very small 
relative to the large differences we find among them. 
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Table A1:  Testing the Accuracy of the Density Conversion 

The Table reports the results of 1 million simulation runs for each combination of option maturity, 
volatility, and annual drift of the S&P 500 index.  Each run simulates a path of returns for the unlevered 
index (the SPY) and either 2x the return (for SSO) or -2x the return (for SDS).   The difference between 
the distribution of standardized unlevered returns and converted levered returns is reported at 3 major 
quantiles.  Total probabilities are compared over the three regions considered in the paper.  Panels A and 
B simulate lognormal returns, Panels C and D simulate returns using a Student-t with 7 d.f. 

25% Median 75% ‐3.0 to ‐1.5 ‐1.5 to 0 0 to 1.5

34 18.5% 3.30% 0.0004 0.0010 0.0007 0.0002 ‐0.0007 0.0005

34 8.3% 3.30% 0.0003 0.0005 0.0002 0.0001 ‐0.0002 0.0002

34 67.0% 3.30% ‐0.0023 0.0026 0.0046 0.0015 ‐0.0027 0.0007

16 18.5% 3.30% 0.0005 0.0015 0.0010 0.0003 ‐0.0009 0.0008

52 18.5% 3.30% 0.0002 0.0008 0.0005 0.0001 ‐0.0005 0.0004

34 18.5% 1.70% 0.0003 0.0009 0.0008 0.0002 ‐0.0006 0.0005

34 18.5% 8.00% 0.0005 0.0010 0.0006 0.0001 ‐0.0006 0.0006

34 18.5% 3.30% ‐0.0021 ‐0.0029 ‐0.0009 ‐0.0003 0.0016 ‐0.0018

34 8.3% 3.30% ‐0.0010 ‐0.0013 ‐0.0003 ‐0.0001 0.0006 ‐0.0008

34 67.0% 3.30% ‐0.0055 ‐0.0066 0.0026 ‐0.0010 0.0039 ‐0.0060

16 18.5% 3.30% ‐0.0028 ‐0.0043 ‐0.0018 ‐0.0004 0.0022 ‐0.0025

52 18.5% 3.30% ‐0.0017 ‐0.0023 ‐0.0006 ‐0.0002 0.0012 ‐0.0015

34 18.5% 1.70% ‐0.0019 ‐0.0029 ‐0.0012 ‐0.0003 0.0015 ‐0.0018

34 18.5% 8.00% ‐0.0022 ‐0.0028 ‐0.0005 ‐0.0002 0.0014 ‐0.0019

34 18.5% 3.30% 0.0002 0.0014 0.0013 0.0001 ‐0.0008 0.0004

34 8.3% 3.30% 0.0003 0.0006 0.0004 0.0000 ‐0.0003 0.0003

34 67.0% 3.30% ‐0.0079 0.0034 0.0098 0.0021 ‐0.0044 ‐0.0007

16 18.5% 3.30% 0.0007 0.0020 0.0015 0.0001 ‐0.0010 0.0007

52 18.5% 3.30% 0.0001 0.0011 0.0012 0.0002 ‐0.0007 0.0003

34 18.5% 1.70% 0.0000 0.0013 0.0013 0.0001 ‐0.0007 0.0004

34 18.5% 8.00% 0.0004 0.0014 0.0012 0.0001 ‐0.0007 0.0004

34 18.5% 3.30% ‐0.0029 ‐0.0038 ‐0.0009 0.0001 0.0015 ‐0.0021

34 8.3% 3.30% ‐0.0014 ‐0.0018 ‐0.0005 0.0000 0.0007 ‐0.0009

34 67.0% 3.30% ‐0.0059 ‐0.0024 0.0176 0.0002 0.0009 ‐0.0082

16 18.5% 3.30% ‐0.0038 ‐0.0056 ‐0.0022 0.0001 0.0023 ‐0.0027

52 18.5% 3.30% ‐0.0025 ‐0.0028 ‐0.0003 0.0001 0.0011 ‐0.0017

34 18.5% 1.70% ‐0.0027 ‐0.0038 ‐0.0011 0.0001 0.0014 ‐0.0020

34 18.5% 8.00% ‐0.0032 ‐0.0036 ‐0.0002 0.0002 0.0013 ‐0.0021

Panel A:  L = 2 (SSO), lognormal returns

Quantiles Probabilities
Maturity Volatility Drift

Panel C:  L = 2 (SSO), Student‐t returns with d.f. = 7

Panel B:  L = ‐2 (SDS), lognormal returns

Panel D:  L = ‐2 (SDS), Student‐t returns with d.f. = 7
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Table 1:  Valid RND Observations in Different Ranges of Standardized Return 

The data sample consists of call and put options on three S&P 500-based ETFs, with maturity 
between 16 and 52 days, from 10/23/07 to 3/21/14.  A volatility forecast combining historical 
volatility and the current VIX index is constructed for each day using eq. (A18).  Each available 
exercise price is converted into the equivalent number of standard deviations relative to an 
annualized return equal to the riskless interest rate over the period to expiration.  Some days 
were eliminated due to insufficient data, as described in the Appendix.  The table shows the 
number of sample days that produce valid RNDs over the standardized range. 
 
 

Standard 

deviations
SPY SSO SDS

‐3 1434 1022 927

‐2.5 1440 1127 1188

‐2 1440 1261 1348

‐1.5 1440 1390 1428

‐1 1440 1422 1437

‐0.5 1440 1435 1438

0 1440 1440 1439

0.5 1440 1440 1389

1 1440 1393 1021

1.5 1034 406 161

2 47 3 4

2.5 1 0 0

3 0 0 0  
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Table 2:  Hypotheses on Medians of Risk Neutral Densities 

Risk neutral densities are extracted from the options data and rebased to a common basis in terms 
of standard deviations of return as described in the Appendix.  The top portion of the table shows 
the average and standard deviation of the medians of the RNDs across the 1440 sample days.  
The second portion reports statistics on the differences between the medians from different 
ETFs. 

 

Levels SPY SSO SDS

nobs 1440 1440 1440

average 0.216 0.191 ‐0.175

standard deviation 0.052 0.054 0.301

Differences: 1st  minus 2nd SSO‐SPY SSO‐SDS SPY‐SDS

fraction positive 0.303 0.974 0.982

average difference ‐0.025 0.366 0.391

standard deviation 0.042 0.312 0.308

t‐statistic ‐22.519 44.552 48.269  
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Table 3:  Relative Demand Intensities in Regions of the Returns Distribution 

The table reports statistics on the ratio of the RNDs for pairs of ETFs in different regions of the 
returns space.  The ratio is averaged over the specified region for each day.  The t-statistic tests 
the hypothesis that the mean of these averaged ratios is equal to 1.0. 

 

Relative Demand Intensity   SSO/SPY

‐3.0 < r < ‐1.5 ‐1.5 < r < .0 0 < r < 1.5

nobs 1390 1440 1440

fraction > 1.0 0.622 0.553 0.500

average 1.035 1.025 0.997

standard deviation 0.119 0.085 0.052

t‐stat (diff from 1.0) 10.942 11.137 ‐1.948

Relative Demand Intensity   SDS/SPY

‐3.0 < r < ‐1.5 ‐1.5 < r < .0 0 < r < 1.5

nobs 1428 1440 1439

fraction > 1.0 0.500 0.797 0.268

average 1.009 1.096 0.949

standard deviation 0.175 0.104 0.066

t‐stat (diff from 1.0) 1.935 35.088 ‐29.491

Relative Demand Intensity   SSO/SDS

‐3.0 < r < ‐1.5 ‐1.5 < r < .0 0 < r < 1.5

nobs 1383 1440 1439

fraction > 1.0 0.573 0.223 0.726

average 1.058 0.942 1.055

standard deviation 0.240 0.073 0.085

t‐stat (diff from 1.0) 8.899 ‐29.994 24.544  
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Table 4:  Pricing Kernel Differences in Regions of the Returns Distribution 

Pricing kernels are computed for the three ETFs by dividing the RND at each return level by the 
same estimate of the p-density, constructed assuming lognormality, annualized mean return 
equal to the riskless rate plus 5% and volatility estimated using (A18).  The table reports 
statistics on the differences between the pricing kernels over three regions of the returns space. 

 

SSO kernel ‐ SPY kernel

‐3.0 < r < ‐1.5 ‐1.5 < r < .0 0 < r < 1.5

nobs 1440 1440 1440

fraction > 0 0.622 0.553 0.500

average 0.040 0.016 ‐0.007

standard deviation 0.261 0.059 0.070

t‐stat 5.753 9.983 ‐3.637

SDS kernel ‐ SPY kernel

‐3.0 < r < ‐1.5 ‐1.5 < r < .0 0 < r < 1.5

nobs 1440 1440 1440

fraction > 0 0.500 0.797 0.268

average ‐0.046 0.067 ‐0.069

standard deviation 0.416 0.072 0.085

t‐stat ‐4.171 35.296 ‐30.796

SSO kernel ‐ SDS kernel

‐3.0 < r < ‐1.5 ‐1.5 < r < .0 0 < r < 1.5

nobs 1440 1440 1440

fraction > 0 0.573 0.223 0.726

average 0.065 ‐0.051 0.059

standard deviation 0.372 0.062 0.074

t‐stat 6.668 ‐30.866 29.969  
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Table 5:  Differences in the Implied p-densities over  

Regions of the Returns Distribution 

Implied p-densities are computed for the SSO and SDS ETFs by dividing the RND at each return 
level by the same pricing kernel as constructed for SPY investors (the "actual" p-density derived 
using (A18) and (A19)).  This assumes holders of the three ETFs all have the same risk 
preferences and differ only in their expected returns distributions.  The table reports statistics on 
the differences between the p-densities over three regions of the returns space. 

 

SSO implied p‐density ‐ actual p‐density

‐3.0 < r < ‐1.5 ‐1.5 < r < .0 0 < r < 1.5

nobs 1440 1440 1440

fraction > 0 0.622 0.553 0.500

average 0.0021 0.0053 ‐0.0011

standard deviation 0.0071 0.0230 0.0176

t‐stat 11.232 8.808 ‐2.387

SDS implied p‐density ‐ actual p‐density

‐3.0 < r < ‐1.5 ‐1.5 < r < .0 0 < r < 1.5

nobs 1440 1440 1440

fraction > 0 0.500 0.797 0.268

average 0.0017 0.0254 ‐0.0164

standard deviation 0.0092 0.0280 0.0227

t‐stat 6.882 34.420 ‐27.327

SSO implied p‐density ‐ SDS implied p‐density

‐3.0 < r < ‐1.5 ‐1.5 < r < .0 0 < r < 1.5

nobs 1440 1440 1440

fraction > 0 0.573 0.223 0.726

average 0.0009 ‐0.0202 0.0144

standard deviation 0.0098 0.0254 0.0204

t‐stat 3.469 ‐30.162 26.687  
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Table 6:  Change in RND Quantiles and Interquartile Spread 
as a Function of Return 

 
The RND for each ETF is computed for date t-1 and date t at each return level.  The table reports 
averages across observation dates of the changes in the median, the 25th and 75th percentiles, 
and the interquartile spread.  These are separated into buckets based on the date t standardized 
return. 

 
rt < ‐2.0 ‐2.0 < rt < ‐1.0 ‐1.0 < rt < 0.0 0.0 < rt < 1.0 1.0 < rt < 2.0  2.0 < rt

ΔMedian

qSPY 0.0007 ‐0.0067 ‐0.0004 ‐0.0023 0.0117 0.0149

(0.107) (‐2.013) (‐0.268) (‐1.656) (3.424) (2.063)

qSSO ‐0.0430 ‐0.0269 ‐0.0039 0.0039 0.0242 0.0500

(‐4.041) (‐6.321) (‐2.054) (2.590) (5.730) (4.659)

qSDS 0.2190 0.2397 0.0785 ‐0.0607 ‐0.1622 ‐0.1898

(3.045) (5.831) (3.926) (‐4.244) (‐5.109) (‐1.587)

Δ25th percentile

qSPY 0.0029 0.0001 0.0021 ‐0.0020 0.0024 ‐0.0087

(0.814) (0.077) (1.990) (‐2.219) (0.990) (‐2.177)

qSSO ‐0.0129 ‐0.0100 ‐0.0019 0.0012 0.0078 0.0154

(‐2.112) (‐3.832) (‐1.432) (1.205) (2.725) (2.432)

qSDS 0.1043 0.0814 0.0080 ‐0.0124 ‐0.0536 ‐0.0335

(3.407) (3.302) (0.639) (‐1.376) (‐3.005) (‐0.367)

Δ75th percentile

qSPY ‐0.0058 ‐0.0006 0.0009 0.0014 ‐0.0015 ‐0.0168

(‐1.330) (‐0.317) (0.911) (1.587) (‐0.849) (‐2.895)

qSSO ‐0.0013 0.0008 0.0017 0.0007 ‐0.0055 ‐0.0199

(‐0.253) (0.358) (1.530) (0.710) (‐2.612) (‐3.752)

qSDS 0.1012 0.0563 0.0047 ‐0.0097 ‐0.0385 ‐0.0610

(3.248) (4.024) (0.578) (‐1.708) (‐3.081) (‐1.050)

ΔInterquartile spread

qSPY ‐0.0066 0.0061 0.0013 0.0036 ‐0.0132 ‐0.0318

(‐0.713) (1.305) (0.591) (1.924) (‐3.051) (‐2.862)

qSSO 0.0416 0.0281 0.0058 ‐0.0037 ‐0.0297 ‐0.0699

(3.078) (4.803) (2.273) (‐1.717) (‐5.407) (‐5.305)

qSDS ‐0.1568 ‐0.1918 ‐0.0658 0.0493 0.1283 0.1249

(‐2.630) (‐5.505) (‐3.995) (4.099) (5.021) (1.274)

nobs 48 133 439 568 165 26
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Table 7:  Ratio of Implied p-density to Previous Day as a Function of Return 
 

For each ETF, the ratio of the RND  for date t-1 and date t is computed at each return level. 
Assuming investors in a given ETF risk-neutralize their density forecasts the same way on both 
days, this Relative Demand Intensity gives the ratio of expected returns probabilities.  The ratios 
for each day are averaged across three ranges of the returns space corresponding to large losses, 
moderate losses, or moderate profits on the S&P index over the life of the options.  The table 
reports average probability ratios across observation dates, separated into buckets based on the 
date t standardized return.  t-statistics relate to the hypothesis that the ratio is 1.0. 

 
rt < ‐2.0 ‐2.0 < rt < ‐1.0 ‐1.0 < rt < 0.0 0.0 < rt < 1.0 1.0 < rt < 2.0  2.0 < rt

SPY average 1.0063 1.0168 1.0095 0.9990 0.9886 0.9606

t‐stat 0.594 3.115 3.560 ‐0.401 ‐2.023 ‐3.853

fraction > 1.0 0.551 0.607 0.552 0.468 0.407 0.226

SSO average 1.0779 1.0383 1.0131 1.0003 0.9780 0.9500

t‐stat 3.799 4.235 2.178 0.058 ‐3.166 ‐2.889

fraction > 1.0 0.702 0.677 0.531 0.470 0.334 0.239

SDS average 1.0480 1.0105 1.0411 1.0270 0.9791 0.9618

t‐stat 1.646 0.647 3.777 2.807 ‐1.871 ‐1.211

fraction > 1.0 0.494 0.511 0.549 0.496 0.427 0.398

SPY average 0.9866 0.9958 0.9963 1.0065 1.0020 1.0164

t‐stat ‐2.200 ‐1.341 ‐2.091 3.976 0.453 1.892

fraction > 1.0 0.410 0.426 0.457 0.571 0.596 0.675

SSO average 1.0302 1.0129 1.0066 0.9996 0.9945 0.9751

t‐stat 1.586 2.348 2.011 ‐0.153 ‐0.933 ‐1.963

fraction > 1.0 0.576 0.539 0.526 0.523 0.523 0.541

NOBS

SDS average 1.0330 1.0248 1.0133 0.9964 0.9813 0.9672

t‐stat 3.200 4.996 4.795 ‐1.749 ‐4.544 ‐2.963

fraction > 1.0 0.631 0.612 0.561 0.464 0.346 0.354

SPY average 1.0078 1.0052 1.0034 0.9978 1.0027 0.9974

t‐stat 2.153 2.638 2.796 ‐2.275 1.015 ‐0.532

fraction > 1.0 0.533 0.529 0.526 0.452 0.467 0.473

SSO average 0.9987 0.9876 0.9967 1.0022 1.0188 1.0338

t‐stat ‐0.177 ‐2.972 ‐1.685 1.225 4.452 3.865

fraction > 1.0 0.437 0.437 0.467 0.481 0.563 0.630

SDS average 1.0035 0.9964 0.9935 1.0045 1.0107 1.0266

t‐stat 0.447 ‐0.792 ‐2.606 2.300 2.551 1.819

fraction > 1.0 0.526 0.489 0.450 0.513 0.535 0.715

NOBS 48 133 439 568 165 26

Large Loss:  Standardized returns from ‐3.0 to ‐1.5 

Moderate Loss:  Standardized returns from ‐1.5 to 0.0 

Moderate Gain:  Standardized returns from 0.0 to 1.5 
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Figure 1:  Pricing Kernel for the S&P 500 Index Extracted from 50-day SPY Options, May 2, 2008 

 

S0 = 1413.90 
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Figure 2: RNDs on May 2, 2008 

 
02‐May‐2008;  T = 50;  SPX = 1413.90;  dSPX = 0.32%;  VIX = 18.18;  dVIX = ‐0.70;  p‐dist'n vol'y =  15.75
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Figure 3:  Average Relative Demand Intensities in the Full Sample 
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Figure 4:  Pricing Kernels on May 2, 2008 Assuming Homogeneous Beliefs on p-density 
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Figure 5:  Implied p-densities for May 2, 2008 Assuming Homogeneous Risk Preferences 

  


