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Abstract

We develop a bottom-up approach to estimate the slope of the primitive form
of the New Keynesian Phillips curve, which features marginal cost as the real
activity variable. Using quarterly micro data on prices, costs, and output, we
estimate dynamic pass-through regressions that identify the slope as a function
of primitive parameters. We find a high slope for the cost-based Phillips curve,
which contrasts with the low estimates of the conventional output gap-based
formulation found in the literature. We reconcile by showing that the output
elasticity of marginal cost is low, at least during moderate inflation periods (e.g.,
pre-pandemic).
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Understanding the relation between inflation and real activity over the business cycle
continues to be an important though unresolved matter in macroeconomics. At the
heart of this inquiry lies the challenge of estimating the slope of the Phillips curve.
To illustrate the issue, let us consider the New Keynesian version of the Phillips
curve (NKPC), which is now the textbook formulation in the literature. Let 𝜋𝑡 denote
inflation and 𝑦𝑡 the output gap, the percentage difference between real output and
its natural level. Then (what we will refer to as) the conventional formulation of the
NKPC is given by:

𝜋𝑡 = 𝜅 𝑦𝑡 + 𝛽 E𝑡 {𝜋𝑡+1} + 𝑢𝑡 , (1)

where 𝑢𝑡 is typically referred to as a cost-push shock, and 𝛽 is a subjective discount
factor, typically a parameter close to unity. The NKPC asserts that inflation depends
positively on both 𝑦𝑡 , which is interpreted as a measure of excess demand, and on
expected future inflation. The main object of interest is 𝜅, the slope coefficient on the
output gap.

There are two interrelated sets of issues involved in uncovering 𝜅. The first set
revolves around the econometric identification of this parameter. First, as emphasized
byMcLeay and Tenreyro (2020), the output gap is an endogenous object. If the central
bank acts to adjust 𝑦𝑡 to stabilize 𝜋𝑡 in response to positive cost-push shocks, the
estimate of 𝜅 will be biased downward due to the negative correlation between 𝑦𝑡
and 𝑢𝑡 . Given the absence of good instruments for 𝑦𝑡 , the estimation of 𝜅 using
aggregate time-series data is challenging (Mavroeidis, Plagborg-Møller and Stock
2014) or requires additional assumptions.1 Another identification issue involves trend
inflation. The specification given by Equation (1) presumes that trend inflation is
constant. However, as argued by Hazell et al. (2022) and Jørgensen and Lansing
(2023), shifts in trend inflation may confound the identification of the Phillips curve.
For instance, if trend inflation decreases as output declines, and the regression model
does not account for this correlation, the estimate of 𝜅 will be upwardly biased.

These identification challenges have led researchers to employ regional data
to estimate 𝜅. Recent examples include Hooper, Mishkin and Sufi (2020), McLeay

1Barnichon and Mesters (2020) and Lewis and Mertens (2022) show how to identify the slope of the
Phillips curve using aggregate data when valid and powerful time-series instruments are available. In
a similar vein, Section 7 presents a validation exercise using identified oil shocks. We note, however,
that this approach cannot identify the underlying primitive parameters that determine the slope.
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and Tenreyro (2020), and Hazell et al. (2022).2 Importantly, Hooper, Mishkin and Sufi
(2020) and Hazell et al. (2022) allow for time fixed effects to control for shifting trend
inflation. In the latter study, this identification approach yields an astonishingly small
estimate of 𝜅, which suggests that the Phillips curve is “flat.” This view has become
the conventional wisdom, at least for the pre-pandemic period.

The second set of considerations pertains to both the relevant measure of real
activity that enters the Phillips curve and, consequently, the interpretation of the
slope coefficient 𝜅. In the underlying theory, firms set prices in response to current
and anticipated movements in marginal cost. Thus, as emphasized by both Galí and
Gertler (1999) and Sbordone (2002), the primitive formulation of the NKPC features
real marginal cost (in percent deviations from trend) entering as the real activity
variable. In fact, the conventional formulation of the NKPC in Equation (1) only
holds under specific conditions that establish a proportional relationship between
marginal cost and the output gap. Among other things, wages must be perfectly
flexible.3 If these conditions are violated, then the output gap may not serve as
an adequate proxy for real marginal cost, typically leading to a downward bias in
the estimate of 𝜅.4 Moreover, even if all conditions that establish a proportional
relationship are approximately met, it is crucial to recognize that the output-based
slope 𝜅 is ultimately the product of two parameters: the elasticity of inflation with
respect to real marginal cost and the elasticity of marginal cost with respect to the
output gap. The ability to separately identify the two coefficients is important for
gaining a comprehensive understanding of inflation dynamics.

In this paper, we propose a novel empirical strategy to estimate the slope of the
primitive formulation of the NKPC. The conventional estimation approach involves
aggregating individual firm pricing decisions into an NKPC and then estimating its
slope with aggregate data. Instead, we follow a bottom-up approach. We use micro
data to estimate dynamic pass-through regressions that identify both the degree of
nominal and real rigidities from short-run comovements in firm-level marginal costs

2Also relevant is Beraja, Hurst and Ospina (2019), which uses regional data to identify wage Phillips
curves.

3For this reason, New Keynesian DSGE models with wage rigidity include the marginal cost-based
Phillips curve in the system of equations as opposed to the conventional one (see Galí 2015 chapter 6
and the references therein).

4These considerations also extend to formulations of the conventional NKPC that utilize the
unemployment gap as a measure of economic activity instead of the output gap.
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and prices. We then use these estimates to recover the NKPC slope and compute the
implied aggregate pass-through.

In Section 1, we develop a theoretical framework that serves as the foundation
of our estimation strategy. Starting from first principles, we derive an expression for
firms’ optimal reset prices in an environment with nominal rigidities and imperfect
competition. As is standard, firms’ optimal reset price depend on the expected path
of marginal cost over the period the firm expects its price to be fixed. Moreover,
due to the presence of strategic complementarities, firms factor in the expected path
of competitors’ prices, which reduces the pass-through of marginal cost. The slope
of the Phillips curve is then a function of the two parameters capturing the degree
of nominal price rigidities and the strength of strategic complementarities in price
setting.

We estimate these structural parameters using micro data, as described in
Section 2. We collect administrative data on product-level output prices, quantities,
and production costs for manufacturing firms in Belgium, which we use to construct
granular proxies of firms’ marginal costs and competitors’ prices. Our data extends
the database originally assembled by Amiti, Itskhoki and Konings (2019) in terms
of cross-sectional and time-series coverage. Notably, our data is recorded at the
quarterly (as opposed to annual frequency), which allows us to study the role of
nominal rigidities in price setting at the business cycle frequency.

In Section 3 we map the theoretical model to the data to derive dynamic
pass-through regressions that identify the structural parameters of interest. The use
of micro data allows us to tackle the issues that hinder identification using aggregate
data.5 By including in our model a set of fixed effects, we address unobserved
heterogeneity and confounding factors stemming from trends in output growth,
trend inflation, and shifts in inflation expectations. In addition, we can construct
powerful instruments for marginal cost and competitors’ prices to tackle endogeneity
and measurement issues. Our approach relates to the literature on incomplete
pass-through of marginal cost into prices (Goldberg and Verboven 2001; Nakamura

5Galí andGertler (1999) originally estimated amarginal cost-basedNKPCusing aggregate datawith
the labor share as the measure of marginal cost. The use of micro data improves upon the identification
as it addresses weak instruments concerns raised byMavroeidis, Plagborg-Møller and Stock (2014) and
allows us to deal with trends in costs and prices. Moreover, the micro data also provide us with a richer
measure of marginal costs that accounts for intermediate input costs along with labor costs.
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and Zerom 2010). In an environment with perfectly flexible prices, our dynamic
pass-through framework nests as a special case the static pass-through regressions
estimated in Amiti, Itskhoki and Konings (2019) using annual data.

In section 4 , we show that our analysis delivers sensible and robust estimates
of the parameters governing firms’ pricing behavior. We find a substantial degree
of nominal rigidities (prices are fixed three to four quarters, on average) and
a meaningful role for strategic complementarities (reducing the pass-through of
marginal cost shocks by about half). These estimates imply an economically
significant slope of the marginal cost-based NKPC, tightly estimated in the range of
0.05 to 0.07. They also imply a substantial aggregate pass-through frommarginal cost
to inflation. To show this, in Section 5 we construct a proxy for aggregate marginal
cost, which we feed into our model. The model-implied inflation series tracks the
actual PPI data well. Fluctuations in marginal cost alone can account for at least
seventy percent of the variation in inflation, without appealing, as is often done, to
unobservable cost-push shocks or including lags of inflation.

Our estimate of the slope of the cost-based NKPC differsmarkedly from existing
estimates of the conventional output- or unemployment-based NKPC, which is
estimated to be two to ten times smaller in magnitude (Rotemberg and Woodford
1997, Hazell et al. 2022). In Section 6, we show that these estimates are not
inconsistent and can be reconciled with ours. We make standard assumptions
that allow us to derive the output-based Phillips curve slope as the product of our
marginal cost-based slope and the output elasticity of marginal cost. We then develop
identification strategies to estimate this elasticity using micro data and retrieve the
implied slope of the output-based NKPC. For our pre-pandemic sample, we find a
low elasticity of marginal cost to changes in output, yielding point estimates of the
output-based NKPC slope consistent with the literature. This suggests that the flat
slope of the conventional NKPC reflects a weak link between the output gap and
marginal cost over this sample period rather than a limited transmission of marginal
cost fluctuations to inflation.

In Section 7, we conduct a model validation exercise using the cost-based
NKPC to analyze the effects of supply shocks on inflation. By tracing the impact of
identified oil shocks (Känzig 2021) on marginal cost and inflation, we show that the
impulse-responses for inflation produced by a cost-based NKPC model—calibrated to
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our micro-level estimates—closely match the empirical impulse-responses estimated
in the data. This exercise validates our bottom-up estimation approach and, as we
discuss, illustrates the usefulness of the cost-based NKPC for analyzing supply-side
shocks.

1 Theoretical framework

This section presents the theoretical framework that underlies our empirical analysis.
We formulate the minimum structure required to produce firm pricing equations
that allow us to identify the slope of the aggregate Phillips curve. The framework
features heterogeneous firms competing under imperfect competition and subject to
nominal rigidity. In this environment, firms internalize the impact of their pricing
decisions on industry aggregates and are in turn influenced by the pricing decisions of
their competitors. This model generates a micro-founded cost-based New Keynesian
Phillips curve, the slope of which is a function of the structural parameters that
govern firms’ pricing behavior.

1.1 Preferences and pricing behavior

The economy is populated by heterogeneous producers (or firms), denoted by 𝑓 , each
operating in an industry 𝑖 ∈ I = [0, 1]. We denote by F𝑖 the set of firms competing in
industry 𝑖 . Each firm is measure zero relative to the economy as a whole but may be
large relative to its industry. Hence, it takes the aggregate expenditure as given but
internalizes the effect of its pricing decisions on the consumption and price index of
its industry.

Let 𝑃𝑓 𝑡 denote the price charged by each firm for a unit of its output, 𝑃𝑖𝑡 the
industry price index, 𝜑 𝑓 𝑡 a firm-specific relative demand shifter, and 𝑌𝑖𝑡 the real
industry output. For any industry 𝑖 , we consider an arbitrary, invertible demand
system that generates a residual demand function of the following form:6

D𝑓 𝑡 := 𝑑 (𝑃𝑓 𝑡 , 𝑃𝑖𝑡 , 𝜑 𝑓 𝑡 )𝑌𝑖𝑡 ∀𝑓 ∈ F𝑖 . (2)
6The focus on invertible demand systems is a mild technical assumption that excludes scenarios

where firms offer goods that are perfect substitutes but encompasses any demand system with an
arbitrary (albeit finite) elasticity of substitution across goods
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Firms adjust their prices during the period in order to maximize expected profits
facing nominal rigidities as in Calvo (1983).7 Each period they face a probability
(1 − 𝜃 ) ∈ [0, 1] of being able to change their price, independent across time and
across firms. Thus, the price 𝑃𝑓 𝑡 paid by consumers to buy goods produced by firm
𝑓 is either the (optimal) reset price if the firm is able to adjust, denoted by 𝑃𝑜

𝑓 𝑡
, or the

price it charged in the previous period, 𝑃𝑓 𝑡−1.
When choosing 𝑃𝑜

𝑓 𝑡
, firms consider both their own costs, the pricing choices

made by competitors, as well as the impact of their own price adjustments on their
residual demand and on the industry-wide price index. Let Λ𝑡,𝜏 denote the stochastic
discount factor between time 𝑡 and 𝑡 + 𝜏 , 𝑇𝐶 𝑓 𝑡 := 𝑇𝐶 (D𝑓 𝑡 ) the real total costs, and
𝑀𝐶𝑛

𝑓 𝑡
the nominal marginal cost of firm 𝑓 . Then the optimal reset price 𝑃𝑜

𝑓 𝑡
solves the

following profit maximization problem:

max
𝑃𝑜
𝑓 𝑡
,{𝑌𝑓 𝑡+𝜏 }𝜏≥0

E𝑡

{ ∞∑︁
𝜏=0

𝜃𝜏

[
Λ𝑡,𝜏

(
𝑃𝑜
𝑓 𝑡

𝑃𝑡+𝜏
D𝑓 𝑡+𝜏 −𝑇𝐶 ( D 𝑓 𝑡+𝜏 )

)]}
,

subject to the sequence of expected demand functions {D𝑓 𝑡+𝜏 }𝜏≥0 in Equation (2).
Nominal rigidities generate forward-looking pricing behavior, as firms take into
account that it might not be possible to adjust prices every period. As a result, the
optimal reset price is a weighted average of current and expected future nominal
marginal costs and markups. Denoting by 𝜇𝑓 𝑡 the desired log markup, the FOC of the
problem is:

E𝑡

{ ∞∑︁
𝜏=0

𝜃𝜏Λ𝑡,𝜏D𝑓 𝑡+𝜏

[
𝑃𝑜
𝑓 𝑡

𝑃𝑡+𝜏
− (1 + 𝜇𝑓 𝑡+𝜏 )

𝑀𝐶𝑛
𝑓 𝑡+𝜏

𝑃𝑡+𝜏

]}
= 0. (3)

Thus, the optimal reset price depends on the expected path of marginal cost and
desired markups over the period the firm expects its price to be fixed, where 𝜃𝜏 is
the probability the firm expects its price to be fixed 𝜏 periods from now. The desired
markup is given by the Lerner index:

𝜇𝑓 𝑡+𝜏 := ln
(
𝜖𝑓 𝑡+𝜏

𝜖𝑓 𝑡+𝜏 − 1

)
, (4)

where 𝜖𝑓 𝑡+𝜏 := − 𝜕 lnD 𝑓 𝑡+𝜏
𝜕 ln 𝑃𝑜

𝑓 𝑡

denotes the residual demand elasticity faced by 𝑓 .

7In a companion paper (Gagliardone et al. 2025), we consider state-dependent pricing. We show
that in normal times (i.e., in the absence of large aggregate shocks, as is generally the case during our
sample period), Calvo provides a good approximation of firms’ pricing decisions. See also Auclert et al.
(2024) and references therein.
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1.2 Technology

A unit of output of 𝑌𝑓 𝑡 is produced at a nominal marginal cost of:

𝑀𝐶𝑛
𝑓 𝑡
= C𝑖𝑡A𝑓 𝑡𝑌

𝜈 𝑓 𝑡

𝑓 𝑡
, (5)

where C𝑖𝑡 denotes the nominal marginal unit cost of the composite input factor (e.g.,
wages and intermediate goods); A𝑓 𝑡 is a firm-specific cost shifter that affects the
average unit cost of production and is inversely related to the firm’s total factor
productivity (TFP); 𝜈 𝑓 𝑡 is a firm-specific parameter that pins down short-run returns
to scale in production (henceforth SR-RTS), given by (1/(1 + 𝜈 𝑓 𝑡 )).8

To derive the aggregate implications of the model, we assume that the economy
displays constant returns to scale in the aggregate (i.e., 𝜈 𝑓 𝑡 = 0 on average). This
assumption rules out macroeconomic complementarities due to the feedback of firms’
pricing behavior on their respective marginal cost (see e.g. Galí 2015).9 We relax this
assumption in Section 4.1. There we show that our estimates of the Phillips curve
are robust as the empirical evidence is broadly consistent with the constant returns
to scale assumption at both the sectoral and aggregate levels.10

1.3 The optimal reset price

We log-linearize the FOC in Equation (3) around the symmetric steady state with zero
inflation.11 Denoting the variables in logs with lower-case letters, we obtain that the
reset price satisfies:

𝑝𝑜
𝑓 𝑡
= (1 − 𝛽𝜃 )E𝑡

{ ∞∑︁
𝜏=0

(𝛽𝜃 )𝜏
(
𝜇𝑓 𝑡+𝜏 +𝑚𝑐𝑛𝑓 𝑡+𝜏

)}
. (6)

The log-linearized desired markup (in deviation from steady state markup 𝜇𝑓 ) is a
function that depends inversely on the log-difference between the firms’ own reset

8This functional form is rather general and consistent with standard production technologies used
in the literature (see, e.g., Hottman, Redding and Weinstein 2016). For instance, it nests Cobb-Douglas
and CES as special cases.

9Macroeconomic complementarities can arise, for example, from roundabout production as in Basu
(1995) or local input markets as in Woodford (2011).

10Near constant returns to scale also help reconcile our estimates of a steep cost-based Phillips curve
with the flat output-based Phillips curve commonly found in the literature, as we discuss in Section 6.

11The choice of the zero-inflation steady state permits simpler notation; but is largely immaterial
for our purposes. We relax it in the empirical analysis, where we allow for sector/industry-specific
trends.
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price and its competitors’ prices (𝑝−𝑓
𝑖𝑡
):

𝜇𝑓 𝑡 − 𝜇𝑓 = −Γ
(
𝑝𝑜
𝑓 𝑡
− 𝑝−𝑓

𝑖𝑡

)
+ 𝑢𝜇

𝑓 𝑡
, (7)

where Γ > 0 denotes the markup elasticity with respect to prices and 𝑢𝜇
𝑓 𝑡

is a
firm-specific demand shock to the desiredmarkup that depends on the demand shifter
𝜑 𝑓 𝑡 .12 Under weak assumptions, the expression in Equation (7) holds for standard
frameworks with imperfectly competitive firms, including monopolistic competition
with variable elasticity of demand (Kimball 1995), static oligopoly (Atkeson and
Burstein 2008) and dynamic oligopoly (Wang and Werning 2022). These frameworks
share the property that, in equilibrium, a firm’s elasticity of demand declines as
its market share increases. Thus, the presence of strategic complementarities in
price setting implies that a relative price increase lowers a firm’s desired markup,
dampening the response of prices to marginal cost.

Substituting the expression for 𝜇𝑓 𝑡+𝜏 in the log-linearized first-order condition,
we obtain the following forward-looking pricing equation:

𝑝𝑜
𝑓 𝑡
= (1 − 𝛽𝜃 )E𝑡

{ ∞∑︁
𝜏=0

(𝛽𝜃 )𝜏
(
(1 − Ω) (𝑚𝑐𝑛

𝑓 𝑡+𝜏 + 𝜇𝑓 ) + Ω𝑝
−𝑓
𝑖𝑡+𝜏

)}
+ 𝑢 𝑓 𝑡 , (8)

where 𝑢 𝑓 𝑡 := (1 − 𝛽𝜃 ) (1 − Ω)E𝑡 {
∑∞
𝜏=0(𝛽𝜃 )𝜏𝑢

𝜇

𝑓 𝑡+𝜏 } captures the expected discounted
value of the firm’s future demand shocks. The parameter Ω := Γ

1+Γ captures the
strength of strategic complementarities and impacts the firm’s pricing policy by
muting the price response to changes in marginal costs. If the demand elasticity is
constant, as in the textbook New Keynesian model with monopolistically competitive
firms, the desired markup is a constant. In this case, Ω = 0 and the optimal pricing
equation simplifies to the familiar formulation where the reset price exclusively
depends on the current and future stream of marginal costs. Competitors’ prices
are then irrelevant.

1.4 The primitive New Keynesian Phillips curve

The log-linear aggregate price index is given by:

𝑝𝑡 = (1 − 𝜃 )𝑝𝑜𝑡 + 𝜃𝑝𝑡−1, (9)
12See Section OA.1 of the Supplemental Appendix for derivations of the log-linearized markup and

the expression for 𝑢𝜇
𝑓 𝑡

under CES and Kimball demand systems.
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with 𝑝𝑡 and 𝑝𝑜𝑡 denoting the aggregate price indices implied by the demand system.
Let 𝑚𝑐𝑛𝑡 denote the aggregate log-nominal marginal cost, and define the aggregate
real marginal cost and aggregate inflation as 𝑚𝑐𝑡 = 𝑚𝑐𝑛𝑡 − 𝑝𝑡 and 𝜋𝑡 = 𝑝𝑡 − 𝑝𝑡−1,
respectively. Averaging the pricing equation in (8) across firms and industries and
writing it in recursive form, we obtain an equation for the aggregate reset price:

𝑝𝑜𝑡 = (1 − 𝛽𝜃 )
(
(1 − Ω) (𝑚𝑐𝑛𝑡 + 𝜇) + Ω𝑝𝑡

)
+ 𝛽𝜃E𝑡𝑝𝑜𝑡+1 +

𝜃

1 − 𝜃𝑢𝑡 , (10)

where 𝑢𝑡 is an aggregate cost-push shock. Combining Equations (9) and (10) gives
the primitive formulation of the NKPC curve:

𝜋𝑡 = 𝜆 𝑚𝑐𝑡 + 𝛽 E𝑡 {𝜋𝑡+1} + 𝑢𝑡 , (11)

which asserts that inflation depends on real marginal cost in deviation from its steady
state level, 𝑚𝑐𝑡 := 𝑚𝑐𝑛𝑡 − 𝑝𝑡 + 𝜇, and on expected future inflation. The slope of the
cost-based NKPC curve is given by:13

𝜆 :=
(1 − 𝜃 ) (1 − 𝛽𝜃 )

𝜃
(1 − Ω). (12)

Two observations are worth noting. First, the primitive formulation of the Phillips
curve in Equation (11) features the log-deviation of real marginal cost from its
steady state as the relevant real activity variable driving inflation. In contrast, the
conventional formulation of the Phillips curve, displayed in Equation (1), uses the
output or unemployment gap as a proxy for marginal cost. As we will discuss,
the mapping between marginal cost and the output gap is theoretically valid only
under specific circumstances. Moreover, even when a proportionality between the
two variables can be established, the elasticity of marginal cost to the output (or
unemployment) gap is generally different from one. We return to these points in
Section 6.

Secondly, the slope of the cost-based NKPC is a function of the primitives that
govern firms’ pricing behavior. As in standard New Keynesian models (e.g., Galí
and Gertler 1999), high nominal rigidities and low discounting flatten the sensitivity

13In an environment with cross-industry heterogeneity in the parameters 𝜃 and Ω, aggregation
across industries implies that the cost-basedNKPC becomes 𝜋𝑡 = 𝜆·𝑚𝑐𝑡+𝐶𝑜𝑣 (𝜆𝑖 ,𝑚𝑐𝑖𝑡 )+𝛽E𝑡𝜋𝑡+1, where
𝜆 :=

∫
𝜆𝑖𝑑𝑖 , the slope in Equation (12), and 𝜆𝑖 := (1−𝜃𝑖 ) (1−𝛽𝜃𝑖 )

𝜃𝑖
(1 − Ω𝑖 ). Thus, aggregate pass-through

also depends on the cross-sectional covariances 𝐶𝑜𝑣 (𝑚𝑐𝑖𝑡 , 𝜃𝑖 ) and 𝐶𝑜𝑣 (𝑚𝑐𝑖𝑡 ,Ω𝑖 ). This source of
heterogeneity also matters in the presence of input-output linkages between industries (Rubbo 2023).
While we abstract from these considerations, understanding their quantitative importance is an
interesting avenue for future research.
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of inflation to changes in real economic activity. Additionally, Equation (12) shows
how strategic complementarities also contribute to reducing the slope. We take the
structural pricing equation in (8) using micro data on prices and costs to identify the
structural parameters 𝜃 and Ω and, given a calibration of the discount factor 𝛽 , pin
down the slope of the cost-based Phillips curve.

2 Data and measurement

2.1 Data

We assemble a micro-level dataset that covers the manufacturing sector in Belgium
between 1999 and 2019, at the business cycle frequency. The dataset is compiled from
administrative sources, extending and enriching the annual dataset used by Amiti,
Itskhoki and Konings (2019). A unique feature of our dataset is its ability to track
quarterly product-level prices and quantities sold in the domestic market by both
domestic and foreign producers, as well as quarterly information on production costs
for domestic producers.

The PRODCOMdataset allows us to observe domestic firms’ quarterly sales and
physical quantities sold for each narrowly defined (8-digit PC codes) manufacturing
product. We use this highly disaggregated information to calculate domestic unit
values (sales over quantities) at the firm-product level. We obtain similar data on
foreign competitors from the administrative records of Belgian customs declarations.
Specifically, for each manufacturing product sold by a foreign producer to a Belgian
buyer, we observe quarterly sales and quantity sold for different products (8-digit CN
codes), from which we compute unit values of foreign competitors in local markets.

We use detailed administrative data tomeasure firms’ variable production costs.
We obtain information on firms’ quarterly purchases of intermediates (materials
and services) from their VAT declarations. We draw upon firms’ social security
declarations to measure their labor costs (the wage bill) on a quarterly basis.

Sample properties—Our final sample includes 4, 598 firms observed over 84 quarters
(1999:Q1–2019:Q4), totaling 132, 915 observations. We provide detailed information
on the data sources and data cleaning procedures in the Supplemental AppendixOA.2.
Table 1 presents summary statistics of our dataset. Several features are worth noting.
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Table 1: Summary statistics

Mean 5𝑠𝑡 pctle 25𝑡ℎ pctle Median 75𝑡ℎ pctle 95𝑡ℎ pctle

Number of industries 1.10 1.00 1.00 1.00 1.00 2.00
within firm

Within firm revenue 98.23 86.58 100.00 100.00 100.00 100.00
share of main industry

Firm’s market share 1.71 0.06 0.22 0.53 1.35 6.52
within industry

Firm’s market share 0.21 0.01 0.02 0.05 0.13 0.69
within sector

Firm’s market share 0.03 0.00 0.00 0.01 0.01 0.08
within manufacturing

Number of consecutive 42.21 11.00 24.00 38.00 59.00 82.00
quarters in sample

Notes. This table reports summary statistics for sample of domestic producers in PRODCOM.

First, our dataset covers the lion’s share of domestic manufacturing production
in Belgium. The average firm in our dataset employs 74 employees (measured in
full-time equivalents) and has a domestic turnover (sales) of 6million Euros. The sales
of the smallest firms in the sample are worth less than one-tenth of a thousandth of
those generated by the largest producers.

Second, throughout the paper we adopt a narrow industry definition based on
4-digit NACE Rev.2 codes, the standard sector classification system in the European
Union. Based on this classification, we sort firms into 169 manufacturing industries,
distributed across 9 manufacturing sectors.14 This classification optimally balances a
coherent definition of the industry (which is mostly precise if narrow) with the ability
to identify an appropriate set of competitors (both domestic and foreign) competing
to gain market share in Belgium. Table 1 shows that the vast majority of the firms
in our sample specialize in only one manufacturing industry. Even for those firms

14The first four digits of the PRODCOM product classification coincide with the first four digits of
the NACE Rev.2 classification and also to the first 4 digits of the CN product code classification used
in the customs data. Following the official Eurostat classification system, we define manufacturing
sectors by grouping 2-digit NACE Rev.2 codes, appropriately harmonized to account for changes
in product classifications over time. See Section OA.2 of the Supplemental Appendix for sectors’
definitions.
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that operate in multiple industries, the contribution of the main industry to total firm
revenues is, on average, 98% (median 100%). For the fewmulti-industry firms, we treat
each industry as a separate firm in accordance with the theoretical framework.15

Third, the typical sector is characterized by a large number of firms with small
market shares—the average within-industry share is approximately 1.5% on average,
with a median of 0.5%—and a few relatively large producers. To the extent that these
large firms internalize the effect of their pricing and production decisions on industry
aggregates and strategically react to the pricing decisions of their competitors,
the monopolistic competition benchmark would be a poor approximation. The
theoretical framework introduced in the previous section explicitly accounts for this.

Fourth, although the largest firms have nontrivial market shares in their
industries, they are small compared to the volume of economic activity of their macro
sector (e.g., textile manufacturing or electrical equipment manufacturing) and, even
more so, compared to the volume of economic activity in the whole manufacturing
sector in Belgium. It is therefore reasonable to assume that even the largest producers
do not internalize the effect of their pricing and production decisions on the aggregate
economy.

Finally, our data allow us to observe a long time series of both prices and
marginal costs. On average, we observe firms for approximately 10 consecutive years
(42 quarters). This feature of the data is particularly important for identification
purposes. As we discuss below, a long time series enables us to include unit fixed
effects in our empirical models to control for time-invariant confounding factors
without suffering from the classical Nickell bias that frequently complicates the
estimation of dynamic panel models.

2.2 Measurement

We now describe how to map the theoretical counterparts to the data. We use
product-level prices, firm-level production costs, and information on prices of
competitors (firms that operate in the same 4-digit industry) to construct measurable
counterparts of prices and reset prices, which vary at the firm-industry-quarter level.

15Because most firms operate in only one industry, and the main industry accounts for the lion’s
share of sales of multi-industry firms, all our results are essentially unchanged if we restrict the sample
to the main industry for each firm.
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Section OA.2 of the Supplemental Appendix provides a detailed description of the
procedure used to construct all our variables.

Output prices—The key variable of interest is the domestic price of goods charged
by firms in the local market (Belgium). We construct a firm-industry price index
that varies at the same level as our reset prices. We use the subscript 𝑖 to denote an
industry, 𝑓 to denote a firm-industry pair, and 𝑡 to denote time (quarters). 𝑠 𝑓 𝑡 denotes
the revenue share of the firm in the industry.

We compute the change in the firm-industry price index, 𝑃𝑓 𝑡/𝑃𝑓 𝑡−1, using the
most disaggregated level allowed by the data. For domestic producers, the finest level
of aggregation is the firm×8-digit PC product code level. For foreign competitors, it is
the importing-firm×source country× 8-digit PC product code level.16 Approximately
half of the domestic firms in our sample are multi-product firms, meaning they
produce multiple 8-digit products within the same industry. For these entities, we
compute the price change by aggregating changes in product-level prices using a
Törnqvist index:17

𝑃𝑓 𝑡/𝑃𝑓 𝑡−1 =
∏
𝑝∈P𝑓 𝑡

(𝑃𝑝𝑡/𝑃𝑝𝑡−1)𝑠𝑝𝑡 .

In the formula above, P𝑓 𝑡 represents the set of 8-digit products manufactured
by firm 𝑓 , 𝑃𝑝𝑡 the unit value of product 𝑝 , and 𝑠𝑝𝑡 the product’s Törnqvist weight
computed as the average of (within-firm) sale shares of the product between 𝑡 and
𝑡 − 1: 𝑠𝑝𝑡 := 𝑠𝑝𝑡+𝑠𝑝𝑡−1

2 . Finally, we construct the time series of the price index by
concatenating the quarterly price changes, starting from a firm-specific base year, as
discussed in Section OA.2 of the Supplemental Appendix.18

Using a similar approach, we construct the price index of competitors for each
16In the raw customs data, products are measured using the more disaggregated CN 8-digit product

classification. We map the CN product codes in the customs data to PC product codes used in
PRODCOM using the official bridge tables available on the Eurostat web page. See the Supplemental
Appendix OA.2 for additional details.

17Given that our measure of reset prices varies at the firm-industry level and our assumption that
the elasticity of substitution is common across all firm’s products within an industry, we would obtain
approximately the same parameter estimates running our models in the more granular dataset (with
product-level price variation), as long as the product-level observations are weighted by the same
Törnqvist weights, 𝑠𝑝𝑡 , used in the aggregation.

18 The normalization of the level of the price indices in the base year is one rationale for the inclusion
of firm fixed effects in our empirical specifications.
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domestic firm by concatenating quarterly price changes as follows:

𝑃
−𝑓
𝑖𝑡

/𝑃−𝑓
𝑖𝑡−1 =

∏
𝑘∈F𝑖/𝑓

(𝑃𝑘𝑡/𝑃𝑘𝑡−1)𝑠
−𝑓
𝑘𝑡 . (13)

Here, 𝑠−𝑓
𝑘𝑡

:= 1
2

(
𝑠𝑘𝑡

1−𝑠𝑓 𝑡 +
𝑠𝑘𝑡−1

1−𝑠𝑓 𝑡−1

)
represents a Törnqvist weight, constructed by

averaging the residual revenue share of competitors in the industry at time 𝑡 (net of
firm 𝑓 revenues) with that at time 𝑡 − 1. Note that the set of domestic competitors for
each Belgian producer, denoted as F𝑖 , includes not only other Belgian manufacturers
operating in the same industry, but also foreignmanufacturers selling the same goods
to Belgian customers.

Marginal costs—The cost structure outlined in Equation (5) implies that a firm’s
nominal log-marginal cost is equal to logarithm of average variable costs plus a term
reflecting SR-RTS:

𝑚𝑐𝑛
𝑓 𝑡
= ln(TVC𝑓 𝑡/𝑌𝑓 𝑡 ) + ln(1 + 𝜈 𝑓 𝑡 ). (14)

Accordingly, we construct our empirical proxy of firms’ marginal costs using
variation in average variable costs. We measure total variable costs (TVC𝑓 𝑡 ) as the
sum of intermediate costs (materials and services purchased) and labor costs (wage
bill). Intermediate input costs account, on average, for 75 percent of total variable
costs. They are also the most volatile cost component, with a within-firm coefficient
of variation that is more than twice as large as that of labor costs (1.77 vs 0.77).
We obtain a firm-specific quantity index for domestic sales (𝑌𝑓 𝑡 ) by scaling a firm’s
domestic revenues by its domestic price index, such that 𝑌𝑓 𝑡 = (𝑃𝑌 )𝑓 𝑡/𝑃𝑓 𝑡 . For
single-industry firms, 𝑃𝑓 𝑡 coincides with the firm-industry price index 𝑃𝑓 𝑡 , which
was discussed earlier. For multi-industry firms, we aggregate industry prices 𝑃𝑓 𝑡 by
using as weights the firm-specific revenue shares of each industry.19

Returns to scale, which are not directly observable in the data, will enter
the error term of our empirical models. In our baseline regression model, we
assume Cobb-Douglas technologies. Under this assumption, we can control for the

19Specifically, we apply the Törnqvist weight of each (4-digit) industry bundle 𝑖 produced by firm 𝑓

in quarter 𝑡 , which is defined as (𝑠𝑓 𝑖𝑡 +𝑠𝑓 𝑖𝑡−1)/2, where 𝑠𝑓 𝑖𝑡 is the share of revenues of the firm coming
from sales in industry 𝑖 in total sales across industries. The choice of 𝑃𝑓 𝑡 has essentially no impact
on our estimation results because, as discussed, the majority of the firms in our data operate in only
one industry, and the sales of multi-industry firms are typically concentrated in a primary industry.
In fact, our empirical results are robust to defining 𝑃𝑓 𝑡 as the price of the main industry or using other
aggregation methods (e.g., an arithmetic average or a CES aggregator).
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curvature of the production function using either industry or firm fixed effects. In
the robustness section, we consider the possibility that SR-RTS vary over time and
with the scale of production, as it would be the case under CES technologies.

3 Identification strategy

We now present the identification strategy behind the estimation of the structural
parameters 𝜃 and Ω that determine the slope of the NKPC. We begin by mapping
the theoretical model from Section 1 to the data and derive a dynamic pass-through
model with a measurable counterpart. In doing so, we highlight the connections and
distinctions between our dynamic pass-through and the static pass-through analyzed
in previous studies. We then discuss the assumptions and instrumental variables
underlying our identification approach.

3.1 Econometric framework for dynamic pass-through

Baseline model—Under our Calvo framework, given the firm’s information set at
time 𝑡 , we can express the conditional expectation of the observed price as:

E{𝑝 𝑓 𝑡 |𝑝𝑜𝑓 𝑡 , 𝑝 𝑓 𝑡−1} = (1 − 𝜃 )𝑝𝑜
𝑓 𝑡
+ 𝜃𝑝 𝑓 𝑡−1.

Starting from the above, we define the projection error 𝑣 𝑓 𝑡 := 𝑝 𝑓 𝑡 − E{𝑝 𝑓 𝑡 |𝑝𝑜𝑓 𝑡 , 𝑝 𝑓 𝑡−1}
and use Equation (8) to solve out for 𝑝𝑜

𝑓 𝑡
. After substituting the expected values

of prices and costs with their realizations, we obtain the following dynamic
pass-through regression linking the observed price to short-run fluctuations in
current and expected marginal cost and competitors’ prices:

𝑝 𝑓 𝑡 = (1 − 𝜃 )
(
(1 − Ω)

(
(𝑚𝑐𝑛

𝑓 𝑡
)∞ + 𝜇𝑓

)
+ Ω (𝑝−𝑓

𝑖𝑡
)∞

)
+ 𝜃𝑝 𝑓 𝑡−1 + 𝜀 𝑓 𝑡 , (15)

where (𝑥𝑡 )∞ := (1 − 𝛽𝜃 )∑∞
𝜏=0(𝛽𝜃 )𝜏𝑥𝑡+𝜏 for 𝑥𝑡 = {𝑚𝑐𝑛

𝑓 𝑡
, 𝑝

−𝑓
𝑖𝑡

} denotes the discounted
present value of marginal cost and competitors’ prices, and 𝜀 𝑓 𝑡 captures a composite
residual:

𝜀 𝑓 𝑡 := 𝑣 𝑓 𝑡 + (1 − 𝜃 ) (1 − 𝛽𝜃 )𝑒 𝑓 𝑡 + (1 − 𝜃 )𝑢 𝑓 𝑡 .

Here 𝑒 𝑓 𝑡 denotes a mean-zero expectational error—orthogonal to the realizations of
the other variables under rational expectations—and 𝑢 𝑓 𝑡 captures the firm’s demand
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shock that enters the reset price (Equation (8)).20

The intuition underlying Equation (15) is the following: due to the presence
of nominal rigidities, firms can adjust prices each period with probability (1 − 𝜃 ).
Conditional on being able to adjust, they do so by accounting for current and expected
future changes in marginal costs and in their competitors’ prices. The parameter
Ω measures the relative strength of these two forces. Thus, in an environment
with forward-looking pricing behavior and oligopolistic competition, the short-run
pass-through of marginal costs depends on both the degree of nominal rigidity and
strategic complementarities. Specifically, the elasticity of a firm’s own price to a
permanent shock to marginal cost is given by 𝜕𝑝 𝑓 𝑡

𝜕𝑚𝑐𝑛
𝑓 𝑡

= (1 − Ω) (1 − 𝜃 ). As we
explain below, the lagged price enters the empirical specification as a predetermined
regressor that controls for short-run price dynamics.

The error correction framework and long-run pass-through—It is useful
to highlight the connections and differences between our dynamic (short-run)
pass-through model and the static (long-run) model used in previous literature.

Without loss of generality, prices and reset prices satisfy the long-run
cointegrating relationship:

𝑝 𝑓 𝑡 = 𝑝
𝑜
𝑓 𝑡
+ 𝜂 𝑓 𝑡 , (16)

where 𝜂 𝑓 𝑡 := 𝑝 𝑓 𝑡 − 𝑝𝑜
𝑓 𝑡

denotes a cointegration error. Adding and subtracting
(1 − 𝜃 )𝑝0

𝑓 𝑡
+ 𝑝 𝑓 𝑡−1 to Equation (8) and rearranging, we can express our dynamic

pass-through regression in Equation (15) as an error-correction model:

Δ𝑝 𝑓 𝑡 = (1 − 𝜃 )Δ𝑝𝑜
𝑓 𝑡
− (1 − 𝜃 )𝜂 𝑓 𝑡−1 + 𝑣 𝑓 𝑡 . (17)

The first term, Δ𝑝𝑜
𝑓 𝑡
, captures variation in reset prices due to supply and demand

shocks. The second term, 𝜂 𝑓 𝑡−1 = 𝑝 𝑓 𝑡−1 − 𝑝𝑜𝑓 𝑡−1, is the error-correction term. As in
Engle and Granger (1987), this term controls for persistent deviations of prices and
reset prices from their long-run cointegrating relation. Unless prices are fully flexible
(i.e., 𝜃 = 0), failing to account for this term in the regression model would lead to
biased estimates.21 The firm’s lagged price in the dynamic pass-through model in

20Note that deviations from the rational expectation benchmark do not pose a threat to identification
as long as our instruments for marginal costs and competitors’ prices are orthogonal to the (possibly
non-zero mean) forecast error 𝑒𝑓 𝑡 .

21Combining the cointegrating relation in (16) and the error correction in (17), we obtain that the

16



Equation (15) serves precisely the purpose of the error correction term.
The omitted variable bias goes to zero as prices become flexible. Taking the

limit of Equation (17) for 𝜃 → 0 and 𝜂 𝑓 𝑡 → 𝑣 𝑓 𝑡 obtaining:

Δ𝑝 𝑓 𝑡 = Δ𝑝𝑜
𝑓 𝑡
+ Δ𝜂 𝑓 𝑡 . (18)

Equation (18) represents a long-run (i.e., static) pass-through model, which
corresponds to the time-differenced version of the cointegrating relation in (16).
The orthogonality condition of this model, 𝐶𝑜𝑣 (Δ𝑝𝑜

𝑓 𝑡
,Δ𝜂 𝑓 𝑡 ) = −𝜃𝑉𝑎𝑟 (Δ𝑝𝑜

𝑓 𝑡
) +

𝐶𝑜𝑣 (Δ𝑝𝑜
𝑓 𝑡
, 𝑣 𝑓 𝑡 ) = 0, holds when the data is measured at low frequency (e.g., annual,

as in Amiti, Itskhoki and Konings 2019) so that nominal rigidities can be ignored
(𝜃 � 0). However, given the degree of stickiness of prices observed in the
data—3 to 4 quarters according to our estimates—the orthogonality condition will
not hold with high-frequency data (e.g., quarterly, as in our case). In this case, the
dynamic pass-through model accounts for the error correction needed to identify the
parameters of interest.

3.2 Empirical specification

We take the dynamic pass-through model in (15) to the data. Identification of the
parameters 𝜃 and Ω requires us to address issues related to the measurement and
endogeneity of the present values of prices and costs. The richness and granularity
of our data allow us to tackle these issues through a combination of fixed effects and
instrumental variables.

We map the population regression in (15) to the following sample analog:

𝑝 𝑓 𝑡 = (1 − 𝜃 )
(
(1 − Ω) (𝑚𝑐𝑛

𝑓 𝑡
)8 + Ω(𝑝−𝑓

𝑖𝑡
)8

)
+ 𝜃𝑝 𝑓 𝑡−1 + 𝛼 𝑓 + 𝛼𝑠×𝑡 + 𝜀 𝑓 𝑡 . (Model A)

We use the series of firm-level marginal cost and competitor’s prices described in
Section 2.2 to construct measurable counterparts of (realized) present discounted
values. We calibrate the discount factor 𝛽 = 0.99, a standard value for quarterly
data, and truncate the present value sequences at eight-quarter leads.22

cointegration error satisfies an ARMA process, 𝜂𝑓 𝑡 = 𝜃𝜂𝑓 𝑡−1 − 𝜃Δ𝑝𝑜
𝑓 𝑡

+ 𝑣 𝑓 𝑡 , with autocorrelation
coefficient given by the degree of nominal rigidities.

22Specifically, we have that (𝑥𝑡 )𝑇 := (1 − 𝛽𝜃 )∑𝑇−1
𝜏=0 (𝛽𝜃 )𝜏𝑥𝑡+𝜏 + (𝛽𝜃 )𝑇𝑥𝑡+𝑇 for 𝑥𝑡 = {𝑚𝑐𝑛

𝑓 𝑡
, 𝑝

−𝑓
𝑖𝑡

} and
𝑇 = 8. For reasonable values of 𝜃 , this choice ensures that the discount factor (𝛽𝜃 )𝜏 ≈ 0 for 𝜏 > 𝑇 . We
verified that allowing for larger values of 𝑇 has no impact on our estimation results.
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We include a vector of sector-by-time fixed effects, 𝛼𝑠×𝑡 . These fixed effects help
us address several issues that typically complicate the identification of the NKPC
with aggregate data. First, they allow us to extend the theoretical framework to
incorporate sector-specific trends and time-varying steady states of the variables in
the model. Second, the inclusion of sector-by-time fixed effects helps us address
concerns related to shifts in long-term inflation expectations (Hazell et al. 2022).
Third, these fixed effects soak up variation in prices driven by demand shocks
common across firms within a sector, which could generate a spurious correlation
between marginal cost and prices due to general equilibrium effects.

Our empirical model also includes a vector of firm fixed effects, 𝛼 𝑓 , which
helps us address both measurement and endogeneity issues. First, firm fixed effects
absorb variation in steady-state markups. These could be heterogeneous across firms
because, for instance, firms might be producing goods of different quality. Second,
given our empirical measure of nominal marginal costs, the residuals of our baseline
empirical model will capture the present discounted value of firms’ SR-RTS. The firm
fixed effects control for this possible source of omitted variable bias to the extent that
production technologies are time-invariant.23 Finally, by controlling for these fixed
effects, the normalization of firm-level prices becomes immaterial (see footnote 18).

Despite the inclusion of this rich set of fixed effects, both measurement and
endogeneity issues may still threaten identification. First, firm-level marginal costs
and competitors’ prices are subject to measurement error, potentially leading to
attenuation bias. More importantly, some of the variation in these variables might
be due to demand-side factors and thus correlate with the error term. For marginal
cost, this occurs if firms’ short-run cost schedules depend on the scale of production
(i.e., if SR-RTS differ from unity) or if firms face locally upward-sloping input supply
curves (i.e., if input prices adjust with demand). Similarly, competitors’ prices are
jointly determined with a firm’s own price and, therefore, might correlate with the
firm’s demand shocks.

To address these issues, we construct a set of instruments (𝑍 𝑓 𝑡 ) and estimate
Model A via Generalized Method of Moments (GMM) imposing moment conditions
of the form E{𝑍 𝑓 𝑡 · 𝜀 𝑓 𝑡 } = 0.24

23In Section 4.1, we present a robustness exercise that explicitly accounts for possible variation in
this variable and show that our estimates are essentially unchanged.

24The GMM estimation procedure follows a two-step approach, iterating over guesses of 𝜃 and Ω

18



Instrument for marginal cost—Our baseline instrument for marginal cost
leverages variation in the persistent component of firms’ total factor productivity. We
construct a firm-level total factor productivity index using information on firm-level
physical output and input demands (labor, capital, and intermediate inputs). In logs:

𝑇𝐹𝑃𝑄 𝑓 𝑡 = 𝑦𝑓 𝑡 − 𝑓 (𝑙 𝑓 𝑡 , 𝑘 𝑓 𝑡 ,𝑚 𝑓 𝑡 ;ϑ),

where 𝑓 (·) denotes the firm’s gross-output production function and ϑ a vector
of parameters determining the output elasticities with respect to different inputs.
Variation in TFPQ captures changes in firms’ technical efficiency, which is a
fundamental component of their marginal cost, as noted in Equation (5). We use
four-quarters lagged technical efficiency (𝑇𝐹𝑃𝑄 𝑓 𝑡−4) as our instrument for marginal
cost.

This instrument is relevant if technical efficiency affects marginal costs and
if technical productivity is persistent. As we demonstrate below, the instrument
is strong. The identifying assumption that guarantees that its relevant is that the
persistent component of technical efficiency is orthogonal to the current and future
demand shocks captured in the error term. Given the timing of our instrument, this
exclusion restriction holds if either of the following conditions is satisfied: (i) our
technical productivity measure is uncorrelated with demand shocks, or (ii) demand
shocks are i.i.d. or sufficiently transitory after removing both a permanent component
of demand (absorbed by the firm fixed effects) and industry trends (absorbed by the
industry-by-time fixed effects). In Section 4.2, we present a battery of empirical tests
suggesting that both conditions are likely satisfied in the data.

For each firm in our sample, we recover firm-level technical efficiency as
a residual from a gross-output production function estimation. For our baseline
instrument, we parameterized firms’ production functions assuming Cobb-Douglas
technologies. We adopt the estimation strategy developed in Lenzu, Rivers and
Tielens (2024) to estimate the parameter vector ϑ, allowing elasticities to vary

until convergence. In each iteration, we compute the present discounted values of marginal costs and
competitors’ prices, (𝑚𝑐𝑛

𝑓 𝑡
)8 and (𝑝−𝑓

𝑖𝑡
)8, based on the current guess of 𝜃 . To ensure the estimates are

macroeconomically representative, we weight observations using their Törnqvist weight, 𝑠𝑓 𝑡 , so that
each firm contributes proportionally to its role in the construction of aggregate price index. Standard
errors are clustered at the sector level to account for potential correlation of error terms across firms
within similar industries.
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across sectors.25 We demonstrate robustness to alternative parameterizations of the
production function in Section 4.1.

Instruments for competitors’ prices—Building on Amiti, Itskhoki and Konings
(2019), we construct two instruments for competitors’ prices that leverage variation
in international trade prices.

Let us denote by F★
𝑘𝑖

the set of international competitors of firm 𝑓 that are
located in country 𝑘 that sell products in industry 𝑖 . The first instrument, denoted
by 𝑝★𝐸𝑈𝑖𝑡 , is a shifter of the price of Euro area international competitors. We use
the COMEXT dataset from Eurostat to compute the (sales-weighted) average log
price of goods in industry 𝑖 that a given Euro-area country, 𝑘 , charges to different
export destinations around the world.26 We exclude Belgium as well as all other
Euro-area countries from the list of export destinations to make sure that variation
in the instrument does not pick up demand shocks that are correlated across Belgium
and other neighboring countries. We compute an index by averaging across all
competitors 𝑗 from EU countries:

Δ𝑝★𝐸𝑈𝑖𝑡 =
∑︁
𝑘∈𝐸𝑈

∑︁
𝑗∈F★

𝑘𝑖

𝑤 𝑗𝑡 · Δ𝑝−𝐵𝑘𝑖𝑡 ,

where the weight is obtained by normalizing the Törnqvist weight in formula (13)
by the market share of EU competitors in industry 𝑖 in Belgium: 𝑤 𝑗𝑡 := 𝑠

−𝑓
𝑗𝑡

·
(∑𝑘∈𝐸𝑈

∑
𝑗∈F★

𝑘𝑖
𝑠
−𝑓
𝑗𝑡
)/(∑𝑘

∑
𝑗∈F★

𝑘𝑖
𝑠
−𝑓
𝑗𝑡
). Finally, we concatenate Δ𝑝★𝐸𝑈𝑖𝑡 to obtain the

instrument (in levels), 𝑝★𝐸𝑈𝑖𝑡 . The rationale for this instrument is that the average price
charged by international competitors outside the EU correlates with their marginal
cost of production but not with demand shocks in Belgium.

The second instrument, denoted by 𝑝★𝐹𝑖𝑡 , is a shifter of the price of non-EU
competitors that leverages variation in bilateral exchange rates (Δ𝑒𝑘𝑡 ) between the
currency used by country 𝑘 and the Euro:

Δ𝑝★𝐹𝑖𝑡 =
∑︁
𝑘∉𝐸𝑈

∑︁
𝑗∈F★

𝑘𝑖

𝑤 𝑗𝑡 · Δ𝑒𝑘𝑡 ,

where theweight𝑤 𝑗𝑡 is now scaled by themarket share of non-EU competitors:𝑤 𝑗𝑡 :=
𝑠
−𝑓
𝑗𝑡

· (∑𝑘∉𝐸𝑈

∑
𝑗∈F★

𝑘𝑖
𝑠
−𝑓
𝑗𝑡
)/(∑𝑘

∑
𝑗∈F★

𝑘𝑖
𝑠
−𝑓
𝑗𝑡
). As before, we concatenate Δ𝑝★𝐹𝑖𝑡 to obtain

the instrument 𝑝★𝐹𝑖𝑡 in levels. Here, the exclusion restriction requires that non-EU
25The estimation procedure and results are detailed in Section OA.2 of the Supplemental Appendix.
26As in Amiti, Itskhoki and Konings (2019), we consider the following set of EU countries 𝑘 ∈

{Austria, Germany, Spain, Finland, France, Greece, Ireland, Italy, Netherlands, and Portugal}.
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exchange rates are orthogonal to domestic demand shocks.

4 Estimation results

Instrument relevance and over-identification test—We begin by assessing the
power of our instruments. In Panel A in Table 2, we regress the present values of
marginal cost and competitors’ prices on our set of instruments, essentially producing
what would be the first-stage regressions of a linear two-stage least squares model.
The first two columns refer to the first stage of our baseline model, Model A. As
we can see, all coefficients have the expected signs and are statistically significant.
The high values of the Cragg-Donald and Kleibergen-Paap F-statistics indicate that
we can confidently reject the hypothesis of weak instruments at standard confidence
levels. Importantly, the low test statistics for the Hansen-Sargan over-identification
test indicate that our instruments also satisfy the exclusion restrictions required by
the moment conditions. Further evidence supporting instrument validity is presented
below.

Baseline estimates of 𝜃 and Ω—Column (1) in Panel B reports the structural
estimates for the degrees of nominal and real rigidities. Our estimates indicate a
substantial degree of price stickiness, with a preciselymeasured estimate of 𝜃 = 0.711.
Through the lens of a Calvo model, this implies that, on average, prices remain fixed
for approximately three to four quarters. This result aligns remarkably well with the
average frequency of price adjustments measured by Nakamura and Steinsson (2008)
from US PPI data and with those obtained from Belgian PPI data (0.72).

Our estimates also indicate an economically meaningful role for strategic
complementarities in the pass-through of shocks. The estimate of Ω is 0.570 and
is precisely estimated. This value is consistent with the findings in Amiti, Itskhoki
and Konings (2019), suggesting that the pass-through of firms’ own marginal costs
and of competitors’ prices are roughly of the same magnitude.

Pass-through and the slope of the cost-based NKPC—These estimates imply
an elasticity of a firm’s own price to a permanent shock to marginal cost 𝜕𝑝 𝑓 𝑡

𝜕𝑚𝑐𝑛
𝑓 𝑡

=

(1−Ω) (1−𝜃 ) of approximately 0.125.At the aggregate level, we find an economically
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Table 2: Estimation results

Panel A: First stage regressions

Model A Model B Model C

Dep. Var→ (𝑚𝑐 𝑓 𝑡 )8 (𝑝−𝑓
𝑖𝑡
)8 (𝑚𝑐 𝑓 𝑡 )8 𝑚𝑐 𝑓 𝑡

(1) (2) (3) (4)

𝑇𝐹𝑃𝑄 𝑓 𝑡−4 -0.124 0.041 -0.111 -0.261
(0.021) (0.023) (0.024) (0.004)

𝑝★𝐸𝑈
𝑓 𝑡

0.246 0.535
(0.172) (0.181)

𝑝★𝐹
𝑓 𝑡

0.254 0.542
(0.173) (0.190)

𝑝 𝑓 𝑡−1 0.244 0.122 0.270 0.324
(0.031) (0.033) (0.028) (0.004)

Panel B: Structural estimates

Model A Model B Model C Model A-U

(1) (2) (3) (4)

𝜃 0.711 0.679 0.710 0.714
(0.014) (0.026) (0.019) (0.065)

Ω 0.570 0.502 0.432 0.519
(0.059) (0.152) (0.170) (0.084)

𝜌𝑚𝑐 0.747
(0.092)

𝜚 0.708
(0.021)

Panel C: Slope of the Phillips curve

𝜆 0.052 0.077 0.069 0.056
(0.007) (0.038) (0.030) (0.027)

Test statistics

Cragg-Donald 𝐹 939.489 1778.129 5775.577
Kleibergen-Paap 𝐹 93.093 137.779 101.657
Hansen-Sargan 𝐽 4.523 0.662 0.214 4.501
𝐻0 : 𝜃 = 𝜚 p-val 0.900

Notes. Panel A reports the estimates of linear regressions of marginal costs and competitors’ prices on
our instruments and controls. The standard errors of the first stage regression (reported in parenthesis)
are block-bootstrapped to account for estimation error in the estimates needed to construct the present
values. Panels b and c report the estimates of the structural parameters and slope of the NKPC (𝜆),
respectively. GMM robust standard errors are clustered at the sector level. Models A and A-U include
sector-by-time fixed effects and firm fixed effects. Models B and C include industry-by-time fixed
effects and firm fixed effects.
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meaningful relationship between fluctuations in marginal costs and aggregate
inflation dynamics, even after accounting for the role of imperfect competition. Using
Equation (12), we estimate the slope of the cost-based NKPC 𝜆 = 0.052 (Panel C,
Column (1)), statistically significant and precisely estimated.

Our estimate differs markedly from existing estimates of the NKPC slope that
use the output gap or unemployment as measures of real economic activity. These
estimates typically range from two to ten times smaller than ours. For instance,
Rotemberg and Woodford (1997) and Hazell et al. (2022) find a 𝜅 of 0.024 and 0.006,
respectively, for US data. In Section 6, we revisit this comparison and demonstrate
that the two estimates are, in fact, not inconsistent. We provide empirical evidence
that helps reconcile why inflation appears to respond much more strongly to
fluctuations in marginal cost than output (or unemployment).

4.1 Robustness analysis

Measurement of competitors’ prices and movements in industry

demand—Our baseline measure for the competitors’ price index considers the
set of relevant competitors to consist of other firms, both domestic and international,
operating within the same four-digit industry as firm 𝑓 . However, some relevant
competitors may operate outside this industry boundary. To address this concern,
we incorporate industry-by-time fixed effects, which absorb the present value of
competitors’ prices without requiring prior assumptions about the relevant price
index:27

𝑝 𝑓 𝑡 = (1 − 𝜃 ) (1 − Ω) (𝑚𝑐𝑛
𝑓 𝑡
)8 + 𝜃𝑝 𝑓 𝑡−1 + 𝛼 𝑓 + 𝛼𝑖×𝑡 + 𝜀 𝑓 𝑡 . (Model B)

Note that the inclusion of narrowly defined industry-by-time fixed effects also
captures more granular demand variation that the sector-by-time fixed effects in our
baseline model may miss.

Column (3) of Panel A in Table 2 presents the first-stage regression estimates.
The structural parameter estimates and implied NKPC slope are reported in Column
(2) in Panels b and c, respectively. Both the estimated degree of price stickiness and
strategic complementarities are close to their baseline values and precisely estimated.

27Over 90 % of the variation in each firm competitors’ price index occurs at the industry-year level,
since the vast majority of firms are small compared to the industry.
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The implied slope of the Phillips curve is somewhat higher than our baseline estimate
(𝜆 = 0.077), suggesting an even stronger pass-through of fluctuations in marginal
costs into prices.

Measurement of present values—A valuable feature of both Model A and B is
that they do take a stand on the dynamic governing the evolution of marginal costs.
The flip side of this flexibility is that the estimating equations are data-demanding
and highly nonlinear. In particular, 𝜃 enters both as a coefficient in front of the
present values and lagged prices as well as in the construction of the discounted
present values. To address this concern, we assume that marginal cost, in deviations
from its industry trend, follows a first-order auto-regressive process with persistence
parameter 𝜌 < 1

𝛽𝜃
and estimate the following system of linear equations:

𝑝 𝑓 𝑡 = Ψ𝑚𝑐 ·𝑚𝑐𝑛
𝑓 𝑡
+ 𝜃𝑝 𝑓 𝑡−1 + 𝛼 𝑓 + 𝛼𝑖×𝑡 + 𝜀 𝑓 𝑡 ,

𝑚𝑐𝑛
𝑓 𝑡
= 𝜌𝑚𝑐 𝑚𝑐𝑛

𝑓 𝑡−1 + 𝛼 𝑓 + 𝛼𝑖×𝑡 + 𝜖
𝑚𝑐
𝑓 𝑡
,

(Model C)

where Ψ𝑚𝑐 := (1 − 𝜃 ) (1 − Ω) 1−𝛽𝜃
1−𝛽𝜃𝜌𝑚𝑐 measures the price elasticity to a transitory

shock to marginal costs, given the persistence of these shocks. Column (4) in
Panel A presents the first-stage regression estimates. The structural parameter
estimates and the implied NKPC slope are reported in Column (3) in Panels b and
c, respectively. These estimates are in line with those obtained from the nonlinear
GMM specifications, but even more precisely estimated. The implied price elasticity
to a transitory increase in marginal cost of approximately Ψ𝑚𝑐 = 0.103 and, as with
Model B, the estimated slope of the NKPC is somewhat higher than our baseline
(𝜆 = 0.069).

Unrestricted model—As explained in the previous section, the firm’s lagged price
enters the empirical specification ofModel A as a control for short-run price dynamics
with coefficient 𝜃 . On the one hand, imposing this theoretical restriction tightens the
inference of the structural parameters. On the other hand, one might be concerned
about the endogeneity of this variable and the possible biased that it might introduce
in the estimate of 𝜃 . This would be the case to the extent that, after netting out
industry-time fixed effects, the idiosyncratic demand shocks subsumed in the error
term somehow display some degree of persistency (see the discussion in Section 4.2).
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To address this concern, we estimate an unrestricted variant of Model A:

𝑝 𝑓 𝑡 = (1 − 𝜃 )
(
(1 − Ω) (𝑚𝑐𝑛

𝑓 𝑡
)8 + Ω(𝑝−𝑓

𝑖𝑡
)8

)
+ 𝜚𝑝 𝑓 𝑡−1 + 𝛼 𝑓 + 𝛼𝑠×𝑡 + 𝜀 𝑓 𝑡 , (Model A-U)

which allows the coefficient in front of 𝑝 𝑓 −1 to possibly differ from 𝜃 .
We present the estimates obtained fromModel A-U in Column (4), Panels b and

c, of Table 2.28 We find that estimates of both 𝜃 = 0.714 and Ω = 0.519 (and therefore
the NKPC slope) are almost identical to those obtained from the restricted model in
Column (1). Additionally, the estimated coefficient on lagged prices is 𝜚 = 0.708. We
cannot reject the null hypothesis that 𝜚 = 𝜃 with a p-value of 0.90. Accordingly, the
unconstrained model delivers an estimate of the NKPC slope that is essentially the
same as in our baseline model (𝜆 = 0.056). These results suggest that the estimates
from the baseline model are robust to the possibility that 𝑝 𝑓 𝑡−1 is endogenous and also
lend strong empirical support to the restrictions imposed by the economic theory.

Flexible production functions and variable SR-RTS—Our measure of marginal
cost does not account for variation in firms’ SR-RTS, which are not directly observable
in the data. If firms’ technologies are well approximated by a Cobb-Douglas
production function, this variation would be absorbed by firm or industry fixed
effects. However, if SR-RTS vary with the scale of production—as is generally the
case under a CES production function—not accounting for this source of variation
could lead to estimation bias.

As a robustness exercise, we estimate production functions using a Translog
specification. This flexible functional form, a second-order approximation to CES,
allows us to capture output elasticities with respect to different inputs, varying
across firms and over time.29 We then use the estimated output elasticities of labor
and intermediate inputs to recover firm-specific and time-varying estimates of the
sensitivity of marginal cost to output— 𝜈 𝑓 𝑡 = (𝜗𝑙

𝑓 𝑡
+ 𝜗𝑚

𝑓 𝑡
)−1 − 1 in Equation (14)—and

produce a measure of marginal cost that accounts for heterogeneity in firm-level
SR-RTS.

Column (1) in Table 3 reports the estimates of our baseline model including the
logarithm of the four-quarters lagged 𝜈 𝑓 𝑡−4 as a control for SR-RTS. In Column (2),

28The first stage regression is the same for Models A and Model A-U, reported in Panel A, Columns
(1) and (2).

29See Section OA.2 of the Supplemental Appendix for details on the estimation of Translog
production functions and associated TFPQ instrument.

25



we directly account for variation in SR-RTS in the construction of our measure of
nominal marginal cost,𝑚𝑐𝑛

𝑓 𝑡
= ln(TVC𝑓 𝑡/𝑌𝑓 𝑡 ) + ln(1+𝜈 𝑓 𝑡 ). In Column (3), we replace

our baseline TFPQ instrument (recovered assuming Cobb-Douglas technologies)
with a TFPQ index constructed assuming Translog technologies. Across all these
alternative specifications, the pass-through coefficients and the implied NKPC slope
remain broadly alignedwith our baselinemodel estimates, both in terms ofmagnitude
and statistical significance.

Macroeconomic complementarities—In Section 1, we derived the equation of the
cost-based NKPC under the assumption of constant aggregate SR-RTS. In Section
OA.1 of the Supplemental Appendix, we consider a more general framework with
time-invariant, but possibly decreasing aggregate SR-RTS. In this case, the NKPC
slope can be expressed as:

𝜆 =
(1 − 𝜃 ) (1 − 𝛽𝜃 )

𝜃
(1 − Ω)Θ,

where the additional term Θ := 1
1+𝛾𝜈 (1−Ω) < 1 captures the role of macroeconomic

complementarities that stem from decreasing returns. Here 𝜈 is a parameter inversely
related to the average of SR-RTS and 𝛾 denotes the elasticity of substitution across
goods within industries. Thus, if the economy exhibits aggregate decreasing returns
to scale (𝜈 < 1), the slope of the NKPC would be flatter, resulting in a more modest
sensitivity of inflation to changes in real economy activity (see, e.g., Galí 2015).

In Section OA.2 of the Supplemental Appendix, we present estimates of returns
to scale for different sectors, which suggest that SR-RTS are close to unity at both the
sector level and in the aggregate. Given our estimates of 𝜈 and Ω, and a reasonable
calibration of 𝛾 , we calculate a value of Θ of approximately 0.941.30 Accordingly, we
conclude that macroeconomic complementarities would lead to a modest reduction
of the NKPC slope, well within the confidence bounds of our baseline estimates.

4.2 Threats to identification

We now address possible threats to our identification strategy concerning our
instrument for marginal cost. The exclusion restriction on 𝑇𝐹𝑃𝑄 𝑓 𝑡−4 is violated

30We calibrate 𝛾 to 4 to obtain a gross aggregate steady-state markup between 1.3 and 1.4. The
sectoral estimates of SR-RTS range from 0.93 to 0.98. The aggregate returns to scale are estimated to
be approximately 0.965, which implies a value of 𝜈 of approximately 0.036.
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Table 3: Robustness exercises and assessment of identification threats

SR-RTS 𝑚𝑐𝑛 Translog CU K CU K&L 𝑇𝐹𝑃𝑄𝑡−8
control with SR-RTS TFPQ
(1) (2) (3) (4) (5) (6)

Panel A: Structural estimates

𝜃 0.711 0.712 0.711 0.711 0.711 0.702
(0.013) (0.014) (0.014) (0.014) (0.014) (0.019)

Ω 0.567 0.552 0.549 0.570 0.565 0.664
(0.061) (0.059) (0.059) (0.059) (0.060) (0.091)

Panel B: Slope of the Phillips curve

𝜆 0.052 0.054 0.054 0.052 0.052 0.044
(0.007) (0.005) (0.005) (0.007) (0.007) (0.015)

Test statistics

Cragg-Donald 𝐹 969.598 971.037 844.290 925.500 891.652 399.520
Kleibergen-Paap 𝐹 99.521 93.762 62.420 90.866 99.396 10.102
Hansen-Sargan 𝐽 4.462 4.917 4.616 4.524 4.651 4.033

Notes. This table reports various robustness tests and empirical tests on the validity of our instruments.
All regressions build on our baseline specification (Model A). In Columns (1)–(3), we include firm-time
varying SR-RTS in the control set, account for firm-time varying SR-RTS in the construction of our
measure of nominal marginal cost, and replace our baseline TFPQ instrument with one that assumes
Translog production functions. In Columns (4) and (5), we adjust our productivity instrument to
account for variable capacity utilization in capital and in both capital and labor. In Column (6) we
lag our TFPQ instrument by eight quarters instead of four quarters.

if lagged technical productivity correlates with current or future demand shocks
subsumed in the error term (Cov(𝑇𝐹𝑃𝑄 𝑓 𝑡−4, 𝜑 𝑓 𝑡+𝜏 ) ≠ 0 for any 𝜏 ≥ 0). A possible
concern is that our technical productivity measure could be sensitive to demand
via adjustments in capacity utilization. However, even if this problem were to
exist, for it to invalidate our identifying assumption, demand shocks must remain
sufficiently serially correlated after removing a permanent component (absorbed into
the firm-fixed effects) and industry trends (absorbed into the industry-time fixed
effects). Put differently, our estimates could be biased if both (i) demand shocks move
TFPQ and (ii) demand shocks display a quantitatively relevant persistence in the data.
We discuss each issue in turn and conclude that neither seems to pose a threat to our
identification scheme.

Variable capacity utilization—Data limitations prevent us from accounting for
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capacity utilization in the construction of our TFPQ instrument for the full sample.31

Nevertheless, we have access to a measure of capacity utilization for a subsample of
our dataset, which we use to perform the following empirical tests.

First, to assess whether our marginal cost measure is affected by past variation
in capacity utilization, we regress 𝑚𝑐𝑛

𝑓 𝑡
on capacity utilization lagged four quarters

(as our instrument). We find a small and statistically insignificant elasticity (estimate
0.011, SE 0.052). We obtain a similarly small and statistically insignificant coefficient
on lagged capacity utilization when this variable is included as a control in the
first-stage regression for marginal cost (estimate 0.036, SE 0.025) and essentially no
impact on the first-stage coefficient attached to our TFPQ instrument. Together, these
tests suggest that the predictive power of our instrument for𝑚𝑐𝑛

𝑓 𝑡
does not appear to

reflect variation in capacity utilization.
Second, we construct two “purified" TFPQ instruments that adjust inputs

(capital and labor) for variation in capacity utilization and re-estimate our baseline
model using the two utilization-adjusted TFPQ variables as instruments.32 The
results are reported in Table 3. In Column (4), the TFPQ instrument is constructed
by adjusting only the capital stock for utilization; in Column (5), both capital and
labor are adjusted.33 In both cases, the regressions pass the weak instrument
and overidentification tests with test statistics similar to those of our baseline
specification. More importantly, the estimates of the pass-through coefficients and
NKPC slope are essentially unaffected, suggesting that unobserved demand-driven
movements in (lagged) capacity utilization are unlikely to be a concern for
identification.

Persistence of demand shocks—Next, we address the possibility that the
unanticipated demand shocks in the error term might display persistent serial
correlation. The difficulty with producing direct empirical tests that speak to this

31See Basu, Fernald and Kimball (2006) for a discussion on variable capacity utilization as a
demand-driven source of variation in the Solow residual, as well as for procedures to account for
it in the construction of TFP residuals when information on labor hours is available.

32We discuss in Section OA.3 of the Supplemental Appendix a procedure to predict capacity
utilization for observations when this information is not directly observable.

33As further support for our TFP instrument, in Section OA.3 of the Supplemental Appendix, we
present a falsification test that evaluates whether our purified TFP measure—adjusted to remove
cyclical utilization effects—responds to high-frequencymonetary or oil shockswhen aggregated across
firms. Reassuringly, the results show small and statistically insignificant effects on TFP, consistent with
theoretical predictions.
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issue is that these shocks are not directly observable. However, two pieces of evidence
suggest that the serial correlation of demand shocks is weak and short-lived and,
therefore, unlikely to introduce bias in our estimates.

A first piece of evidence comes from inspecting the regression residuals. The
idea is that if demand shocks are serially correlated, so will be the residuals that are a
function of such shocks. We find that the autocorrelation coefficient is economically
small and marginally significant at a one-quarter lag (point estimate −0.09, p-value
0.09) and it becomes economically and statistically insignificant already at the
second-quarter lag (point estimate −0.01, p-value 0.69). These results suggest that
demand shocks (net of fixed effects) are likely highly transitory.

As a second exercise, we show in Column (6) of Table 3 that our results are
robust to lagging our TFP instrument eight quarters, as opposed to four. Both the
parameter estimates and the slope are essentially unchanged. To the extent that the
serial correlation decays over time, these results suggest that the identifying variation
in our instrument is unlikely capturing persistent demand shocks.

Other threats to identification—Other threats to identification include persistent
measurement errors and forward-looking investments in productivity. Regarding
the first point, the concern is that mismeasurement of output and input prices—if
persistent—could create a mechanical correlation between the lagged TFPQ
instrument, our marginal cost measure, and the regression residual. As is often the
case, directly addressing this form of non-classical measurement error is challenging.
However, the short-lived serial correlation in the residuals and the robustness with
the further-lagged instrument discussed above speak to this issue and offer useful
evidence to alleviate this concern.

Regarding the second point, one might worry that firms invest in
productivity-enhancing activities today in anticipation of future demand changes.
While this is possible, existing evidence indicates that technical productivity responds
to such investments only after a significant lag. For example, Lenzu, Rivers and
Tielens (2024) finds that technical productivity reacts to R&D expenditures with a
three-year delay.
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5 Aggregate inflation dynamics

In this section, we evaluate the ability of our estimatedmodel to capture the aggregate
time series of inflation for the Belgian manufacturing sector. To derive an expression
for aggregate inflation, we use the equation for the price index in (9) and the equation
for the reset price in (10). We then close the model by assuming that nominal
marginal cost follows a random walk with drift.34 We therefore obtain the following
reduced-form expression for quarterly inflation (see Appendix A for derivations):

𝜋𝑡 = �̃�
(
𝑚𝑐𝑛𝑡 − 𝑝𝑡−1

)
+ 𝛼 + 𝜃𝑢𝑡 , (19)

where 𝛼 captures trend inflation and 𝑢𝑡 is the aggregate cost-push shock. The
parameter �̃� in Equation (19) is a reduced-form slope, capturing the contemporaneous
pass-through of fluctuations in aggregate real marginal cost—defined as nominal
marginal cost scaled by the lagged price level—into inflation, taking into account
the persistence of cost shocks. Similar to the cost-based NKPC slope (𝜆), this
reduced-form slope is a functional equation in the primitive pricing parameters 𝜃 ,
Ω, and 𝛽 . When evaluated at our estimated parameter values, �̃� equals 0.22.

Iterating Equation (19) backward, we derive an expression for year-over-year
inflation as a function of a four-quarter moving average of nominal marginal cost
scaled by the price level:

𝜋
y-y
𝑡 =

3∑︁
𝜏=0

�̃�(1 − �̃�)𝜏 (𝑚𝑐𝑛𝑡−𝜏 − 𝑝𝑡−4) + 𝛼y-y. (20)

The black line in Figure 1 plots year-over-year producer-price inflation (PPI) for
the Belgian manufacturing sector. The red line in Figure 1 depicts a model-implied
inflation series computed according to Equation (20). Through the lens of our model,
the difference between the black and red lines is the component of inflation due to
cost-push shocks, 𝑢𝑡 .

As we can see, this parsimonious model effectively tracks the broad swings in
34This assumption is consistent with the empirical evidence. To show this, we first construct

aggregate marginal cost,𝑚𝑐𝑛𝑡 , as a weighted average (with Törnqvist weights) of firm marginal costs
𝑚𝑐𝑛

𝑓 𝑡
. Then, we regress𝑚𝑐𝑛𝑡 on its one-quarter lag, instrumenting the latter with a two-quarter lag to

reduce downward bias due to measurement error. We find that the estimated autoregressive coefficient
is 𝜌𝑚𝑐 = 0.987 (0.015), with Newey-West standard errors in brackets. Additionally, the Dickey-Fuller
test does not reject the null hypothesis of unit root with 𝑍 = −1.639 and p-value = 0.463. Notice
that this estimate is different, although consistent, from those in Table 2, as those estimates should be
interpreted as the persistence of deviations from trend due to the inclusion of time fixed effects.
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Figure 1: Aggregate inflation dynamics
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Notes. This figure compares the inflation dynamics in the data to that implied by the model. The black
line represents manufacturing PPI inflation obtained by aggregating price changes from PRODCOM.
The red line is the model-implied manufacturing PPI inflation constructed as in Equation (20).

PPI inflation over our sample period. It accounts for nearly seventy percent of the
variation in inflation (𝑅2 = 0.68) with a correlation coefficient of 0.8. It is noteworthy
that the model captures the drop in inflation during the 2008 financial crisis and
the sharp run-up in 2016 followed by a subsequent decline. Additionally, the model
successfully captures the consistent decline in inflation from 2011 to 2016, although
it does not fully capture the amplitude.

Note also that, within our framework, unobservable cost-push shocks account
for a much smaller fraction of inflation volatility than is typically found in the
quantitative literature.35 In addition, we purposely chose to compare the data against
the simplest possible framework. For instance, we did not account for other factors
that could further rationalize inflation dynamics, such as lag-dependence in inflation,
deviations from rational expectations, or imperfect information (see, e.g., Galí and
Gertler 1999, Jørgensen and Lansing 2023, Gabaix 2020). Incorporating these forces in
future research may further enhance our understanding of the relationship between
inflation dynamics and real economic activity.

35For example, in Primiceri, Schaumburg and Tambalotti (2006), cost-push shocks arising from
variation in the desired price and wage markups account for about 70 percent of the volatility of
inflation.
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6 Reconciliation with the conventional NKPC

In this section, we reconcile our high slope estimates for the marginal cost-based
curve with the low estimates of the conventional formulation. Following the
literature, we make assumptions that allow us to establish a log-linear relationship
between marginal costs, prices, and the output gap at the firm level. Under these
assumptions, the output-based Phillips curve slope (𝜅) is the product of the marginal
cost-based slope (𝜆) and the output elasticity of marginal cost (𝜎𝑦):

𝜅 = 𝜆 · 𝜎𝑦 .

We then develop two different identification approaches to estimate 𝜎𝑦 from
micro-level data and retrieve 𝜅. Consistent with the literature, we find a low
output-based slope, which is explained by a low elasticity of marginal cost with
respect to changes in output.

6.1 Marginal cost and the output gap at the firm level

To begin, we derive a log-linear relation between firm-level marginal cost and the
output gap, similar to the one typically assumed at the aggregate level to obtain the
conventional formulation of the Phillips curve. In doing so, we allow for general
equilibrium effects that affect firms’ costs through the impact of labor demand on
wages (see e.g., Galí 2015).

We assume real wages are determined in general equilibrium at the industry
level. Accordingly, we can express firm-level log real marginal cost, 𝑚𝑐 𝑓 𝑡 , as a
function of the industry real wage,𝑤𝑖𝑡 − 𝑝𝑡 , and firm-level marginal product of labor,
𝑚𝑝𝑛 𝑓 𝑡 :

𝑚𝑐 𝑓 𝑡 = (𝑤𝑖𝑡 − 𝑝𝑡 ) −𝑚𝑝𝑛 𝑓 𝑡 .

Next, as in the benchmark NK model, we assume that industry real wages are flexible
and increasing in current industry output, (𝑤𝑖𝑡 − 𝑝𝑡 ) = 𝜎𝑤𝑦𝑖𝑡 , with elasticity 𝜎𝑤 . The
presence of industry output captures the general equilibrium feedback of aggregate
demand on firms’ marginal cost. We assume that labor supply is industry-specific,
which implies that 𝜎𝑤 is independent of whether industry output is driven by
aggregate or industry-specific shocks. In addition, we assume the firm’s marginal
product of labor depends positively on firm productivity, 𝑧 𝑓 𝑡—which may contain
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both an aggregate and an idiosyncratic component—and inversely on firm output,𝑦𝑓 𝑡 ,
with elasticity given by SR-RTS (𝜈) (homogeneous across firms and time-invariant,
for simplicity). We can thus express firm-level real marginal cost as:

𝑚𝑐 𝑓 𝑡 = 𝜎
𝑤𝑦𝑖𝑡 + 𝑧 𝑓 𝑡 + 𝜈𝑦𝑓 𝑡 .

Without loss of generality, we write the logarithm of a firm’s output as the sum
of log industry output and idiosyncratic supply (𝜖𝑠𝑡 ) and demand (𝜖𝑑𝑡 ) shocks:

𝑦𝑓 𝑡 = 𝑦𝑖𝑡 + 𝜖𝑠𝑓 𝑡 + 𝜖
𝑑
𝑓 𝑡
.

The supply and demand shocks are linear in the idiosyncratic component of firm’s
productivity, 𝑧 𝑓 𝑡 , and in the firm’ idiosyncratic demand shifter, 𝜑 𝑓 𝑡 , respectively.

Finally, we define the natural levels of industry and firm output, 𝑦∗𝑖𝑡 and 𝑦
∗
𝑓 𝑡
. As

is conventional, we define 𝑦∗𝑖𝑡 as the equilibrium level of output under flexible prices
and wages, where the desired markup is constant. The natural level, 𝑦∗

𝑓 𝑡
, is similarly

defined, also taking into account idiosyncratic supply shocks:

𝑦∗
𝑓 𝑡

:= 𝑦∗𝑖𝑡 + 𝜖𝑠𝑓 𝑡 .

Under these assumptions, we can express the deviation of real firm marginal cost
from steady state,𝑚𝑐 𝑓 𝑡 , as a constant-elasticity function of the firm-level output gap:

𝑚𝑐 𝑓 𝑡 = 𝜎
𝑦 (𝑦𝑓 𝑡 − 𝑦∗𝑓 𝑡 ) − 𝜎

𝑤𝜖𝑑
𝑓 𝑡
, (21)

where the coefficient 𝜎𝑦 := 𝜎𝑤 + 𝜈 represents the elasticity of marginal cost with
respect to the output gap. The error term 𝜎𝑤𝜖𝑑

𝑓 𝑡
accounts for the fact that wages

depend on the industry component (but not on the idiosyncratic component) of firm
demand.

To derive a pricing equation in terms of output that allows us to identify 𝜎𝑦

and therefore 𝜅, we rearrange Equation (21) and substitute for 𝑚𝑐𝑛
𝑓 𝑡

into Model A
introduced in Section 3.2. As in Model C, we then postulate that nominal output
and the competitors’ price index, in deviations from their trends, follow first-order
autoregressive processes. This leads to an empirical model that directly relates
firm-level prices and output:

𝑝 𝑓 𝑡 = Ψ𝑦 · 𝜎𝑦𝑦𝑛
𝑓 𝑡
+ Ψ𝑝𝑝

−𝑓
𝑖𝑡

+ 𝜃𝑝 𝑓 𝑡−1 + 𝛼 𝑓 + 𝛼𝑠×𝑡 + 𝜀𝑝𝑓 𝑡 , (Model D)
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where Ψ𝑦 and Ψ𝑝 depend on the persistence of shocks to output and prices:

Ψ𝑦 := (1 − 𝜃 ) (1 − Ω) 1 − 𝛽𝜃
1 − 𝛽𝜃𝜌𝑦 and Ψ𝑝 := (1 − 𝜃 )Ω 1 − 𝛽𝜃

1 − 𝛽𝜃𝜌𝑝 .

Note that, in contrast to our cost-based pass-through regressions, the error term in
Model D, 𝜀𝑝

𝑓 𝑡
:= (1 − 𝜎𝑤 )𝜀𝑑

𝑓 𝑡
− 𝜎𝑦𝑦∗

𝑓 𝑡
, captures both the firm’s idiosyncratic demand

shocks and idiosyncratic supply shocks, which affect the firm’s (unobservable)
natural level of output.

A complementary way to identify 𝜎𝑦 is to rewrite Equation (21) in terms of
nominal marginal cost. Then, taking first differences, we obtain:

Δ𝑚𝑐𝑛
𝑓 𝑡
= 𝜎𝑦Δ𝑦𝑛

𝑓 𝑡
+ 𝛼 𝑓 + 𝛼𝑠×𝑡 + 𝜀𝑚𝑐𝑓 𝑡 , (Model E)

where the price level is absorbed into the sector-by-time fixed effects and the error
term 𝜀𝑚𝑐

𝑓 𝑡
:= −𝜎𝑤Δ𝜖𝑑

𝑓 𝑡
−𝜎𝑦Δ𝑦∗

𝑓 𝑡
. UnlikeModel D, which directly maps into the dynamic

pass-through framework developed in Section 3.2, Model E allows us to directly
estimate the elasticity of interest from contemporaneous changes of marginal cost
and output.

6.2 Identification of 𝜎𝑦 and 𝜅

We take Model D and Model E to the data to identify the elasticity 𝜎𝑦 and thereby
recover the slope of the output-based NKPC, 𝜅. To do so, we use firms’ nominal
value added (revenues minus costs of intermediate inputs) as a measure of firm-level
nominal output,𝑦𝑛

𝑓 𝑡
. The identification of 𝜎𝑦 requires us to isolate variation in𝑦𝑛

𝑓 𝑡
that

is orthogonal to both the firm-level natural level of output and idiosyncratic demand
shocks, as both enter the error terms 𝜀𝑚𝑐

𝑓 𝑡
and 𝜀𝑝

𝑓 𝑡
.

To tackle this issue, we follow the literature that estimates output and
unemployment gap-based NKPCs by exploiting shifts in aggregate demand.36 We
recover industry sensitivities to high-frequency monetary policy shocks. We
then construct a Bartik-style instrument to improve the power of the aggregate
shocks while also allowing us to include sector-by-time fixed effects to control for
higher-level movements in demand.

For each industry 𝑖 , we estimate the sensitivity to an aggregate demand shock
36See, e.g., Barnichon and Mesters (2020), McLeay and Tenreyro (2020), and Hazell et al. (2022).
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Table 4: Estimates of the output-based slope

Panel A: Structural estimates

Model D Model E
(1) (2)

𝜎𝑦 0.406 0.112
(0.099) (0.026)

𝜌𝑦 0.880
(0.039)

𝜌𝑝 0.912
(0.004)

Panel B: Slope of the output-based Phillips curve

𝜅 0.021 0.006
(0.005) (0.001)

Test statistics

Cragg-Donald 𝐹 191.954 484.808
Kleibergen-Paap 𝐹 23.385 62.453

Notes. This table presents the empirical estimates of models D and E. The output-based NKPC slope,
𝜅, is obtained as the product of the estimate of 𝜎𝑦 and the estimate of 𝜆 from Model A. All models are
estimated using the complete sample. Robust standard errors (reported in parenthesis) are clustered at
the industry-by-time level. Models D and E include sector-by-time fixed effects and firm fixed effects.

by projecting firm-level nominal value-added output on the monetary policy shock.37

We lag the shock to reflect its delayed effect on real activity, which peaks at four
quarters:

𝑦𝑛
𝑓 𝑡
= 𝛼 𝑓 +𝜓𝑖𝑀𝑆𝑡−4 + 𝜖𝑚𝑓 𝑡 .

We then obtain our demand-side instrument by interacting the aggregate money
shock with the estimated sensitivity: 𝑦𝐼𝑉

𝑓 𝑡
:= 𝜓𝑖 · 𝑀𝑆𝑡−4. This shifter is orthogonal

to both aggregate and idiosyncratic supply shocks as well as idiosyncratic demand
shocks. However, it picks up movements in firms’ output due to general equilibrium
effects as it captures common demand shocks at the industry level. Moreover, unlike
the aggregate monetary policy surprises, it is a powerful instrument as it leverages

37Monetary policy shocks are constructed following Gürkaynak, Sack and Swanson (2005) as the log
change in the price of overnight index swaps within a narrow window around ECB monetary policy
announcements. The time series of aggregate money shocks (𝑀𝑆) are taken from Altavilla et al. (2019).
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variation in the high-frequency surprises interacted with the cross-industry response
to these shocks.

We estimate Models D and E via GMM. For Model D, we calibrate 𝜃 and Ω to
our baseline estimates. We then estimate the pass-through equation jointly with the
AR(1) dynamics for output and competitors’ prices. Table 4 presents the resulting
estimates for the output elasticity of marginal cost and the implied estimates for the
slope of the output-based Phillips curve. For Model D, we find a value of 𝜎𝑦 = 0.406
and 𝜅 = 0.021. For Model E, we find even smaller estimates, 𝜎𝑦 = 0.112 and 𝜅 = 0.006.

The low sensitivity of marginal cost to movements in output is consistent,
for example, with a high degree of wage rigidity and an economy not operating
too close to full capacity. These low estimates of 𝜅 corroborate the findings
in previous literature, which conclude that the slope of the output-based and
unemployment-based NKPC appears to be flat. Indeed, our point estimates overlap
closely with those in Rotemberg and Woodford (1997) and Hazell et al. (2022) who
find slope coefficients of 0.024 and 0.006.

In sum, our analysis suggests that the pass-through from marginal costs to
prices is high, as the micro-estimates indicate, but the flatness of the conventional
NKPC is likely due to a low sensitivity of marginal cost to output. These
considerations call for further theoretical and empirical work to elucidate the
relationship between output and marginal cost, especially considering the possibility
that the elasticity connecting the two could be time-varying and possibly nonlinear.

7 Tracing the effect of supply shocks on inflation

In this section, we study the pass-through of identified supply shocks to inflation.
This exercise serves two purposes: it illustrates the advantage of a marginal
cost-based Phillips curve for characterizing the transmission of supply shocks
to inflation; it also provides an alternative estimate of the NKPC slope via
impulse-response matching (e.g., Barnichon and Mesters 2020), validating the one
obtained from our micro-level pass-through regressions.

Tracing the effect of supply shocks—The discussion in the previous section
highlighted that it is challenging to assess the impact of such shocks on inflation using
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Figure 2: Dynamic effects of oil shocks on real marginal costs and prices
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Notes. This figure shows the IRF of real marginal cost and price level to aggregate oil shocks estimated
via local linear projections. The dark (light) gray shaded areas are 68 (95) percent confidence bands
obtained from Newey-West standard errors with four quarters of correlation. In Panel B, the red line
represents the model-based IRF of prices, calculated by feeding the path of real marginal cost into a
New Keynesian model featuring a cost-based NKPC. The x-axis measures quarters since the aggregate
oil shock.

the output-based NKPC curve, without relying on a fully specified macroeconomic
model to derive the natural level of output. The cost-based NKPC curve does not
suffer from this. The impact of supply shocks on marginal cost is measurable, which
implies that the cost-based NKPC can be used to quantify the pass-through of supply
shocks to inflation.

We consider oil shocks as prototype supply shocks. Following Känzig (2021),
we measure oil shocks as unexpected movements in oil price futures the day after
OPEC meetings and estimate the empirical impulse response functions (IRF) of
aggregate real marginal cost and price level to these identified shocks via local linear
projections:

𝑥 𝑓 𝑡+ℎ − 𝑥 𝑓 𝑡−1 = 𝑎 𝑓 + 𝑏𝑥ℎ𝑂𝑆𝑡−1 + 𝜖𝑓 𝑡+ℎ,
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for 𝑥 ∈ {𝑚𝑐𝑟 , 𝑝} and ℎ = 0, ..., 8 quarters. We normalize the oil shock so that 𝑏𝑥1
represents the effect on impact of a one-standard deviation shock to oil prices (a
15.7 percent increase in Brent crude oil price). As in our pass-through regressions,
observations are weighted using Törnqvist sales weights.

The estimates are reported in Figure 2. On average, firms’ real marginal costs
rise by approximately 1.5 to 3 percent within the first three quarters in response
to a one-standard-deviation shock to oil prices, before gradually returning to their
pre-shock level (Panel A). The oil shock also has a significant effect on firms’ prices
(Panel B, black line). Consistent with the presence of nominal rigidities, the price
response is delayed but persistent, peaking at approximately 3 percent increase after
six quarters.

Estimation via impulse-response matching—These empirical results allow us to
validate our estimate of the slope of the NKPC. We feed the path of real marginal
cost shocks (with perfect foresight) to an NK model featuring a cost-based Phillips
curve. We then estimate the slope of the NKPC by minimizing the distance between
the empirical impulse responses of prices, {𝑏𝑝

ℎ
}8
ℎ=0, and the corresponding model’s

impulse-responses of prices, {𝑔𝑝
ℎ
(𝜆)}8

ℎ=0:

𝜆𝐼𝑅𝐹 = arg min
𝜆

(b̂𝑝 − g𝑝 (𝜆))′𝑊 (b̂𝑝 − g𝑝 (𝜆)),

where the weighting matrix 𝑊 is a diagonal matrix whose elements are the
reciprocals of the variances of empirical IRFs estimates. Standard errors are calculated
using the delta method (Mertens and Ravn 2011).

The model accurately reflects the dynamic effects of the shocks on the price
level, both in terms of magnitude and persistence (Figure 2 Panel B, red dotted line).
The model’s impulse responses consistently lie within the confidence bands of those
estimated in the data. Importantly, the slope of the cost-based NKPC that allows us to
match the IRFs is 𝜆𝐼𝑅𝐹 = 0.042 (SE 0.005), which is close to and within the confidence
bands of the estimate obtained from our micro-level pass-through model (𝜆 = 0.052).

8 Concluding remarks

We use disaggregated data to identify the slope of the primitive form of the New
Keynesian Phillips curve, which features marginal cost as the relevant measure
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of economic activity. Our findings reveal a high pass-through of marginal cost
into prices, supported by both the analysis of the microdata and by the ability
of the marginal cost-based Phillips curve to track aggregate inflation dynamics.
Additionally, we show that in the pre-pandemic period, a low elasticity of marginal
cost to output helps reconcile the low sensitivity of aggregate inflation to output
found in the literature with the high pass-through of marginal cost documented in
this paper.

Our analysis is based on data from manufacturing firms, where output and
inflation volatility are typically higher than in other sectors. However, because we
are measuring an elasticity with respect to real activity, our results are likely relevant
for other sectors as well, such as retail. These sectors tend to exhibit sluggish output
movements but also more stable inflation dynamics.

The ability of the marginal cost-based NKPC to capture inflation dynamics
should not be of narrow interest. Indeed, most quantitative macroeconomic (DSGE)
models feature some form of wage rigidity to fit the data, which requires the
cost-based formulation of the Phillips curve to capture the transmission of shocks
into prices.38 Our analysis suggests that there is room for improvement in different
directions.

A first direction for improvement is the measure of marginal cost. DSGE
models typically feature labor as the only variable input. However, accounting for
the cost of intermediate inputs is pivotal to the success of our empirical measure, as
intermediates represent both the largest and most volatile component of production
costs. To this point, research has shown that intermediate goods price shocks were
among themost important drivers of the recent inflation surge (e.g., Di Giovanni et al.
2022). Developing models that incorporate how intermediates factor into firms’ costs
is an active and important direction for future research (see, e.g., Rubbo 2023).

Secondly, further research is needed to understand the primitive drivers of
the elasticity of marginal cost with respect to output, both at the micro level and
at the aggregate level, and how it may evolve over time. Our findings indicate
that this elasticity is low during normal times, likely due to two factors working in
combination. First, at the micro level, firms’ marginal cost schedules appear relatively
insensitive to changes in output, reflecting near-constant short-run returns to scale.

38See, e.g., Chapter 6 in Galí (2015) and the references therein.
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Second, wage rigidity likely mutes general equilibrium effects at the aggregate
or industry level. However, the recent inflation surge has demonstrated that the
sensitivity of marginal cost to output can rise rapidly and substantially when the
economy faces large shocks. Such shocks may push the economy up against its
capacity constraints, whether due to labor market tightness or bottlenecks in the
supply of intermediate goods (e.g., Boehm and Pandalai-Nayar 2022 and Comin,
Johnson and Jones 2023). The net effect is a sharp increase in marginal cost due
to the rapid increase in input prices in the face of high aggregate demand relative to
capacity.

Finally, the elasticity of inflation with respect to marginal cost can itself
vary in response to large aggregate shocks, as it depends on the frequency of
price adjustments. Our evidence indicates that this frequency was stable during
the pre-pandemic period, consistent with the Calvo model and implying a stable
elasticity. However, recent data shows that the price adjustment frequency rose
significantly throughout the post-pandemic inflation surge, leading to a jump in
the elasticity of inflation with respect to marginal cost. Our companion paper,
Gagliardone et al. (2025), suggests that over this recent period, state-dependent
pricing models more accurately capture both micro- and macro cost-price dynamics.
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Anatomy of the Phillips Curve:
Micro Evidence and Macro Implications

L. Gagliardone M. Gertler S. Lenzu J. Tielens

Appendix

A Derivations of aggregate inflation dynamics

Consider the system of equations given by the aggregate price index (Equation (9)),
the aggregate reset price (Equation (10), ignoring the intercept), and a random walk
dynamic for aggregate marginal cost:

𝑝𝑡 = (1 − 𝜃 )𝑝𝑜𝑡 + 𝜃𝑝𝑡−1,

𝑝𝑜𝑡 = (1 − 𝛽𝜃 ) ((1 − Ω)𝑚𝑐𝑛𝑡 + Ω𝑝𝑡 ) + 𝛽𝜃E𝑡𝑝𝑜𝑡+1 +
𝜃

1 − 𝜃𝑢𝑡 ,

𝑚𝑐𝑛𝑡 =𝑚𝑐
𝑛
𝑡−1 + 𝜀𝑚𝑐𝑡 .

(A.1)

We use the method of undetermined coefficients to guess and verify a solution for
the system (A.1), which takes the following form:

𝑝𝑜𝑡 − 𝑝𝑡−1 = Ξ(𝑚𝑐𝑛𝑡−1 + 𝜀𝑚𝑐𝑡 − 𝑝𝑡−1) +
𝜃

1 − 𝜃𝑢𝑡

𝜋𝑡 = �̃�(𝑚𝑐𝑛𝑡−1 + 𝜀𝑚𝑐𝑡 − 𝑝𝑡−1) + 𝜃𝑢𝑡 ,

where Ξ and �̃� are the coefficients to be determined. Subtracting 𝑝𝑡−1, the equations
become:

𝑝𝑜𝑡 − 𝑝𝑡−1 = (1 − 𝛽𝜃 ) ((1 − Ω) (𝑚𝑐𝑛𝑡 − 𝑝𝑡−1) + Ω𝜋𝑡 ) + 𝛽𝜃E𝑡 (𝑝𝑜𝑡+1 − 𝑝𝑡 + 𝜋𝑡 ) +
𝜃

1 − 𝜃𝑢𝑡 ,

𝜋𝑡 = (1 − 𝜃 ) (𝑝𝑜𝑡 − 𝑝𝑡−1) + 𝜃𝑢𝑡
The expectation is computed as:

E𝑡 (𝑝𝑜𝑡+1 − 𝑝𝑡 ) = ΞE𝑡 (𝑚𝑐𝑛𝑡 + 𝜀𝑚𝑐𝑡 − 𝑝𝑡 ) = (1 − �̃�)Ξ(𝑚𝑐𝑛𝑡 − 𝑝𝑡−1)

A.1



Plugging the guessed solution into the system gives the following restrictions on the
parameters:

Ξ = (1 − 𝛽𝜃 ) (1 − Ω + Ω�̃�) + 𝛽𝜃 ((1 − �̃�)Ξ + �̃�),

�̃� = (1 − 𝜃 )Ξ.

We select the solution of system (A.1) characterized by having exactly one eigenvalue
larger than one in modulus. Using our structural estimates, 𝜃 = 0.7 and Ω = 0.52
(median values across the different models in Table 2), we obtain that an aggregate
reduced-form pass-through coefficient of �̃� = 0.22.

Replacing 𝑝𝑡 = �̃�𝑚𝑐𝑛𝑡 + (1 − �̃�)𝑝𝑡−1 + 𝜃𝑢𝑡 in the guessed solution, adding back
the intercept, and rearranging we obtain Equation (19).
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OA.1 Theory derivations

In this section, we derive the key equations presented in Section 1 of the paper.
We first derive the markup functions under two prominent frameworks featuring
imperfect competition: Dynamic oligopoly with nested CES preferences and Kimball
preferences. We then present the aggregation steps followed to derive the cost-based
NKPC.

OA.1.1 Derivation of the markup function

Dynamic oligopoly with nested CES preferences—Assume that there is a
continuum of industries (indexed by 𝑖) and a finite number of firms 𝑁 within each
industry. Each firm is indexed by 𝑓 (or 𝑗 ). Within each industry, firms compete à la
Bertrand. In this environment, the price index for each industry 𝑃𝑖𝑡 and the aggregate
price index 𝑃𝑡 are defined, respectively, as:

𝑃𝑖𝑡 := ©« 1
𝑁

𝑁∑︁
𝑓 =1

(𝜑 𝑓 𝑖𝑡𝑃𝑓 𝑖𝑡 )1−𝛾ª®¬
1

1−𝛾

; 𝑃𝑡 :=
(∫
𝑖∈𝐼

(𝜑𝑖𝑡𝑃𝑖𝑡 )1−𝜎𝑑𝑖

) 1
1−𝜎

,

where 𝜑 𝑓 𝑖𝑡 is a firm-specific relative demand shifter (firm appeal), and 𝜑𝑖𝑡 is an
industry-specific demand shifter (relative across industries). In what follows, the
subscript 𝑖 is dropped when redundant, and we normalize the steady-state price level
to simplify the notation. The demand function for firm 𝑓 ∈ F𝑖 takes a nested CES
form, with the elasticity of substitution across industries 𝜎 > 1 and the elasticity of
substitution within industries 𝛾 > 𝜎 :

D𝑓 𝑡+𝜏 =

(
𝜑 𝑓 𝑡+𝜏𝑃

𝑜
𝑓 𝑡

𝜑𝑖𝑡+𝜏𝑃𝑖𝑡+𝜏

)−𝛾 (
𝜑𝑖𝑡+𝜏𝑃𝑖𝑡+𝜏
𝑃𝑡+𝜏

)−𝜎
𝑌𝑡+𝜏 . (OA.1)

1



Firms internalize the dynamic effect of their choices on the industry price index and
on industry demand. Therefore, the residual elasticity of demand faced by firm 𝑓

takes the following form:

𝜖𝑓 𝑡+𝜏 := −
𝜕 lnD𝑓 𝑡+𝜏

𝜕 ln 𝑃𝑜
𝑓 𝑡

= 𝛾 − (𝛾 − 𝜎) 𝜕𝑝𝑖𝑡+𝜏
𝜕𝑝𝑜

𝑓 𝑡

. (OA.2)

We can further characterize the determinants of the residual demand elasticity. First,
the price index of competitors of firm 𝑓 is defined as:

𝑃
−𝑓
𝑖𝑡

:= ©« 1
𝑁 − 1

𝑁−1∑︁
𝑗≠𝑓

(𝜑 𝑗𝑖𝑡𝑃 𝑗𝑖𝑡 )1−𝛾ª®¬
1

1−𝛾

.

It follows that 𝑃1−𝛾
𝑖𝑡

= 𝑁−1
𝑁

(
𝑃
−𝑓
𝑖𝑡

)1−𝛾
+ 1

𝑁

(
𝜑 𝑓 𝑡𝑃

𝑜
𝑓 𝑡

)1−𝛾
. Next, we can express the

derivative of the price index in period 𝑡 + 𝜏 with respect to the firms’ reset price
in period 𝑡 as follows:

𝜕𝑃𝑖𝑡+𝜏
𝜕𝑃𝑜

𝑓 𝑡

= 𝑃
𝛾

𝑖𝑡+𝜏

[(
𝑁 − 1
𝑁

)
(𝑃−𝑓
𝑖𝑡+𝜏 )

−𝛾 𝜕𝑃
−𝑓
𝑖𝑡+𝜏

𝜕𝑃𝑜
𝑓 𝑡

+
(

1
𝑁

)
(𝜑 𝑓 𝑡 )1−𝛾 (𝑃𝑜

𝑓 𝑡
)−𝛾

]
.

Multiplying both sides by
𝑃𝑜
𝑓 𝑡

𝑃𝑖𝑡+𝜏
, and defining the competitors’ reaction function

𝜁 𝑓 𝑡+𝜏 := 𝜕𝑝
−𝑓
𝑖𝑡+𝜏

𝜕𝑝𝑜
𝑓 𝑡

, we obtain:

𝜕𝑝𝑖𝑡+𝜏
𝜕𝑝𝑜

𝑓 𝑡

= 𝜁 𝑓 𝑡+𝜏

(
𝑁 − 1
𝑁

) (
𝑃
−𝑓
𝑖𝑡+𝜏
𝑃𝑖𝑡+𝜏

)1−𝛾

+ 1
𝑁

(
𝜑 𝑓 𝑡+𝜏𝑃

𝑜
𝑓 𝑡

𝑃𝑖𝑡+𝜏

)1−𝛾

= 𝜁 𝑓 𝑡+𝜏 (1 − 𝑠 𝑓 𝑡+𝜏 ) + 𝑠 𝑓 𝑡+𝜏 ,

where 𝑠 𝑓 𝑡+𝜏 := 1
𝑁

𝑃𝑜
𝑓 𝑡
D𝑓 𝑡+𝜏

𝑃𝑖𝑡𝑌𝑖𝑡+𝜏
= 1

𝑁

(
𝜑 𝑓 𝑡+𝜏𝑃

𝑜
𝑓 𝑡

𝑃𝑖𝑡+𝜏

)1−𝛾
denotes the within-industry revenue share

of firm 𝑓 , and 𝑌𝑖𝑡+𝜏 := 𝜑
𝛾−𝜎
𝑖𝑡+𝜏

(
𝑃𝑖𝑡+𝜏
𝑃𝑡+𝜏

)−𝜎
𝑌𝑡+𝜏 is the industry demand. Replacing the

expression for 𝜕𝑝𝑖𝑡+𝜏
𝜕𝑝𝑜

𝑓 𝑡

into Equation (OA.2), we have that the within-industry elasticity
of demand faced by firm 𝑓 is given by:

𝜖𝑓 𝑡+𝜏 = 𝛾 − (𝛾 − 𝜎)
[
𝜁 𝑓 𝑡+𝜏 (1 − 𝑠 𝑓 𝑡+𝜏 ) + 𝑠 𝑓 𝑡+𝜏

]
. (OA.3)

The intuition behind this expression is straightforward. The stronger the reaction
of competitors to a firm’s price change—captured by 𝜁 𝑓 𝑡+𝜏—the lower the residual
elasticity of demand. A low residual elasticity of demand, in turn, implies that the
firm can sustain a higher markup in equilibrium. This result mirrors the one in the

2



dynamic oligopoly environment in Wang and Werning (2022) and it nests a number
of static environments featuring imperfectly competitive firms. In a static oligopoly,
𝜖𝑓 𝑡+𝜏 = 0 for 𝜏 > 0. In Atkeson and Burstein (2008) static Nash oligopoly, 𝜖𝑓 𝑡+𝜏 = 0
for 𝜏 > 0 and 𝜁 𝑓 𝑡+𝜏 = 0 for all 𝜏s. Under monopolistic competition, 𝑁 → ∞, which
implies 𝜁 𝑓 𝑡+𝜏 → 0 and 𝑠 𝑓 𝑡+𝜏 → 0.

We now use this result to derive the expression for the log-linearized desired
markup in Equation (7) in the paper. As is standard, we log-linearize around a
symmetric Nash steady state (Atkeson and Burstein, 2008).1 Log-linearizing the
elasticity in (OA.3) around the steady state, we obtain the steady state residual
demand elasticity:

𝜖 = 𝛾 − (𝛾 − 𝜎) 1
𝑁
,

which corresponds to the expression in Atkeson and Burstein (2008). In this model,
the desired markup is given by the Lerner index:

𝜇𝑓 𝑡+𝜏 := ln(𝜖𝑓 𝑡+𝜏/(𝜖𝑓 𝑡+𝜏 − 1)) .

Log-linearizing this expression and substituting the expression for steady-state
residual demand elasticity, we obtain the expression for the log-linearized desired
markup (in deviation from steady state) in Equation (7):

𝜇𝑓 𝑡+𝜏 − 𝜇𝑓 = −Γ
(
𝑝𝑜
𝑓 𝑡
− 𝑝−𝑓

𝑖𝑡+𝜏

)
+ 𝑢𝜇

𝑓 𝑡+𝜏 ,

where 𝜇𝑓 = 𝜇 for all 𝑓 s in the symmetric steady state, Γ := (𝛾−𝜎) (𝛾−1)
𝜖 (𝜖−1)

𝑁−1
𝑁

> 0 denotes
the markup elasticity with respect to prices, and the firm-specific markup shock:

𝑢
𝜇

𝑓 𝑡
:= − (𝛾 − 𝜎) (𝛾 − 1)

𝜖 (𝜖 − 1) ln𝜑 𝑓 𝑡 +
𝛾 − 𝜎
𝜖 (𝜖 − 1)

𝑁 − 1
𝑁

𝜁 𝑓 𝑡 , (OA.4)

captures residual variation in the markup that depends on the demand shifters and
changes in the slope of competitors’ reaction function.

1 The symmetry assumption is standard in the literature (e.g., Midrigan (2011) and Alvarez and
Lippi (2014)), which eases the notation but is largely immaterial for our estimation purposes. Relaxing
this assumption would imply firm-specific steady-state demand elasticities, 𝜖𝑓 . In this case, the
estimates of the parameters of our pricing equations should be interpreted as average across firms.
The assumption of Nash steady state, also standard in the literature, implies that 𝜁 𝑗,𝜏 = 0 in the steady
state for all 𝑗s and 𝜏s. This comes with some loss of generality, but two points can be made. First, as
shown by Wang and Werning (2022), one can write a “behavioral" model with the weaker assumption
that E{𝜁 𝑗,𝜏 } = 0 for all 𝑗s and 𝜏s, which delivers, under specific values for the elasticities 𝜎 and 𝛾 , a
pass-through of shocks to marginal cost into prices qualitatively similar to that produced by the Nash
model. Second, these considerations also apply to our empirical analysis, as we directly estimate the
parameters (Γ, in particular) rather than the underlying elasticities.

3



Finally, log-linearizing the industry price index and ignoring constants, we
obtain:

𝑝𝑖𝑡 =
𝑁 − 1
𝑁

𝑝
−𝑓
𝑖𝑡

+ 1
𝑁
(ln𝜑 𝑓 𝑡 + 𝑝𝑜𝑓 𝑡 ).

Substituting this expression in Equation (6) for themarkup and rearrangingwe obtain
the dynamic pricing equation in Equation (8):

𝑝𝑜
𝑓 𝑡
= (1 − 𝛽𝜃 )E𝑡

{ ∞∑︁
𝜏=0

(𝛽𝜃 )𝜏
(
(1 − Ω) (𝑚𝑐𝑛

𝑓 𝑡+𝜏 + 𝜇𝑓 ) + Ω𝑝
−𝑓
𝑖𝑡+𝜏 + (1 − Ω)𝑢𝜇

𝑓 𝑡+𝜏

)}
,

(OA.5)
where, as in the paper, Ω := Γ

1+Γ . This parameter denotes the relative weight
on the competitors’ price index (𝑝−𝑓

𝑖𝑡
) and captures the importance of strategic

complementarities. When Ω is close to one, firms are not strategic and only look
at their marginal cost when resetting prices. In particular, Ω → 0 as 𝑁 → ∞, which
is the monopolistic competition case. The error term in Equation (8) is:

𝑢 𝑓 𝑡 := (1 − 𝛽𝜃 ) (1 − Ω)E𝑡

{ ∞∑︁
𝜏=0

(𝛽𝜃 )𝜏𝑢𝜇
𝑓 𝑡+𝜏

}
, (OA.6)

which is therefore a firm-specific demand shock that depends on the expected
discounted future demand shocks.

Monopolistic competition with Kimball preferences—Assume that the industry
output 𝑌𝑖𝑡 is produced by a unitary measure of perfectly competitive firms using
a bundle of differentiated intermediate inputs 𝑌𝑓 𝑡 , 𝑓 ∈ 𝑖 . The bundle of inputs is
assembled into final goods using the Kimball aggregator:∫ 1

0
Υ

(
𝑌𝑓 𝑡

𝑌𝑖𝑡

)
𝑑 𝑓 = 1,

where Υ(·) is strictly increasing, strictly concave, and satisfies Υ(1) = 1. Taking as
given the industry demand 𝑌𝑖𝑡 , each firm minimizes costs subject to the aggregate
constraint:

min
𝑌𝑓 𝑡

∫ 1

0
𝜑 𝑓 𝑡𝑃𝑓 𝑡𝑌𝑓 𝑡𝑑 𝑓 s.t.

∫ 1

0
Υ

(
𝑌𝑓 𝑡

𝑌𝑖𝑡

)
𝑑 𝑓 = 1,

where 𝜑 𝑓 𝑖𝑡 is a firm-specific relative demand shifter (firm appeal). Denoting by𝜓 the
Lagrange multiplier of the constraint, the associated first-order condition is:

𝜑 𝑓 𝑡𝑃𝑓 𝑡 = 𝜓Υ
′
(
𝑌𝑓 𝑡

𝑌𝑖𝑡

)
1
𝑌𝑖𝑡
. (OA.7)
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Define implicitly the industry price index 𝑃𝑖𝑡 as:∫ 1

0
𝜙

(
Υ′(1)

𝜑 𝑓 𝑡𝑃𝑓 𝑡

𝑃𝑖𝑡

)
𝑑 𝑓 = 1,

where𝜙 := Υ◦(Υ′)−1. Evaluating the first-order condition (OA.7) at symmetric prices,
𝜑 𝑓 𝑡𝑃𝑓 𝑡 = 𝑃𝑖𝑡 , we get𝜓 =

𝑃𝑖𝑡𝑌𝑖𝑡
Υ′ (1) . Replacing for𝜓 , we obtain:

𝜑 𝑓 𝑡𝑃𝑓 𝑡

𝑃𝑖𝑡
=

1
Υ′(1)Υ

′
(
𝑌𝑓 𝑡

𝑌𝑖𝑡

)
. (OA.8)

Therefore, the demand function faced by firms when resetting prices is:

D𝑓 𝑡+𝜏 =

[
(Υ′)−1

(
Υ′(1)

𝜑 𝑓 𝑡𝑃
𝑜
𝑓 𝑡

𝑃𝑖𝑡+𝜏

)] (
𝑃𝑖𝑡+𝜏
𝑃𝑡+𝜏

)−𝜎
𝑌𝑡+𝜏 .

Taking logs of Equation (OA.1.1) and differentiating, we obtain the following
expression for the residual elasticity of demand:

𝜖𝑓 𝑡+𝜏 := −
𝜕 lnD𝑓 𝑡+𝜏

𝜕 ln 𝑃𝑜
𝑓 𝑡

= −
Υ′

(
𝑌𝑓 𝑡+𝜏
𝑌𝑖𝑡+𝜏

)
Υ′′

(
𝑌𝑓 𝑡+𝜏
𝑌𝑖𝑡+𝜏

)
·
(
𝑌𝑓 𝑡+𝜏
𝑌𝑖𝑡+𝜏

) . (OA.9)

We now use this result to derive the expression for the log-linearized desired
markup in Equation (7) in the paper, under monopolistic competition with Kimball
preferences. As above, for ease of exposition, we focus on the symmetric steady state.
Denote the steady-state residual demand elasticity by 𝜖 = − Υ′ (1)

Υ′′ (1) . Then the derivative
of the residual demand elasticity 𝜖𝑓 𝑡+𝜏 in (OA.9) with respect to 𝑌𝑓 𝑡+𝜏

𝑌𝑖𝑡+𝜏
, evaluated at the

steady state, is given by:

𝜖′ =
Υ′(1) (Υ′′′(1) + Υ′′(1)) − (Υ′′(1))2

(Υ′′(1))2 ≤ 0. (OA.10)

The equation above holds with equality if the elasticity is constant (e.g., under CES
preferences). Also in this model, the desired markup is given by the Lerner index.
Log-linearizing the Lerner index around the steady state and using Equation (OA.10),
we have that, up to a first-order approximation, the log-markup (in deviation from
the steady state) is equal to:

𝜇𝑓 𝑡+𝜏 − 𝜇𝑓 =
𝜖′

𝜖 (𝜖 − 1)
(
𝑦𝑓 𝑡+𝜏 − 𝑦𝑖𝑡+𝜏

)
Finally, log-linearizing the demand function (OA.1.1) and using it to replace the log
difference in output, we obtain:

𝜇𝑓 𝑡+𝜏 − 𝜇𝑓 = −Γ
(
𝑝𝑜
𝑓 𝑡
− 𝑝𝑖𝑡+𝜏

)
+ 𝑢𝜇

𝑓 𝑡
,
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where, in the case of Kimball preferences, the sensitivity of the markup to the relative
price is given by Γ := 𝜖′

𝜖 (𝜖−1)
1

Υ′′ (1) and 𝑢
𝜇

𝑓 𝑡
:= −Γ𝜑 𝑓 𝑡 captures residual variation in the

markup that depends on the demand shifters. Note that, because there is a continuum
of firms within an industry, we have that 𝑝𝑖𝑡+𝜏 = 𝑝

−𝑓
𝑖𝑡+𝜏 without loss of generality.

Substituting into the pricing equation in (6) and rearranging leads to the expression
in Equation (7) in the paper. Finally, following the same steps as the previous section,
we obtain Ω := Γ

1+Γ and the corresponding mapping to the dynamic pricing equation
in Equation (8).

OA.1.2 Aggregation and the cost-based New Keynesian

Phillips curve

Suppose 𝑁 < ∞ and order firms in each industry from 1 to 𝑁 .2 The aggregate price
index (in log-linear terms) is:

𝑝𝑡 =

∫
𝑖∈𝐼

©« 1
𝑁

𝑁∑︁
𝑓 =1

𝑝 𝑓 𝑖𝑡
ª®¬𝑑𝑖,

(In the paper, we dropped the industry subscript for ease of notation.) Denote by 𝐴★
𝑓 𝑡

for 𝑓 ∈ {1, . . . , 𝑁 } the set of industries in which the 𝑓 -th firm can adjust. The price
index can then be rewritten as:

𝑝𝑡 =
1
𝑁

𝑁∑︁
𝑓 =1

(∫
𝑖∈𝐼/𝐴★

𝑓 𝑡

𝑝 𝑓 𝑖𝑡−1𝑑𝑖 +
∫
𝑖∈𝐴★

𝑓 𝑡

𝑝𝑜
𝑓 𝑖𝑡
𝑑𝑖

)
,

where we are using the fact that firms that cannot adjust set their price to their 𝑡 − 1
level, whereas firms that can adjust set it to the optimal reset price.

Since 𝐴★
𝑓 𝑡

has measure 1 − 𝜃 , and the identity of firms that adjust is an i.i.d.
draw from the total population of firms, using the law of large numbers for each

2Letting 𝑁 → ∞, all results hold under Kimball preferences. Note also that the same argument
goes through with minor modifications, but heavier notation, for 𝑁𝑖 ≠ 𝑁 for a non-zero measure of
industries. In general, heterogeneity of the parameters can be accommodated by repeating the same
argument for each group of homogeneous industries with non-zero measure and then taking weighted
averages of different industries. See, e.g., Appendix C2 in Wang and Werning (2022).
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𝑓 = {1, . . . , 𝑁 } across industries we have that:3

1
𝑁

𝑁∑︁
𝑓 =1

∫
𝑖∈𝐼/𝐴★

𝑓 𝑡

𝑝 𝑓 𝑖𝑡−1𝑑𝑖 = 𝜃

∫
𝑖∈𝐼

©« 1
𝑁

𝑁∑︁
𝑓 =1

𝑝 𝑓 𝑖𝑡−1
ª®¬𝑑𝑖 = 𝜃𝑝𝑡−1

and
1
𝑁

𝑁∑︁
𝑓 =1

∫
𝑖∈𝐴★

𝑓 𝑡

𝑝𝑜
𝑓 𝑖𝑡
𝑑𝑖 = (1 − 𝜃 )

∫
𝑖∈𝐼

©« 1
𝑁

𝑁∑︁
𝑓 =1

𝑝𝑜
𝑓 𝑖𝑡

ª®¬𝑑𝑖.
Defining the average reset price in the economy:

𝑝𝑜𝑡 :=
∫
𝑖∈𝐼

©« 1
𝑁

𝑁∑︁
𝑓 =1

𝑝𝑜
𝑓 𝑖𝑡

ª®¬𝑑𝑖,
we obtain equation Equation (9) in the paper:4

𝑝𝑡 = 𝜃𝑝𝑡−1 + (1 − 𝜃 )𝑝𝑜𝑡 .

Next, we replace the aggregate reset price, 𝑝𝑜𝑡 , with an expression that depends on
aggregate marginal costs and prices. Using the definition of firm-level marginal cost
in Equation (5), and allowing for arbitrary returns to scale (𝜈 𝑓 𝑡 ⪋ 0), we obtain the
following expression for the logarithm of firm-level nominal marginal cost:

𝑚𝑐𝑛
𝑓 𝑖𝑡

= 𝑐𝑖𝑡 + 𝑎 𝑓 𝑖𝑡 + 𝜈 𝑓 𝑡𝑦𝑓 𝑖𝑡 .

The average marginal cost in the industry is𝑚𝑐𝑛𝑖𝑡 := 1
𝑁

∑𝑁
𝑓 =1𝑚𝑐

𝑛
𝑓 𝑖𝑡
, implying:

𝑚𝑐𝑛𝑖𝑡 = 𝑐𝑖𝑡 + 𝑎𝑖𝑡 + 𝜈𝑦𝑖𝑡 .

where we defined aggregate returns to scale 𝜈 := 1
𝑁

∑𝑁
𝑓 =1 𝜈 𝑓 𝑡 (same for all 𝑡 and

constant across industries, for simplicity). Combining the two equations above and
subtracting the (log) industry price index from both sides, we obtain an expression
that relates real marginal costs to cost shifters and output:

𝑚𝑐 𝑓 𝑖𝑡 =𝑚𝑐𝑖𝑡 + (𝑎 𝑓 𝑖𝑡 − 𝑎𝑖𝑡 ) + 𝜈 (𝑦𝑓 𝑖𝑡 − 𝑦𝑖𝑡 ) .

We use the demand function to express the log output deviation, 𝑦𝑓 𝑖𝑡 − 𝑦𝑖𝑡 , in terms

3The i.i.d. assumption implies that:
∫
𝑖∈𝐵⊆[0,1] 𝑝 𝑓 𝑖𝑡𝑑𝑖 = 𝑃𝑟 (𝐵)

∫
𝑖∈𝐼 𝑝 𝑓 𝑖𝑡𝑑𝑖 . Notice also that∫

𝑖∈[0,1]

(
1
𝑁

∑𝑁
𝑓 =1 𝑝

−𝑓
𝑖𝑡

)
𝑑𝑖 =

∫
𝑖∈[0,1]

(
1
𝑁

∑𝑁
𝑓 =1

[
𝑁

𝑁−1𝑝𝑖𝑡 −
1

𝑁−1𝑝 𝑓 𝑖𝑡
] )
𝑑𝑖 = 𝑝𝑡 .

4Notice that, up to a first-order approximation around the symmetric steady state, 𝑝𝑡 = 𝜃𝑝𝑡−1 +
(1 − 𝜃 )𝑝𝑜𝑡 also holds with Kimball preferences.
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of log prices. In the case of CES preferences (see Equation (OA.1)), we obtain:

𝑚𝑐 𝑓 𝑖𝑡 =𝑚𝑐𝑖𝑡 + (𝑎 𝑓 𝑖𝑡 − 𝑎𝑖𝑡 ) − 𝛾𝜈 (𝑝𝑜𝑓 𝑖𝑡 − 𝑝𝑖𝑡 ) − 𝛾𝜈 ln𝜑 𝑓 𝑖𝑡 ,

where 𝛾 denotes the within-industry elasticity of substitution.5

We then proceed with the following steps: we first manipulate Equation (OA.5)
to express the reset price in recursive form, then decompose firm-level nominal
marginal cost into firm-level real marginal cost and the industry price index prices,
and finally use Equation (OA.1.2) to replace for firm-level real marginal cost:

𝑝𝑜
𝑓 𝑖𝑡

= (1 − 𝛽𝜃 )
(
(1 − Ω) (𝑚𝑐𝑛

𝑓 𝑖𝑡
+ 𝜇𝑓 ) + Ω𝑝

−𝑓
𝑖𝑡

+ (1 − Ω)𝑢𝜇
𝑓 𝑖𝑡

)
+ 𝛽𝜃E𝑡𝑝𝑜𝑓 𝑖𝑡+1

= (1 − 𝛽𝜃 )Θ
(
(1 − Ω)𝑚𝑐𝑖𝑡 + Ω𝑝

−𝑓
𝑖𝑡

+ (1 − Ω) (1 + 𝛾𝜈)𝑝𝑖𝑡 + (1 − Ω)𝑢𝜇
𝑓 𝑖𝑡

)
+ 𝛽𝜃E𝑡𝑝𝑜𝑓 𝑖𝑡+1 + (1 − 𝛽𝜃 )Θ(1 − Ω)

(
𝑎 𝑓 𝑖𝑡 − 𝑎𝑖𝑡 − 𝛾𝜈 ln𝜑 𝑓 𝑖𝑡

)
,

where Θ := 1
1+𝛾𝜈 (1−Ω) captures macroeconomic complementarities due to aggregate

returns to scale in production. By averaging across firms and industries, we have that
the aggregate reset price is given by:

𝑝𝑜𝑡 = (1 − 𝛽𝜃 ) ((1 − Ω)Θ𝑚𝑐𝑡 + 𝑝𝑡 ) + 𝛽𝜃E𝑡𝑝𝑜𝑡+1 +
𝜃

1 − 𝜃𝑢𝑡 ,

where 𝑢𝑡 := (1−𝜃 ) (1−𝛽𝜃 )
𝜃

(1 − Ω)Θ
∫
𝑖∈𝐼

(
1
𝑁

∑𝑁
𝑓 =1𝑢

𝜇

𝑓 𝑖𝑡

)
𝑑𝑖 is an aggregate cost-push shock

and
(
𝑎 𝑓 𝑖𝑡 − 𝑎𝑖𝑡 + 𝛾𝜈 ln𝜑 𝑓 𝑖𝑡

)
is such that

∫
𝑖∈𝐼

(
1
𝑁

∑𝑁
𝑓 =1(𝑎 𝑓 𝑖𝑡 − 𝑎𝑖𝑡 + 𝛾𝜈 ln𝜑 𝑓 𝑖𝑡 )

)
𝑑𝑖 = 0.

This follows from the i.i.d. assumption on price adjustments, which implies that
the average productivity of resetting firms coincides with the unconditional average.
Subtracting 𝑝𝑡 from both sides and using the log-linearized price index:

𝑝𝑜𝑡 − 𝑝𝑡 = (1 − 𝛽𝜃 ) (1 − Ω)Θ𝑚𝑐𝑡 + 𝛽𝜃 (E𝑡𝑝𝑜𝑡+1 − 𝑝𝑡 ) +
𝜃

1 − 𝜃𝑢𝑡

⇒ 𝜃

1 − 𝜃 𝜋𝑡 = (1 − 𝛽𝜃 ) (1 − Ω)Θ𝑚𝑐𝑡 + 𝛽𝜃E𝑡
(
𝜃

1 − 𝜃 𝜋𝑡+1 + 𝜋𝑡+1

)
+ 𝜃

1 − 𝜃𝑢𝑡

Rearranging one obtains the marginal cost-based Phillips curve:

𝜋𝑡 = 𝜆Θ𝑚𝑐𝑡 + 𝛽E𝑡𝜋𝑡+1 + 𝑢𝑡

where 𝜆 := (1−𝜃 ) (1−𝛽𝜃 )
𝜃

(1 − Ω) is the slope. The equation above highlights that
macroeconomic complementarities also mediate the pass-through of marginal cost
to prices viaΘ. Under the assumption of constant aggregate returns to scale, we have

5A similar expression holds under monopolistic competition with Kimball preferences. In this case,
𝛾 is replaced with the corresponding elasticity of relative output to relative prices, 1/Υ′′ (1).
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thatΘ = 1, and the Phillips curve simplifies to Equation (11). This condition is exactly
met when 𝜈 = 0, but also when Ω = 1.

OA.2 Data and measurement

OA.2.1 Data sources and data cleaning

We use information from PRODCOM to compute the quarterly change in product-
and firm-level prices and to define the boundaries of markets (industries) in which
firms compete. PRODCOM is a large-scale survey commissioned by Eurostat and
administered in Belgium by the national statistical office. The survey is designed
to cover at least 90% of domestic production value within each manufacturing
industry (4-digit NACE codes) by surveying all firms operating in the country
with (a) a minimum of 20 employees or (b) total revenue above 4.5 million Euros
(European Commission 2014). Firms are required to disclose, on a monthly basis,
product-specific physical quantities (e.g., volume, kg.,𝑚2, etc.) of production sold and
the value of production sold (in Euros) for all their manufacturing products. Products
are defined in PRODCOM by an 8-digit PC code (e.g., 10.83.11.30 is “Decaffeinated
coffee, not roasted", 10.83.11.50 is “Roasted coffee, not decaffeinated", and 10.83.11.70
is “Roasted decaffeinated coffee"). Industries are defined by the first four digits of the
product codes (e.g., 10.83 is “Processing of tea and coffee"). Sectors are defined by
the first two digits of the product codes (e.g., AC is “Manufacture of food products,
beverages, and tobacco products"). The sector definitions follow the NACE Rev.2
classification. For the most part, the industry definition also follows Rev.2. The only
exceptions are industries under NACERev.1 (i.e., before 2008) that do not directlymap
into a NACE Rev.2 industry; these are assigned a fictitious, unique 4-digit industry
code.

In the raw data, there are approximately 4, 000 product headings distributed
across 13 manufacturing sectors. The PC product codes have been revised
several times between 1999 and 2019, with a substantial overhaul in 2008. We
use the conversion tables provided by Eurostat and firm-specific information on
firms’ product baskets to harmonize the 8-digit product codes across consecutive
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quarters and harmonize 4-digit industry codes over time.6 In most cases, the
conversion tables provide a unique mapping of the 8-digit product codes across
consecutive years. In a limited number of cases, the mapping is many-to-one,
one-to-many, or many-to-many. The many-to-one mapping is straightforward, while
the one-to-many and many-to-many mappings could be problematic. We are able to
handle most of these cases using information on the basket of products produced by
each firm.7 In a limited number of cases (less than 0.1% of the sample), we do not have
sufficient information to resolve the uncertainty regarding the mapping. We drop
these observations from the sample. Table OA.1 reports the list of manufacturing
sectors and their 2-digit PC codes.

We aggregate monthly information at the quarterly level and construct
product-level prices (unit values) by dividing product-level sales by product-level
quantities sold. As explained in the paper, we are interested in domestic prices,
i.e., prices charged by producers in Belgium. PRODCOM does not require firms
to separately report production and sales to domestic and international customers.
Therefore, we recover domestic values and quantities sold by combining information
from PRODCOM with data on firms’ product-level exports (quantities and sales)
available through Belgian Customs (for extra-EU trade) and the Intrastat Inquiry (for
intra-EU trade).8 Weuse the official conversion tables provided by Eurostat tomap the
CN product code classification used in the international trade data to the PRODCOM
product code classification.9 In most cases, the CN-to-PC conversion involves either
a one-to-one or many-to-one mapping, which poses no issues. We drop observations
that involve one-to-many and many-to-many mappings. These account for less than
5% of the observations and production value.

6The official conversion tables are available at https://ec.europa.eu/eurostat/ramon. The
harmonization of the industry code essentially consists of harmonizing the NACE Rev.1 industry, used
before 2008, to the NACE Rev.2 industry codes, used from 2008.

7For example, consider a case where the official mapping indicates that product 11.11.11.11 in year
𝑡 could map to either 22.22.22.21 or 22.22.22.22 in year 𝑡 + 1. Suppose two firms, 𝑓1 and 𝑓2, report in
period 𝑡 sales of product 11.11.11.11 in year 𝑡 . If 𝑓1 reports only sales of 22.22.22.21 and 𝑓2 only reports
sales of 22.22.22.22 in year 𝑡 + 1 we infer that we should map 11.11.11.11 to 22.22.22.21 for the former
and 11.11.11.11 to 22.22.22.22 for the latter.

8In constructing our measure of domestic sales, we address issues related to carry-along trade,
which might overstate the amount of production by firms that import products destined for immediate
sales.

9The first six digits of the CN product classification codes correspond to theWorld HS classification
system.
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We apply the following filters and data manipulations to the PRODCOM data
set. First, we retain firms’ observations in a given quarter only if there was positive
production reported for at least one product in that quarter. This avoids large jumps
in quarterly values due to non-reporting for some months by certain firms. In the
rare cases when a firm reports positive values but quantities are missing, we impute
the quantity sold from the average value-to-quantity ratio in the months where both
values and quantities are reported. Second, we require firms to file VAT declarations
and Social Security declarations (as explained below); these two data sources are
needed to measure firms’ marginal costs.

We use the customs microdata to obtain information on international
competitors selling manufacturing products in Belgium. For each domestic firm,
the merged Customs-Intrastat data reports the quantity purchased (in kg) and sales
(converted to Euros) of different manufacturing products (about 10,000 distinct CN
product headings) purchased by Belgian firms from each foreign country. As is
standard when dealing with customs data, we define a foreign competitor as a
foreign country-domestic buyer pair. For each foreign competitor, we aggregate the
product-level sales and quantity sold at the quarterly level (the reporting is monthly
in the raw data) and compute quarterly prices (unit values) by taking the ratio of the
two.10

We leverage data from two administrative sources to measure firms’ total
production (turnover) and variable production costs on a quarterly basis. Belgian
firms file VAT declarations to the tax authority that contain information on the
total sales of the enterprise as well as information on purchases of raw materials
and other goods and services that entail VAT-liable transactions, including domestic
and international transactions. The coverage of the VAT declarations is almost
universal, with a limited number of exceptions that affect the reporting of sole
proprietorships and self-employed individuals, and therefore mostly do not apply
to the firms surveyed by PRODCOM.11 We obtain information on employment and

10Some CN codes change over time (although to a lesser extent than PC codes). We use the official
conversion tables, available on the Eurostat website, to map CN product codes across consecutive
years. We make adjustments only if the code change is one-to-one between two years. We do not
account for changes in PC codes that involve splitting into multiple codes or multiple PC codes
combining into one code. Effectively, these changes in the PC codes are treated as if new products
are generated.

11Enterprises file their VAT declarations online, either monthly or quarterly, depending on certain
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Table OA.1: List of manufacturing sectors

Sector Sector definition NACE Rev.2
2-digits codes

CA Food products, beverages and tobacco products 10–12
CB Textiles, apparel, leather and related products 13–15
CC Wood and paper products, and printing 16–18
CE Chemicals and chemical products 20
CG Rubber and plastics products, 22–23and other non-metallic mineral products
CH Basic metals and fabricated metal products, 24–25except machinery and equipment
CJ Electrical equipment 27
CK Machinery and equipment n.e.c. 28
CL Transport equipment 29–30

Notes. This table reports the list of manufacturing sectors in our sample and the corresponding 2-digit
NACE Rev.2 codes.

labor costs (wage bill) from the Social Security declarations filed quarterly by each
Belgian firm with the Department of Social Security of Belgium.

We sum firms’ quarterly expenditures on intermediates and labor to obtain a
measure of total variable costs, which we use to construct firms’ marginal costs. We
multiply these costs by the ratio of total manufacturing sales (from PRODCOM) to
total sales (from the VAT declarations) to adjust for the fact that some firms also have
production outside manufacturing.12

Sample selection—We apply the following data-cleaning steps to address missing
values and outliers. (i) We focus on manufacturing industries defined by the NACE
Rev.2 industry codes from 10 to 30, excluding from our sample all PRODCOM
product headings that correspond to mining, quarrying, and industrial services

size-based thresholds. Small enterprises (turnover ≤ 2.5 million Euros excl. VAT) can choose to
file either monthly or quarterly. Large enterprises file monthly. In the case of multiple plants or
establishments under one VAT identifier, the declaration is filed as a single document for that VAT
identifier. We aggregate all monthly declarations to the quarterly level. At this reporting frequency,
VAT declarations tend to reflect the sales of output produced in the previous quarter. For this reason,
we use one-quarter leads in VAT declarations to construct the measure of firm-level value added used
in the regressions discussed in Section 6.

12Asmentioned below, we conservatively drop observations referring to firmswhosemanufacturing
sales are less than seventy percent of total sales. In the remaining sample, the ratio has a mean of 0.94
and a median of 0.97, confirming PRODCOM’s extensive coverage.
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related to other manufacturing activities. (ii) We drop observations referring to firms
whose sales from manufacturing products (as measured in PRODCOM) are lower
than seventy percent of total firm-level sales (as reported in the VAT declarations).
This ensures that our sample includes firms whose real activity is primarily, if not
entirely, in manufacturing. (iii) As is standard, we exclude firms that operate in the
“Coke and refined petroleum products” sector and the “Pharmaceuticals, medicinal
chemical, and botanical products” sector, whose output prices are frequently privately
bargained or determined in international markets. We drop firms operating in the
“Computer, electronic and optical products” and “Electrical equipment” sectors due
to the small number of domestic producers operating in these sectors. Finally, we
exclude firms operating in the “Other manufacturing and repair and installation of
machinery and equipment” sector, a residual grouping consisting of firms producing
diverse and varied products for which it is difficult to define an appropriate set of
competitors. (iv) We keep only observations for which we are able to compute
product-level price index, the corresponding quantity index, competitors’ price index,
andmarginal costs. (v)We drop observations for which the quarter-to-quarter change
of either the firm-level price index or marginal costs is greater than 100% in absolute
value. (vi) For each firm-industry pair that enters our dataset intermittently, we
only retain the longest continuous time period. This approach ensures that each
time series used in the estimation is gapless, avoiding the need to interpolate data
and make assumptions about prices and marginal costs when information is missing.
(vii) Finally, we exclude firm-industry pairs with a continuous time series shorter
than 8 quarters from our dataset. This minimum duration requirement helps mitigate
potential Nickell bias in our model estimation.

OA.2.2 Construction of price indices

We construct a set of indices that capture price changes in manufacturing goods at
various levels of aggregation (firm-industry, firm, industry, individual manufacturing
sector, and whole manufacturing sector).

Firm-industry price index—The main variable of interest is the price of
domestically sold manufacturing products at the firm-industry level, 𝑃𝑓 𝑡 , for both
domestic and foreign producers. We construct this variable using information on
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price changes at the most disaggregated level allowed by the data.
Due to repeated revisions of PRODCOM product codes, a consistent 8-digit product
code taxonomy does not exist across the entire sample period. Therefore, we compute
the sequence of price changes across consecutive time periods (𝑡 and 𝑡+1) bymapping
the product codes at 𝑡 + 1 to their corresponding codes at 𝑡 , aggregating them at the
firm-industry level, and recovering the time series of the firm-industry price index
(in levels) by concatenating quarterly price changes.
Specifically, denote by P𝑓 𝑡 the set of products manufactured by firm 𝑓 and by
𝑃𝑝𝑡 the price (unit value) of a given product 𝑝 ∈ P𝑓 𝑡 . We first compute the
gross price change for each product, 𝑃𝑝𝑡/𝑃𝑝𝑡−1. In doing so, we utilize the official
PRODCOM harmonization tables to account for changes in product codes between
consecutive quarters and eliminate product-level observations with abnormally large
price fluctuationswithin a given quarter (𝑃𝑝𝑡/𝑃𝑝𝑡−1 > 3 or 𝑃𝑝𝑡/𝑃𝑝𝑡−1 < 1/3) tomitigate
the impact of outliers. We then construct a Törnqvist index measuring the quarterly
firm-industry price changes:

𝑃𝑓 𝑡/𝑃𝑓 𝑡−1 =
∏
𝑝∈P𝑓 𝑡

(𝑃𝑝𝑡/𝑃𝑝𝑡−1)𝑠𝑝𝑡 , (OA.11)

where 𝑠𝑝𝑡 is a Törnqvist weight computed as the average of the sale shares between
𝑡 and 𝑡 − 1: 𝑠𝑝𝑡 := 𝑠𝑝𝑡+𝑠𝑝𝑡−1

2 .13 Finally, the time series of firm-industry price levels, 𝑃𝑓 𝑡 ,
is constructed by concatenating the Törnqvist index:

𝑃𝑓 𝑡 = 𝑃𝑓 0

𝑡∏
𝜏=𝑡0

𝑓
+1

(
𝑃𝑓 𝜏/𝑃𝑓 𝜏−1

)
. (OA.12)

Here 𝑡0
𝑓
denotes the firm-industry’s base year. That is the first quarter when 𝑓 appears

in our data. 𝑃𝑓 0 is the level of the price index in the base year. We construct 𝑃𝑓 0

as follows. First, using product-level prices, we compute the average price of the
products produced by 𝑓 in period 𝑡0

𝑓
relative to the average price of products in the

industry in the same period, and multiply this relative price by the aggregate price
13This index accounts for the presence of multi-product firms by averaging across products

produced by the same firm in a given industry. The Törnqvist weights give larger weights to those
products that account for a larger share of the firm’s turnover.
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index 𝑃𝑡0
𝑓
:

𝑃𝑓 0 = 𝑃𝑡0
𝑓
·

∏
𝑝∈P

𝑓 𝑡0
𝑓

(𝑃𝑝𝑡0
𝑓
)
𝑠
𝑝𝑡0

𝑓∏
𝑝∈F

𝑖𝑡0
𝑓

(𝑃𝑝𝑡0
𝑓
)
𝑠
𝑝𝑡0

𝑓

. (OA.13)

The aggregate price index is initialized to one in the first quarter of our sample
(1999:Q1) and is constructed recursively by concatenating a Törnqvist index of
industry-level prices. As discussed in the paper, the choice of the firm-industry price
index is immaterial for our empirical analysis, as level effects are absorbed by the
firm-industry fixed effects included in our empirical specifications.

Firm price index—As discussed in the paper, the vast majority of firms in our
data operate in only one (4-digit) industry, implying that the firm-industry price
index, 𝑃𝑓 𝑡 , and the firm price index, 𝑃𝑓 𝑡 , coincide. However, in a limited number
of cases, it becomes necessary to construct a firm’s price index that aggregates across
different firm-industry price indices. In doing this, we construct the firm-level price
index 𝑃𝑓 𝑡 following a method similar to the one described above. Specifically, we
construct a Törnqvist index that aggregates across price changes of the individual
(4-digit) industry bundles 𝑖 ∈ 𝐼 𝑓 produced by firm 𝑓 in quarter 𝑡 : 𝑃𝑓 𝑡/𝑃𝑓 𝑡−1 =∏
𝑖∈𝐼𝑓 (𝑃𝑓 𝑖𝑡/𝑃𝑓 𝑖𝑡−1)𝑠𝑓 𝑖𝑡 , with Törnqvist weights defined as 𝑠 𝑓 𝑖𝑡 := (𝑠 𝑓 𝑖𝑡 +𝑠 𝑓 𝑖𝑡−1)/2, where

𝑠 𝑓 𝑖𝑡 is the share of sales of industry 𝑖 in the firms’ total sales (across manufacturing
industries). To obtain the price index in levels, 𝑃𝑓 𝑡 , we concatenate the quarterly
price changes starting from a base year. The procedure to construct the base years is
the same as the one discussed above (Equation OA.13). Note that for single-industry
firms the price index 𝑃𝑓 𝑡 coincides with the firm-industry price index 𝑃𝑓 𝑡 in Equation
(OA.12).

Competitors price index—Using a similar approach, we construct the competitors’
price index for each domestic firm. We start by computing quarterly price changes:
𝑃
−𝑓
𝑖𝑡

/𝑃−𝑓
𝑖𝑡−1 =

∏
𝑘∈F𝑖/𝑓 (𝑃𝑘𝑡/𝑃𝑘𝑡−1)𝑠

−𝑓
𝑘𝑡 , with 𝑠−𝑓

𝑘𝑡
:= 1

2

(
𝑠𝑘𝑡

1−𝑠𝑓 𝑡 +
𝑠𝑘𝑡−1

1−𝑠𝑓 𝑡−1

)
. Here 𝑠𝑘𝑡−1 is a

TÃ¶rnqvist weight, averaging the residual revenue share of industry competitors
(excluding firm 𝑓 ) at times 𝑡 and 𝑡 − 1. We concatenate these changes starting from
a base year, which is the geometric average of firm sales in the industry. Note that
the set of domestic competitors for each Belgian producer, denoted in the paper by
F𝑖 , includes not only other Belgian manufacturers operating in the same industry,
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but also foreign manufacturers that belong to the same industry and sell to Belgian
customers.

Industry, sector, and aggregate price index—We construct the industry-level,
sector-level, and aggregate (manufacturing) price indices by aggregating quarterly
firm-level price changes. The formula to construct the percentage change in
these price indices is analogous to the one in Equation (OA.11), where now the
Törnqvist weights assigned to each firm-industry price change, 𝑃𝑓 𝑡/𝑃𝑓 𝑡−1, capture
the (weighted) average market shares of the firm in its own industry, sector, or
manufacturing, respectively. Once again, the levels of the indices are constructed
by concatenating quarterly changes in their respective Törnqvist indices.

OA.2.3 Estimation of firm-level technical efficiency (TFPQ)

We construct our productivity index, log-technical productivity (TFPQ), as a residual
from a gross-output production function. In logarithms:

𝑦𝑓 𝑡 = 𝑇𝐹𝑃𝑄 𝑓 𝑡 + 𝑓
(
𝑙 𝑓 𝑡 , 𝑘 𝑓 𝑡 ,𝑚 𝑓 𝑡 ;ϑ

)
,

where 𝑦𝑓 𝑡 denotes firm-level physical output produced and 𝑓 (·) the log-gross output
production function aggregating labor (𝑙 𝑓 𝑡 ), capital (𝑘 𝑓 𝑡 ), and intermediate inputs
(𝑚 𝑓 𝑡 ). ϑ is a vector collecting the parameters that pin down the elasticities of output
with respect to different inputs.

We recover the vector ϑ via a production function estimation following the
estimation developed by Lenzu, Rivers and Tielens (2024). The approach builds on
the two-stage estimation routine in Gandhi, Navarro and Rivers (2020), augmented
to control for differences in output quality and market power in the product market.
We outline the assumptions and steps behind the estimation procedure.

Setup and estimation routine—We assume that a firm’s technical efficiency is the
sum of two components𝑇𝐹𝑃𝑄 𝑓 𝑡 := 𝜔 𝑓 𝑡 + 𝑧 𝑓 𝑡 . The first, 𝜔 𝑓 𝑡 , represents the persistent
component of productivity. It is observable by the firm when it makes production
decisions at the beginning of each period 𝑡 and it evolves as a first-order Markov
process. The second component, 𝑧 𝑓 𝑡 , is a non-persistent shock, realized after period-𝑡
input and pricing decisions have been made.

Denote by 𝐼 𝑓 𝑡 the firm’s information at the beginning of period 𝑡 . Exploiting the
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Markovian nature of the persistent component of TFPQ, we have that𝜔 𝑗𝑡 = ℎ(𝜔 𝑗𝑡−1)+
𝜉 𝑗𝑡 , where ℎ(𝜔 𝑗𝑡−1) = E

[
𝜔 𝑗𝑡 | 𝜔 𝑗𝑡−1

]
and 𝜉 𝑗𝑡 is an unanticipated productivity

“innovation” such that E
[
𝜉 𝑗𝑡 | I𝑗𝑡−1

]
= 0.

The estimation routine for TFPQ consists of two steps.

The first step of the estimation strategy is based on a transformation of the firm’s
first-order condition for intermediate inputs, which relates observed input shares
for intermediate inputs (𝑠𝑚

𝑓 𝑡
) to the elasticity of output for intermediate inputs and

firm-level markup chosen by the firm:

𝑠𝑚
𝑓 𝑡
=

(
𝜕

𝜕𝑚 𝑓 𝑡

𝑓 (𝑘 𝑓 𝑡 , 𝑙 𝑓 𝑡 ,𝑚 𝑓 𝑡 ; ·)
)
− 𝜇𝑓 𝑡 − 𝑧 𝑓 𝑡 , (OA.14)

where, as in our theoretical framework, the desired log-markup 𝜇𝑓 𝑡 is given by a
Lerner index that depends on the elasticity of demand at the optimum, 𝜖𝑓 𝑡 =

(
𝜕𝑌𝑓 𝑡

𝜕𝑃𝑓 𝑡

𝑃𝑓 𝑡

𝑌𝑓 𝑡

)
.

As in our theoretical model, we assume an invertible demand system that
generates the following residual demand function for goods produced by firm 𝑓 :

D𝑓 𝑡 := 𝑑 (𝑃𝑓 𝑡 , 𝑃𝑖𝑡 , 𝜑 𝑓 𝑡 )𝑌𝑖𝑡 ,

which implies that quantity demanded depends on the firm’s price 𝑃𝑓 𝑡 , a firm-specific
demand shock 𝜑 𝑓 𝑡 (assumed to be multiplicative), and a vector of industry-time
specific shifters 𝛼𝑖𝑡 capturing industry expenditures. Using this result, we can
approximate 𝜖𝑓 𝑡 as a function of the firm’s price and industry and time shifters
(𝑝 𝑓 𝑡 , 𝛼𝑖𝑡 ) and re-write Equation (OA.14) as:

𝑠𝑚
𝑓 𝑡
= ln

(
𝜕

𝜕𝑚 𝑓 𝑡

𝑓 (𝑘 𝑓 𝑡 , 𝑙 𝑓 𝑡 ,𝑚 𝑓 𝑡 ; ·)
)
− 𝜇 (𝑝 𝑓 𝑡 , 𝛼𝑖𝑡 ) − 𝑧 𝑓 𝑡 (OA.15)

= 𝑛
(
𝑘 𝑓 𝑡 , 𝑙 𝑓 𝑡 ,𝑚 𝑓 𝑡 , 𝑝 𝑓 𝑡 , 𝛼𝑖𝑡

)
− 𝑧 𝑓 𝑡 , (OA.16)

Thus, following Blum et al. (2024), we recover the ex-post productivity shock, �̂� 𝑓 𝑡 ,
and a term combining the output elasticity of intermediate inputs and the desired
markup by estimating a regression of intermediate input shares on a polynomial
in

(
𝑘 𝑓 𝑡 , 𝑙 𝑓 𝑡 ,𝑚 𝑓 𝑡 , 𝑝 𝑓 𝑡

)
and fixed effects. Note that, as in Ackerberg, Caves and Frazer

(2015), the output elasticity of intermediate inputs is recovered in the second stage,
along with the rest of the production function.

The second step of the estimation procedure recovers the production function and
productivity. Define firm output net of the ex-post productivity shock as Y𝑓 𝑡 ≡
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𝑦𝑓 𝑡 − 𝑧 𝑓 𝑡 = 𝑓 (𝑘 𝑓 𝑡 , 𝑙 𝑓 𝑡 ,𝑚 𝑓 𝑡 ; ·) + 𝜔 𝑓 𝑡 . We recover the empirical counterpart of this as
a difference between the firm’s output and the 𝑧 𝑓 𝑡 recovered from the step of the
estimation procedure in (OA.16).
Exploiting the Markovian property of 𝜔 𝑓 𝑡 , we can re-write Y𝑓 𝑡 as:

Y𝑓 𝑡 = ℎ
(
Y𝑓 𝑡−1 − 𝑓 (𝑘 𝑓 𝑡−1, 𝑙 𝑓 𝑡−1,𝑚 𝑓 𝑡−1; ·)

)︸                                       ︷︷                                       ︸
ℎ(𝜔 𝑓 𝑡−1)

+ 𝑓 (𝑘 𝑓 𝑡 , 𝑙 𝑓 𝑡 ,𝑚 𝑓 𝑡 ; ·) + 𝜉 𝑓 𝑡 .

where ℎ(𝜔 𝑓 𝑡−1) is a control function that controls for the persistency of productivity.
As is standard (Ackerberg, Caves and Frazer (2015); Gandhi, Navarro and Rivers
(2020)), we model the control function as polynomial in inputs, ℎ(𝜔 𝑓 𝑡−1) =∑

0<𝑎≤3𝜓𝑎𝜔
𝑎
𝑓 𝑡−1, and construct the following recursive equation:

Y𝑓 𝑡 = 𝑓 (𝑘 𝑓 𝑡 , 𝑙 𝑓 𝑡 ,𝑚 𝑓 𝑡 ; ·) +
∑︁

0<𝑎≤3
𝜓𝑎

(
Y𝑓 𝑡−1(ψ,ϑ) − 𝑓 (𝑘 𝑓 𝑡−1, 𝑙 𝑓 𝑡−1,𝑚 𝑓 𝑡−1; ·)

)𝑎
.

We need to address possible bias arising from the fact that firm-level output is
measured in quantity but, as we explain below, firm-level inputs are measured as
expenditures deflated by their respective industry price indices.14 To do so, we follow
the approach in De Loecker et al. (2016) and augment the regression equation with
a second control function of (output) prices and market shares to correct for the bias
to obtain the following estimating equation:

Y𝑓 𝑡 =𝑓 (𝑘 𝑓 𝑡 , 𝑙 𝑓 𝑡 ,𝑚 𝑓 𝑡 ; ·) − 𝑐 𝑓 (𝑝 𝑓 𝑡 , 𝑠𝑖𝑡 ;ϕ)+ (OA.17)∑︁
0<𝑎≤3

𝜓𝑎
(
Y𝑓 𝑡−1(ψ,ϑ) − 𝑓 (𝑘 𝑓 𝑡−1, 𝑙 𝑓 𝑡−1,𝑚 𝑓 𝑡−1; ·) − 𝑐 𝑓 (𝑝 𝑓 𝑡−1, 𝑠𝑖𝑡−1;ϕ)

)𝑎
,

which depends on the production parameter vector ϑ–the object of interest—and the
ancillary parameter vectors ψ and ϕ.

We estimate Equation (OA.17) via GMM. As is standard, we assume that capital
is pre-determined at the beginning of each period 𝑡 , while labor and intermediate
inputs are flexibly chosen period-by-period. Under these assumptions (𝑘 𝑓 𝑡 , 𝑙 𝑗𝑡 ,Y𝑓 𝑡−1)
are orthogonal to 𝜉 𝑓 𝑡 and they can be used as instruments for themselves. However,
since 𝑙 𝑓 𝑡 , 𝑚 𝑓 𝑡 , 𝑝 𝑓 𝑡 and 𝑠 𝑓 𝑡 are chosen in period 𝑡 , they are correlated with 𝜉 𝑓 𝑡 . We
therefore use their one-year lag 𝑙 𝑓 𝑡−1,𝑚 𝑓 𝑡−1, 𝑝 𝑓 𝑡−1 and 𝑠 𝑓 𝑡−1 as instruments.

The following set of moment conditions identifies parameters (ϑ,ψ,ϕ):

E[𝜉 𝑓 𝑡 · 𝑘𝜏𝑘𝑓 𝑡𝑙
𝜏𝑙
𝑓 𝑡−1𝑚

𝜏𝑚
𝑓 𝑡−1] = 0 E[𝜉 𝑓 𝑡 · Y𝑎

𝑓 𝑡−1] = 0 E[𝜉 𝑓 𝑡 · 𝑝
𝜏𝑝

𝑓 𝑡
𝑠
𝜏𝑠
𝑓 𝑡
] = 0

14See De Loecker et al. (2016) for a discussion of the sources and implications of this bias.
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Table OA.2: Estimates of output elasticities and returns to scale

Output elasticities Returns to scale
Sector Labor Intermediates Capital Short-run Long-run

(𝜗𝑙 ) (𝜗𝑚) (𝜗𝑘 ) (𝜗𝑙 + 𝜗𝑚) (𝜗𝑙 + 𝜗𝑚 + 𝜗𝑘 )

CA 0.214 0.026 0.752 0.966 0.992
CB 0.200 0.028 0.764 0.964 0.992
CC 0.230 0.033 0.731 0.960 0.994
CE 0.217 0.039 0.720 0.937 0.976
CG 0.219 0.008 0.768 0.987 0.996
CH 0.188 0.028 0.776 0.963 0.991
CJ 0.177 0.036 0.783 0.960 0.996
CK 0.247 0.054 0.684 0.932 0.986
CL 0.243 0.036 0.725 0.968 1.004

Aggregate 0.212 0.026 0.753 0.965 0.992

Notes. This table reports the production function estimates for different sectors. The first three
columns report the estimated output elasticities of labor, intermediate inputs, and capital. The last
two columns report the short-run and long-run returns to scale. Each row refers to a different
manufacturing sector. The last row is the average of the sectoral estimates.

where 0 ≤ 𝜏𝑘 + 𝜏𝑙 + 𝜏𝑚 ≤ 2, 0 ≤ 𝜏𝑝 + 𝜏𝑠 ≤ 2, and 𝜏𝑘 , 𝜏𝑙 , 𝜏𝑚, 𝜏𝑝, 𝜏𝑠 ≥ 0.

Measurement and implementation—We perform the production function
estimation using yearly data. To construct our baseline TFPQ instrument, we assume
firms’ technologies can be approximated by a Cobb-Douglas production function,
allowing output elasticities to vary between sectors (2-digit NACE):

𝑇𝐹𝑃𝑄 𝑓 𝑡 = 𝑦𝑓 𝑡 − 𝜗𝑙 · 𝑙 𝑓 𝑡 − 𝜗𝑘 · 𝑘 𝑓 𝑡 − 𝜗𝑚 ·𝑚 𝑓 𝑡 . (OA.18)

where 𝑌𝑓 𝑡 =
(𝑃𝑌 )𝑓 𝑡
𝑃𝑓 𝑡

is the firm-level quantity index constructed by deflating firm-level
sales by the firm-level price index. We measure labor services using the total
quarterly wage bill from the Social Security dataset and intermediate costs using the
quarterly expenses in materials and services reported in firms’ VAT declarations. We
construct a quarterly measure of capital services following the perpetual inventory
method, using data on quarterly investments in fixed tangible assets from firms’
VAT declarations. We deflate labor, capital, and intermediate inputs using the
corresponding industry-level deflators.

Table OA.2 presents the estimates of the output elasticities and returns to scale
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for individual manufacturing sectors and for the aggregate economy. The latter is the
average of the sectoral estimates. SR-RTS are the sum of the elasticities of variable
inputs (labor and intermediates). Consistent with the findings in previous studies,
our estimates indicate returns to scale in the ballpark of unity for most sectors and,
therefore, in the aggregate.15

Alternative production functions and variable SR-RTS—We construct an
alternative productivity index by modeling firms’ technologies with a Translog
production function:

𝑇𝐹𝑃𝑄
𝑇𝑟𝑎𝑛𝑠𝑙𝑜𝑔

𝑓 𝑡
= 𝑦𝑓 𝑡 −

∑︁
𝑥=𝑙,𝑘,𝑚

𝑎𝑥 · 𝑥 𝑓 𝑡 −
∑︁

𝑥=𝑙,𝑘,𝑚

∑︁
𝑥 ′=𝑙,𝑘,𝑚

𝑎𝑥𝑥 ′/2 · 𝑥 𝑓 𝑡𝑥′𝑓 𝑡 .

As in our baseline estimation, we estimate the production function parameters 𝑎s
separately for each sector and recover firm-time specific input elasticities, 𝜗𝑥

𝑓 𝑡
= 𝑎𝑥 +

𝑎𝑥𝑥 ′/2 · 𝑥′
𝑓 𝑡
+ 𝑎𝑥𝑥 ′ · 𝑥 𝑓 𝑡 of capital, labor, and intermediate inputs.

Using these, we obtain an estimate of firm-time specific short-run returns to
scale, 𝜗𝑙

𝑓 𝑡
+ 𝜗𝑚

𝑓 𝑡
, and construct a measure of marginal cost that directly accounts for

this variation, 𝑀𝐶𝑛
𝑓 𝑡
= 𝐴𝑉𝐶

(1+�̂� 𝑓 𝑡 )
𝑓 𝑡

, where �̂� 𝑓 𝑡 = (𝜗𝑙
𝑓 𝑡
+ 𝜗𝑚

𝑓 𝑡
)−1 − 1. These variables are

used to perform the robustness exercises reported in Table 3.

OA.3 Adjustment of TFPQ for variable capacity

utilization

As a robustness exercise for our marginal cost instrument, we construct two
“purified” TFPQ indices that account for variability in capacity utilization. Toward
this purpose, we gather supplementary data on capacity utilization from the Business
Survey administered by the National Bank of Belgium. The survey covers a subset of
our data, asking firms to report the percentage of their production capacity utilized
in any given quarter. After matching the Business Survey to our final regression
sample, we are able to gather information on capacity utilization for 485 firms and
18, 422 firm-industry-quarter observations.

Construction of TFPQ adjusted for capacity utilization—Because information
15SeeGandhi, Navarro and Rivers (2020) and Lenzu, Rivers and Tielens (2024) and references therein.
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on capacity utilization is available for only a small subset of our dataset,
we rely on predictive regressions to estimate firm-level capacity when it is
not directly observable. First, for firms where capacity utilization data is
available for some periods, missing values are imputed using the capital-to-labor
ratio, intermediates-to-labor ratio, intermediates-to-sales ratio, current and past
investments in physical assets, percentage change in the firm’s sales, percentage
change in the firm’s wage bill, firm fixed effects, and industry-by-time fixed effects:

𝐶𝑈 𝑓 𝑡 = 𝛽1︸︷︷︸
−0.042

(
𝐾𝑓 𝑡/𝑊𝐿𝑓 𝑡

)
+ 𝛽2︸︷︷︸

0.091

(
𝑃𝑀𝑓 𝑡/𝑊𝐿𝑓 𝑡

)
+ 𝛽3︸︷︷︸

−0.045

(
𝑃𝑀𝑓 𝑡/𝑃𝑌𝑓 𝑡

)
+

𝛽4︸︷︷︸
0.004

(
ln 𝐼𝑛𝑣𝑒𝑠𝑡 𝑓 𝑡

)
+ 𝛽5︸︷︷︸

0.006

(
ln 𝐼𝑛𝑣𝑒𝑠𝑡 𝑓 𝑡−1

)
+ 𝛽6︸︷︷︸

0.006

(
Δ ln 𝑃𝑌𝑓 𝑡

)
+

𝛽7︸︷︷︸
0.059

(Δ ln𝑊𝐿𝑖𝑡 ) + 𝜄 𝑓 + 𝜄𝑖𝑡 .

For firms that never appear in the Business Survey sample, we impute
capacity utilization using information on the firm’s capital-to-labor ratio,
intermediates-to-labor ratio, intermediates-to-sales ratio, current and past
investments in physical assets, percentage change in industry sales, percentage
change in the firm’s sales, percentage change in the firm’s wage bill, a second-order
polynomial in the firm’s age, and industry-by-calendar quarter fixed effects:

𝐶𝑈 𝑓 𝑡 = 𝛽1︸︷︷︸
−0.018

(
𝐾𝑓 𝑡/𝑊𝐿𝑓 𝑡

)
+ 𝛽2︸︷︷︸

0.050

(
𝑃𝑀𝑓 𝑡/𝑊𝐿𝑓 𝑡

)
+ 𝛽3︸︷︷︸

−0.043

(
𝑃𝑀𝑓 𝑡/𝑃𝑌𝑓 𝑡

)
+

𝛽4︸︷︷︸
0.007

(
ln 𝐼𝑛𝑣𝑒𝑠𝑡 𝑓 𝑡

)
+ 𝛽5︸︷︷︸

0.006

(
ln 𝐼𝑛𝑣𝑒𝑠𝑡 𝑓 𝑡−1

)
+ 𝛽6︸︷︷︸

0.010

(Δ ln 𝑃𝑌𝑖𝑡 ) +

𝛽7︸︷︷︸
0.018

(
Δ ln 𝑃𝑄 𝑓 𝑡

)
+ 𝛽8︸︷︷︸

0.065

(
Δ ln𝑊𝐿𝑓 𝑡

)
+ 𝛽9︸︷︷︸

0.001

(
𝑎𝑔𝑒 𝑓 𝑡

)
+ 𝛽10︸︷︷︸

−0.001

(
𝑎𝑔𝑒2

𝑓 𝑡

)
+ 𝜄𝑞𝑖 .

We then construct two “purified” TFPQ instruments by adjusting either capital or
both capital and labor for capacity utilization. The capital- and capital-labor adjusted
TFPQ measures are constructed as in Equation (OA.18) but scaling the measure of
capital and labor in the production function as follows: 𝑘𝐶𝑈

𝑓 𝑡
= ln(𝐶𝑈 𝑓 𝑡 · 𝐾𝑓 𝑡 ) and

𝑙𝐶𝑈
𝑓 𝑡

= ln(𝐶𝑈 𝑓 𝑡 · 𝐿𝑓 𝑡 ).
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Figure OA.1: Dynamic effects of oil and money shocks

(a) Response of aggregated TFP to oil shocks
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(b) Response of aggregated TFP to money shocks
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Notes. The dark (light) gray shaded areas are 90 (95) percent confidence bands obtained from
Newey-West standard errors with four quarters of correlation.

Falsification tests using money and oil shocks—We perform the following
falsification test to assess the sensitivity of our purified technical productivity
measure (adjusting both capital and labor for capacity utilization).

We aggregate our firm-level measure and check whether this variable responds
to high-frequency monetary shocks and oil shocks. The idea is that these
high-frequency demand and supply shocks may trigger adjustments in capacity
utilization, but—to the extent that our firm-level productivity index has been adjusted
for this variation—the aggregate “purified” TFPQ index should reflect technical
productivity, which is a slow-moving variable. To test this, we estimate the following
local linear projection models:

𝑇𝐹𝑃𝑄𝑡+ℎ −𝑇𝐹𝑃𝑄𝑡−1 = 𝑏
𝑂𝑆
0 + 𝑏𝑂𝑆

ℎ
𝑂𝑆𝑡−1 + 𝜖𝑓 𝑡+ℎ

𝑇𝐹𝑃𝑄𝑡+ℎ −𝑇𝐹𝑃𝑄𝑡−1 = 𝑏
𝑀𝑆
0 + 𝑏𝑀𝑆

ℎ
𝑀𝑆𝑡−1 + 𝜖𝑓 𝑡+ℎ
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for ℎ = 0, ..., 8 quarters. As in the paper, oil shocks (𝑂𝑆) are measured as in Känzig
(2021) (unexpected movements in oil price futures the day after OPEC meetings) and
money shocks (𝑀𝑆) are constructed as in Gürkaynak, Sack and Swanson (2005) (log
change in the price of overnight index swaps within a narrow window around ECB
monetary policy announcements).

Figure OA.1 plots the empirical IRF coefficients over different horizons. In
Panel A, we plot the response to oil shocks. We normalize the oil shock so that
𝑏𝑂𝑆1 represents the effect on impact of a one-standard deviation shock to oil prices
(a 15.7 percent increase in Brent crude oil price). In Panel B, we plot the response to
monetary shocks. The coefficient represents the effect of an annualized shock of 100
basis points. Reassuringly, both shocks have no explanatory power on our aggregate
“purified” TFPQ measure at any horizon.
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