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Abstract

We use a unique high-frequency micro-dataset to estimate the slope of the primitive

form of the New Keynesian Phillips curve, which features marginal cost as the

relevant real activity variable. Our dataset encompasses product-level prices, costs,

and output within the Belgian manufacturing sector over twenty years, recorded at a

quarterly frequency. Leveraging the richness of the data, we adopt a “bottom-up”

approach that identifies the Phillips curve’s slope by estimating the primitive

parameters that govern firms’ pricing behavior, including the degrees of price rigidity

and strategic complementarities in price setting. Our estimates indicate a high

slope for the marginal cost-based Phillips curve, which contrasts with the low

estimates of the conventional unemployment or output gap-based formulations in the

literature. We reconcile the difference demonstrating that although the pass-through

of marginal cost into inflation is substantial, the elasticity of marginal cost in relation

to the output gap is low. Furthermore, through an examination of the transmission

of oil shocks, we illustrate how the marginal cost-based Phillips curve offers a

transparent means of capturing the impact of supply shocks on inflation.
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1 Introduction

Understanding the drivers of inflation continues to be an important though unresolved

matter in macroeconomics. At the heart of this inquiry lies the challenge of estimating

the slope of the Phillips curve, which measures how inflation reacts to fluctuations in real

economic activity. To illustrate the issue, let us consider the New Keynesian version of

the Phillips curve (NKPC), which is now the textbook formulation in the literature. Let

𝜋𝑡 denote inflation and 𝑦𝑡 the output gap, the percentage difference between real output

and its natural level. Then (what we will refer to as) the conventional form of the NKPC is

given by:

𝜋𝑡 = 𝜅 𝑦𝑡 + 𝛽 E𝑡 {𝜋𝑡+1} + 𝑢𝑡 , (1)

where𝑢𝑡 is a randomdisturbance capturing, e.g., cost shocks, and 𝛽 is a subjective discount

factor, typically a parameter close to unity. The NKPC asserts that inflation depends

positively on both 𝑦𝑡 , which can be interpreted as a measure of excess demand, and on

expected future inflation. The main object of interest is 𝜅, the slope coefficient on the

output gap.

There are two interrelated sets of issues involved in uncovering 𝜅. The first set

revolves around the econometric identification of this parameter. First, as emphasized

by McLeay and Tenreyro (2020), the output gap is an endogenous object. If the central

bank acts to adjust 𝑦𝑡 to stabilize 𝜋𝑡 in response to positive cost shocks, the estimate of

𝜅 will be biased downward due to the negative correlation between 𝑦𝑡 and 𝑢𝑡 . Given

the absence of good instruments for 𝑦𝑡 , the estimation of 𝜅 using aggregate time-series

data is problematic (Mavroeidis et al. 2014). Another identification issue involves trend

inflation. The specification given by equation (1) presumes that trend inflation is constant.

However, as emphasized by Hazell et al. (2022) and Jørgensen and Lansing (2023), shifts

in trend inflation may confound the identification of the Phillips curve. For example, if

trend inflation decreases as output declines and the regression model does not account

for this correlation, the estimate of 𝜅 will be upwardly biased.

These identification challenges have led researchers to employ regional data to

estimate 𝜅. Recent examples include Hooper et al. (2020), McLeay and Tenreyro (2020),

and Hazell et al. (2022).
1
In addition, Hooper et al. (2020) and Hazell et al. (2022) allow

1
Also relevant is Beraja et al. (2019), which uses regional data to identify wage Phillips curves.
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for time fixed effects to control for shifting trend inflation. In the latter study, this

identification approach yields an astonishingly small estimate of 𝜅, which suggests that

the Phillips curve is “flat”. This view has become the conventional wisdom, at least for

the pre-pandemic period.

The second set of considerations pertains to both the relevant measure of real

activity that enters the Phillips curve and, consequently, the interpretation of the slope

coefficient 𝜅. In the underlying theory, firms optimize their pricing policies in response

to current and anticipated movements in marginal cost. Thus, as emphasized by both

Galí and Gertler (1999) and Sbordone (2002), the primitive form of the NKPC features real

marginal cost (in percent deviations from trend) entering as the real activity variable. In

fact, the conventional formulation of the NKPC in equation (1) only holds under specific

conditions that establish a proportional relationship betweenmarginal cost and the output

gap. Among other things, wages must be perfectly flexible.
2

If these conditions are

violated, then the output gap may not serve as an adequate proxy for real marginal

cost, typically leading to a downward bias in the estimate of 𝜅.3 Moreover, even if all

conditions that establish a proportional relationship are approximately met, it is crucial

to recognize that the output gap-based slope𝜅 is ultimately the product of two parameters:

the elasticity of inflation with respect to real marginal cost and the elasticity of marginal

cost with respect to the output gap. The ability to separately identify the two coefficients

is important for gaining a comprehensive understanding of inflation dynamics.

In this paper, we leverage a unique high-frequency micro dataset that provides

information on prices, costs, and quantities of production to estimate the slope of the

primitive form of the (marginal cost-based) NKPC. Similar to recent studies, we leverage

the panel dimension of our dataset to enhance the identification approach: instruments

are strong. However, our approach differs from prior studies as we utilize data at the

individual firm-product level. By doing so, we are able to estimate firm-level pricing

equations consistent with the underlying theory, which allow us to directly identify the

primitive parameters that determine the slope of themarginal cost-based NKPC, including

2
Indeed, it is for this reason that New Keynesian DSGE models with wage rigidity include the marginal

cost-based Phillips curve in the system of equations as opposed to the conventional one (see Galí 2015

chapter 6 and the references therein).

3
These considerations also extend to formulations of the conventional NKPC that utilizes the

unemployment gap as a measure of economic activity instead of the output gap. They also apply to using

an aggregate measure of real marginal cost such as the labor share.
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the degree of price rigidity and strategic complementarities in price setting.
4

Our estimates indicate that the slope of the marginal cost-based Phillips curve is

high, suggesting a substantial pass-through of marginal cost into prices and inflation. This

finding stands in stark contrast to the low estimates found in the existing literature using

the conventional output gap-based formulation. To explore the origins of the difference,

we use our firm-level data to estimate an output gap-based curve alongside the marginal

cost-based formulation. Consistent with previous estimates, we find the former exhibits

a substantially lower slope. We reconcile the wedge between the two slopes’ estimates

by showing that the implied elasticity of marginal cost with respect to the output gap

is quite low. In other words, the slope of the conventional NKPC does not stem from a

limited transmission of fluctuations in marginal cost to inflation, but rather from the weak

connection between output gap and marginal cost.

Our analysis also stresses that an important reason why one would want to consider

a marginal cost-based Phillips curve regards the transmission of supply shocks. These

shocks can generate inflation via their influence on the natural level of output. Since

the latter is not directly observable, it becomes problematic to use the output-based

NKPC formulation to comprehend (and forecast) inflation dynamics during a period

characterized by large supply shocks, as many would argue has been the case over the last

few years. The primitive form of the NKPC does not suffer from this issue. Supply shocks

have a direct impact on firms’ marginal costs, and the slope of the marginal cost-based

NKPC traces how their fluctuations impact inflation.

The paper proceeds as follows. In Section 2 we develop the theoretical framework

that serves as the foundation of our estimation strategy. We start from first principles

to derive a NKPC featuring nominal price rigidities and a general form of strategic

complementarities in price setting, which encompasses both static oligopoly (Atkeson

and Burstein 2008), dynamic oligopoly (Wang and Werning 2022), and monopolistic

competition with variable elasticity of demand (Kimball 1995). With an eye toward the

data work, we depart from the standard model by allowing for ex-ante heterogeneity

across firms. In this environment, we derive the expression of the marginal-cost-based

Phillips curve and its slope. As standard, the slope the curve depends on the parameter

4
Notably, our identification procedure nests and enhances the one proposed by Hazell et al. (2022) for

regional data, allowing us to address potential concerns related to shifts in trend inflation and inflation

expectations by means of granular time fixed effects.
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governing price rigidity. Moreover, due to imperfect competition, the slope also depends

on the strength of strategic complementarities in firms’ price-setting behavior. The

presence of strategic complementarities implies that a relative price increase lowers a

firm’s desired markup, dampening the response of prices to movements in marginal cost.

Section 3 provides an overview of our data. Similarly to Amiti et al. (2019), we use

data on the Belgian manufacturing sector. By merging data from different administrative

sources, we collect information on firm-product-level output prices, quantities, and

production costs. Notably, our the data is recorded at a quarterly frequency and the sample

period spans the two decades (1999—2019) of market interactions between both domestic

and foreign competitors. This dataset enables us to observe firms’ own domestic prices,

their competitors’ prices, as well as a measure their marginal costs, all of which directly

map to the theoretical objects.

In Section 4, we outline our identification strategy and clarify the benefits of using

firm-level data to overcome the different identification challenges described above. While

the conventional approach involves aggregating individual firm pricing decisions into the

NKPC and then estimating the slope with aggregate data, we do the reverse. Leveraging

our microdata, we estimate pricing relationships at the individual firm level to identify

the structural parameters that determine the extent of price rigidity and the significance

of strategic price complementarities. With estimates of these key parameters, we then

aggregate to derive the implied slope of the primitive form of the Phillips curve.

We present the estimation results in Section 5. The estimates of the degrees of

price rigidity and strategic complementarities are both sensible and robust. Our analysis

suggests a substantial degree of price stickiness, implying that prices are fixed for about

three to four quarters, on average. This figure closely aligns with the frequency of

producer price adjustments reported by Nakamura and Steinsson (2008) in the US and

almost exactly matches the frequency of price adjustments in the micro-data used to

construct the official PPI series for Belgium. Our estimates also indicate a substantial

degree of strategic complementarity in firms’ price-setting behavior, which is broadly

consistent with the empirical evidence in Amiti et al. (2019). The implied estimate of

the slope of the marginal cost-based Phillips curve is in the range of 0.05 to 0.06. These

numbers are an order of magnitude larger than the estimates of output gap-based or

unemployment gap-based Phillips curve slopes available in the literature. Furthermore,
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we capitalize on the granularity of our data and allow for sector-level heterogeneity in

price-setting behavior in our empirical models to estimate sectoral Phillips curves. Our

findings reveal a considerable variation in both the degree of nominal rigidity and strategic

complementarity across sectors, which translate into heterogeneous pass-through of

marginal costs to inflation.

Section 6 presents various exercises to assess the robustness of our findings. First,

we demonstrate the resilience of our results to using alternative identification strategies

that rely on variation in marginal costs driven by both aggregate demand and supply

shocks. For the former, we use high-frequency shocks to monetary policy, while for

the latter, we use high-frequency oil shocks. Second, we show that our estimates

remain largely unchanged even when accounting for empirically plausible degrees of

macroeconomic complementaries. Finally, we show that under reasonable conditions

our identification approach and the resulting estimates of the NKPC slope remain valid

regardless of whether we employ a Calvo framework or a conventional menu cost

framework to model nominal rigidities.

In Section 7, we examine the implications of our model for aggregate inflation

dynamics. As a direct test of our empirical approach, we demonstrate that the marginal

cost-based model is capable of capturing the swings in year-over-year inflation for

the aggregate manufacturing sector. We then show that the sectoral Phillips curves

also perform well in capturing the year-over-year variations in their respective sectoral

inflation rates.

In Section 8, we reconcile our estimates with those found in the literature. We first

formalize the mapping between the marginal cost-based and output-based curves, which

is mediated by the elasticity of marginal cost to output. Subsequently, we estimate the

slope of the output-based NKPC using firm-level data. In line with earlier estimates (e.g.,

Rotemberg andWoodford 1997), we find that the output-based slope is low. We are able to

identify the source as a low elasticity of marginal cost to output.
5
Finally, we examine the

transmission of oil shocks to illustrate the value of using the marginal cost-based Phillips

curve for tracing the impact of supply shocks on inflation. Section 9 concludes.

5
It should be noted that our estimates are based on pre-pandemic data. It could be that during the recent

inflation surge, the output elasticity of marginal cost has risen, leading to a steepening of the output-based

Phillips curve. If so, our decomposition would help decipher this phenomenon.
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2 Theoretical framework

This section presents the theoretical framework that underlies our empirical analysis.

We formulate the minimum structure required to produce firm pricing equations that

allow us to identify the slope of the aggregate Phillips curve. The framework features

heterogeneous firms competing under imperfect competition subject to nominal rigidity.

Firms are granular. They internalize their impact on industry aggregates and are

influenced by the pricing decisions of their competitors. This model generates a

micro-founded New Keynesian Phillips curve, the slope of which is a function of the

structural parameters that govern firms’ pricing behavior.

2.1 Preferences and pricing behavior

Each period 𝑡 , the economy is populated by heterogeneous producers (or firms), denoted

by 𝑓 , each operating in an industry 𝑖 ∈ I = [0, 1]. We denote by F𝑖 the set of producers
competing in industry 𝑖 . While each firm is measure zero relative to the economy as a

whole and hence takes aggregate expenditure as given, it might be large relative to its

industry, and hence internalizes the effect of its pricing decisions on the consumption

and price index of the industry.

Let 𝑃𝑓 𝑡 be the price charged by each firm for a unit of its output, 𝑃𝑖𝑡 the industry

price index, φ𝑖𝑡 = {𝜑 𝑓 𝑡 }𝑓 ∈F𝑖 a vector of firm-specific demand shifters, and 𝑌𝑖𝑡 the real

industry output. For any industry 𝑖 , we consider an arbitrary invertible demand system

that generates a residual demand function of the following form:
6

D𝑓 𝑡 := 𝑑 (𝑃𝑓 𝑡 , 𝑃𝑖𝑡 ,φ𝑖𝑡 )𝑌𝑖𝑡 ∀𝑓 ∈ F𝑖 . (2)

We assume firms face nominal rigidities as in Calvo (1983).
7
Each period firms face

a probability 1−𝜃 of being able to change their price, independent across time and across

firms, with 𝜃 ∈ [0, 1]. Thus the price 𝑃𝑓 𝑡 paid by consumers in any given period is either

the (optimal) reset price set by a firm that is able to adjust, which we denote by 𝑃𝑜
𝑓 𝑡
, or the

price charged in the previous period, 𝑃𝑓 𝑡−1.

6
The focus on invertible demand systems is a mild technical requirement that rules out the case where

firms produce goods that are perfect substitutes but encompasses any system featuring an arbitrary (but

finite) elasticity of substitution.

7
In Section 6 we show that our identification approach and the estimated NPKC remain valid if the

data-generating process features Ss-style price adjustments as in conventional menu cost models.
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The firms are to adjust their prices during the period do so with the objective of

maximizing expected profits. Their pricing decisions consider both the pricing choices

made by competitors and the impact of their own price adjustments on their residual

demand and the industry-wide price index. Additionally, nominal rigidities generate

forward-looking pricing behavior, as firms take into account that it might not be possible

to adjust prices every period. As a result, the optimal reset price set by firms that are able

to adjust is a weighted average of current and (expected) future nominal marginal costs

and markups. Let Λ𝑡,𝜏 := 𝛽𝜏
𝑈𝑐,𝑡+𝜏+1

𝑈𝑐,𝑡+𝜏
denote the stochastic discount factor, 𝑇𝐶 𝑓 𝑡 := 𝑇𝐶 (D𝑓 𝑡 )

the real total costs, and𝑀𝐶𝑛
𝑓 𝑡
the nominal marginal cost of firm 𝑓 . Then the optimal reset

price 𝑃𝑜
𝑓 𝑡
solves the following profit maximization problem:

max

𝑃𝑜
𝑓 𝑡
,{𝑌𝑓 𝑡+𝜏 }𝜏≥0

E𝑡

{ ∞∑︁
𝜏=0

𝜃𝜏

[
Λ𝑡,𝜏

(
𝑃𝑜
𝑓 𝑡

𝑃𝑖𝑡+𝜏
D𝑓 𝑡+𝜏 −𝑇𝐶 ( D 𝑓 𝑡+𝜏 )

)]}
,

subject to the sequence of expected demand functions {D𝑓 𝑡+𝜏 }𝜏≥0 in (2). The FOC of the

problem is:

E𝑡

{ ∞∑︁
𝜏=0

𝜃𝜏Λ𝑡,𝜏𝐷 𝑓 𝑡+𝜏

[
𝑃𝑜
𝑓 𝑡

𝑃𝑖𝑡+𝜏
− (1 + 𝜇𝑓 𝑡+𝜏 )

𝑀𝐶𝑛
𝑓 𝑡+𝜏

𝑃𝑖𝑡+𝜏

]}
= 0, (3)

where 𝜇𝑓 𝑡 denotes the log markup. Let 𝜖𝑓 𝑡+𝜏 := − 𝜕 lnD 𝑓 𝑡+𝜏
𝜕 ln 𝑃𝑜

𝑓 𝑡

be the residual elasticity of

demand faced by firm 𝑓 . The desired net markup is then given by the Lerner index:

𝜇𝑓 𝑡+𝜏 := ln

(
𝜖𝑓 𝑡+𝜏

𝜖𝑓 𝑡+𝜏 − 1

)
. (4)

According to equation (3), the optimal reset price depends on the expected path

of marginal cost over the period the firm expects its price to be fixed, where 𝜃𝜏 is the

probability the firm expects its price to be fixed 𝜏 periods from now. Moreover, in finding

the optimal reset price, the firm factors in how its pricing decision today affects the

expected path of the desired markups.
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2.2 Technology

Firms are heterogeneous in their production technologies. We assume that a unit of output

of 𝑌𝑓 𝑡 is produced at a nominal marginal cost of:
8

𝑀𝐶𝑛
𝑓 𝑡
= C𝑖𝑡A𝑓 𝑡𝑌

𝜈
𝑓 𝑡
, (5)

where C𝑖𝑡 denotes the nominal unit cost of the composite input factor (e.g., wages and

intermediate goods) that is independent of the scale of production; A𝑓 𝑡 is a firm-specific

cost shifter that captures, among other idiosyncratic factors, heterogeneity in firm’s

production efficiency; 𝜈 is a parameter that pins down the short-term returns to scale

of firms production technology, which are given by (1/(1 + 𝜈)).
In our benchmark model, we focus on the constant returns to scale case (𝜈 = 0). This

assumption rules out macroeconomic complementarities due to the feedback of firms’

pricing behavior into their respective marginal cost (see e.g. Galí 2015).
9
In Appendix A.2

we present a general framework that allows for arbitrary aggregate returns to scale. In

Section 6.2, we show that our estimates of the Phillips curve are robust as the empirical

evidence is broadly consistent with the constant returns to scale assumption at both the

sectoral and aggregate levels.

2.3 The optimal reset price

We log-linearize the FOC in equation (3) around the symmetric steady state with zero

inflation.
10

Denoting with lower-case letters the variables in logs, we obtain that the reset

price satisfies:

𝑝𝑜
𝑓 𝑡
= (1 − 𝛽𝜃 )E𝑡

{ ∞∑︁
𝜏=0

(𝛽𝜃 )𝜏
(
𝜇𝑓 𝑡+𝜏 +𝑚𝑐𝑛𝑓 𝑡+𝜏

)}
. (6)

As we show in Appendix A.1, the log-linearized desired markup is a function that

depends inversely on the gap between the firms’ own reset price and the price of its

8
This functional form is rather general and consistent with standard production technologies used in

the literature (see e.g. AIK and Hottman et al. 2016). As we show Appendix B.4, it nests Cobb-Douglas and

CES as special cases.

9
Macroeconomic complementarities can arise, for example, from roundabout production as in Basu

(1995) or local input markets as in Woodford (2011).

10
The choice of steady-state inflation is largely immaterial for our purposes but permits a lighter notation.

We relax it in the empirical analysis, where we allow for both sector and industry-specific trends.
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competitors, which we denote by 𝑝
−𝑓
𝑖𝑡
. Formally:

𝜇𝑓 𝑡 − 𝜇 = −Γ
(
𝑝𝑜
𝑓 𝑡
− 𝑝−𝑓

𝑖𝑡

)
+ 𝑢𝜇

𝑓 𝑡
, (7)

where Γ > 0 denotes the markup elasticity with respect to prices and 𝑢
𝜇

𝑓 𝑡
is a shock

to the desired markup. Under weak assumptions, this relationship holds for standard

imperfectly competitive frameworks, including static oligopoly (Atkeson and Burstein

2008), dynamic oligopoly (Wang and Werning 2022), and monopolistic competition with

variable elasticity of demand (Kimball 1995). These frameworks share the property that, in

equilibrium, a firm’s elasticity of demand declines as its market share increases. Thus the

presence of strategic complementarities in price-setting behavior implies that a relative

price increase lowers a firm’s desired markup, dampening the response of prices to

movements in marginal cost.

Substituting the expression for 𝜇𝑓 𝑡+𝜏 in the log-linearized FOC we obtain the

following forward-looking pricing equation:

𝑝𝑜
𝑓 𝑡
= (1 − 𝛽𝜃 )E𝑡

{ ∞∑︁
𝜏=0

(𝛽𝜃 )𝜏
(
(1 − Ω) (𝑚𝑐𝑛

𝑓 𝑡+𝜏 + 𝜇) + Ω𝑝
−𝑓
𝑖𝑡+𝜏

)}
+ 𝑢 𝑓 𝑡 , (8)

where 𝑢 𝑓 𝑡 is a firm-specific cost-push shock.
11

The parameter Ω := Γ
1+Γ captures the

strength of strategic complementarities and enters equation (8) in a way that reduces

the responsiveness of prices to changes in marginal costs. If the elasticity of demand is

constant—as it is in the textbook NewKeynesianmodel withmonopolistically competitive

firms—so is the desired markup 𝜇𝑓 𝑡 . In this case, Ω = 0 and the optimal pricing equation

simplifies to the familiar formulation where the reset price is solely dependent on the

current and future stream of marginal costs. Competitors’ prices are then irrelevant.

2.4 The New Keynesian Phillips Curve

As we show in Appendix A.2, the log-linear aggregate price index is:

𝑝𝑡 = (1 − 𝜃 )𝑝𝑜𝑡 + 𝜃𝑝𝑡−1, (9)

11
For some specifications of the demand system, the residual term 𝑢𝑓 𝑡 depends on the vector of expected

demand shifters (E𝑡 {φ𝑖𝑡+𝜏 }) and, in the case of non-stationary dynamic oligopoly, on the expected slope

of the competitors’ reaction function (E𝑡 {𝜕𝑝−𝑓𝑖𝑡+𝜏/𝜕𝑝𝑜𝑓 𝑡 }), which can vary over time depending on aggregate

states. (See, e.g., the CES demand system in Appendix A.1.) This could potentially generate a correlation

between 𝑝
−𝑓
𝑖𝑡

and the residual term 𝑢𝑓 𝑡 . Both possibilities are addressed in our baseline analysis, as well as

in robustness tests, by using an instrumental variable approach.
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with 𝑝𝑡 and 𝑝
𝑜
𝑡 denoting the aggregate price indexes implied by (2), which average across

firms and industries. Let𝑚𝑐𝑛𝑡 denote the aggregate log-nominal marginal cost. Define the

aggregate real marginal cost and aggregate inflation as𝑚𝑐𝑟𝑡 =𝑚𝑐
𝑛
𝑡 − 𝑝𝑡 and 𝜋𝑡 = 𝑝𝑡 − 𝑝𝑡−1,

respectively. Averaging the pricing equation in (8) across firms and industries and writing

it in recursive form, we obtain an equation for the aggregate reset price:

𝑝𝑜𝑡 = (1 − 𝛽𝜃 )
(
(1 − Ω) (𝑚𝑐𝑛𝑡 + 𝜇) + Ω𝑝𝑡

)
+ 𝛽𝜃E𝑡𝑝𝑜𝑡+1

+ 𝜃

1 − 𝜃𝑢𝑡 , (10)

where 𝑢𝑡 is an aggregate cost-push shock, defined in the Appendix. Combining equations

(9) and (10) gives the primitive form of the NKPC curve:

𝜋𝑡 = 𝜆 𝑚𝑐
𝑟
𝑡 + 𝛽 E𝑡 {𝜋𝑡+1} + 𝑢𝑡 , (11)

which asserts that inflation depends on real marginal cost (in deviation from its steady

state) and on expected future inflation. 𝜆 is the slope of the NKPC curve, defined by:

𝜆 :=
(1 − 𝜃 ) (1 − 𝛽𝜃 )

𝜃
(1 − Ω). (12)

Two observations are worth noting. First, the primitive form of the Phillips curve

in equation (11) uses the log deviation of real marginal cost from its steady state as the

relevant real activity variable. In contrast, the conventional formulation of the Phillips

curve, displayed in equation (1), uses the output gap or unemployment to proxy for

marginal cost. As we will discuss, the mapping between marginal cost and output

gap is theoretically valid only under specific circumstances. Moreover, even when a

proportionality between the two variables can be established, the elasticities of marginal

cost to output gap and unemployment need not be equal to one. We return to these

important points in Section 8.

Secondly, the slope of the NKPC, 𝜆, is a function of the primitives governing firms’

pricing behavior. As in standard New Keynesian models (e.g., Galí and Gertler 1999), high

nominal rigidities and low discounting flatten the sensitivity of inflation to changes in

real economic activity. Additionally, equation (12) shows how strategic complementarities

also contribute to reducing the slope. Therefore, given a calibration of the discount factor

𝛽 , estimates of the structural parameters 𝜃 and Ω pin down the slope of the Phillips curve.

Toward this end, we take the structural pricing equation (8) to the data. This exercise

requires measures of prices and marginal costs, which we discuss in the next section.

Notably, it is the use of firm-level data that permits the identification of the primitive

10



parameters.

3 Data and Measurement

We begin by introducing our dataset and highlighting its features that are relevant for

measurement purposes. We then illustrate the procedure for constructing price and

marginal cost measures using both product-level and firm-level data.

3.1 Data

We assemble a uniquemicro-level dataset that covers themanufacturing sector in Belgium

between 1999 and 2019. A rare feature of our dataset is its ability to track, on a

quarterly basis, manufacturing product-level prices and quantities sold in the domestic

market by both domestic and foreign producers, as well as information on production

costs for domestic producers. Our dataset is compiled from four administrative sources:

PRODCOM, international trade data, VAT declarations, and Social Security declarations.

We obtain information on domestic firms from PRODCOM. This dataset allows us

to observe firms’ quarterly sales and physical quantities sold for each narrowly defined

8-digit manufacturing product. We use this highly disaggregated information to calculate

domestic unit values (sales over quantities) at the firm-product level (PC 8 digit).
12

We

obtain similar data on foreign competitors from the administrative records of Belgian

Customs. Specifically, for each manufacturing product sold by a foreign producer to a

Belgian buyer, we observe quarterly sales and quantity sold for different products (CN

8-digit), from which we compute unit values of foreign competitors in local markets.

We leverage detailed administrative data to measure firms’ variable production

costs at a quarterly frequency. Specifically, we obtain information on firms’ purchases

of intermediates (materials and services) from their VAT declarations. Additionally, we

draw upon firms’ Social Security declarations to obtain a measure of their labor costs (the

wage bill).

12
PRODCOM surveys all Belgian firms involved in manufacturing production with more than 10

employees, covering over 90% of production in each NACE 4-digit industry. The survey does not require

firms to distinguish between production and sales to domestic and international customers. Therefore, we

follow Amiti et al. (2019), henceforth AIK, and recover domestic values and quantities sold by combining

information from PRODCOM with international trade data on firms’ product-level exports (quantities and

sales).

11



After applying standard data cleaning filters, our final sample includes 4, 499 firms

observed over 84 quarters (1999:Q1–2019:Q4), totaling 129, 425 observations. Appendix B

provides detailed information on the data sources and data cleaning procedures. Table 1

presents summary statistics of our dataset. Several features of the data are worth noting.

First, our dataset covers the lion’s share of domestic manufacturing production in

Belgium, spanning the entire size distribution.The average firm in our dataset employs 74

employees (measured in full-time equivalents) and has a domestic turnover (sales) of €6

million. The sales of the smallest firms in the sample are worth less than one-tenth of a

thousandth of those generated by the largest producers.

Second, thought the paper we adopt a narrow industry definition based on 4-digit

NACE rev. 2 codes, the standard sector classification system in the European Union. Based

on this classification, we sort firms into 169 manufacturing industries, distributed across

9 manufacturing sectors.
13

This classification optimally balances a coherent definition of

the industry (which is mostly precise if narrow) with the ability to identify an appropriate

set of competitors (both domestic and foreign) competing to gainmarket share in Belgium.

Table 1 shows that the lion’s share of the firms in our sample specializes in only one

manufacturing industry. Even for those firms that operate in multiple industries, the

contribution of themain industry to total firm revenues is, on average, 98% (median 100%).

For the few multi-industry firms, in line with the theoretical framework, we treat each

industry as a separate firm.

Third, the typical sector is characterized by a large number of firms with small

market shares—the average within-industry share is approximately 1.5% on average, with

amedian of 0.5%—and a few relatively large producers. To the extent that these large firms

internalize the effect of their pricing and production decisions on industry aggregates

and strategically react to the pricing decisions of their competitors, the monopolistic

competition benchmark would be a poor approximation. The theoretical framework

introduced in the previous section explicitly accounts for this.

Fourth, although the largest firms have nontrivial market shares in their industries,

they are small compared to the volume of economic activity of their macro sector

13
The first four digits of the PRODCOM product classification coincide with the first four digits of the

NACE rev. 2 classification and also to the first 4 digits of the CN product code classification used in the

customs data. Following the official Eurostat classification system, we define manufacturing sectors by

grouping 2-digit NACE rev. 2 codes. See Appendix B sectors’ definitions.

12



Table 1: Summary Statistics

Mean 5
𝑠𝑡
pctle 25

𝑡ℎ
pctle Median 75

𝑡ℎ
pctle 95

𝑡ℎ
pctle

Firm Employees 75.62 9.00 17.42 30.50 59.00 276.50

Firm Sales 6663.15 228.13 666.11 1486.44 3870.36 21946.60

Number of industries 1.10 1.00 1.00 1.00 1.00 2.00

within firm

Within firm revenue 98.23 86.80 100.00 100.00 100.00 100.00

share of main industry

Firm’s market share 1.54 0.06 0.22 0.52 1.30 6.02

within industry

Firm’s market share 0.21 0.01 0.02 0.05 0.14 0.70

within sector

Firm’s market share 0.02 0.00 0.00 0.01 0.01 0.08

within manufacturing

Number of consecutive 42.03 10.00 24.00 38.00 58.00 82.00

quarters in sample

Notes. The summary statistics reported in this table refer to the sample of domestic producers in PRODCOM.

The firm’s employees are measured in full-time equivalents. Firm sales are measured in thousands of Euros,

rounded to the nearest integer. Within firm revenues shares and the firm’s market shares are measured in

percentages.

(e.g., textile manufacturing or electrical equipment manufacturing) and, even more so,

compared to the volume of economic activity in the whole manufacturing sector in

Belgium. It is therefore reasonable to assume that even the largest producers do not

internalize the effect of their pricing and production decisions on the aggregate economy.

Finally, our data allow us to observe long time series of both prices and marginal

costs. On average, we observe firms for approximately 10 consecutive years (42 quarters).

This feature of the data is particularly important for identification purposes. Aswe discuss

below, a long time series enables us to include unit fixed effects in our empirical models to

control for time-invariant confounding factors without suffering from the classical Nickell

bias that frequently complicates the estimation of dynamic panel models.

3.2 Measurement

We now describe the measures of prices and marginal cost that map to the theoretical

counterparts in Section 2. Our measurement approach is guided by the data features

13



described above and builds on AIK, which uses a dataset similar to ours to study

the pass-through of exchange rate shocks to prices. Appendix B provides a detailed

description of the procedure used to construct all our variables.

Output prices. The key variable of interest is the domestic price of goods charged by

firms in the local market (Belgium). Consistent with the notation used in the theoretical

framework, we use the subscript 𝑖 to denote an industry, 𝑓 to denote a firm-industry pair,

and 𝑡 to denote time (quarters).
14

We denote by 𝑠 𝑓 𝑡 the revenue share of the firm in the

industry.

As in AIK, we compute the change in firm prices 𝑃𝑓 𝑡/𝑃𝑓 𝑡−1, using the most

disaggregated level allowed by the data. For domestic producers, the finest level of

aggregation is a firm×PC 8-digit product code level. For foreign competitors, it is the

importing-firm×source country×CN 8-digit product code level. Approximately half of

the domestic firms in our sample are multi-product firms, meaning they produce multiple

8-digit products within the same industry. For these entities, we compute the price change

by aggregating changes in product-level prices using a Törnqvist index:
15

𝑃𝑓 𝑡/𝑃𝑓 𝑡−1 =
∏
𝑝∈P𝑓 𝑡

(𝑃𝑝𝑡/𝑃𝑝𝑡−1)𝑠𝑝𝑡 .

In the formula above, P𝑓 𝑡 represents the set of 8-digit products manufactured by firm 𝑓 ,

𝑃𝑝𝑡 is the unit value of product 𝑝 in P𝑓 𝑡 , and 𝑠𝑝𝑡 is a Törnqvist weight computed as the

average of the sale shares between 𝑡 and 𝑡 − 1: 𝑠𝑝𝑡 :=
𝑠𝑝𝑡+𝑠𝑝𝑡−1

2
. We then construct the time

series of firms’ prices (in levels) by concatenating quarterly changes.
16

14
Whenever a firm operates in multiple 4-digit industries, we treat each firm-industry pair as a separate

unit in our sample. Aswe discussed, most firms operate in only one industry, and themain industry accounts

for the lion’s share of sales of multi-industry firms. Therefore, all our results are essentially unchanged if

we restrict the sample to the main industry for each firm.

15
The Törnqvist index coincides with the Cobb-Douglas index whenever sales shares are constant over

time. Allowing for time-varying shares is empirically relevant given that market shares of individual firms

vary over time due to changes inmarket conditions, entry and exit of firms, and other factors. The Törnqvist

index also tends to be robust to measurement error and aggregation bias. As we discuss in Section 6, our

results are nevertheless robust to the choice of different weights.

16
Let 𝑡0

𝑓
denote the first quarter when 𝑓 appears in our data. Starting from a base period 𝑃𝑓 𝑡0 , which we

can normalize to one, prices are concatenated using the formula:

𝑃𝑓 𝑡 = 𝑃𝑓 𝑡0

𝑓

𝑡∏
𝜏=𝑡0

𝑓
+1

(
𝑃𝑓 𝜏

𝑃𝑓 𝜏−1

)
.

The normalization of the level of the firm’s price index in the base year, 𝑃𝑓 𝑡0

𝑓
, is one rationale for the inclusion
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Figure 1: Aggregate inflation: Official statistic vs. in-sample replication

Notes. This figure reports the official statistics of PPI year-over-year inflation for the domestic

manufacturing sector in Belgium (gray dashed line) and the same measure constructed from micro data

(solid black line). The latter is a Törnqvist index that aggregates across domestic products, firms, and

industries in our final sample.

Using a similar approach, we construct the price index of competitors for each

domestic firm by concatenating quarterly changes according to the following formula:

𝑃
−𝑓
𝑖𝑡

/𝑃−𝑓
𝑖𝑡−1

=
∏

𝑘∈F𝑖/𝑓
(𝑃𝑘𝑡/𝑃𝑘𝑡−1)𝑠

−𝑓
𝑘𝑡 .

Here, 𝑠
−𝑓
𝑘𝑡

:= 1

2

(
𝑠𝑘𝑡

1−𝑠𝑓 𝑡 +
𝑠𝑘𝑡−1

1−𝑠𝑓 𝑡−1

)
represents a Törnqvist weight, which is constructed by

averaging the residual revenue share of competitors in the industry at time 𝑡 (net of firm

𝑓 revenues) with that at time 𝑡 − 1.
17

It is important to note that the set of domestic

competitors for each Belgian producer, denoted as F𝑖 , includes not only other Belgian

manufacturers operating in the same industry but also foreign manufacturers that goods

to Belgian customers.

Lastly, we construct an aggregate price index and a corresponding aggregate

inflation series by aggregating product-level price changes across domestic products,

firms, and industries. The correlation between our price index and the official

of firm fixed effects in our empirical specifications.

17
As with the firm’s price index, the level of the price index of competitor is constructed by normalizing

the first period to one and concatenating quarterly changes. Also, in this case, the normalization is

immaterial for estimation purposes as our empirical model always includes firm fixed effects.

15



manufacturing PPI is 0.97. Our inflation measure also aligns closely with the

official statistic, as demonstrated in Figure 1. These aggregate statistics confirm the

representativeness of our sample and validate our empirical procedure for constructing

price indexes.

Marginal costs. The general cost structure outlined in equation (5) implies that firms’

nominal marginal costs are proportional to its average variable costs, as follows:

𝑀𝐶𝑛
𝑓 𝑡
= (1 + 𝜈)

𝑇𝑉𝐶 𝑓 𝑡

𝑌𝑓 𝑡
. (13)

Taking logs of equation (13), we obtain a proxy of firms’ marginal costs that has a

measurable counterpart in our data. Various inputs are utilized simultaneously in the

production of multiple goods, making the variation in total variable production costs

(across the different product lines) the most suitable cost index for firms’ pricing choices.

Accordingly, we total variable costs (𝑇𝑉𝐶 𝑓 𝑡 ), as the sum of intermediate costs (materials

and services purchased) and labor costs (wage bill), both measured at a quarterly

frequency.

We obtain a firm-specific quantity index for domestic sales (𝑌𝑓 𝑡 ) by scaling a

firm’s domestic revenues by its domestic price index, such that 𝑌𝑓 𝑡 = (𝑃𝑌 )𝑓 𝑡/𝑃𝑓 𝑡 . For

single-industry firms, 𝑃𝑓 𝑡 coincides with the firm-industry price index 𝑃𝑓 𝑡 , which was

discussed earlier. For multi-industry firms, we aggregate industry prices 𝑃𝑓 𝑡 by using as

weights the firm-specific revenue shares of each industry.
18

Finally, returns to scale are

not directly observable in the data. By applying a logarithmic transformation to equation

(13), the inverse of the short-run returns to scale parameter, ln(1+𝜈), enters as an additive
term in our specifications. As we explain below, we control for this factor using different

sets of fixed effects.

18
Specifically, we apply the Törnqvist weight of each (4-digit) industry bundle 𝑖 produced by firm 𝑓

in quarter 𝑡 , which is defined as (𝑠𝑓 𝑖𝑡 + 𝑠𝑓 𝑖𝑡−1)/2, where 𝑠𝑓 𝑖𝑡 is the share of revenues of the firm coming

from sales in industry 𝑖 in total sales across industries. The choice of 𝑃𝑓 𝑡 has essentially no impact on our

estimation results because, as we have shown, the majority of the firms in our data operate in only one

industry, and the sales of those firms that produce goods in multiple industries are typically concentrated

mainly in their primary industry. All our results are robust to defining 𝑃𝑓 𝑡 as the price of the main industry

or using other aggregation methods (such as an arithmetic average or a CES aggregator).
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4 Identification strategy

In this section, we present the identification strategy that enables us to take the theoretical

framework developed in Section 2 to the data. First, we show how to connect theoretical

reset prices to observed prices to obtain forward-looking pricing equations that have

measurable counterparts. Subsequently, we introduce different estimation methods to

identify the structural parameters of the pricing equations. We conclude by discussing

the identification challenges and how we tackle them.

4.1 Mapping the model to the data

Consider a firm entering period 𝑡 before it learns whether or not it will be able to

change its’ price in 𝑡 . Under the Calvo framework, the conditional expectation of the

observed price given the reset price and the price in the previous period is given by

E{𝑝 𝑓 𝑡 |𝑝𝑜𝑓 𝑡 , 𝑝 𝑓 𝑡−1} = (1−𝜃 )𝑝𝑜
𝑓 𝑡
+𝜃𝑝 𝑓 𝑡−1. Define the error term 𝑣 𝑓 𝑡 := 𝑝 𝑓 𝑡 −E{𝑝 𝑓 𝑡 |𝑝𝑜𝑓 𝑡 , 𝑝 𝑓 𝑡−1}

such that E{𝑣 𝑓 𝑡 } = 0, which captures ex-ante uncertainty regarding the outcome of the

Calvo draw. Then:

𝑝 𝑓 𝑡 = (1 − 𝜃 )𝑝𝑜
𝑓 𝑡
+ 𝜃𝑝 𝑓 𝑡−1 + 𝑣 𝑓 𝑡 . (14)

Leveraging the rational expectations assumption, we can use equation (8) to express the

reset price 𝑝𝑜
𝑓 𝑡
in terms of (future) observable variables and replace it in the equation above

to obtain to following population regression (up to an additive constant):

𝑝 𝑓 𝑡 = (1 − 𝜃 ) (1 − 𝛽𝜃 )
∞∑︁
𝜏=0

(𝛽𝜃 )𝜏
(
(1 − Ω)𝑚𝑐𝑛

𝑓 𝑡+𝜏 + Ω𝑝
−𝑓
𝑖𝑡+𝜏

)
+ 𝜃𝑝 𝑓 𝑡−1 + 𝜀 𝑓 𝑡 , (15)

where 𝜀 𝑓 𝑡 is the composite error term, 𝜀 𝑓 𝑡 := 𝑣 𝑓 𝑡 + (1 − 𝜃 )𝑢 𝑓 𝑡 + (1 − 𝜃 ) (1 − 𝛽𝜃 )𝑒 𝑓 𝑡 , 𝑢 𝑓 𝑡 is
the firm-specific cost-push shock, and 𝑒 𝑓 𝑡 is an expectational error such that E𝑡 (𝑒 𝑓 𝑡 ) = 0.

With microdata on prices and marginal costs, we take equation (15) to the data

to identify the parameters that pin down the slope of the Phillips curve. Intuitively,

averaging across firms that can and cannot adjust during a particular period, the elasticity

of current prices to lagged prices identifies 𝜃 , the degree of price stickiness. Given 𝜃 and

a calibration of the discount factor 𝛽 , the complementarity parameter Ω can be identified

either by variation in the expected present value of marginal costs or by variation in the

expected present value of the competitors’ price index, or both.
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4.2 Empirical specifications

We present four alternative models to estimate the population equation (15). Individually,

the different models differ in terms of the sources of variation used to identify the

parameters, as well as in the assumptions made regarding the dynamics of marginal

costs and prices. Together, they produce alternative estimates that allow us to assess

the robustness of our identification framework.

Model A. Our first empirical model is the closest sample analog of the population

regression in equation (15). Because the weights in front of the leads of marginal cost

and competitors’ prices decay at a rate 𝛽𝜃 < 1, we can approximate their present values

with a truncated series as follows:

∞∑︁
𝜏=0

(𝛽𝜃 )𝜏𝑚𝑐𝑛
𝑓 𝑡+𝜏 ≈

𝑇−1∑︁
𝜏=0

(𝛽𝜃 )𝜏𝑚𝑐𝑛
𝑓 𝑡+𝜏 +

(𝛽𝜃 )𝑇
1 − 𝛽𝜃𝑚𝑐

𝑛
𝑓 𝑡+𝑇 =: 𝑃𝑉

𝑇,𝑚𝑐

𝑓 𝑡
,

∞∑︁
𝜏=0

(𝛽𝜃 )𝜏𝑝−𝑓
𝑖𝑡+𝜏 ≈

𝑇−1∑︁
𝜏=0

(𝛽𝜃 )𝜏𝑝−𝑓
𝑖𝑡+𝜏 +

(𝛽𝜃 )𝑇
1 − 𝛽𝜃 𝑝

−𝑓
𝑖𝑡+𝑇 =: 𝑃𝑉

𝑇,𝑝

𝑓 𝑡
.

(16)

In our baseline specification we truncate both series at𝑇 = 8 (2 years), but the results are

robust to a choice of longer horizons.
19
Replacing these expressions in (15) and calibrating

𝛽 to the conventional value of 0.99, we obtain our first empirical model:

𝑝 𝑓 𝑡 = (1 − 𝜃 ) (1 − 𝛽𝜃 )
(
(1 − Ω)𝑃𝑉𝑇,𝑚𝑐

𝑓 𝑡
+ Ω𝑃𝑉

𝑇,𝑝

𝑓 𝑡

)
+ 𝜃𝑝 𝑓 𝑡−1 + 𝛼 𝑓 + 𝛼𝑠×𝑡 + 𝜀 𝑓 𝑡 . (Model A)

Note that we augmented our empirical model with a battery of firm fixed effects (𝛼 𝑓 ) and

sector-by-quarter fixed effects (𝛼𝑠×𝑡 ). In the data, we can identify nominal variables (both

the price level and marginal cost) only up to a normalization.
20
The inclusion of firm fixed

effects makes this normalization immaterial by estimating the parameters of using only

within-firm variation.

The sector-by-quarter fixed effects serve several purposes. First, to keep the

19
Assuming that𝑚𝑐𝑛 and 𝑝−𝑓 consist of permanent and transitory components and that the transitory

components follow an AR(1) process with a persistence of 𝜌 < 1

𝛽𝜃
, the truncation period 𝑇 can be set

such that (𝜌𝛽𝜃 )𝑇 ≈ 0. Thanks to the additional discounting by 𝜃 , the quantity (𝜌𝛽𝜃 )8
, evaluated at our

benchmark estimates, is approximately one percent.

20
See footnote 16.
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notation light, we derived our equilibrium pricing equations by log-linearizing around a

steady state with constant inflation. The inclusion of sector-by-quarter fixed effects makes

our empirical models robust to the possibility of sector-specific trends in inflation and

marginal costs, as the parameters of interest are identified using variation across firms that

operate in the same sector at the same time. Second, shifts in aggregate or sectoral demand

could also generate spurious co-movements of marginal costs and prices through general

equilibrium forces. This would be the case, for example, if unobservable demand shocks

affect wages and intermediate prices at either the aggregate or sectoral level. The fixed

effects help to alleviate such potential concerns. Also, the inclusion of sector-by-quarter

fixed effects allows us to account for changes in long-run expectations about inflation. As

shown by Hazell et al. (2022), long-run expectations tend to positively co-move with the

level of economic activity and therefore pose a threat to the identification of the structural

parameters of interest.

Finally, in combination, the different layers of fixed effects account for the possibility

of unobservable heterogeneity in production technologies at the sector level or firm level

(e.g., heterogeneous returns to scale), which influence marginal costs but are not captured

by our empirical proxy.

Model B. Model A uses information on both marginal costs and industry prices to

identify the complementarity coefficient Ω. However, Ω can in principle be identified

by either variation in either one of the two. Building on this insight, our second empirical

model estimates the importance of strategic complementarities using only variation in

marginal costs. Since most firms are small relative to their industry size, the variation

in each firm’s competitors’ price index occurs primarily at the industry-year level (over

90%). As a result, we can use industry-by-quarter fixed effects (𝛼𝑖×𝑡 ) to absorb the present

value of competitors’ prices and estimate the following empirical model:

𝑝 𝑓 𝑡 = (1 − 𝜃 ) (1 − 𝛽𝜃 ) (1 − Ω)𝑃𝑉𝑇,𝑚𝑐
𝑓 𝑡

+ 𝜃𝑝 𝑓 𝑡−1 + 𝛼 𝑓 + 𝛼𝑖×𝑡 + 𝜀 𝑓 𝑡 . (Model B)

Model B has a few advantages over Model A. First, it includes narrow industry-by-time

fixed effects that better address concerns related to correlated demand shocks that could

affect both marginal costs and prices of all producers in the industry. Second, it alleviates

concerns related to the definition of the set of competitors for each firm (and therefore
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the definition and exact functional form of the competitors’ price index), which could in

principle be broader than the set of producers operating in the same industry.

Model C. A valuable feature of both Model A and Model B is that neither imposes

stringent constraints on how firms form expectations about the dynamics of future

marginal costs and industry prices. The flip side of this flexibility is that the estimating

equations are highly nonlinear due to the presence of 𝜃 in both the present values and

the coefficient in front of the lagged price, which might be demanding on the data. We

thus explore an alternative approach that imposes additional structure on the dynamics

of the right-hand side variables but allows us to derive more parsimonious and linear

empirical specifications. Specifically, we assume that industry prices and marginal costs,

in deviations from industry trends, follow an auto-regressive process of order one plus

drift, with persistence parameters 𝜌𝑝 and 𝜌𝑚𝑐 that are both less than
1

𝛽𝜃
. We then

estimate the following system of linear equations, which represents our third empirical

specification:

𝑝 𝑓 𝑡 = (1 − 𝜃 )
(
(1 − Ω) 1 − 𝛽𝜃

1 − 𝛽𝜃𝜌𝑚𝑐𝑚𝑐
𝑛
𝑓 𝑡
+ Ω

1 − 𝛽𝜃
1 − 𝛽𝜃𝜌𝑝 𝑝

−𝑓
𝑖𝑡

)
+ 𝜃𝑝 𝑓 𝑡−1 + 𝛼 𝑓 + 𝛼𝑠×𝑡 + 𝜀 𝑓 𝑡

𝑝
−𝑓
𝑖𝑡

= 𝜌𝑝𝑝
−𝑓
𝑖𝑡−1

+ 𝛼 𝑓 + 𝛼𝑠×𝑡 + 𝜀𝑝𝑓 𝑡
𝑚𝑐𝑛

𝑓 𝑡
= 𝜌𝑚𝑐𝑚𝑐𝑛

𝑓 𝑡−1
+ 𝛼 𝑓 + 𝛼𝑠×𝑡 + 𝜀𝑚𝑐𝑓 𝑡 ,

(Model C)

where the auto-correlation parameters 𝜌𝑝, 𝜌𝑚𝑐 are now jointly identified with the

stickiness and complementary parameters.

Model D. Finally, as in our second empirical model, we can estimate an alternative

version of Model C, by replacing the set of sector-by-quarter fixed effects with the

narrower set of industry-by-quarter fixed effects and identify the complementarity

parameter using only variation in marginal costs. This leads us to our fourth empirical

model:

𝑝 𝑓 𝑡 = (1 − 𝜃 ) (1 − Ω) 1 − 𝛽𝜃
1 − 𝛽𝜃𝜌𝑚𝑐𝑚𝑐

𝑛
𝑓 𝑡
+ 𝜃𝑝 𝑓 𝑡−1 + 𝛼 𝑓 + 𝛼𝑖×𝑡 + 𝜀 𝑓 𝑡 ,

𝑚𝑐𝑛
𝑓 𝑡
= 𝜌𝑚𝑐𝑚𝑐𝑛

𝑓 𝑡−1
+ 𝛼 𝑓 + 𝛼𝑖×𝑡 + 𝜀𝑚𝑐𝑓 𝑡 .

(Model D)
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4.3 Identification issues

The identification of the parameters of interest requires us to tackle econometric

challenges arising from endogeneity of prices and imperfect measurement of marginal

costs. First, because firms (that are able to adjust in the period) set their prices

simultaneously, a firm’s own price and its competitors’ prices are both a function of

unobservable demand shocks. Second, even if our data allows us to directly observe the

different components of marginal costs, our measure is inherently noisy, possibly leading

to attenuation bias in our estimates.

To address these issues, we estimate our empirical models via Generalized Method

of Moments (GMM) by imposing a set of orthogonality conditions of the form:

E{z𝑓 𝑡 · 𝜀 𝑓 𝑡 } = 0, (17)

where z𝑓 𝑡 is a vector of instruments. From the definition of 𝜀 𝑓 𝑡 , the orthogonality

condition is satisfied by any variable in the information set of the firm prior to resetting

its price, at the beginning of time 𝑡 . For the pricing equations in Model A, we include

in the baseline instrument set a unit vector and lagged realizations of marginal costs and

the price index of competitors, both of which are measured sufficiently in the past (8

quarters) to ensure orthogonality with respect to recent shocks.
21

It is important to note

that to identify the parameters of interest we can use variation in marginal costs driven by

demand and supply simultaneously.
22

This consideration makes lagged variables suitable

instruments so long as they satisfy the orthogonality conditions. We show that this

is indeed the case. We also show in Section 6.1 that our results are robust to a set of

alternative instruments that reflect alternatively aggregate demand and supply shocks.

In addition, to estimateModel Cwe augment the set of instrumentswith one-quarter

lags of the endogenous variables to estimate the autoregressive coefficients in the auxiliary

equations. For models Model B andModel D, we only need instruments for marginal costs

21
The presence of persistent firm-specific shocks can in principle raise concerns regarding the

identification of the stickiness parameter 𝜃 , the coefficient attached to lagged prices. If there exists a

positive serial correlation in these shocks, it has the potential to bias 𝜃 upward and, therefore, lead us to

underestimate the slope of the Phillips curve. The evidence in Section 5 indicates that this is not the case as

our structural estimate of 𝜃 matches an external estimate of the frequency of price adjustment obtained from

complementary PPI micro data. A plausible explanation is that the persistence of demand shocks originates

from a persistent industry component or a time-invariant firm component, which are both absorbed by the

fixed effects included in our regression models.

22
By contrast, as we discuss in Section 8, we do need exclusively demand-side instruments to identify an

output gap-based Phillips curve.
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as the price of competitors is omitted due to the collinearity with the industry-by-quarter

fixed effects.

Weak instruments represent a common issue encountered when estimating the

slope of the NKPC using conventional approaches that rely on aggregate time-series

regressions (Mavroeidis et al. 2014). This issue is due to the lack of sufficient variation

in aggregate instruments, which leads to low statistical power and thus imprecise and

possibly biased estimates of the slope coefficient. Our identification approach does not

suffer from this: the micro-level instruments are powerful. To demonstrate this point,

we regress the endogenous variables—marginal costs and competitors’ prices—on our

instruments, essentially producing what would be the first-stage regressions of a linear

two-stage least squares model. Table 2 presents the estimation results. As we can see, all

coefficients have the expected signs and are statistically significant. The high values of the

Cragg-Donald F-statistic indicate that we can reject the hypothesis of weak identification

at any standard confidence level.
23

It is also noteworthy that the instrument for marginal

costs has practically no predictive power on the competitors’ price index, and vice versa.

This suggests that Model A and Model C identify the complementarity parameter using

essentially orthogonal variation in the two endogenous variables.

The GMM estimation follows a two-step procedure. In the first step, the identity

matrix is used as aweightingmatrix to estimate the coefficients of themodel. In the second

step, we use the estimated coefficients to compute the efficient weightingmatrix employed

in the calculation of the standard errors. All our models weight observations by the

Törnqvist weights, 𝑠 𝑓 𝑡 . This implies that theweight assigned to each firm is the same as the

weight assigned to it in the construction of aggregate price indexes, thereby ensuring that

our estimates are representative from a macroeconomic standpoint. We cluster standard

errors at the sector level to account for the potential correlation structure of error terms

across firms in similar businesses. This choice is conservative but appropriate since it

takes into account the firms’ simultaneous exposure to demand and supply shocks.

23
We reach the same conclusion when using the test developed by Olea and Pflueger (2013), which is

robust to heteroskedasticity, serial correlation, and clustering.
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Table 2: Relevance of the instruments

Model A Model B Model C Model D

𝑃𝑉
𝑇,𝑚𝑐

𝑓 𝑡
𝑃𝑉

𝑇,𝑝

𝑓 𝑡
𝑃𝑉

𝑇,𝑚𝑐

𝑓 𝑡
𝑚𝑐 𝑓 𝑡 𝑝

−𝑓
𝑖𝑡

𝑚𝑐 𝑓 𝑡

𝑚𝑐 𝑓 𝑡−8 0.133 -0.011 0.130 0.325 -0.017 0.285

(0.023) (0.014) (0.016) (0.075) (0.009) (0.052)

𝑝
−𝑓
𝑖𝑡−8

-0.034 0.439 -0.078 0.547

(0.021) (0.027) (0.037) (0.044)

𝑝 𝑓 𝑡−1 0.242 0.096 0.276 0.327 0.088 0.335

(0.052) (0.028) (0.031) (0.033) (0.021) (0.022)

Firm FE y y y y y y

Sector×Time FE y y y y

Industry×Time FE y y

Weak IV F-stat 1,402.86 2,736.45 5,513.99 8,222.10

Notes. This table presents the estimate of different linear regression models that project the instruments

on the endogenous variables. The set of instruments varies across models depending on the specific set

of endogenous variables, as described in the paper. In all regressions, observations are weighted using

Törnqvist weights. Standard errors, reported in parenthesis, are clustered at the sector level. We calculate

present values using equation (16) calibrating 𝜃 to the estimates reported in Table 3. The discount factor

is calibrated to 𝛽 = 0.99. All models are estimated using the complete sample (𝑁 = 129, 425), although the

number of observations in each column varies depending on the lag and lead structure employed in the

estimation.

5 Estimation results

5.1 Structural parameters

We take our four empirical models to the data to estimate the structural parameters that

govern firms’ price-setting behavior. The results are reported in Table 3. Our estimates

suggest a substantial degree of price stickiness, with a value of 𝜃 of approximately 0.7 that

is precisely estimated and roughly similar across the different specifications. This estimate

implies that, on average, prices remain fixed for approximately three to four quarters.
24

This finding closely aligns with the frequency of producer price adjustments reported by

Nakamura and Steinsson (2008) in the US.

Notably, we have the opportunity to validate our model-based estimates of price

24
Given the Calvo structure, the average duration of prices is given by

1

1−𝜃 .
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rigidity by comparing them with an external estimate obtained from the microdata used

by the Belgian statistical office to calculate the official manufacturing PPI. This alternative

data source enables us to directly observe domestic producers’ prices (as opposed to unit

values, as in PRODCOM) for a representative basket of manufacturing products. In the

PPI microdata, the price stickiness (measured as one minus the average probability of

adjusting product prices from one quarter to the other) is 0.68 (standard error 0.001), which

almost exactly matches the estimates of our structural models.

Our estimates also indicate a substantial degree of strategic complementarity in

firms’ price-setting behavior. The estimate of Ω is about 0.55, tightly estimated and robust

across the different specifications. This estimate is consistent with those obtained by AIK

using similar Belgian data but a different estimation approach. Combining the estimates

of 𝜃 and Ω we can recover an estimate of the elasticity of a firm’s own price to changes

in competitors’ prices, which is given by

𝜕𝑝𝑜
𝑓 𝑡

𝜕𝑝
−𝑓
𝑖𝑡

= Ω(1 − 𝜃 )
(

1−𝛽𝜃
1−𝛽𝜃𝜌𝑝

)
and approximately

equal to 0.14. Different from AIK, our setting allows the elasticity to depend on both

nominal rigidities and forward-looking pricing behavior. In flexible-price environments,

the pass-through of shocks to competitors’ prices into a firm’s own price (Ω) would be

about the same magnitude as the pass-through of shocks to a firm’s own marginal cost

(1 − Ω), as in AIK. Nominal rigidities influence this effect in two ways. First, only some

firms can reset their prices, captured by (1 − 𝜃 ). Second, firms that adjust their prices do

so anticipating the path of future marginal cost over the period their price is expected to

remain fixed. They thus adjust the marginal cost by the factor
1−𝛽𝜃

1−𝛽𝜃𝜌𝑝 , which is increasing

in the persistence of marginal cost, 𝜌𝑝 . Finally, we find that variation in markups absorbs

the almost entirety of firms’ response to competitors’ actions. Our estimates imply that

the elasticity of markups with respect to competitors’ prices,

𝜕𝜇𝑓 𝑡

𝜕𝑝
−𝑓
𝑖𝑡

= −Γ
(
𝜕𝑝𝑜

𝑓 𝑡

𝜕𝑝
−𝑓
𝑖𝑡

− 1

)
, is

approximately 1, which is again consistent with the unitary pass-though found by AIK.

Finally, we find that the persistence of marginal cost is between 0.63 for Model C

and 0.78 for Model D, and the persistence of the price index is 0.93. It is important to

recognize that these parameters reflect persistent deviations from trends, that have been

absorbed by inclusion of the time-by-industry fixed effects.
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Table 3: Structural estimates and slope of the Phillips curve

Model A Model B Model C Model D

Panel a: Structural estimates

𝜃 0.704 0.690 0.727 0.679

(0.019) (0.016) (0.014) (0.013)

Ω 0.539 0.651 0.529 0.625

(0.058) (0.071) (0.030) (0.086)

𝜌𝑚𝑐
0.633 0.778

(0.047) (0.055)

𝜌𝑝 0.936

(0.004)

Firm FE y y y y

Sector×Time FE y y

Industry×Time FE y y

Number of equations 1 1 3 2

Number of moments 4 3 8 5

Hansen J-test 𝜒2
2.130 0.019 6.976 3.791

Panel b: Slope of the Phillips curve

𝜆 0.059 0.050 0.050 0.058

(0.012) (0.016) (0.005) (0.018)

Notes. This table presents the estimates of Models A, B, C, and D, which are different approximations of the

population regression in equation (15). For each model, panel a reports the estimates and standard errors

of the structural parameters. Panel b reports the slope of the Phillips curve (𝜆) implied by the estimated

parameters according to equation (11). In the first and second columns (models A and B), we calculate

present values using equation (16). In the third and fourth columns (models C and D) we relay on the AR1

assumption. The discount factor is calibrated to 𝛽 = 0.99. All models are estimated using the complete

sample (𝑁 = 129, 425), although the number of observations in each column varies depending on the lag

and lead structure employed in the estimation. In all regressions, observations are weighted using Törnqvist

weights. Robust standard errors (reported in parenthesis) are clustered at the sector level.
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5.2 The slope of the Phillips curve

By combining the estimates of the structural parameters we can now recover the slope

of the marginal-cost-based Phillips curve. Table 3 shows that, across the different

specifications, the estimated values of 𝜆 range from 0.05 to 0.06. As we noted earlier, these

estimates aremuch larger than estimates of the conventional NKPC found in the literature,

which typically display a magnitude three to ten times smaller in comparison. Note also

that if it weren’t for the substantial dampening effect of strategic complementarities, the

slope of the marginal cost-based NKPC would be even higher: given our estimates of Ω,

strategic complementarities cut the slope in half. In Section 8, we discuss how to reconcile

our estimates of themarginal cost-based NKPCwith a conventional output gap-based one.

5.3 Sectoral Phillips curves

Exploiting the granular nature of our data, we can estimate our pricing equations

separately for individual sectors to recover estimates of sectoral Phillips curves. We

use Model C to obtain sector-specific estimates of the structural parameters and of the

implied slope of the NKPC.
25

(The estimates obtained from the other specifications are

very similar.) Table 4 presents the results.

For all sectors, the estimation indicates plausible degrees of price stickiness, with

values of 𝜃 ranging between 0.58 for the transport equipment sector to 0.78 for the

chemicals sector. The estimates of the degree of complementarities are also sensible and

quite heterogeneous. Some sectors, such as machinery and transport equipment, display

almost complete pass-through ofmarginal costs, whereas others, such as food and textiles,

exhibit significant adjustments of desired markups in response to economic conditions

and competitive pressure.

Taken together, the sectoral estimates reveal a significant degree of heterogeneity

in the slope of the sectoral NKPC, ranging from 0.04 percent for the food, beverage, and

tobacco sector to 0.28 percent for the transport equipment sector. Nevertheless, all of

25
We consider nine sectors that jointly span the manufacturing sector in Belgium, excluding the

"computer, electronic and optical products" sector due to an insufficient number of observations. Given

the smaller sample size of the individual sectoral subsamples, we augment the set of instruments in each

sectoral regression to include lags from 𝑡−1 to 𝑡−8 for both marginal cost and the price index of competitors

to identify the parameters of the pricing equation and include lags from 𝑡 − 2 to 𝑡 − 8 to identify the

autoregressive coefficients. The additional instruments enhance the identification power and the stability

of the empirical estimates, particularly for sectors with smaller sample sizes.

26



Table 4: Structural estimates and slope of the sectoral Phillips curves: Sectoral estimates.

Sector: 𝜃𝑠 Ω𝑠 𝜆𝑠 𝑠𝑠

Transport equipment 0.582 0.077 0.281 0.033

(0.009) (0.015) (0.019) (0.012)

Electrical equipment 0.632 0.191 0.177 0.020

(0.005) (0.021) (0.007) (0.007)

Machinery equipment 0.668 0.087 0.154 0.019

(0.021) (0.041) (0.029) (0.012)

Wood, paper and printing 0.703 0.202 0.102 0.106

(0.019) (0.082) (0.020) (0.034)

Metals 0.728 0.127 0.091 0.099

(0.016) (0.056) (0.013) (0.016)

Rubber and plastic 0.714 0.367 0.075 0.106

(0.018) (0.047) (0.012) (0.011)

Textiles, apparel and leather 0.737 0.509 0.047 0.030

(0.023) (0.144) (0.019) (0.024)

Chemicals 0.779 0.330 0.043 0.275

(0.011) (0.031) (0.005) (0.066)

Food, beverages and tobacco 0.760 0.483 0.041 0.289

(0.018) (0.048) (0.010) (0.031)

Notes. This table presents the estimates of the structural parameters (𝜃 and Ω), the implied slope of the

NKPC (𝜆), and the sector-specific Törnqvist weight (𝑠) for different manufacturing sectors. The estimates

are obtained using Model C. For each sector, observations are weighted in the regression using Törnqvist

weights. Standard errors (in parenthesis) are robust to heteroskedasticity and autocorrelation at the firm

level.

them are economically meaningful, confirming that movements in marginal costs are a

key driver of inflation, even at the sectoral level.

6 Robustness analysis

Before moving to the aggregate implications of our estimates, we present a battery of

exercises to test the robustness of our results and discuss some additional potential

concerns with our identification strategy.
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6.1 Aggregate instruments

The estimation of our models requires instruments for both marginal costs and the

price index of competitors, owing to measurement and endogeneity concerns. We have

demonstrated that the firm-level instruments used in our baseline specifications are

powerful and have provided arguments supporting their validity. We have also shown

that our estimates are robust to the inclusion of different sets of industry-by-quarter fixed

effects, defined either at a higher or lower level of aggregation.

We now estimate the structural parameters (and therefore the slope of the NKPC)

using an alternative set of instruments that leverage variation in aggregate variables,

specifically high-frequency monetary policy and oil shocks. The purpose of this exercise

is threefold. First, it allows us to further assess the validity of our identification strategy,

by confirming that our estimates are robust to using aggregate shocks as instruments.

Second, it informs about the structural nature of our estimates, which, according to theory,

should not be contingent upon the source of fluctuations–micro or macro, demand or

supply–in marginal costs. Third, it provides us with a set of over-identifying restrictions

to formally test for instrument validity.

As is standard, we measure monetary policy shocks by looking at surprises

in asset prices linked to the movements of policy rates—in our case, the Euro area

monetary policy rate. Specifically, we follow Gürkaynak et al. (2005) by leveraging

variation in the overnight index swaps in a narrow window around ECB monetary policy

announcements.
26
The construction of oil shocks is also standard: we follow the approach

in Känzig (2021), which uses variation in crude oil futures prices in a narrow window

around OPEC announcements.

The fluctuations in money and oil shocks capture shifts in aggregate demand and

supply conditions, respectively, resulting in opposite movements in firms’ marginal costs.

To see this, Figure 2 shows the impulse–response functions of marginal costs to both

shocks obtained via local linear projections. As we can see, on average, a positive money

shock (tighter than expected monetary policy) significantly reduces the present value of

future marginal costs. It does so by reducing demand, which in turn reduces marginal

costs, given that firms face upward-sloping supply curves in input markets. In contrast, a

positive oil shock (an unexpected increase in oil prices) shifts the present value ofmarginal

26
The time-series of aggregate money shocks is from Altavilla et al. (2019).
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Figure 2: Local projections of the money and oil shocks on marginal cost
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Notes. This figure displays the impulse response function of marginal cost to aggregate money and oil

shocks estimated via local linear projections. The plot reports the coefficients 𝑏ℎ from the regressions

𝑚𝑐𝑛
𝑓 𝑡+ℎ −𝑚𝑐𝑛

𝑓 𝑡−1
= 𝑎𝑓 + 𝑏ℎ𝑆𝑡−1 + 𝜀𝑆𝑓 𝑡+ℎ for 𝑆 ∈ {𝑀𝑆,𝑂𝑆} and ℎ = 1, · · · , 8 quarters. The dark (light) gray

shaded areas represent the 68 (95) percent confidence bands obtained from Newey-West standard errors

with four quarters of correlation. All the regressions are weighted using Törnqvist weights.

costs upward. These results are consistent with the evidence on the aggregate effects of

money and oil shocks produced by standard structural VAR models.
27

We construct our money and oil shock instruments to exploit both time-series and

cross-sectionalmargins of variation. We first recover firm-specific loadings on each shock:

𝑚𝑐𝑛
𝑓 𝑡
= 𝑎 𝑓 + 𝑏𝑚𝑓 𝑀𝑆𝑡−1 + 𝜀𝑚𝑓 𝑡 ,

𝑚𝑐𝑛
𝑓 𝑡
= 𝑎 𝑓 + 𝑏𝑜𝑓𝑂𝑆𝑡−1 + 𝜀𝑜𝑓 𝑡 .

The loadings of interest, 𝑏𝑚
𝑓
and𝑏𝑜

𝑓
, are indexed by 𝑓 as we estimate them running separate

27
See for example Gertler and Karadi (2015), Känzig (2021), and Gagliardone and Gertler (2023).
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regressions for each firm. We then combine the firm-specific loadings with the aggregate

shocks to obtain a set of firm-level money and oil shocks instruments: 𝑀𝑆 𝑓 𝑡 := ˆ𝑏𝑚
𝑓
·𝑀𝑆𝑡−1

and 𝑂𝑆 𝑓 𝑡 := ˆ𝑏𝑜
𝑓
· 𝑂𝑆𝑡−1.

28
These instruments vary both in the time series and in the

cross-section. Therefore, they are not absorbed by the time fixed effects in our model and

we can use them to construct additional moment restrictions to identify the parameters.

Table 5: Robustness: Alternative instruments

Money shocks Oil shocks

(1) (2) (3) (4)

Panel a: Structural Estimates

𝜃 0.688 0.705 0.703 0.708

(0.014) (0.005) (0.007) (0.006)

Ω 0.719 0.534 0.748 0.528

(0.041) (0.029) (0.041) (0.036)

𝜌𝑚𝑐
0.782 0.801

(0.005) (0.018)

Firm FE y y y y

Industry×Time FE y y y y

Number of equations 1 1 3 2

Number of moments 4 3 8 5

Hansen J-test 𝜒2
6.138 6.864 9.454 6.659

Panel b: Slope of the Phillips curve

𝜆 0.041 0.059 0.032 0.058

(0.010) (0.003) (0.007) (0.006)

Notes. This table presents a set of regressions where we estimate our structural parameters, and the

implied slope of the NKPC, using an alternative set of macro instruments. In columns (1)–(2) the additional

instruments are a sequence of money shocks. In columns (3)–(4) a sequence of oil shocks. In columns (1)

and (3) the estimates are based on Model B. Columns (2) and (4) are based on Model D. In columns (1)

and (3) we calculate present values using equation (16). In columns (2) and (4) we reply on the the AR1

assumption. The discount factor is calibrated to 𝛽 = 0.99. All models are estimated using the complete

sample (𝑁 = 129, 425), although the number of observations in each column varies depending on the lag

and lead structure employed in the estimation. In all regressions, observations are weighted using Törnqvist

weights. Robust standard errors (reported in parenthesis) are clustered at the sector level.

28
In the literature on fiscal multipliers using regional panel data, Nekarda and Ramey (2011) and

Nakamura and Steinsson (2014) use similar approaches to construct instruments for regional government

purchases and regional military spending. See Murtazashvili and Wooldridge (2008) for conditions

regarding the consistency of this class of instrumental variable estimators.
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The intuition behind the exogeneity of these instruments is as follows. The

aggregate components capture high-frequency surprises in financial asset prices that

occur around the ECB andOPEC announcements. As financial assets are forward-looking,

surprises observed around a sufficiently tight window after the announcements capture

deviations from markets expectations, which are orthogonal to the information available

prior to the announcement. The cross-sectional loadings capture the firm-specific average

response of marginal costs to these orthogonal shocks.

We estimate Model B and Model D augmenting the set of instruments with current

and four lagged values of𝑀𝑆 𝑓 𝑡 and𝑂𝑆 𝑓 𝑡 .
29

The results are reported in Table 5. As we can

see, both the estimates of structural parameters and of the ones of the slope are in line

with our baseline estimates reported in Table 3. The slope estimate obtained assuming

a first-order autoregressive process for marginal costs (columns (2) and (4)) are identical

(
ˆ𝜆 = 0.58) to the corresponding baseline estimate (Model D). The estimates are slightly

lower—but well within the confidence bands—when we do not restrict the process for

marginal cost (Model B). The similarity of the estimates across specifications is consistent

with the underlying theory that the pass-through of marginal cost should be independent

of its sources of variation.

A second important result emerging from Table 5 comes from the test statistics.

The inclusion of oil and money shocks in the set of instruments generates a set

of over-identifying restrictions, which we use for diagnostics. The bottom of panel

a reports the Sargan–Hansen statistic over-identification test statistic: the low test

statistics indicate that, across all specifications, we do not reject the null hypothesis

that instruments satisfy the exclusion restrictions required by the moment conditions at

conventional confidence levels.

29
Following the literature on local projections (Jordà 2005; Ramey 2016; Stock and Watson 2018), the

set of instruments also includes the 8th-quarter lag of marginal cost. The rationale for doing so is that

lag-augmenting the set of instruments makes inference more robust by accounting for the possibility of

non-stationary marginal costs. As shown by Montiel Olea and Plagborg-Møller (2021), robust confidence

intervals based on lag-augmented regressions have correct asymptotic coverage uniformly over the

persistence in the data-generating process. In line with this, estimates obtained from using money or oil

shocks as instruments only are noisier though consistent with the ones reported in Table 5. See Table A.3

in Appendix C.3.
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6.2 Decreasing returns and macroeconomic complementarities

We derived our benchmark model under the assumption that the economy displays

constant returns to scale in the aggregate. This assumption eliminates the possibility that

macroeconomic complementarities might influence the slope of the NKPC. Specifically, if

returns to scale are decreasing instead, price adjustments are dampened since marginal

cost varies inversely with price, with the net aggregate effect of reducing the slope of the

Phillips curve (see, e.g., Galí 2015). We now investigate the importance of this channel for

our results.

In the general case with arbitrary aggregate returns to scale, the slope of the Phillips

curve can be expressed as follows:
30

𝜆 =
(1 − 𝜃 ) (1 − 𝛽𝜃 )

𝜃
(1 − Ω)Θ,

where the additional term Θ := 1

1+𝛾𝜈 (1−Ω) captures the role of macroeconomic

complementarities that stem from decreasing returns, with 𝜈 denoting short-run returns

to scale (as in Section 3) and 𝛾 denoting the elasticity of substitution across goods within

industries. In our benchmarkmodel with constant returns (𝜈 = 0), we have thatΘ = 1 and

the slope reverts to that in equation (12). Decreasing returns (𝜈 > 0) reduce Θ, lowering

the slope. Importantly, because Ω enters the expression forΘ, strategic complementarities

reduce the importance of macroeconomic complementarities by reducing the importance

of marginal costs in the determination of prices.

In Appendix B.3 we provide empirical evidence indicating that our results are robust

to empirically reasonable departures from the assumption of aggregate constant short-run

returns to scale. Following Lenzu et al. (2023), we perform a gross output production

function estimation that allows us to obtain sector-specific estimates of returns to scale.

Our estimates indicate that the returns to scale of the different sectors, and consequently

in the aggregate, are close to unity. Specifically, the sectoral estimates range from 0.86

to 1.02, while the aggregate returns to scale are estimated to be approximately 0.96. This

implies a value of 𝜈 of approximately 0.04.

Calibrating 𝛾 to 4, which implies aggregate steady-state markup between 1.3 and

1.4, and using our baseline estimate of Ω̂ = 0.55, we obtain a value of Θ̂ = 0.94. Thus

30
See Appendix A.2 for derivations.
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macroeconomic complementarities imply a reduction of the slope of seven percent relative

to our baseline estimate (from 0.06 to 0.056), which is well within the confidence bounds

of our baseline estimates.

6.3 Menu costs

Our benchmark model assumes time-dependent pricing where the frequency of price

adjustment is the one implied by Calvo model. In this section, we show that under certain

reasonable conditions, our estimates of the slope of the Phillips curve remain valid if

one instead models nominal rigidities using a menu cost setting where firms are free to

adjust their price each period but are subject to a fixed adjustment cost. This exercise

also informs us about how well the Calvo versus menu cost formulation captures price

adjustment in our data.

In the conventional menu cost framework, the fixed cost of adjustment gives rise to

an endogenous inaction region around the target price that is bounded by "Ss bands." As

a result, price adjustments can be broken down into two components: shifts in the reset

price given the adjustment frequency (the intensive margin) and shifts in the adjustment

frequencies that correspond to shifts in the Ss bands (the extensive margin). As discussed

byCaballero and Engel (2007), the extensivemargin gives rise to a selection effect, wherein

firms farthest away from their target price are more likely to adjust. The selection effect

implies that, for a given price adjustment frequency, there will be greater price flexibility

in the menu cost framework compared to the corresponding Calvo setup, which features

only intensive margin adjustments.

Despite these differences, Auclert et al. (2022) argues that, when aggregate shocks

are not too large, there exists an approximate observational equivalence in the aggregate

price response tomarginal cost shocks betweenmodelswith Calvo rigidities and canonical

models with menu costs (Golosov and Lucas 2007; Nakamura and Steinsson 2010). In

particular, the authors show that, up to a first-order approximation of the price response,

one can derive two “virtual hazard rates” (i.e., fictitious probabilities of keeping the price

fixed between any two consecutive periods) that exactly replicate both the intensive and

extensive margins of adjustments. It follows that, quantitatively, an average of the two

virtual hazard rates can be used to calibrate a time-dependent model so that the aggregate

response of the price level is similar to that of a menu cost model. Moreover, the average
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virtual hazard rate is approximately flat for a wide range of calibrations, which implies

that the adjustment probability declines geometrically. It follows from these results that

a Calvo model calibrated with the virtual frequency serves as a good approximation of

canonical menu cost models.
31

When the equivalence result holds, the frequency of adjustment is constant and we

can write a general expression for the conditional expectation of a firm’s price change:

E{𝑝 𝑓 𝑡 − 𝑝 𝑓 𝑡−1 |𝑝𝑜𝑓 𝑡 , 𝑝 𝑓 𝑡−1} ≈ (1 − 𝜃 ) (𝑝𝑜
𝑓 𝑡
− 𝑝 𝑓 𝑡−1)︸                    ︷︷                    ︸

Calvo term

+ (𝜃 − ˜𝜃 ) (𝑝𝑜
𝑓 𝑡
− 𝑝 𝑓 𝑡−1)︸                    ︷︷                    ︸

Selection term

,

where
˜𝜃 is the average virtual frequency of adjustment under menu costs (and where

Calvo term refers to the intensive margin and the selection term to the extensive margin).

As noted above, the selection term captures the fact that adjusting firms are not a random

sample of the population, but are exactly those whose reset price is farthest from their

price in the previous period. By rearranging the expression above, we obtain the familiar

expression for the expected price change:

E{𝑝 𝑓 𝑡 |𝑝𝑜𝑓 𝑡 , 𝑝 𝑓 𝑡−1} ≈ (1 − ˜𝜃 )𝑝𝑜
𝑓 𝑡
+ ˜𝜃𝑝 𝑓 𝑡−1. (18)

It follows from equation (18) that one can derive an approximate Phillips curve

relationship even under a menu cost framework, where the virtual frequency
˜𝜃 replaces

the actual frequency of price adjustments 𝜃 :

𝜋𝑡 ≈
(1 − ˜𝜃 ) (1 − 𝛽 ˜𝜃 )

˜𝜃
(1 − Ω) 𝑚𝑐𝑟𝑡 + 𝛽 E𝑡 {𝜋𝑡+1} + 𝑢𝑡 .

Note that, as discussed in the work of Gertler and Leahy (2008), for a given frequency

of price adjustments 𝜃 , the selection effects leads to larger price changes (
˜𝜃 ≤ 𝜃 ), and

therefore the slope of the Phillips curve would be higher under a menu cost framework.

The arguments above clarify that, even if the data-generating process features

Ss-style price adjustments, the population regression presented in equation (15) identifies

correctly the virtual frequency
˜𝜃 (instead of the frequency of adjustment 𝜃 ). Therefore,

the estimated NKPC slope remains valid and unchanged under a menu cost framework.
32

31
See also Gertler and Leahy (2008) for conditions under which an exact equivalence result holds.

32
We verify the claim using simulated data. Specifically, we simulate firm-level random walk processes

for the reset price and generate time series of prices from a standard Calvo model and from a standard

menu cost model, calibrated to have the same frequency of price adjustments 𝜃 . We then run regressions in

equation (15) on the two simulated databases and confirm that the coefficient on the lagged price is exactly
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This discussion also emphasizes why estimating the parameters using firm-level pricing

regressions is preferable to calibrating 𝜃 based on the frequency of price adjustments: the

former approach remains agnostic to, and robust against, the underlying price adjustment

mechanism.
33

Our data allows us to take the analysis of price adjustments one step further and

ask how important is the selection effect in rationalizing the data or, equivalently, how

well does the Calvo model serve as an approximation. Two pieces of evidence suggest

that selection does not appear to be a salient feature in our data. First, as discussed in

Section 5, information on price changes in the PPI micro-data allows us to obtain a direct

estimate of the empirical frequency of price adjustment. We found that it closely matches

our estimate of
˜𝜃 , and therefore implies a small role for selection in our sample.

A second piece of evidence comes from the observed kurtosis of price changes.

Several papers—including Alvarez et al. (2016) and Alvarez et al. (2022)—discuss how

Calvo and menu costs models produce observationally different distributions of price

adjustments and, as a result, different values of kurtosis. In Golosov and Lucas (2007)

and Nakamura and Steinsson (2010), the distribution of price changes is bimodal, with a

large mass corresponding to the Ss bands. This implies a small value of kurtosis–between

one and three–under standard parametrizations. In contrast, the size distribution of price

adjustments under a Calvo mechanism is less dispersed, featuring a large mass of very

small as well as some very large price changes, which implies a larger kurtosis in the

order of six. We follow Midrigan (2011) and Alvarez et al. (2016) and measure the kurtosis

of price adjustment in our PPI micro-data. We find a kurtosis of 5.4, which is again

suggesting that the Calvo model offers a good approximation of price dynamics in our

sample.

7 Inflation dynamics

Until now, we focused on estimating the forces that govern firms’ pricing behavior and

obtained estimates of the primitive form of the slope of theNKPC. In this section, we assess

the capacity of our model to capture the inflation dynamics observed in the data. We begin

equal to 𝜃 for the Calvo model and is lower than 𝜃 for the menu cost model, with the coefficient on the reset

price always summing to one. We thank Man Chon Iao for providing the simulated data.

33
We thank Ludwig Straub for the insightful discussions and suggestions on this point.
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studying whether our estimates can explain the aggregate time series of producers’ prices

in the Belgianmanufacturing sector. Moving to a finer level of aggregation, we then assess

the model’s ability to rationalize sectoral inflation dynamics.

7.1 Aggregate inflation

To derive an expression for aggregate inflation, we first close the model by assuming

that nominal marginal cost follows a random walk with drift, as is consistent with the

empirical evidence.
34

We then use the equation for the price index (equation (9)) and the

equation for the reset price (equation (10)), along with the restriction on the process for

the nominal marginal cost, to obtain the following reduced-form expression for quarterly

inflation (see Appendix A.3 for derivations):

𝜋𝑡 = ˜𝜆
(
𝑚𝑐𝑛𝑡 − 𝑝𝑡−1

)
+ 𝛼 + 𝜃𝑢𝑡 , (19)

where
˜𝜆 ≡ ˜𝜆(𝜃,Ω) is an analytical function of the structural parameters, 𝛼 captures trend

inflation, and 𝑢𝑡 is the aggregate cost-push shock. According to equation (19), quarterly

inflation is increasing in current nominal marginal cost scaled by the lagged price level,

consistent with the theory presented earlier. As before, the sensitivity of inflation depends

upon the primitive pricing parameters 𝜃 and Ω.

Finally, to obtain an expression for the model contribution to year-over-year

inflation, we iterate equation (19) backward three periods and suppress the cost-push

shocks:

𝜋
y-y

𝑡 =

3∑︁
𝜏=0

˜𝜆(1 − ˜𝜆)𝜏 (𝑚𝑐𝑛𝑡−𝜏 − 𝑝𝑡−4) + 𝛼y-y. (20)

According to equation (20), year-over-year inflation depends on a distributed lag of

nominal marginal cost scaled by the price level at 𝑡 − 4.

The black line in Figure 3 plots year-over-year inflation in the data, that is the time

series of manufacturing inflation constructed using the producer price index data. The red

line in Figure 3 depicts themodel-implied inflation series according to equation (20).
35
The

34
We regress 𝑚𝑐𝑛𝑡 on one lag and instrument with the second lag to reduce downward bias due to

measurement error. We find that the estimated autoregressive coefficient is 𝜌𝑚𝑐 = 0.987 (0.015), with
Newey-West standard errors in brackets. Additionally, the Dickey-Fuller test does not reject the null

hypothesis of unit root with 𝑍 = −1.639 and p-value = 0.463. Notice that this estimate is different although

consistent with those in Table 3, as those estimates should be interpreted as the persistence of deviations

from trend due to the inclusion of time fixed effects.

35
In practice, to account for cross-sectional heterogeneity in the primitive parameters, we construct
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Figure 3: Aggregate inflation dynamics

Notes. This figure compares the inflation dynamics in the data to the model-implied one. The black

line represents manufacturing producer price inflation in the data. The red line is the model-implied

manufacturing producer price inflation (𝜋
y-y

𝑡 ), constructed as a Törnqvist-weighted average of the sectoral

model-based inflation rates (𝜋
y-y

𝑠𝑡 ). The latter are constructed using the formula in equation (20) and the

parameter estimates from Table 4.

difference between the black and red lines is the component of inflation due to cost-push

shocks.

Overall, the model effectively tracks the broad swings in inflation over our sample

period. It accounts for half of the variation in inflation (𝑅2 = 0.5) with a correlation

of 0.71. Particularly noteworthy is its ability to capture the drop in inflation during the

2008 financial crisis and the sharp run-up in 2016. Additionally, the model successfully

captures the consistent decline in inflation from 2011 to 2016, although not fully capturing

its amplitude.

We concludewith two considerations. First, cost-push shocks play an important role

in explaining inflation dynamics. This is consistent with the results of earlier quantitative

NK models.
36

Secondly, when benchmarking our model to the data, we chose not to

introduce any form of lag-dependence in inflation, as is commonly done in the literature

the aggregate inflation rates aggregating model-based inflation rates for different sectors with sectoral

Törnqvist.

36
For example, in Primiceri et al. (2006), cost-push shocks arising from variation in the desired price and

wage markups account for about 70% of inflation volatility.
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to improve the model fit (see, for instance, Galí and Gertler 1999, Jørgensen and Lansing

2023, and references therein).

Figure 4: Sectoral inflation dynamics

Transport equipment Electrical equipment Machinery and equipment

Wood, paper, and printing Metals Rubber and plastic

Textiles, apparel and leather Chemicals Food, beverages and tobacco

Notes. This figure assesses the fit of the sectoral Phillips curves. For different manufacturing sectors, it

compares the inflation dynamics in the data to the model-implied one. The black lines represent the sectoral

producer price inflation series. The red lines are the model-implied inflation rates (𝜋
y-y

𝑠𝑡 ), constructed using

the formula in the text and the parameter estimates in Table 4.

7.2 Sectoral inflation

We now turn our attention to a finer level of aggregation and assess the ability of our

model to rationalize sectoral price dynamics. We use the estimates in Table 4 and follow

the steps described in the previous section to obtain a sectoral version of equation (20),

now linking sectoral inflation to sectoral parameters and real marginal costs. For each

manufacturing sector, Figure 4 plots year-over-year PPI inflation (black line) against
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our model-based measure of inflation (red line). Sectors are ordered from top-left to

bottom-right according to the estimated steepness of the NKPC slope.

This exercise demonstrates that the model fits the sectoral data reasonably well.

In sectors in which we estimated a steeper slope (e.g., "Transportation, electrical, and

machinery equipment"), the correlation between the model and the data substantially

increases. In other sectors (e.g., "Food, beverage, and tobacco" and "Chemical products")

the Phillips curve is flatter and a larger share of the variation of inflation is imputed to

cost-push shocks.

8 Reconciliation with the conventional NKPC

In this section, we use our firm-level data to estimate the slope of a conventional output

gap-based NKPC, which–as we show below–is the product of the slope of the marginal

cost-based NKPC and the output elasticity of marginal cost. This exercise helps us

reconcile our estimates of a high slope for the marginal cost-based curve with the low

estimates of the conventional formulation available in the literature.

As discussed in the introduction, the theory underlying the slope of the conventional

formulation is exact only under very restrictive circumstances that permit establishing

a proportionality between marginal cost and output. Accordingly, in order to estimate

a conventional Phillips curve, we follow the approach adopted by the literature, which

postulates—at least implicitly—an approximate log-linear reduced-form relation between

marginal cost and output. We estimate the elasticity between the two variables to be low,

which reconciles the difference between the two slopes.

8.1 The output gap as the real activity measure

Let 𝑦𝑟
𝑓 𝑡
denote the (log) deviation of firm-level real output 𝑦𝑟

𝑓 𝑡
from its flexible price value

𝑦𝑟∗
𝑓 𝑡
, the level assuming the firm is free to adjust prices each period. Assume that there

is an approximately proportional relationship between 𝑦𝑟
𝑓 𝑡

and 𝑚𝑐𝑟
𝑓 𝑡
. Let 𝜎𝑦 denote the

coefficient of proportionality (elasticity) and 𝜀
𝑦

𝑖𝑡
denote an approximation error due, for

example, to wage rigidity in the industry:

𝑚𝑐𝑟
𝑓 𝑡
= 𝜎𝑦𝑦𝑟

𝑓 𝑡
+ 𝜀𝑦

𝑖𝑡
.
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As in the aggregate data, the challenge in constructing the output gap is that we

do not directly observe 𝑦𝑟∗
𝑓 𝑡
, the natural level of output. To make progress, suppose that

𝑦𝑟∗
𝑓 𝑡
is the sum of an industry-specific output trend 𝑦𝑟𝑖𝑡 and a residual 𝜉 𝑓 𝑡 . As is standard,

this residual reflects factors influencing firms’ productivity, assumed to be independent

of demand shocks (Galí 2015). This implies the following approximate relation between

nominal marginal cost and nominal output:

𝑚𝑐𝑛
𝑓 𝑡
= 𝜎𝑦𝑦𝑛

𝑓 𝑡
+ 𝑧 𝑓 𝑡 ,

with 𝑧 𝑓 𝑡 = (1 − 𝜎𝑦)𝑝𝑖𝑡 +𝑚𝑐𝑟𝑖𝑡 − 𝜎𝑦 (𝑦𝑟𝑖𝑡 + 𝜉 𝑓 𝑡 ) + 𝜀
𝑦

𝑖𝑡
and𝑚𝑐𝑟𝑖𝑡 denoting the industry-specific

trend in real marginal cost. Following the same steps as in Section 2.4, we can derive the

slope of the Phillips curve that uses the output gap as the forcing variable, denoted by 𝜅:

𝜅 ≈ 𝜆 · 𝜎𝑦,

where 𝜆 is the slope of the marginal cost-based Phillips curve, given by equation (12).

The equation above shows that the wedge between the slope of the marginal cost-based

Phillips curve and the output gap-based one is approximately equal to the elasticity

between the two forcing variables.

Within this framework, a straightforward modification of our empirical design

enables us to estimate the output-based slope of the Phillips curve and the implied

elasticity 𝜎𝑦 . Using the equation above to express 𝑚𝑐𝑛
𝑓 𝑡

as a function of 𝑦𝑛
𝑓 𝑡
, we obtain

the following regression model:

𝑝 𝑓 𝑡 = 𝜍 𝑦
𝑛
𝑓 𝑡
+ 𝜃𝑝 𝑓 𝑡−1 + 𝛼 𝑓 + 𝛼𝑖×𝑡 +𝜓𝜉 𝑓 𝑡 + 𝑢 𝑓 𝑡︸      ︷︷      ︸

error term

. (21)

where the reduced-form coefficient 𝜍 := (1−𝜃 ) 1−𝛽𝜃
1−𝛽𝜃𝜌𝑚𝑐 (1−Ω)𝜎𝑦 captures the pass-through

from output to prices, which depends on the elasticity 𝜎𝑦 . In this model, the fixed effects

soak up the variation in 𝑧 𝑓 𝑡 , except for the productivity residual 𝜉 𝑓 𝑡 , which contributes to

the error term.

We estimate the regression model in equation (21) using firm-level value added

(revenues minus cost of intermediates inputs) as a measure of nominal output, 𝑦𝑛
𝑓 𝑡
. To

draw a tight connectionwith previous studies, we address the identification problem using

variation in output driven by demand-side shocks. Specifically, we estimate equation (21)

via two-stage least squares (2SLS) using as instruments the high-frequency monetary

policy shocks employed in Section 6.1. As previously discussed, these instruments are
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Table 6: Marginal cost-based vs output-based slopes

Marginal cost Output Marginal cost Output

(1) (2) (3) (4)

𝜍 0.110 0.030 0.072 0.021

(0.030) (0.007) (0.032) (0.004)

𝜆, 𝜅 0.073 0.017 0.058 0.015

(0.024) (0.004) (0.030) (0.003)

𝜎𝑦 0.226 0.253

(0.052) (0.058)

Firm FE y y y y

Industry×Quarter FE y y

Industry×3 years FE y y

Notes. This table presents various reduced-form pricing regressions that use either marginal cost or the

output gap as a forcing variable. Columns (1) and (2) show the estimates of the reduced-form elasticity 𝜍 from

the regression model in equation (21) along with the implied Phillips curve’s slopes (either 𝜆 or𝜅, depending

on the forcing variable). Column (2) also reports the estimates of the elasticity (𝜎𝑦
) implied by the relation

between the marginal cost- and output-based slopes. Columns (2) and (3) report similar estimates but for

a variant of the regression model in equation (21) where the (high-frequency) industry-by-quarter fixed

effects are replaced by the (low-frequency) industry-by-3years fixed effects. The reduced-form coefficients

are estimated via 2SLS. The instruments are the contemporaneous and four lags of the high-frequency

firm-specific money shocks (defined in Section C), and the two-year lag of the forcing variable. All the

regressions are weighted using the Törnqvist weights. Robust standard errors are clustered at the sector

level.

powerful as they leverage both high-frequency aggregate variation in money surprises

and a firm’s heterogeneous loadings on such shocks.

The estimation results are in Table 6 in column (1). In column (2) we report the

estimates of a variant of the same regression model that features marginal cost as forcing

variable instead of output (columns (1) and (3)), which allows us to compare how the

reduced-form estimates and implied slope coefficients (𝜅 versus 𝜆) change depending on

the forcing variable.
37

As we can see, the pass-through of output is substantially lower

than that of marginal cost, leading to a significant difference in the slopes. Consistent with

the structural estimates in Table 3, the marginal cost-based Phillips curve has a slope of

0.073. This estimate is almost four times as large as the estimated slope of the output-based

Phillips curve (0.017), which is in line with prior estimates that rely on aggregate output

37
Note that column (1) is essentially the same regression specification as Column (2) of Table 5, but

estimated via 2SLS instead of GMM.
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gap measures (e.g., Rotemberg and Woodford 1997). The wedge between the two slopes

is driven by the low elasticity of marginal cost to value-added output. We can infer from

the ratio of the two implied slopes that �̂�𝑦 = �̂�/ ˆ𝜆 is approximately 0.23. Such a low

sensitivity is consistent, for example, with a high degree of wage rigidity observed in the

data (Alvarez et al. 2006).

One potential concern with the model in equation (21) is that the industry-by-time

fixed effects might absorb the general equilibrium effects of factor prices onmarginal cost,

which would lead to a downward bias in the estimates of the output elasticity of marginal

costs. The results presented in columns (3) and (4) suggest that this is unlikely the case.

There, we re-estimated the regression model in (21) replacing the industry-by-quarter

fixed effects with a lower-frequency counterpart: industry-by-3-year fixed effects. The

inclusion of this alternative set of fixed effects allows us to control formedium-term trends

while allowing for variation in factor prices at the business-cycle frequency. Overall, the

results are robust.

To sumup, the analysis presented in this section helps us reconcile our Phillips curve

estimates with the estimates of the conventional output-based Phillips curve available in

the literature. Our results indicate that the pass-through from marginal costs to prices

is high, but the flatness of the NKPC is likely due to a low sensitivity of marginal

cost to output. These results call for more theoretical and empirical work focusing on

understanding the structural relationship between output and marginal cost, particularly

so given that the elasticity connecting the two could be time-varying and possibly

nonlinear.

8.2 Oil shocks, marginal cost and inflation

We argued that it is challenging to assess the impact of supply shocks on inflation

through the lenses of the output-based Phillips curve, without relying on a fully specified

macroeconomic model that explicitly addresses the endogeneity of the natural level

of output. By contrast, the impact of supply shocks on marginal cost is measurable.

Therefore one can use the marginal cost-based Phillips curve to trace the effects of supply

shocks on inflation.

To illustrate this point, we trace out the transmission of identified oil price shocks

on inflation in the data. We then contrast the empirical impulse response functions with
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the theoretical ones generated by our model calibrated to the estimated parameter.

Figure 5: Dynamic effects of oil shocks

Panel a: Real marginal cost
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Notes. This figure shows the impulse response function of real marginal cost and price level to aggregate

oil shocks estimated via local linear projections. The plot reports the coefficients 𝑏ℎ from the regressions

𝑥 𝑓 𝑡+ℎ −𝑥 𝑓 𝑡−1 = 𝑎𝑓 +𝑏ℎ𝑂𝑆𝑡−1+𝜀𝑓 𝑡+ℎ for 𝑥 ∈ {𝑚𝑐𝑟 , 𝑝} and ℎ = 1, · · · , 15 quarters. The impact is normalized to

a 15.7% increase in Brent crude oil price (one standard deviation). The dark (light) gray shaded areas are 68

(95) percent confidence bands obtained from Newey-West standard errors with four quarters of correlation.

The red line is the model-based response of prices calculated by feeding in the path of marginal cost (with

perfect foresight) to a Phillips curve, calibrated with 𝜆 = 0.06 and 𝛽 = 0.99. All the regressions are weighted

using Törnqvist weights.

Using the high-frequency oil price shocks described in Section 6, Figure 5 illustrates

howmovements in oil prices trigger movements in marginal cost and consequent changes

in inflation dynamics. Panel a shows the response of aggregate real marginal cost to a

one-standard-deviation shock that increases the price of Brent crude oil by roughly fifteen

percent. In response to this shock, marginal cost rises by two to two and a half percent

during the first two quarters. It then gradually returns to its pre-shock level. The black line

in panel b shows that the the transmission of oil shock to marginal costs has substantial
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effects on inflation. The price level displays a delayed but significant and rather persistent

three percent increase within the initial year of the shock.

Next, we assess the ability of our New Keynesian model to reproduce the inflation

response to the oil shock, once the Phillips curve is calibrated using parameter estimates

presented in the paper. We perform the following exercise. We assume firms have perfect

foresight and feed our marginal cost-based Phillips curve a path of the expected real

marginal cost that matches the one generated by the impulse response of marginal cost in

Panel a. We then compute the implied price dynamic and plot it in Panel b (red dotted line).

As we can see, the model performs well in capturing the inflation dynamics induced by

the oil shock, as evidenced by the model-based impulse-response function consistently

lying within the confidence bands of the impulse response estimated in the data. This

exercise provides additional validation of empirical estimates and also demonstrates the

utility of the marginal cost-based Phillips curve in tracing the effects of supply shocks on

inflation.

9 Concluding remarks

Weuse disaggregated data to identify the slope of the primitive form of theNewKeynesian

Phillips curve, which features marginal cost as a relevant measure of economic activity.

We differ from previous literature by taking the identification approach all the way to the

firm-product level. In particular, our approach leverages a unique dataset that provides

high-frequency information on prices, output, and production costs and enables us to

identify the primitive determinants of the slope of the Phillips curve.

Our estimates of the primitive parameters reveal a substantial degree of price

stickiness—prices remaining fixed for an average duration of three to four quarters—and

highlight an important role for strategic complementarities, which dampen the response

of prices to marginal cost by half. Nonetheless, at the aggregate level, our estimates

imply a slope of the marginal cost-based Phillips curve in the range of 0.05 to 0.06,

which indicates a substantial pass-through of marginal cost into inflation. Importantly,

these estimates are notably larger than the available estimates of the slope of the

conventional formulation of NKPC that features the aggregate output gap or the aggregate

unemployment gap as measures of real activity.
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We reconcile our findings with this literature by presenting evidence that, despite

the high pass-through of marginal cost to inflation, the elasticity of marginal cost with

respect to the output gap appears to be quite low. While there has been a considerable

amount of theoretical work on the connection between marginal cost and inflation,

the same is not true for the relation between marginal cost and the output gap and

unemployment. For example, recent research has suggested that the elasticity of marginal

cost might have increased significantly during the post-pandemic inflation surge (e.g.,

Benigno and Eggertsson 2023). Understanding why the elasticity may have been low in

the pre-pandemic period but high in the post-pandemic period is a fruitful topic for future

research as more recent data becomes available.

Using oil shocks as an example, we also illustrate how the identification approach

proposed in this paper, along with the use of the primitive formulation of the NKPC,

provides a transparent way of examining the transmission of supply-side shocks to

inflation. This is another issue of significant relevance, particularly in light of recent

events. Studying the role of supply shocks in the post-pandemic period is another

interesting topic that we leave for future research.
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Appendix

A Derivations

This section provides additional information and derivations of the key equations

presented in Section 2. We begin showing how the markup function in the paper maps to

the markup functions under two prominent frameworks featuring imperfect competition.

We then present the aggregation steps followed to derive the Phillips curve.

A.1 Derivation of Markup function

Dynamic oligopoly with nested CES preferences

Assume that there is a continuum of industries (indexed by 𝑖) and a finite number of firms

𝑁 within each industry. Each firm is indexed by 𝑓 (or 𝑗 ). Within each industry, firms

compete à la Bertrand. In this environment, the price indexes for each industry 𝑃𝑖𝑡 and

the aggregate price index 𝑃𝑡 are defined, respectively, as:

𝑃𝑖𝑡 :=
©« 1

𝑁

𝑁∑︁
𝑓 =1

(𝜑 𝑓 𝑖𝑡𝑃𝑓 𝑖𝑡 )1−𝛾ª®¬
1

1−𝛾

; 𝑃𝑡 :=

(∫
𝑖∈I

(𝜑𝑖𝑡𝑃𝑖𝑡 )1−𝜎𝑑𝑖

) 1

1−𝜎
,

where 𝜑 𝑓 𝑖𝑡 is a firm-specific demand shifter (firm appeal), and 𝜑𝑖𝑡 is an industry-specific

demand shifter (taste shock). In what follows, we drop the subscript 𝑖 is dropped when

redundant and normalize the steady-state price level to simplify the notation. The demand

function for firm 𝑓 ∈ 𝑖 takes a nested CES form with the elasticity of substitution across

industries 𝜎 > 1 and elasticity of substitution within industries 𝛾 > 𝜎 :

D𝑓 𝑡+𝜏 =

(
𝜑 𝑓 𝑡+𝜏𝑃

𝑜
𝑓 𝑡

𝜑𝑖𝑡+𝜏𝑃𝑖𝑡+𝜏

)−𝛾 (
𝜑𝑖𝑡+𝜏𝑃𝑖𝑡+𝜏
𝑃𝑡+𝜏

)−𝜎
𝑌𝑡+𝜏 . (A.1)

Firms internalize the dynamic effect of their choices on the industry price index and
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on industry demand. Therefore, the residual elasticity of demand faced by firm 𝑓 takes

the following form:

𝜖𝑓 𝑡+𝜏 := −
𝜕 lnD𝑓 𝑡+𝜏

𝜕 ln 𝑃𝑜
𝑓 𝑡

= 𝛾 − (𝛾 − 𝜎) 𝜕𝑝𝑖𝑡+𝜏
𝜕𝑝𝑜

𝑓 𝑡

. (A.2)

We can further characterize the derivative above. First, the price index of competitors of

firm 𝑓 is defined as:

𝑃
−𝑓
𝑖𝑡

:=
©« 1

𝑁 − 1

𝑁−1∑︁
𝑗≠𝑓

(𝜑 𝑗𝑖𝑡𝑃 𝑗𝑖𝑡 )1−𝛾ª®¬
1

1−𝛾

.

It follows that 𝑃
1−𝛾
𝑖𝑡

= 𝑁−1

𝑁

(
𝑃
−𝑓
𝑖𝑡

)
1−𝛾

+ 1

𝑁

(
𝜑 𝑓 𝑡𝑃

𝑜
𝑓 𝑡

)
1−𝛾

. Next, using the definition of the

industry price index 𝑃𝑖𝑡 and denoting by 𝜁 𝑓 𝑡+𝜏 :=
𝜕𝑝

−𝑓
𝑖𝑡+𝜏

𝜕𝑝𝑜
𝑓 𝑡

, its derivative with respect to the

firms’ reset price is given by:

𝜕𝑃𝑖𝑡+𝜏
𝜕𝑃𝑜

𝑓 𝑡

= 𝑃
𝛾

𝑖𝑡+𝜏

[(
𝑁 − 1

𝑁

)
(𝑃−𝑓
𝑖𝑡+𝜏 )

−𝛾𝜁 𝑓 𝑡+𝜏 +
(

1

𝑁

)
(𝜑 𝑓 𝑡 )1−𝛾 (𝑃𝑜

𝑓 𝑡
)−𝛾

]
.

Multiplying both sides by

𝑃𝑜
𝑓 𝑡

𝑃𝑖𝑡+𝜏
, we obtain:

𝜕𝑝𝑖𝑡+𝜏
𝜕𝑝𝑜

𝑓 𝑡

= 𝜁 𝑓 𝑡+𝜏

(
𝑁 − 1

𝑁

) (
𝑃
−𝑓
𝑖𝑡+𝜏
𝑃𝑖𝑡+𝜏

)1−𝛾

+ 1

𝑁

(
𝜑 𝑓 𝑡+𝜏𝑃

𝑜
𝑓 𝑡

𝑃𝑖𝑡+𝜏

)
1−𝛾

= 𝜁 𝑓 𝑡+𝜏 (1 − 𝑠 𝑓 𝑡+𝜏 ) + 𝑠 𝑓 𝑡+𝜏 ,

where 𝑠 𝑓 𝑡+𝜏 := 1

𝑁

𝑃𝑜
𝑓 𝑡
D𝑓 𝑡+𝜏

𝑃𝑖𝑡𝑌𝑖𝑡+𝜏
= 1

𝑁

(
𝜑 𝑓 𝑡+𝜏𝑃

𝑜
𝑓 𝑡

𝑃𝑖𝑡+𝜏

)
1−𝛾

denotes the within industry revenue share of

firm 𝑓 , and 𝑌𝑖𝑡+𝜏 := 𝜑1−𝜎
𝑖𝑡+𝜏

(
𝑃𝑖𝑡+𝜏
𝑃𝑡+𝜏

)−𝜎
𝑌𝑡+𝜏 is the industry demand. Replacing the expression

for
𝜕𝑝𝑖𝑡+𝜏
𝜕𝑝𝑜

𝑓 𝑡

into equation (A.2), we find that the within-industry elasticity of demand faced

by firm 𝑓 is given by:

𝜖𝑓 𝑡+𝜏 = 𝛾 − (𝛾 − 𝜎)
[
𝜁 𝑓 𝑡+𝜏 (1 − 𝑠 𝑓 𝑡+𝜏 ) + 𝑠 𝑓 𝑡+𝜏

]
. (A.3)

The intuition behind this expression is straightforward. The stronger the reaction of

competitors to a firm’s price change—captured by 𝜁 𝑓 𝑡+𝜏—, the lower the residual elasticity

of demand is. A low residual elasticity of demand, in turn, implies that the firm can sustain

a higher markup in equilibrium. This result mirrors the one in the dynamic oligopoly

environment in Wang and Werning (2022) and it nests a number of static environments

featuring imperfectly competitive firms. In a static oligopoly, 𝜖𝑓 𝑡+𝜏 = 0 for 𝜏 > 0. In

A.2



Atkeson and Burstein (2008)’s static Nash oligopoly, 𝜖𝑓 𝑡+𝜏 = 0 for 𝜏 > 0 and 𝜁 𝑓 𝑡+𝜏 = 0.

Under monopolistic competition, 𝑁 → ∞, which implies 𝜁 𝑓 𝑡+𝜏 → 0 and 𝑠 𝑓 𝑡+𝜏 → 0.

We nowuse this result to derive the expression for the log-linearized desiredmarkup

in equation (7) in the paper. As is standard, we log-linearize around a symmetric Nash

steady state (Atkeson and Burstein, 2008).
38

Log-linearizing the elasticity in (A.3) around

the steady state we obtain the steady state residual demand elasticity

𝜖 = 𝛾 − (𝛾 − 𝜎) 1

𝑁
,

which corresponds to the expression in Atkeson and Burstein (2008). In this model, the

desired markup is given by the Lerner index 𝜇𝑓 𝑡+𝜏 := ln(𝜖𝑓 𝑡+𝜏/(𝜖𝑓 𝑡+𝜏 −1)). Log-linearizing
this expression and substituting the expression for steady state residual demand elasticity

we obtain the expression for the log-linearized desired markup (in deviation from steady

state) in equation (7):

𝜇𝑓 𝑡+𝜏 − 𝜇 = −Γ
(
𝑝𝑜
𝑓 𝑡
− 𝑝𝑖𝑡+𝜏

)
+ 𝑢𝜇

𝑓 𝑡+𝜏 ,

where Γ :=
(𝛾−𝜎) (𝛾−1)
𝜖 (𝜖−1)

𝑁−1

𝑁
> 0 denotes the markup elasticity with respect to prices and

𝑢
𝜇

𝑓 𝑡
:= − (𝛾 − 𝜎) (𝛾 − 1)

𝜖 (𝜖 − 1) ln𝜑 𝑓 𝑡 +
𝛾 − 𝜎
𝜖 (𝜖 − 1)

𝑁 − 1

𝑁
𝜁 𝑓 𝑡 ,

captures residual variation in the markup that depends on the demand shifters and

changes in the slope of competitors’ reaction function.

Finally, using these expressions, we can show how to obtain the pricing equation in

(8). Log-linearizing the industry price index and ignoring constants, we get:

𝑝𝑖𝑡 =
𝑁 − 1

𝑁
𝑝
−𝑓
𝑖𝑡

+ 1

𝑁
(ln𝜑 𝑓 𝑡 + 𝑝𝑜𝑓 𝑡 ).

38
The symmetry assumption is standard in the literature (e.g., Midrigan (2011) and Alvarez and Lippi

(2014)), which eases the notation but is largely immaterial for our estimation purposes. Relaxing this

assumption would imply that firm-specific steady-state demand elasticities, 𝜖𝑓 . In this case, the estimates

of the parameters of our pricing equations should be interpreted as average across firms. The assumption

of Nash steady state, also standard the literature, implies that 𝜁 𝑗,𝜏 = 0 at the steady state for all 𝑗s and 𝜏s.

This comes with some loss of generality, but two points can be made. First, as shown byWang andWerning

(2022), one can write a "behavioral" model with the weaker assumption that E{𝜁 𝑗,𝜏 } = 0 for all 𝑗s and 𝜏s that

delivers, under specific values for the elasticities 𝜎 and 𝛾 , a pass-through of shocks to marginal cost into

prices that is qualitatively the same as the one produced by the Nash model. Secondly, these considerations

also apply to our empirical analysis, as we directly estimate the parameters (Γ, in particular) rather than the

underlying elasticities.
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Substituting in equation (6) for the markup and rearranging, we obtain:

𝑝𝑜
𝑓 𝑡
= (1 − 𝛽𝜃 )E𝑡

{ ∞∑︁
𝜏=0

(𝛽𝜃 )𝜏
(
(1 − Ω) (𝑚𝑐𝑛

𝑓 𝑡+𝜏 + 𝜇) + Ω𝑝
−𝑓
𝑖𝑡+𝜏 + (1 − Ω)𝑢𝜇

𝑓 𝑡+𝜏

)}
, (A.4)

where, as in the paper, Ω := Γ
1+Γ . This parameter denotes the relative weight on the price

index of competitors (𝑝
−𝑓
𝑖𝑡
) and captures the importance of strategic complementarities.

When Ω is close to one, firms are not strategic and only look at their marginal cost when

resetting prices. In particular, Ω → 0 as 𝑁 → ∞, which is the monopolistic competition

case. The residual in equation (8) 𝑢 𝑓 𝑡 := (1− 𝛽𝜃 ) (1−Ω)E𝑡
{∑∞

𝜏=0
(𝛽𝜃 )𝜏𝑢𝜇

𝑓 𝑡+𝜏

}
is therefore a

firm-specific cost-push shock, function of the expectation of future demand shifters and

slopes of competitors’ reaction function.

Monopolistic competition with Kimball preferences

Assume that the industry output 𝑌𝑖𝑡 is produced by a unitary measure of perfectly

competitive firms using a bundle of differentiated intermediate inputs 𝑌𝑓 𝑡 , 𝑓 ∈ 𝑖 . The

bundle of inputs is assembled into final goods using the Kimball aggregator:
39∫

1

0

Υ

(
𝑌𝑓 𝑡

𝑌𝑖𝑡

)
𝑑 𝑓 = 1,

where the function Υ(·) is strictly increasing, strictly concave, and satisfies Υ(1) = 1.

Taking as given the industry demand 𝑌𝑖𝑡 , each firm minimizes costs subject to the

aggregate constraint:

min

𝑌𝑓 𝑡

∫
1

0

𝑃𝑓 𝑡𝑌𝑓 𝑡𝑑 𝑓 s.t.

∫
1

0

Υ

(
𝑌𝑓 𝑡

𝑌𝑖𝑡

)
𝑑 𝑓 = 1.

Denoting by 𝜓 the Lagrange multiplier of the constraint, the first-order condition of the

problem is:

𝑃𝑓 𝑡 = 𝜓Υ
′
(
𝑌𝑓 𝑡

𝑌𝑖𝑡

)
1

𝑌𝑖𝑡
(A.5)

Define implicitly the industry price index 𝑃𝑖𝑡 as:∫
1

0

𝜙

(
Υ′(1)

𝑃𝑓 𝑡

𝑃𝑖𝑡

)
𝑑 𝑓 = 1

where 𝜙 := Υ ◦ (Υ′)−1
. Evaluating the first-order condition (A.5) at symmetric prices,

39
For simplicity we now abstract from taste shocks. See footnote 11 and the derivations in the previous

section.
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𝑃𝑓 𝑡 = 𝑃𝑖𝑡 , we get𝜓 =
𝑃𝑖𝑡𝑌𝑖𝑡
Υ′ (1) . Replacing for𝜓 , we get the demand function:

𝑃𝑓 𝑡

𝑃𝑖𝑡
=

1

Υ′(1)Υ
′
(
𝑌𝑓 𝑡

𝑌𝑖𝑡

)
. (A.6)

Therefore, the demand function faced by firms when resetting prices is:

D𝑓 𝑡+𝜏 =

[
(Υ′)−1

(
Υ′(1)

𝑃𝑜
𝑓 𝑡

𝑃𝑖𝑡+𝜏

)] (
𝑃𝑖𝑡+𝜏
𝑃𝑡+𝜏

)−𝜎
𝑌𝑡+𝜏

Taking logs of equation (A.1) and differentiating, we get the residual elasticity of demand:

𝜖𝑓 𝑡+𝜏 := −
𝜕 lnD𝑓 𝑡+𝜏

𝜕 ln 𝑃𝑜
𝑓 𝑡

= −
Υ′

(
𝑌𝑓 𝑡+𝜏
𝑌𝑖𝑡+𝜏

)
Υ′′

(
𝑌𝑓 𝑡+𝜏
𝑌𝑖𝑡+𝜏

)
·
(
𝑌𝑓 𝑡+𝜏
𝑌𝑖𝑡+𝜏

) (A.7)

We nowuse this result to derive the expression for the log-linearized desiredmarkup

in equation (7) in the paper, under monopolistic competition with Kimball preferences. As

above, for ease of exposition, we focus on the symmetric state state. Denote the steady

state residual demand elasticity by 𝜖 = − Υ′ (1)
Υ′′ (1) and by by 𝜖′ the derivative of the residual

demand elasticity 𝜖𝑓 𝑡+𝜏 in (A.7) with respect to

𝑌𝑓 𝑡+𝜏
𝑌𝑖𝑡+𝜏

, evaluated at the steady state:

𝜖′ =
Υ′(1) (Υ′′′(1) + Υ′′(1)) − (Υ′′(1))2

(Υ′′(1))2
≤ 0. (A.8)

The equation above holds with equality if the elasticity is constant (e.g., under CES

preferences). Also in this model, the desired markup is given by the Lerner index.

Log-linearizing the Learner index around the steady state and using equation (A.8), we

have that, up to a first-order approximation, the log-markup (in deviation from steady

state) is equal to:

𝜇𝑓 𝑡+𝜏 − 𝜇 =
𝜖′

𝜖 (𝜖 − 1)
(
𝑦𝑓 𝑡+𝜏 − 𝑦𝑖𝑡+𝜏

)
Finally, log-linearizing the demand function (A.1) and using it to replace for the difference

log difference in output, we obtain:

𝜇𝑓 𝑡+𝜏 − 𝜇 = −Γ
(
𝑝𝑜
𝑓 𝑡
− 𝑝𝑖𝑡+𝜏

)
where, in the case of Kimball preferences, the sensitivity of the markup to the relative

price is given by Γ := 𝜖′

𝜖 (𝜖−1)
1

Υ′′ (1) .

Notice that, without loss of generality, 𝑝𝑖𝑡+𝜏 = 𝑝
−𝑓
𝑖𝑡+𝜏 because of the continuum of

firms within an industry. Substituting into the pricing equation (6) and rearranging leads

to the expression equation (7).
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Finally, following the same steps as the previous section, we obtain Ω := Γ
1+Γ and

the corresponding mapping to the pricing equation in (8).

A.2 Aggregation and the Phillips Curve

Suppose 𝑁 < ∞ and order firms in each industry from 1 to 𝑁 .
40 41

The aggregate price

index (in log-linear terms) is:

𝑝𝑡 =

∫
𝑖∈I

©« 1

𝑁

𝑁∑︁
𝑓 =1

𝑝 𝑓 𝑖𝑡
ª®¬𝑑𝑖,

(In the paper, we dropped the industry subscript for ease of notation.) Denote by 𝐴★
𝑓 𝑡
for

𝑓 ∈ {1, . . . , 𝑁 } the set of industries in which the 𝑓 -th firm can adjust. The price index can

then be rewritten as:

𝑝𝑡 =
1

𝑁

𝑁∑︁
𝑓 =1

(∫
𝑖∈I/𝐴★

𝑓 𝑡

𝑝 𝑓 𝑖𝑡−1𝑑𝑖 +
∫
𝑖∈𝐴★

𝑓 𝑡

𝑝𝑜
𝑓 𝑖𝑡
𝑑𝑖

)
,

where we are using the fact that firms that cannot adjust set their price to their 𝑡 −1 level,

whereas firms that can adjust set their price to their optimal reset price.

Since 𝐴★
𝑓 𝑡
has measure 1 − 𝜃 , and the identity of firms that adjust is an i.i.d. draw

from the total population of firms, using the law of large numbers for each 𝑓 = {1, . . . , 𝑁 }
across industries we have that:

42

1

𝑁

𝑁∑︁
𝑓 =1

∫
𝑖∈I/𝐴★

𝑓 𝑡

𝑝 𝑓 𝑖𝑡−1𝑑𝑖 = 𝜃

∫
𝑖∈I

©« 1

𝑁

𝑁∑︁
𝑓 =1

𝑝 𝑓 𝑖𝑡−1

ª®¬𝑑𝑖 = 𝜃𝑝𝑡−1

and

1

𝑁

𝑁∑︁
𝑓 =1

∫
𝑖∈𝐴★

𝑓 𝑡

𝑝𝑜
𝑓 𝑖𝑡
𝑑𝑖 = (1 − 𝜃 )

∫
𝑖∈I

©« 1

𝑁

𝑁∑︁
𝑓 =1

𝑝𝑜
𝑓 𝑖𝑡

ª®¬𝑑𝑖.
40
Notice that the same argument goes through with minor modifications but heavier notation for 𝑁𝑖 ≠ 𝑁

for a non-zero measure of industries. In general, heterogeneity of the parameters can be accommodated by

repeating the same argument for each group of homogeneous industries with non-zero measure and then

taking weighted averages of different industries. See for example Wang and Werning (2022), appendix C2.

41
Letting 𝑁 → ∞, all results hold under Kimball preferences.

42
The i.i.d. assumption implies that:

∫
𝑖∈𝐵⊆[0,1] 𝑝 𝑓 𝑖𝑡𝑑𝑖 = 𝑃𝑟 (𝐵)

∫
𝑖∈I 𝑝 𝑓 𝑖𝑡𝑑𝑖 . Notice also that∫

𝑖∈[0,1]

(
1

𝑁

∑𝑁
𝑓 =1

𝑝
−𝑓
𝑖𝑡

)
𝑑𝑖 =

∫
𝑖∈[0,1]

(
1

𝑁

∑𝑁
𝑓 =1

[
𝑁

𝑁−1
𝑝𝑖𝑡 − 1

𝑁−1
𝑝 𝑓 𝑖𝑡

] )
𝑑𝑖 = 𝑝𝑡 .
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Defining 𝑝𝑜𝑡 :=
∫
𝑖∈I

(
1

𝑁

∑𝑁
𝑓 =1

𝑝𝑜
𝑓 𝑖𝑡

)
𝑑𝑖 as the average reset price in the economy, we obtain

𝑝𝑡 = 𝜃𝑝𝑡−1 + (1 − 𝜃 )𝑝𝑜𝑡 ,

which is equation (9) in the paper.
43

Next, we replace the aggregate reset price, 𝑝𝑜𝑡 , with an expression that depends on

aggregate marginal costs and prices. Using the definition of firm-level marginal cost in

equation (5), in log-terms we have that:

𝑚𝑐𝑛
𝑓 𝑖𝑡

= 𝑐𝑖𝑡 + 𝑎 𝑓 𝑖𝑡 + 𝜈𝑦𝑓 𝑖𝑡 .

The average marginal cost in the industry is𝑚𝑐𝑛𝑖𝑡 := 1

𝑁

∑𝑁
𝑓 =1

𝑚𝑐𝑛
𝑓 𝑖𝑡
, which implies:

𝑚𝑐𝑛𝑖𝑡 = 𝑐𝑖𝑡 + 𝑎𝑖𝑡 + 𝜈𝑦𝑖𝑡 .

Combining the two equations above and subtracting the (log) industry price index on both

sides, we obtain an expression related real marginal costs to cost shifters and output:

𝑚𝑐𝑟
𝑓 𝑖𝑡

=𝑚𝑐𝑟𝑖𝑡 + (𝑎 𝑓 𝑖𝑡 − 𝑎𝑖𝑡 ) + 𝜈 (𝑦𝑓 𝑖𝑡 − 𝑦𝑖𝑡 ).

We use the demand function to express the log output deviation, 𝑦𝑓 𝑖𝑡 −𝑦𝑖𝑡 , in terms of log

price prices. In the case of CES preferences (see equation (A.1)), we obtain:

𝑚𝑐𝑟
𝑓 𝑖𝑡

=𝑚𝑐𝑟𝑖𝑡 + (𝑎 𝑓 𝑖𝑡 − 𝑎𝑖𝑡 ) − 𝛾𝜈 (𝑝𝑜𝑓 𝑖𝑡 − 𝑝𝑖𝑡 ) − 𝛾𝜈 ln𝜑 𝑓 𝑖𝑡 ,

where 𝛾 denotes the within-industry elasticity of substituting parameter.
44

We then proceed with the following steps in order: we manipulate equation (A.4) to

express the reset price in recursive form, decompose firm-level nominal marginal cost into

firm-level real marginal cost and the industry price index prices, and finally use equation

(A.2) to replace for firm-level real marginal cost:

𝑝𝑜
𝑓 𝑖𝑡

= (1 − 𝛽𝜃 )
(
(1 − Ω) (𝑚𝑐𝑛

𝑓 𝑖𝑡
+ 𝜇) + Ω𝑝

−𝑓
𝑖𝑡

+ (1 − Ω)𝑢𝜇
𝑓 𝑖𝑡

)
+ 𝛽𝜃E𝑡𝑝𝑜𝑓 𝑖𝑡+1

= (1 − 𝛽𝜃 )Θ
(
(1 − Ω)𝑚𝑐𝑟

𝑖𝑡
+ Ω𝑝

−𝑓
𝑖𝑡

+ (1 − Ω) (1 + 𝛾𝜈)𝑝𝑖𝑡 + (1 − Ω)𝑢𝜇
𝑓 𝑖𝑡

)
+ 𝛽𝜃E𝑡𝑝𝑜𝑓 𝑖𝑡+1

+ (1 − 𝛽𝜃 )Θ(1 − Ω)
(
𝑎 𝑓 𝑖𝑡 − 𝑎𝑖𝑡 − 𝛾𝜈 ln𝜑 𝑓 𝑖𝑡

)
,

where Θ := 1

1+𝛾𝜈 (1−Ω) captures macroeconomic complementarities due to aggregate

returns to scale in production. The last term 𝑎 𝑓 𝑖𝑡 − 𝑎𝑖𝑡 + 𝛾𝜈 ln𝜑 𝑓 𝑖𝑡 is such that

43
Notice that 𝑝𝑡 = 𝜃𝑝𝑡−1 + (1 − 𝜃 )𝑝𝑜𝑡 holds with Kimball preferences as well up to a first-order

approximation around the symmetric steady state.

44
A similar expression holds under monopolistic competition with Kimball preferences. In this case, 𝛾 is

replaced with the corresponding elasticity of relative output to relative prices, 1/Υ′′ (1).
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∫
𝑖∈I

(
1

𝑁

∑𝑁
𝑓 =1

(𝑎 𝑓 𝑖𝑡 − 𝑎𝑖𝑡 + 𝛾𝜈 ln𝜑 𝑓 𝑖𝑡 )
)
𝑑𝑖 = 0. This follows from the i.i.d. assumption on

price adjustments, which implies that the average firm-level shifter of resetting firms

coincides with the unconditional average.

Finally, averaging across firms and industries, we have that the aggregate reset price

is then given by:

𝑝𝑜𝑡 = (1 − 𝛽𝜃 )
(
(1 − Ω)Θ𝑚𝑐𝑟𝑡 + 𝑝𝑡

)
+ 𝛽𝜃E𝑡𝑝𝑜𝑡+1

+ 𝜃

1 − 𝜃𝑢𝑡 ,

where 𝑢𝑡 :=
(1−𝜃 ) (1−𝛽𝜃 )

𝜃
(1 − Ω)

∫
𝑖∈I

(
1

𝑁

∑𝑁
𝑓 =1

𝑢
𝜇

𝑓 𝑖𝑡

)
𝑑𝑖 is an aggregate cost-push shock.

Subtracting 𝑝𝑡 from both sides and using the log-linearized price index:

𝑝𝑜𝑡 − 𝑝𝑡 = (1 − 𝛽𝜃 ) (1 − Ω)Θ𝑚𝑐𝑟𝑡 + 𝛽𝜃 (E𝑡𝑝𝑜𝑡+1
− 𝑝𝑡 ) +

𝜃

1 − 𝜃𝑢𝑡

⇒ 𝜃

1 − 𝜃 𝜋𝑡 = (1 − 𝛽𝜃 ) (1 − Ω)Θ𝑚𝑐𝑟𝑡 + 𝛽𝜃E𝑡
(
𝜃

1 − 𝜃 𝜋𝑡+1 + 𝜋𝑡+1

)
+ 𝜃

1 − 𝜃𝑢𝑡

Rearranging one obtains the marginal cost-based Phillips curve:

𝜋𝑡 = 𝜆Θ𝑚𝑐𝑟𝑡 + 𝛽E𝑡𝜋𝑡+1 + 𝑢𝑡

where 𝜆 :=
(1−𝜃 ) (1−𝛽𝜃 )

𝜃
(1 − Ω) is the slope. The equation above highlights that

macroeconomic complementarities also mediate the pass-through of marginal cost to

prices via Θ. Under the assumption of constant aggregate returns to scale, we have that

Θ = 1, and the Phillips curve simplifies to equation (11). This condition is exactly verified

when 𝜈 = 0, but also when Ω = 1.

A.3 Derivations of inflation dynamics

Ignoring the intercept, the system of equations is given by:

𝑝𝑜𝑡 = (1 − 𝛽𝜃 ) ((1 − Ω)𝑚𝑐𝑛𝑡 + Ω𝑝𝑡 ) + 𝛽𝜃E𝑡𝑝𝑜𝑡+1
+ 𝜃

1 − 𝜃𝑢𝑡 ,

𝑝𝑡 = (1 − 𝜃 )𝑝𝑜𝑡 + 𝜃𝑝𝑡−1,

𝑚𝑐𝑛𝑡 =𝑚𝑐
𝑛
𝑡−1

+ 𝜀𝑚𝑐𝑡 .

(A.9)

We guess and verify using the method of undetermined coefficients that the solution is of

the form:

𝑝𝑜𝑡 = Ξ(𝑚𝑐𝑛𝑡−1
+ 𝜀𝑚𝑐𝑡 ) + (1 − Ξ)𝑝𝑡−1 +

𝜃

1 − 𝜃𝑢𝑡 ,

𝑝𝑡 = ˜𝜆(𝑚𝑐𝑛𝑡−1
+ 𝜀𝑚𝑐𝑡 ) + (1 − ˜𝜆)𝑝𝑡−1 + 𝜃𝑢𝑡 ,
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where Ξ and
˜𝜆 are the coefficients to be determined. Plugging the guessed solution into

the system gives the following restrictions on the parameters:

Ξ = (1 − 𝛽𝜃 ) (1 − Ω + Ω ˜𝜆) + 𝛽𝜃 (Ξ + (1 − Ξ) ˜𝜆),
˜𝜆 = (1 − 𝜃 )Ξ.

We select the solution that implies that system (A.9) has exactly one eigenvalue larger than

one in modulus. This gives the following values for the parameters in terms of primitives:

Ξ =
𝛽𝜃 (2 − Ω(1 − 𝜃 ) − 𝜃 ) + Ω(1 − 𝜃 ) − 1

2𝛽 (1 − 𝜃 )𝜃

+
√︁
(−Ω(1 − 𝜃 ) (1 − 𝛽𝜃 ) − 𝛽 (2 − 𝜃 )𝜃 + 1)2 + 4𝛽 (1 − Ω) (1 − 𝜃 )𝜃 (1 − 𝛽𝜃 )

2𝛽 (1 − 𝜃 )𝜃 ,

˜𝜆 = (1 − 𝜃 )Ξ.

Rearranging the guessed solution for 𝑝𝑡 = ˜𝜆𝑚𝑐𝑛𝑡 + (1 − ˜𝜆)𝑝𝑡−1 + 𝜃𝑢𝑡 and adding back the

intercept, we obtain equation (19). Repeated substitution for 𝑝𝑡−1 gives equation (20).

B Data and Measurement

B.1 Data sources and data cleaning

In this section we describe the different administrative sources used to assemble our

micro-level data.

We use the information in PRODCOM to compute the quarterly change in product-

and firm-level prices and to define the boundary of markets (industries) in which firms

compete. PRODCOM is a large-scale survey commissioned by Eurostat and administered

in Belgium by the national statistical office. The survey is designed to cover at least 90% of

domestic production value within each manufacturing industry (4-digit NACE codes) by

surveying all firms operating in the country with (a) a minimum of 20 employees or (b)

total revenue above 4.5 million euros (European Commission 2014). Firms are required

to disclose, on a monthly basis, product-specific physical quantities (e.g., volume, kg.,

𝑚2
, etc.) of production sold and the value of production sold (in euros) for all their

manufacturing products.

Products are defined in PRODCOM by an 8-digit PC code (e.g., 10.83.11.30 is

"Decaffeinated coffee, not roasted", 10.83.11.50 is "Roasted coffee, not decaffeinated", and
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10.83.11.70 is "Roasted decaffeinated coffee"). Industries are defined by the first four digits

of the product codes (e.g. Processing of tea and coffee is "Processing of tea and coffee").

Sectors are defined by the first two digits of the product codes (AC is "Manufacture of food

products, beverages, and tobacco products"). The industry and sector definitions follow

the NACE classification as the first four digits of PRODCOM codes are identical to the

first four digits of the NACE classification.

In the raw data, there are approximately 4, 000 product headings distributed across

13 manufacturing sectors. The PC product codes have been revised several times

between 1999 and 2019, with a substantial overhaul in 2008. We use the conversion

tables provided by Eurostat and firm-specific information on firms’ product baskets to

harmonize the 8-digit product codes across consecutive quarters and harmonize 4-digit

industry codes over time.
45
In most cases, the conversion tables provide a uniquemapping

of the 8-digit product codes across consecutive years. In a limited number of cases, the

mapping is many-to-one, one-to-many, or many-to-many. The many-to-one mapping is

straightforward. The one-to-many and many-to-many could be problematic. We are able

to deal with most of these cases using information on the basket of products produced by

each firm.
46

In a limited number of cases (less than 0.1% of the sample) we do not have

sufficient information to resolve the uncertainty regarding the mapping. We drop these

observations from the sample. Table A.1 reports the list of manufacturing sectors and

their 2-digit PC codes.

We aggregate monthly information at the quarterly level and construct

product-level prices (unit values) by dividing the product-level sales by the product-level

quantity sold. As explained in the paper, we are interested in domestic prices, that is prices

charged by producers in Belgium. PRODCOM does not require firms to separately report

distinguishing between production and sales to domestic and international customers.

Therefore, we follow AIK and recover domestic values and quantities sold by combining

information from PRODCOM with data on firms’ product-level exports (quantities and

45
The official conversion tables are available at https://ec.europa.eu/eurostat/ramon. The

harmonization of the industry code essentially consists in harmonizing the to NACE rev. 1 industry, used

before 2008, to the NACE rev. 2 industry codes, used from 2008.

46
For example, consider a case when the official mapping indicates that product 11.11.11.11 in year 𝑡

could map to either 22.22.22.21 or 22.22.22.22 in year 𝑡 + 1. Suppose two firms, 𝑓1 and 𝑓2, report in period

𝑡 sales of product 11.11.11.11 in year 𝑡 . If 𝑓1 reports only sales of 22.22.22.21 and 𝑓2 only reports sales of

22.22.22.22 in year 𝑡 + 1 we infer that we should map 11.11.11.11 to 22.22.22.21 for the former and map

11.11.11.11 to 22.22.22.22 for the latter.
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sales) available through Belgian Customs (for extra-EU trade) and through Intrastat

Inquiry (for intra-EU trade).
47

We use the official conversion tables provided by Eurostat

to map the CN product codes classification used in the international trade data to the

PRODCOM product code classification.
48

In the majority of the cases, the CN-to-PC

conversion involves either a one-to-one or many-to-one mapping, which poses no issues.

We drop the observations that involve one-to-many and many-to-many mappings. These

account for less than 5% of the observations and production value.

We apply the following filters and data manipulations to the PRODCOM data. First,

following AIK, we only keep firms’ observations in a given quarter if there was a positive

production reported for at least one product in the quarter. This avoids large jumps

in the quarterly values due to non-reporting for some months by some firms. In the

rare cases when a firm reports positive values but quantities are missing, we impute

quantity sold from the average value to quantity ratio in the months where both values

and quantities are reported. Second, we require firms to file VAT declarations and Social

Security declarations (as explained below): these two data sources are needed to measure

firms’ marginal costs.

The second important use of international trade data is to obtain information on

international competitors selling their manufacturing products in Belgium. For each

domestic firm, the merged Customs–Intrastat data reports the quantity purchased (in

Kg) and sales (converted to Euros) of different manufacturing products (about 10,000

distinct CN product headings) purchased by Belgian firms from each foreign country.

As is standard, we define a foreign competitor as a foreign country–domestic buyer pair.

For each foreign competitor, we aggregate the product-level sales and quantity sold at the

quarterly level (the reporting is monthly in the raw data) and compute quarterly prices

(unit values) by taking the ratio of the two.
49

47
Importantly, in constructing our measure of domestic sales we address issues related to

carry-along-trade, which might overstate the amount of production of firms that import products that are

destined for immediate sales. See Appendix B.2 in AIK for details.

48
The first six digits of the CN product classification codes correspond to the World HS classification

system.

49
Some CN codes change over time (although to a smaller extent relative to the PC codes). We use

the official conversion tables, also available on the Eurostat website, to map CN product codes across

consecutive years. We only make an adjustment if the code is a one-to-one change between two years.

We do not take into account changes in PC codes that involve splitting into multiple codes or multiple PC

codes combining into one code. Effectively, these changes in the PC codes are treated as if new products

are generated.
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We leverage data from two administrative sources tomeasure firms’ total production

(turnover) and variable production costs at a quarterly frequency. Belgian firms file

VAT declarations to the Belgian tax authority that contain information on the total

sales of the enterprise as well as information on purchases of raw materials and

other goods and services that entail VAT-liable transactions, including domestic and

international transactions. The coverage of the VAT declarations is almost universal,

with a limited number of exceptions that affect the reporting of sole proprietorship and

self-employed and therefore mostly do not apply to the firms surveyed by PRODCOM.
50

We obtain information on employment and labor costs (wage bill) from the Social Security

declarations filed on a quarterly basis by each Belgian firm to the Department of Social

Security of Belgium.

We sum firm-quarter level expenses on intermediates and labor to obtain a measure

of total variable costs, which we use in the construction of firms’ marginal costs. We

multiply these costs by the ratio of total manufacturing sales (from PRODCOM) over total

sales (from the VAT) to adjust for the fact that some firms also have some production

outside manufacturing.
51

Finally, we apply the following data-cleaning steps to deal with missing values and

outliers. (i) We focus on manufacturing industries, defined by the NACE rev.2 2-digit

codes 15–36, dropping from our sample all product headings that correspond to mining

and quarrying and all product codes corresponding to industrial services. (ii) We drop

observations referring to firms whose sales from manufacturing products (as measured

in PRODCOM) is lower than seventy percent of total firm-level sales (as reported in

the VAT declarations). This ensures that our sample includes firms’ whose real activity

is primarily, if not entirely, in manufacturing. (iii) We exclude firms that operate in

the following sectors: "Coke and refined petroleum products" sector, "Pharmaceuticals,

medicinal chemical, and botanical products" sector, and "Other manufacturing and repair

and installation of machinery and equipment" sector from our samples. In the first sector,

50
Enterprises file their VAT declaration online, either on a monthly or a quarterly frequency, depending

on some size-based thresholds. Smaller enterprises (turnover < 2.5M euros excl. VAT) can choose to file

at the monthly or quarterly frequency. Larger enterprises file monthly. In the case of multiple plants or

establishments under one VAT identifier, the declaration is filed as a single file for that VAT identifier. We

aggregate all monthly declarations at the quarterly level.

51
As mentioned below, we conservatively drop observations referring to firms whose manufacturing

sales are lower than seventy percent of total sales. In the remaining sample, the ratio has a mean of 0.94

and a median of 0.97, confirming the extensive coverage of PRODCOM.
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we do not have a sufficient sample size to ensure a robust estimation of the parameters

of interest. The second sector is highly subsidized and a significant fraction of output

is produced by subsidiaries of international corporations. The last sector is a residual

grouping that consists of firms producing diverse and varied products for which it is

difficult to define an appropriate set of competitors. (iv) We keep only observations for

which we are able to compute product-level price indexes, the corresponding quantity

indexes, competitors’ price indexes, and marginal costs. (v) We drop observations for

which the quarter-to-quarter change of either the firm-level price index or marginal

costs is greater than 100% in absolute value. (vi) Finally, for each firm-industry pair that

enters our dataset discontinuously we keep only the longest continuous time-spell. This

ensures that each time series used in the estimation has no gaps, which would force us

to interpolate making assumptions about prices and marginal costs when the data is not

recorded.

Table A.1: List of manufacturing sectors

Sector Sector definition

NACE Rev.2

2-digits codes

CA Food products, beverages and tobacco products 10–12

CB Textiles, apparel, leather and related products 13–15

CC Wood and paper products, and printing 16–18

CE Chemicals and chemical products 20

CG Rubber and plastics products,

22–23

and other non-metallic mineral products

CH Basic metals and fabricated metal products,

24–25

except machinery and equipment

CI Computer, electronic and optical products 26

CJ Electrical equipment 27

CK Machinery and equipment n.e.c. 28

CL Transport equipment 29–30

Notes. This table reports the list of manufacturing sectors in our sample and the corresponding 2-digit NACE

rev. 2 codes.

B.2 Construction of price indexes

We construct a set of indexes that capture price changes in manufacturing goods at

different levels of aggregation (firm-industry, firm, industry, individual manufacturing

sector, and whole manufacturing sector).
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Firm-industry price index. The main variable of interest is the price of domestically

sold manufacturing products at the firm-industry level, 𝑃𝑓 𝑡 , for both domestic and foreign

producers. We construct this variable using information on prices changes at the most

disaggregated level allowed by the data.

Due to repeated product code revisions, it does not exist a consistent 8-digit product

code taxonomy across the entire sample period.
52

Therefore, we compute the sequence

of price changes across consecutive time periods (𝑡 and 𝑡 + 1) by mapping the product

codes at 𝑡 + 1 to their corresponding codes at 𝑡 , aggregate them at the firm-industry level,

and recover the time series of the firm-industry price index (in levels) by concatenating

quarterly price changes.

Specifically, denote by P𝑓 𝑡 the set of products manufactured by firm 𝑓 and by 𝑃𝑝𝑡

the price (unit value) of a given product 𝑝 ∈ P𝑓 𝑡 . We first compute the price change for

each product, 𝑃𝑝𝑡/𝑃𝑝𝑡−1, appropriately care of any change in product codes. Following the

data cleaning procedure in AIK, in the construction of the product-level price changes,

we drop product-level observations with abnormally large price jumps in a given quarter

(𝑃𝑝𝑡/𝑃𝑝𝑡−1 > 3 or 𝑃𝑝𝑡/𝑃𝑝𝑡−1 < 1/3). Then, we construct firm-industry price change as a

Törnqvist index:

𝑃𝑓 𝑡/𝑃𝑓 𝑡−1 =
∏
𝑝∈P𝑓 𝑡

(𝑃𝑝𝑡/𝑃𝑝𝑡−1)𝑠𝑝𝑡 , (A.10)

where 𝑠𝑝𝑡 is a Törnqvist weight computed as the average of the sale shares between 𝑡 and

𝑡 −1: 𝑠𝑝𝑡 :=
𝑠𝑝𝑡+𝑠𝑝𝑡−1

2
.
53

Finally, we use the sequence of quarterly price changes to construct

the time series of firm-industry’s prices (in levels):

𝑃𝑓 𝑡 = 𝑃𝑓 𝑡0

𝑓

𝑡∏
𝜏=𝑡0

𝑓
+1

(
𝑃𝑓 𝜏/𝑃𝑓 𝜏−1

)
, (A.11)

where 𝑡0

𝑓
denotes the first quarter when 𝑓 appears in our data and 𝑃𝑓 𝑡0 is the price level

in that quarter. We normalize 𝑃𝑓 𝑡0 to one for all firm-industry pairs 𝑓 in our dataset. As

discussed in the paper, this normalization is immaterial for our empirical analysis as any

level-effects are absorbed by the firm-industry fixed effects included in all our empirical

specifications.

52
See Appendix B.1 for additional information on the data.

53
This index accounts for the presence of multi-product firms, by averaging across products produced by

the same firm in a given industry. The Törnqvist weights, 𝑠𝑝𝑡 , give larger weights to those produces that

account for a larger share of firms turnover.
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Firm price index. As discussed in the paper, the vast majority of firms in our data

operate in only one (4-digit) industry, which implies that the firm-industry price index,

𝑃𝑓 𝑡 , and the firmprice index, 𝑃𝑓 𝑡 , coincide. Yet, in a in a limited number of cases, it becomes

necessary to construct a firm’s price index that aggregates across different firm-industry

price indexes. In doing this, we construct the firm-level price index 𝑃𝑓 𝑡 following method

similar to the one outlined above. Specifically, we construct a Törnqvist index that

aggregates across price changes of individual (4-digit) industry bundles 𝑖 ∈ I𝑓 produced
by firm 𝑓 in quarter 𝑡 : 𝑃𝑓 𝑡/𝑃𝑓 𝑡−1 =

∏
𝑖∈I𝑓 (𝑃𝑓 𝑖𝑡/𝑃𝑓 𝑖𝑡−1)𝑠𝑓 𝑖𝑡 , with Törnqvist weights defined

as 𝑠 𝑓 𝑖𝑡 := (𝑠 𝑓 𝑖𝑡 + 𝑠 𝑓 𝑖𝑡−1)/2, where 𝑠 𝑓 𝑖𝑡 is the share of sales of industry 𝑖 in the firms’ total

sales (across manufacturing industries). We then concatenate the quarterly price changes

above to obtain the price index 𝑃𝑓 𝑡 , normalizing the level of the price index to one in the

first quarter when the firm first appears in our dataset. Note that for single-industry firms

the price index 𝑃𝑓 𝑡 coincides with with the firm-industry price index 𝑃𝑓 𝑖𝑡 in (A.11).

Competitors price index. Using a similar approach, we construct the price index

of competitors for each domestic firm. We start computing quarterly price changes:

𝑃
−𝑓
𝑖𝑡

/𝑃−𝑓
𝑖𝑡−1

=
∏
𝑘∈F𝑖/𝑓 (𝑃𝑘𝑡/𝑃𝑘𝑡−1)𝑠

−𝑓
𝑘𝑡 , with 𝑠

−𝑓
𝑘𝑡

:= 1

2

(
𝑠𝑘𝑡

1−𝑠𝑓 𝑡 +
𝑠𝑘𝑡−1

1−𝑠𝑓 𝑡−1

)
denoting a Törnqvist

weight constructed by averaging the residual revenue share of competitors in the industry

at time 𝑡 (net of firm 𝑓 revenues) with that at time 𝑡 − 1. We then concatenate the changes

normalizing the level of the price index in the first period to one. Also, in this case,

the normalization is immaterial for estimation purposes as our empirical model always

includes firm fixed effects. Note that the set of domestic competitors for each Belgian

producer, denoted in the paper by F𝑖 , includes not only other Belgian manufacturers

operating in the same industry but also foreign manufacturers that belong to the same

industry and sell to Belgian customers.

Industry, sector, and aggregate price index. We construct the industry-level,

sector-level, and aggregate (manufacturing) price indexes by aggregating quarterly

firm-level price changes. The formula to construct the percentage change in these price

indexes is analogous to the one in (A.10), where now the Törnqvist weights assigned to

each firm-industry price change, 𝑃𝑓 𝑡/𝑃𝑓 𝑡−1, captures the (weighted) averagemarket shares

of the 𝑓 in its own industry, sector, or manufacturing, respectively. Once again, the level

of the indexes is constructed by concatenating changes and normalizing the level of the
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price index to one for the first observation in the time series.

B.3 Cost functions

Equation (5) in the paper describes the functional form adopted to characterize firms’

marginal costs as a function of output, costs, and technology. This function choice is

consistent with variable cost functions of this form:

Ψ(𝑌𝑓 𝑡 ,𝑊 , 𝑃𝑚) = 1

(1 + 𝜈) C𝑓 𝑡 A𝑓 𝑡 𝑌
1+𝜈

where C𝑓 𝑡 denotes the unit cost of a composite of variable input factors that is independent

of the scale of production;A𝑓 𝑡 is a firm-specific cost shifter; (1+𝜈) denotes the (short-run)
elasticity of marginal costs to output. This cost function is rather general and consistent

with some of themost empirically prominent functional forms of production technologies,

including CES and Cobb-Douglas.

Consider Cobb-Douglas production technologies of this form 𝑌𝑓 𝑡 =

𝐴𝑓 𝑡

(
𝐿
𝛾𝑙

𝑓 𝑡
𝑀
𝛾𝑚

𝑓 𝑡
𝐾
𝛾𝑘

𝑓 𝑡

)
, where 𝐴𝑓 𝑡 denotes the firms’ total factor productivity (technical

productivity or TFPQ). The parameters 𝛾 𝑙 , 𝛾𝑚 , and 𝛾𝑘 represent the output elasticities of

different inputs and their sum captures the (long-run) returns to scales in production.

Solving the cost minimization problem, and omitting the subscripts to economize on

notation, yields the cost function:

Ψ(𝑌,𝑊 , 𝑃𝑚, 𝑅) = (𝛾 𝑙 + 𝛾𝑚 + 𝛾𝑘) · C · A · ℎ(𝑌 )

where C := [(𝑊 )𝛾𝑙 (𝑃𝑚)𝛾𝑚 (𝑅)𝛾𝑘 ]
1

(𝛾𝑙 +𝛾𝑚+𝛾𝑘 )
is the cost to buy one unit of the composite

inputs bundle; A :=

(
𝐴 (𝛾 𝑙 )𝛾𝑙 (𝛾𝑚)𝛾𝑚 (𝛾𝑘)𝛾𝑘

) −1

(𝛾𝑙 +𝛾𝑚+𝛾𝑘 )
is a cost shifter inversely related to

firms’ productivity; the functionℎ(𝑌 ) := 𝑌
1

(𝛼+𝛾 )
captures the curvature of the cost function

with respect to output, which depends on returns to scale (𝛾 𝑙 + 𝛾𝑚 + 𝛾𝑘). Defining 𝜈 :=

1/(𝛾 𝑙 + 𝛾𝑚 + 𝛾𝑘) and differentiating with respect to output we obtain the marginal cost

function in the paper.

Consider now generalized CES production technologies of this form 𝑌 =

𝐴
(
𝛾 𝑙 (𝐿)𝜚 + 𝛾𝑚 (𝑀)𝜚 + 𝛾𝑘 (𝐾)𝜚

) 𝜂

𝜚
, where the parameter 𝜚 denotes the elasticity of

substitution between different inputs. The distribution parameters, 𝛾 𝑙 , 𝛾𝑚 , and 𝛾𝑘

(summing to unity) determine the relative shares of the factors in the total cost. The

parameter 𝜂 measures long-run economies of scale. Solving the cost minimization
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problem we obtain the short-run cost function:

Ψ(𝑌,𝑊 , 𝑃𝑚) = 𝜂 · C · A · ℎ(𝑌 )

with unit cost C :=

[ (
𝛾 𝑙

) 1

(1+𝜌 ) ·𝑊
𝜌

(1+𝜌 ) + (𝛾𝑚) 1

(1+𝜌) · (𝑃
𝑚)

𝜌

(1+𝜌 ) +
(
𝛾𝑘

)
1

(1+𝜌) · (𝑅)
𝜌

(1+𝜌 )
]
, cost

shifter is A = 1

𝜂·𝐴
1

𝜂
, and returns to scale function ℎ(𝑌 ) := 𝑌

1

𝜂
. Defining 𝜈 := 1/𝜂 and

differentiating with respect to output we obtain the marginal cost function in the paper.

As is standard, our definition of marginal costs views labor and intermediates as

flexible inputs, whereas capital is viewed as fixed in the short-run and only adjustable

in the long-run. Given the above derivations, it is straightforward to show that the cost

functions in the paper are consistent with general short-run cost functions, which nest

Cobb-Douglas and CES as particular cases, that depend on a firm’s short-run returns to

scale.

Continuing with the Cobb-Douglas example, the cost-minimization problem of a

firm choosing variable production factors (intermediates and labor) taking fixed inputs

(capital) as given:

min

𝐿,𝑀
𝑇𝐶 = 𝑇𝑉𝐶 + 𝐹𝐶 =𝑊𝐿 + 𝑃𝑚𝑀 + 𝐹𝐶

𝑠.𝑡 . 𝑌 = 𝑌 ; 𝐾 = 𝐾

𝑌 = 𝐴

(
𝐿𝛾

𝑙

𝑀𝛾𝑚𝐾𝛾
𝑘
)

where 𝐹𝐶 := 𝑅𝐾 , which is fixed in the short run. Solving the cost minimization problem

we obtain the short-run cost function:

Ψ(𝑌,𝑊 , 𝑃𝑚) = (𝛾 𝑙 + 𝛾𝑚) · C · A · ℎ(𝑌 )

where C := [(𝑊 )𝛾𝑙 (𝑃𝑚)𝛾𝑚 ]
1

(𝛾𝑙 +𝛾𝑚 )
is the cost to buy one unit of the composite flexible

inputs bundle; A :=

(
�̃� 𝛼𝛼 𝛾𝛾

) −1

(𝛼+𝛾 )
is the cost shifter, which is inversely related to firms’

productivity (�̃� := 𝐴 · 𝐾𝛽 ); the function ℎ(𝑌 ) = 𝑌
1

(𝛼+𝛾 )
captures the curvature of the cost

function with respect to output, which now depends on the short-run returns to scale in

production (𝛾 𝑙 +𝛾𝑚). Defining 𝜈 := 1/(𝛾 𝑙 +𝛾𝑚) and differentiating with respect to output

we obtain the marginal cost function in the paper.
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B.4 Estimates of returns to scale

We estimate the elasticities that determine the returns to scale of production (both short-

and long-run) by performing production function estimations. We consider the following

log-production function: 𝑦𝑓 𝑡 = ln𝐴𝑓 𝑡 + 𝑓 (𝑙 𝑓 𝑡 ,𝑚 𝑓 𝑡 , 𝑘 𝑓 𝑡 ; γ). Here, 𝑦𝑓 𝑡 denotes firm-level

output (physical quantity) produced by firm 𝑓 in period 𝑡 , and 𝐴𝑓 𝑡 captures a firm’s

technical efficiency (TFPQ). 𝑓 (·) is the log-gross output production function, which we

model as a Cobb-Douglas aggregate of labor (𝑙 𝑓 𝑡 ), intermediates (𝑚 𝑓 𝑡 ), and capital (𝑘 𝑓 𝑡 ).

The vector of structural parameters to be estimated is denoted by γ := 𝛾 𝑙 , 𝛾𝑚, 𝛾𝑘 , which

collects the output elasticities of the different inputs.

Following Lenzu et al. (2023), we construct a firm-level quantity index by deflating

firm-level sales by the firm-level price index: 𝑌𝑗𝑡 =
(𝑃𝑌 )𝑓 𝑡
𝑃𝑓 𝑡

. Labor services are measured

using the wage bill, and intermediates costs are measured as the total value of materials

and services used in production. A measure of the capital stock is constructed from

investments in fixed assets using the perpetual inventory method. We deflate labor,

capital, and intermediate inputs using the corresponding industry-level producer price

deflators.

We estimate the production function separately for each sector, following the

approach developed in Lenzu et al. (2023), which combines the structural approach

developed in Gandhi et al. (2020) with the control function approach developed by

De Loecker et al. (2016) to control for differences in input quality across firms. This

approach identifies the production function parameters by addressing the simultaneity

bias that derives from the correlation between input choices and unobserved (to the

econometrician) productivity (Marschak and Andrews Jr. (1944)), and it solves the

identification problem that affects the estimates of the output elasticities of flexible

inputs.
54

In line with the rest of our analysis, we perform the production estimation

for each industry by weighting observations using within-industry sales-based Törnqvist

weights.

Table A.2 presents the estimates of the output elasticities and returns to scale for

individual manufacturing sectors and for the aggregate economy.
55

The latter is obtained

as a sales-weighted average of the sectoral estimates. As discussed in Appendix B.4,

54
The details of the estimation routine are provided in the Appendix of Lenzu et al. (2023).

55
We are unable to perform the production function estimation for a handful of the sector "Computer,

electronic and optical products" (CI) due to its small sample size.
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the key estimates for our purposes are the ones regarding the elasticities of variable

inputs, whose sum pins down the short-run returns to scale and determines the strength of

macroeconomic complementarities. Consistent with the previous studies (see, e.g., Lenzu

et al. (2023) and the references therein), our estimates indicate returns to scale in the

ballpark of unity for most sectors and, therefore, in the aggregate.

Table A.2: Estimates of output elasticities and returns to scale

Output elasticities Returns to scale

Sector Labor Intermediates Capital Long-run Short-run

(𝛾𝑙 ) (𝛾𝑚) (𝛾𝑘 ) (𝛾𝑙 + 𝛾𝑚 + 𝛾𝑘 ) (𝛾𝑙 + 𝛾𝑚)

CA 0.248 0.770 0.094 1.112 1.018

CB 0.201 0.748 0.061 1.010 0.949

CC 0.253 0.729 0.040 1.022 0.982

CE 0.080 0.794 0.124 0.999 0.874

CG 0.242 0.717 0.129 1.088 0.958

CH 0.250 0.721 0.147 1.119 0.972

CJ 0.322 0.646 0.120 1.088 0.967

CK 0.197 0.707 0.180 1.084 0.904

CL 0.149 0.796 0.075 1.020 0.945

Aggregate 0.209 0.749 0.104 1.062 0.958

Notes. This table reports the within-sector average production function elasticities estimated following the

approach in Lenzu et al. (2023), as described above. The first column indicates themanufacturing sector. The

subsequent three columns report the estimates obtained from a quantity production function estimation.

The following two columns report the long-run and short-run returns to scale. Each row corresponds to a

different manufacturing sector. The last row is a sales-weighted average of the sectoral estimates.

C Additional empirical results and robustness

C.1 Nickell bias

As first discussed in Nickell (1981), the presence of firm fixed effects in our dynamic

panel specifications can in principle introduce a bias in the estimation of the stickiness

parameter 𝜃 . Nevertheless, since the bias goes to zero at rate 1/𝑇 where 𝑇 is the time

length of the panel dataset, and the average number of quarters in which we observe a

firm is𝑇 = 47, the baseline results should be valid. We confirm this by estimating the most

parsimonious of the specifications, Model D, on the sample of firms that we are able to
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track for at least 70 consecutive quarters. The average firm in this subsample is observed

for 78.5 consecutive quarters.

Over this sample, we estimate
ˆ𝜃 = 0.701 (0.010), not statistically different from the

baseline estimates in Table 3, and consistent with the frequency of price adjustments in

the PPI data. The other parameters estimates, Ω̂ = 0.437 (0.048) and 𝜌𝑚𝑐 = 0.806 (0.028),
are also broadly consistent with our previous estimates. These estimates imply a slightly

steeper slope
ˆ𝜆 = 0.074 (0.011).

C.2 Reduced-form models

Our theoretical framework builds on a demand system in which the elasticity of demand

perceived by a firm is a function of its own price relative to the industry expenditure

function. As we noted earlier, this rather general restriction is consistent with some of the

most prominent and empirically tractable demand systems. It implies that the elasticity of

markups to a firm’s own reset price and to competitors’ prices is the same (equation (7)),

or equivalently, that marginal costs and competitor prices enter the reset price equation

with coefficients of (1 − Ω) and Ω, respectively. We now relax this assumption and show

that we cannot reject the hypothesis that it holds a posteriori.

In particular, we estimate the following linear model using two-stage least squares:

𝑝 𝑓 𝑡 = 𝜔
𝑚𝑐𝑚𝑐𝑛

𝑓 𝑡
+ 𝜔𝑝𝑝−𝑓

𝑖𝑡
+ 𝜃𝑝 𝑓 𝑡−1 + 𝛼 𝑓 + 𝛼𝑠×𝑡 + 𝑢 𝑓 𝑡 . (A.12)

Model (A.12) is essentially a reduced-form version ofModel C. As in our previous analysis,

the parameter 𝜃 captures the degree of nominal rigidity. The elasticities of interest,

𝜔𝑚𝑐 and 𝜔𝑝 , capture the extent to which shocks to marginal costs and competitors’

prices are passes through to a firm’s own prices while accounting for nominal rigidities

and forward-looking behavior. Importantly, through the lens of our model, these two

elasticities also provide us with two independent estimates of the complementarity

parameter Ω—one based on variation in marginal costs and the other based on variation

in the price of competitors:

Ω̂𝑚𝑐 := 1 − �̂�𝑚𝑐

1 − ˆ𝜃

1 − 𝛽 ˆ𝜃𝜌𝑚𝑐

1 − 𝛽 ˆ𝜃
; Ω̂𝑝

:=
�̂�𝑝

1 − ˆ𝜃

1 − 𝛽 ˆ𝜃𝜌𝑝

1 − 𝛽 ˆ𝜃
.

We take model (A.12) to the data, instrumenting the endogenous variables with the
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set of instruments used in our baseline model.
56

We find that the estimated degree of

price stickiness is
ˆ𝜃 = 0.732 (standard error 0.019), which is essentially the same as the

baseline estimates presented in Section 5. The estimates of the reduced-form elasticities

are �̂�𝑚𝑐 = 0.082 (0.037) and �̂�𝑝 = 0.097 (0.028), both precisely estimated.

Calibrating 𝜌𝑚𝑐 and 𝜌𝑝 to the estimates of Model C reported in Table 3 and 𝛽

to 0.99, we use the formula above to recover the two independent estimates of the

complementarity parameter: Ω̂𝑚𝑐 = 0.400 (0.242) and Ω̂𝑝 = 0.424 (0.120).57 Based on

these estimates, we fail to reject the null hypothesis that the elasticity of markups to a

firm’s own reset price and to competitors’ prices are equal (Ω𝑚𝑐 = Ω𝑝
), with a Z-statistic

of 0.09 and a p-value of 0.928. This finding is consistent with AIK’s results and implies

that, even after adjusting for nominal rigidities and forward-looking pricing behavior,

firms’ pricing behavior in data is largely consistent with the class of models featured in

our theoretical framework.

C.3 Aggregate instruments

In section 6.1 we presented a battery of robustness exercises that use aggregate

instruments (oil and money shocks) to identify the parameters of interest. Following the

literature on local projections, the set of instruments also includes the 8th-quarter lag of

the marginal cost. The rationale for doing so is that lag-augmenting the set of instruments

makes inference more robust by accounting for the possibility of non-stationary marginal

costs. As shown by Montiel Olea and Plagborg-Møller 2021, robust confidence intervals

based on lag-augmented regressions have correct asymptotic coverage uniformly over the

persistence in the data-generating process.

Table A.3 presents a set of estimation results where the parameters are estimated

using only variation in the aggregate instruments, but exclude the the 8th-quarter lag of

the marginal cost. Consistent with the arguments in Montiel Olea and Plagborg-Møller

(2021), the estimates obtained from using money or oil shocks as instruments only are

somewhat noisier—but they are still largely consistent—with the one reported in 5.

56
The first-stage regressions coincide with the fifth and sixth column in Table 2 (Model C).

57
We found that estimates of the persistence parameters 𝜌𝑚𝑐

and 𝜌𝑝 remain largely unaffected when

estimated by two-stage least squares. If anything, taking into account the uncertainty associated with these

parameters would decrease the Z-statistics of the test presented above.
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Table A.3: Robustness: Alternative instruments

Money Shocks Oil Shocks Lag of MC

(1) (2) (3)

Dep. Var: 𝑝 𝑓 𝑡 Panel a: Reduced-form estimates

𝑚𝑐𝑛
𝑓 𝑡

0.141 0.188 0.122

(0.036) (0.077) (0.032)

𝑝 𝑓 𝑡−1 0.697 0.677 0.702

(0.020) (0.678) (0.033)

Firm FE y y y

Industry×Time FE y y y

Cragg-Donald Wald F 756 457 8171

Hansen J-test 𝜒2
3.842 4.723

Panel b: Slope of the Phillips curve

𝜆 0.093 0.129 0.080

(0.028) (0.065) (0.026)

Notes. Panel a shows estimates of Model D using two-stage least squares. The first two columns use money,

𝑀𝑆 𝑓 𝑡 , and oil, 𝑂𝑆 𝑓 𝑡 , instruments for the marginal cost, respectively. Both include the contemporaneous

instrument and four lags of it. The last column uses the 2-year lag of the marginal cost, 𝑚𝑐𝑛
𝑓 𝑡−8

, as an

instrument. Panel b reports the slope of the Phillips curve implied by the estimates in Panel a, calibrating

𝛽 = 0.99 and 𝜌𝑚𝑐
to the corresponding baseline estimates from Model D in Tables (3) and (5). All the

regressions are weighted using the Törnqvist weights. Robust standard errors are clustered at the sector

level.
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