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Abstract

I develop a framework to analyze how the diffusion of artificial intelligence (AI) can
affect monetary policy through three interrelated channels: cyclical transmission, structural
transition, and financial stability. In the short run, AI can reshape inflation dynamics
by altering how supply and demand disturbances transmit into prices—through changes
in firms’ pricing behavior, production technologies, cost pass-through, and expectations
formation—evenwhen conventional measures of economic slack are unchanged. Over longer
horizons, AI may induce a structural transition by affecting productivity, investment, and
risk-taking, thereby shifting key equilibrium benchmarks around which monetary policy is
calibrated, including potential output and the natural rate of interest. Finally, AI presents both
opportunities and risks for financial stability: while it may improve information processing,
credit allocation, and financial inclusion, it can also foster model monocultures and amplify
expectations-driven asset valuation dynamics, increasing the likelihood of financial distress.
I argue that AI does not call for a redefinition of central banks’ objectives, but it does require
a more nuanced application of existing frameworks, as its rapid diffusion complicates blurs
the distinction between cyclical dynamics and structural shifts in economic fundamentals.
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1 Introduction

Artificial intelligence (AI) is rapidly emerging as a transformative technology with the
potential to reshape many, if not most, aspects of economic activity, including how goods
are produced, howworkers contribute to production, how prices are set, how expectations
are formed, and how risks are assessed. Given that central bank mandates center on
price stability and financial stability, these developments place AI squarely within the
domain of central banking. Indeed, there is a growing consensus that the relevant question
is no longer whether the diffusion of AI will matter for monetary policy, but how. A
broad-based adoption of AI is likely to alter the behavior of the variables that monetary
policy is designed to stabilize—namely inflation dynamics, real economic activity relative
to potential, and financial conditions—and, in doing so, may require policymakers to adapt
how they interpret and respond to business-cycle fluctuations.

In this paper, we offer a perspective on these issues with a specific focus on
the recent wave of advances in artificial intelligence. Although we refer broadly to
AI, the analysis is motivated in particular by the rapid development and diffusion of
large-scale, general-purpose, and generative AI (GenAI) models. Unlike earlier, more
task-specific forms of automation, these technologies can be flexibly applied across a
wide range of activities, augment existing AI tools, and be integrated deeply into core
production, decision-making, and organizational processes (e.g., Acemoglu and Restrepo
2020; Brynjolfsson et al. 2021; Aghion et al. 2019; Brynjolfsson et al. 2023).1 It is this
breadth and depth that motivates treating the diffusion of AI as a development of direct
relevance for central banks—not because of its technological novelty per se, but because
of its potential to alter policy conduct and the risks that central banks seek to manage.

Guided by a stylized theoretical framework, we organize the discussion around three
conceptually distinct but interrelated sets of channels throughwhich AImay affect central
banks’ policies: the short-run transmission of supply and demand shocks into inflation,
the long-run transition in economic fundamentals and equilibrium benchmarks, and the
implications for financial markets and financial stability.

1By lowering the cost of information processing, prediction, and content generation, recent AI
innovations increasingly resemble a general-purpose technology with the potential to reshape how goods
and services are produced, how tasks are organized within firms, and how firms scale and compete.
Emerging evidence suggests that generative AI, in particular, can augment worker productivity across a
broad set of tasks rather than simply automating narrow activities, reinforcing its economy-wide scope.
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In the short run, taking equilibrium benchmarks and long-run fundamentals as
given, AI can affect the cyclical transmission of supply and demand disturbances
into inflation. On the supply side, AI reshapes how cyclical fluctuations translate into
inflation by altering both the mapping from economic slack to real marginal costs and
the pass-through of marginal-cost movements into prices. These effects operate through
changes in scale and utilization margins, input-market dynamics, and efficiency wedges,
as well as through shifts in nominal rigidities, strategic complementarities in price
setting, and macroeconomic complementarities in production. On the demand side, AI
can influence expectations about future productivity, income, and profitability, affecting
current expenditure and inflation dynamics even before productivity gains are fully
realized. Together, these channels determine how real shocks propagate into inflation
over the business cycle and form the focus of Section 2.

In the long run, by reshaping the economy’s underlying fundamentals, AI is likely
to be a key force behind a structural transition that affects both long-run growth trends
and the equilibrium benchmarks around which monetary policy stabilizes the economy.
Through its impact on technological change, investment opportunities, risk, and market
structure, AI influences potential output and the natural rate of interest, as well as the
intertemporal elasticity of substitution that governs the sensitivity of aggregate demand
to real interest rates. These effects operate at low frequency and define the evolving
benchmarks around which monetary policy must be calibrated, rather than shaping the
short-run propagation of shocks. We discuss these potential long-run effects in Section 3.

Finally, AI may have a direct bearing on the conduct of central banking
through its impact on the financial system and on financial stability. As discussed
in Section 4, the diffusion of AI technologies is reshaping key segments of the
financial system—including payments, lending, insurance, and asset management—by
altering information processing, risk-taking behavior, and the structure of financial
intermediation. These changes also affect the transmission of monetary policy, as shifts in
the structure of intermediation and risk-taking alter how policy rates map into financial
conditions faced by households and firms. At the same time, financial stability concerns
are amplified by the possibility that expectations about AI-driven productivity gains
may prove overly optimistic or materialize only gradually. In such an environment,
elevated asset valuations, leverage, and reliance on nonbank financing can interact with
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expectations-driven dynamics to generate systemic vulnerabilities, even in the absence of
traditional macroeconomic imbalances.

Section 5 places the analysis in a policy perspective and concludes. I argue that
artificial intelligence does not call for a redefinition of monetary policy objectives, but it
does change the environment in which those objectives are pursued. The diffusion of AI
mayweaken the informational content of traditional indicators such as the unemployment
gap or the output gap, and it may alter—while also increasing uncertainty about—the
trade-offs between inflation and economic activity. This raises the value of robust policy
design and greater reliance on cost-side diagnostics and pricing behavior, rather than
exclusive dependence on reduced-form Phillips curve estimates.

A related challenge is that AI-driven structural change can blur the distinction
between cyclical fluctuations and shifts in equilibrium benchmarks such as potential
output or the natural rate of interest. Transitional frictions and reorganization costs may
temporarily depress effective productivity even as the technological frontier expands,
complicating the interpretation of inflationary pressures. At the same time, faster
information flows andmore responsive expectationsmaymake policy bothmore powerful
andmore fragile, as errors in assessing costs, benchmarks, or risks propagate more rapidly
through prices, expectations, and firms’, households’, and intermediaries’ balance sheets.

2 AI and the transmission of cyclical disturbances

We use a representative-agent New Keynesian framework to study how AI affects
the short-run transmission of cyclical supply and demand disturbances into inflation.
Households choose consumption and saving subject to an intertemporal Euler equation.
Firms operate under imperfect competition, and prices are subject to nominal and real
rigidities that prevent costless and instantaneous reoptimization. Factor markets clear,
but may be subject to frictions that drive a wedge between factor prices and marginal
products.

We use lowercase letters to denote natural logarithms of the corresponding
variables; starred variables denote natural (flexible-price) benchmarks that anchor the
cyclical model—such as potential output, the natural wage, and the natural rate of interest;
and hats denote log deviations from those benchmarks (e.g., 𝑦𝑡 ≡ 𝑦𝑡 − 𝑦★𝑡 denotes the
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output gap). For the purpose of analyzing howAI affects inflation dynamics in response to
business-cycle shocks, these equilibrium benchmarks are taken as given. In the long run,
however, such natural benchmarks are themselves endogenous outcomes of technological,
institutional, and market-structure forces, which may be reshaped by the diffusion of AI
technologies—a point we return to in Section 3.

In this framework, aggregate inflation is determined by the interaction of two
blocks. The first is an aggregate supply block–the Phillips curve–which links inflation
to a measure of economic slack through firms’ price-setting decisions. The second is
an aggregate demand block–the investment-saving (IS) relation–which links aggregate
expenditure to the real interest rate through households’ intertemporal substitution. In
the short run, AI matters insofar as it alters the transmission of shocks through these two
blocks: by changing how movements in marginal costs are transmitted into inflation via
the Phillips curve, and by shaping the propagation of demand shocks through expectations
in the IS equation.

2.1 Cyclical transmission through the supply side

The NewKeynesian Phillips curve (NKPC) lies at the core of modern analyses of short-run
inflation dynamics. In its standard formulation, the NKPC implies that inflation depends
on expected future inflation and on measures of real economic activity relative to their
potential levels, as determined by underlying fundamentals. we build on Gagliardone
et al. 2025b and spell out a (generalized) cost-based formulation of the NKPC that allows
for feedbacks between inflation, input-market frictions, and slow-moving technological
change.

In its primitive formulation, the NKPC is a forward-looking difference equation relating
inflation to expected future inflation and the real marginal cost gap, defined as the log
deviation of real marginal cost from its flexible-price level,𝑚𝑐𝑡 :=𝑚𝑐𝑡 −𝑚𝑐★𝑡 :

𝜋𝑡 = 𝜆 𝑚𝑐𝑡 + 𝛽 E𝑡 {𝜋𝑡+1}

= 𝜆

(
𝑞𝑡 − 𝑎𝑡

)
+ 𝛽 E𝑡 {𝜋𝑡+1} (1)

The coefficient 𝜆 denotes the slope of the cost-based NKPC. Intuitively, movements in
𝑚𝑐𝑡 capture the extent to which cyclical demand- and supply-side disturbances strain or
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relieve productive resources relevant for firms’ pricing decisions; the slope 𝜆 governs how
strongly these cost fluctuations are transmitted into inflation. Due to nominal rigidities,
firms’ pricing decisions are forward-looking: prices set today depend not only on current
marginal costs but also on anticipated future economic conditions. This gives rise to
the expectational term E𝑡 {𝜋𝑡+1}. The parameter 𝛽 ∈ (0, 1), reflecting firms’ effective
discounting of future profits, captures the degree of forward-lookingness in price setting.
It is useful to further decompose 𝑚𝑐𝑡 into two cyclical components: a cost pressure

index 𝑞𝑡—capturing scale effects and direct input pressure associated with expanding
production—and the effective productivity of the economy, 𝑎𝑡 . (We formally define both
quantities and their components below.) The intuition is straightforward. Improvements
in technology, organization, or input efficiency reduce the amount of resources required
to produce a given level of output, thereby lowering marginal costs. Inflationary pressure
emergeswhen unit production costs rise faster than productivity; conversely, productivity
gains can offset cost pressures and dampen inflation even during expansions.

Equation (1) highlights that the short-run transmission of real economic fluctuations
into inflation operates through two distinct margins: (i) a real-side channel, governing
how cyclical disturbances translate into fluctuations in real marginal costs; and (ii) a
pass-through channel, governing how a given cost shock is transmitted into inflation
through firms’ pricing decisions via the slope 𝜆. The diffusion of AI can reshape the
transmission of shocks into inflation through both channels, even when the underlying
equilibrium benchmarks remain unchanged. We discuss them in turn.

Effects of AI on cyclical moments of real marginal cost

Under rather general assumptions, up to first order, we can further decompose the cyclical
deviations of real marginal costs from trend into variation in real unit cost into pressures
arising from scale effects associatedwith expanding production (the output gap𝑦𝑡 ), tighter
factor markets (the real user cost index gap,𝑤𝑡 ), and cyclical wedges in factor markets (𝜏𝑡 ):

𝑚𝑐𝑡 = 𝑞𝑡 − 𝑎𝑡 =
(
𝜒𝑦𝑡 +𝑤𝑡 + 𝜏𝑡

)
− 𝑎𝑡 .

Plugging the expression for𝑚𝑐𝑡 inside the NKPC in (1) we obtain:

𝜋𝑡 = 𝜅 𝑦𝑡 + 𝜆

(
𝑤𝑡 + 𝜏𝑡 − 𝑎𝑡

)
+ 𝛽 E𝑡 {𝜋𝑡+1} 𝜅 := 𝜆𝜒 (2)
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This decomposition elucidates how different forms of cyclical demand- and supply-side
disturbances influence real marginal costs and, conditional on the slope 𝜆, inflation.
First, the formulation of the NKPC in (1) nests the conventional formulation
of the NKPC, which—under more restrictive assumptions on input markets and
preferences—establishes a proportional relationship between the output gap, a standard
measure of economic slack, and inflation.2 The parameter 𝜒 captures how strongly
deviations of economic activity from potential are transmitted into movements in real
marginal cost, as discussed below. Second, this decomposition makes explicit that outside
the knife-edge case of frictionless input markets, the output gap is not a sufficient statistic
for inflation. In fact, disturbances in input markets and movements in productivity also
contribute to shaping firms’ cost and therefore their pricing behavior. Singling out these
factors is important to gain some perspectives into why and how the diffusion of AI might
matter in shaping cost dynamics.

Scale effects—When output rises relative to its natural level—i.e., when the output
gap 𝑦𝑡 is positive—firms must expand production along increasingly costly margins.
The elasticity 𝜒 governs the sensitivity of real marginal cost to changes in aggregate
output and captures how rapidly production costs rise as activity expands. In the
present framework, 𝜒 reflects technological scale effects and the availability of short-run
adjustment margins, including capacity utilization, inventories, bottlenecks, and the
presence of quasi-fixed production factors. A higher 𝜒 corresponds to environments in

2The derivation of the conventional NKPC, 𝜋𝑡 = 𝜅̃ 𝑦𝑡 + 𝛽 E𝑡 {𝜋𝑡+1}, relies on a set of convenient but
very restrictive assumptions, including separable household preferences over consumption and leisure,
competitive labor markets, and flexible wages. Under these conditions, the household intratemporal
first-order condition equates the real wage to the marginal rate of substitution between consumption and
leisure, allowing real marginal cost to be expressed as a function of aggregate output. Following Galí (2015),
we can characterize the slope coefficient 𝜅̃ = 𝜆∗𝜒 = 𝜆

(
𝛾+ 𝜑+𝛼

1−𝛼
)
, where𝜑 denotes the inverse Frisch elasticity

of labor supply, 𝛼 captures the degree of returns to scale in production, and 𝛾 the elasticity of substitution
across differentiated producers. 𝜒 increases when labor supply is less elastic, when returns to scale are more
strongly decreasing, and when the elasticity of substitution across producers is higher. In our generalized
NKPC, these forces are captures by the parameter 𝜒 as well as the real unit cost gap𝑤𝑡 .
Moreover, when the mapping between real marginal cost gap and output gap holds, we can further

establish a proportionality between the output gap and the unemployment gap—the deviation of
unemployment from its flexible-price (natural) level—yielding an equivalent formulation of the conventional
NKPC in terms of labor market tightness: 𝜋𝑡 = 𝜅̃𝑢 (𝑢𝑡 −𝑢★𝑡 ) +𝛽 E𝑡 {𝜋𝑡+1}, with 𝜅̃𝑢 proportional to 𝜅̃. See Galí
(2015) for formal derivations. When labor markets feature frictions or wage rigidities, real marginal costs
can log longer be expressed as log-linear mapping of output, the conventional NKPC formulation no longer
holds, and inflation dynamics depend instead on wage-setting behavior, giving rise to a wage Phillips curve,
as discussed in the text. See, also, Erceg et al. (2000) and Gertler and Trigari (2009).
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which scaling up production is costly—for example, due to strongly decreasing returns
to scale, tight capacity constraints, limited scope for utilization adjustments, or fragile
supply chains. Conversely, a lower 𝜒 reflects technologies and organizational structures
that allow firms to expand output with relatively small increases in marginal cost by
reallocating existing resources, drawing down inventories, or increasing utilization along
flexible margins.

The diffusion of AI can materially affect the economy’s ability to scale production
over the business cycle. By improving demand forecasting, logistics, scheduling, and
process optimization, AI can relax effective capacity constraints, enhance inventory
management, and expand utilization margins. In such environments, firms can
accommodate demand expansions through smoother production schedules, inventory
buffers, and more efficient use of existing capital and labor, reducing the sensitivity of
marginal costs to output and lowering 𝜒 .

Inventory management and production smoothing constitute a particularly
important—yet often overlooked—margin of adjustment. AI-enhanced forecasting and
dynamic inventory control can decouple sales fluctuations from contemporaneous
production, weakening the link between output expansions andmarginal cost pressures in
the short run. This mechanism effectively flattens the real-side transmission from activity
to inflation by lowering 𝜒 . By contrast, if AI adoption reinforces just-in-time production,
increases reliance on concentrated upstream inputs, or tightens interdependencies across
supply chains, inventory buffers may shrink, and marginal costs may respond more
sharply to demand-driven expansions, raising 𝜒 .

AI can also improve the utilization of existing productive capacity—both capital
and labor—through better routing, maintenance, monitoring, and task allocation. To
the extent that output can expand along utilization margins rather than through costly
factor accumulation, marginal costs rise more slowly with activity. More generally,
the presence of utilization, inventories, and other short-run adjustment margins implies
that the relevant object for inflation transmission is an effective elasticity 𝜒 , shaped by
technology, organization, and production planning.

Equilibrium dynamics in factor markets—Cyclical movements in real input prices
further contribute to marginal cost dynamics. The term 𝑤𝑡 denotes the deviation of the
real user cost index of variable inputs—a bundle of labor, intermediates, and to some
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extent capital user costs—from its natural benchmark.3 Movements in 𝑤𝑡 reflect how
equilibrium real factor prices respond to cyclical conditions. In particular, it captures
how nominal rigidities, scarcity, adjustment costs, and substitution patterns across inputs
translate aggregate fluctuations into movements in real input costs, making variable
inputs temporarily more expensive than under flexible-price adjustment.

For our purposes, it is useful to distinguish between twomargins that jointly govern
the behavior of 𝑤𝑡 over the business cycle. The first operates through nominal rigidities
and adjustment frictions in factor markets. When wages or other input prices are set in
staggered contracts, bargained infrequently, indexed imperfectly, or subject to adjustment
costs, real user costs may respond sluggishly or asymmetrically to changes in aggregate
demand. Following a demand expansion, firms may wish to expand input usage, but
existing contracts or slow price adjustment imply that real input prices do not immediately
move to their flexible-price levels. In such environments, variable inputs can become
temporarily more expensive than under flexible adjustment, generating a positive𝑤𝑡 even
in the absence of changes in technology or factor scarcity.

The second margin operates through the interaction of demand and supply
elasticities in factor markets. When aggregate demand rises, firms increase their demand
for inputs; the resulting equilibrium response of real input prices depends on the elasticity
of factor supply and on substitution possibilities across inputs. If labor supply is inelastic,
expanding employment requires relatively large increases in real wages, raising the user
cost of labor relative to its natural benchmark. Conversely, when labor supply is elastic,
or when firms can substitute toward other inputs or utilization margins, real input prices
respond less strongly to cyclical expansions.

AI has the potential to influence inflation dynamics by reshaping both margins
simultaneously. By reducing adjustment frictions through improvedmatching, recruiting,
scheduling, and training, AI can increase the speed with which real wages and other
input prices respond to changes in demand, dampening cyclical deviations in real input
costs. Similar mechanisms apply to intermediate inputs and capital: when their prices
adjust sluggishly, demand expansions generate temporary increases in real user costs

3As shown in the appendix, the real user-cost index 𝑤𝑡 := 𝑤𝑛
𝑡 − 𝑝𝑡 is a cost-minimizing bundle

of the real prices of multiple production inputs—such as different types of labor, capital services, and
intermediate goods. Up to a first-order approximation around the natural benchmark, 𝑤𝑡 is given by a
cost-share-weighted average

∑𝐽

𝑗=1 𝑐
★
𝑗 𝑤 𝑗,𝑡 of real user cost gap across different inputs 𝑗 .
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(𝑤𝑡 > 0), which AI may mitigate by improving supply-chain integration and procurement
efficiency.

At the same time, AI can alter the equilibrium response of factor prices by changing
task composition, input substitutability, and the effective elasticity of factor supply.
This particularly relevant for specialized skills, robotics, and digital inputs (software,
data, organizational capital). If AI raises returns to scale though automatization or
allows firms to expand output using slack intangible capital, marginal costs may rise
more slowly during expansions. Conversely, if AI adoption increases reliance on scarce
complementary inputs—such as specialized chips, computing infrastructure, proprietary
data, or high-skill labor—marginal costs may becomemore steeply increasing as economic
activity accelerates.

Crucially, these margins need not move in the same direction, implying that AI
can generate offsetting effects on 𝑤𝑡 . For example, wages may become more flexible due
to improved contracting technologies while remaining highly procyclical because labor
supply of scarce complementary inputs—specialized skills, proprietary data, or computing
capacity—is inelastic; conversely, wages may remain sluggish even as substitution
possibilities expand. Based on the evidence available so far, the net effect of AI on the
cyclical behavior of real input costs remains ambiguous.

Factor markets’ frictions—Distortions in input markets that drive a gap between the
real user cost of an input and the value of its marginal contribution to production also
contribute to the cyclical movement of real marginal costs. In the equation above, 𝜏𝑡 :=
𝜏𝑡 − 𝜏★𝑡 measures how frictional wedges, 𝜏𝑡 :=𝑤𝑡 −𝑚𝑝𝑡 , are over and above those present
in the flexible-price allocation 𝜏★𝑡 .4 The cyclicality of these wedges can be driven, among
others, by changes in labor bargaining frictions, financing premia, adjustment costs, or
markups embedded in user costs of intermediate inputs.

AI can generate cyclical variation in 𝜏𝑡 by altering the nature, intensity, and
state-dependence of frictions in input markets. These effects need not be monotonic
and may operate in opposite directions across markets and phases of the cycle. In labor

4Again, up to a first-order approximation around the natural benchmark, 𝜏𝑡 is a cost-share-weighted
average

∑𝐽

𝑗=1 𝑐
★
𝑗 𝜏 𝑗,𝑡 of wedges in different input markets. Note that 𝜏 𝑗,𝑡 capture average (or aggregate)

wedges for the production factor 𝑗 in the spirit of Chari et al. (2007). Aggregate wedges are different from
misallocation wedge, which are arise due to cross-sectional heterogeneity in the frictions that individual
firms face accessing factormarkets (Hsieh andKlenow 2009). We capture these frictions inside the effeciency
wedge 𝑎𝑡 discussed below.
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markets, AI-enabled monitoring, performance evaluation, and algorithmic management
may reduce informational frictions and weaken workers’ bargaining power, compressing
wage premia and reducing cyclical wage wedges. At the same time, AI can lower the
cost of job search and application—through automated resume submission, matching
platforms, and remote work—which may dramatically increase the volume of applicants
per vacancy. This can raise screening and selection costs for firms, effectively increasing
hiring frictions during expansions and generating positive cyclical wedges betweenwages
and marginal products. Similarly, increased reliance on project-based or platform work
may fragment employment relationships, making effective labor services more costly to
scale despite flexible posted wages.

In capital markets, AI-driven improvements in credit scoring, risk assessment, and
contract enforcement may reduce external finance premia and dampen the cyclicality of
user costs. While this is a plausible baseline, AI may also amplify financial cyclicality by
increasing the procyclicality of credit supply. In particular, algorithmic lending and model
monocultures may lead intermediaries to over-relax credit standards during expansions
and tighten them abruptly during downturns, often in a highly correlated manner across
institutions. To the extent that AI-enabled finance raises leverage, accelerates credit
booms, or synchronizes lending decisions, financing constraints can become more severe
in busts despite higher underlying productivity. In such environments, the cyclical
financing wedge rises and 𝜏𝑡 may increase even as measured productivity improves. We
return to these mechanisms in Section 4.

Finally, AI can also affect wedges in intermediate-input markets by reshaping
contracting technologies and supply-chain organization. Improved forecasting
and inventory management may reduce delivery delays, renegotiation costs, and
quantity-adjustment frictions, lowering cyclical wedges. At the same time, increased
reliance on complex digital supply chains, proprietary platforms, or concentrated
upstream providers may amplify contractual rigidities and raise effective input costs
during periods of high demand.

Efficiency wedges—Finally, cyclical movements in production efficiency can either
dampen cost pressures—when they reflect temporary productivity gains—or amplify
them—when they entail transitory efficiency losses. In Equation (2), the term 𝑎𝑡 ≡ 𝑎𝑡 −𝑎★𝑡

captures a cyclical efficiency wedge: the deviation of effective production efficiency from
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its flexible-price benchmark, holding fixed the underlying technological frontier and the
real frictions that characterize the natural allocation.5

This wedge reflects forces that cause realized productivity to differ from its
flexible-price counterpart even when the technological frontier is unchanged. A key
mechanism is resource misallocation: nominal rigidities, sectoral bottlenecks, and
adjustment frictions can prevent labor, capital, and intermediate inputs from flowing to
their most productive uses, lowering effective productivity relative to the flexible-price
allocation. Price and wage dispersion, congestion in factor markets, and imperfect
reallocation across tasks or firms can all generate such efficiency losses, especially during
periods of rapid structural change.

From the perspective of inflation dynamics, a negative efficiency wedge (𝑎𝑡 <

0) raises real marginal costs for a given level of activity, amplifying inflationary
pressure even in the absence of strong demand or input-price growth. Conversely,
improvements in allocative efficiency can partially offset cost pressures by allowing
output to expand with smaller increases in marginal cost. Importantly, because 𝑎𝑡 reflects
endogenous, state-dependent distortions rather than exogenous technology, its response
to shocks—such as the diffusion of AI—need not be monotonic and can vary over the
business cycle.

A common narrative surrounding AI diffusion emphasizes its cost-saving potential
and its role in raising productivity. This narrative is often taken to imply, implicitly
or explicitly, that AI will act as a deflationary force. While AI is widely regarded as
a general-purpose technology that expands the economy’s technological frontier—and
therefore raises 𝑎★𝑡 over the long run—the implications for short-run inflation dynamics
are far less straightforward. As explained, AI is disinflationary at cyclical horizons only
insofar as it raises effective productivity relative to its flexible-price benchmark by more
than it increases real unit input costs (𝑚𝑐𝑡 = 𝑞𝑡−𝑎𝑡 ). Productivity gains alone are therefore
not sufficient to ensure disinflationary outcomes.

Crucially, it should not be taken for granted that AI diffusion generates a positive
𝑎𝑡 in the short run. The impact of AI on realized efficiency depends on adoption frictions,
organizational adjustment, and complementarities with existing inputs, all of which are

5Effective productivity is defined as 𝑎𝑡 := (1+ 𝜒) tfp𝑡 + 𝑎𝑡 , where tfp𝑡 denotes Hicks-neutral total factor
productivity and 𝜒 captures amplification through returns to scale and utilization margins. The derivations
reported in the Appendix.
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subject to real and nominal rigidities. When prices and wages adjust sluggishly, firms
face distorted relative prices that lead to inefficient allocation of inputs across producers
and tasks, even as the underlying (potential) technological frontier continues to expand.
These distortions raise the amount of inputs required to produce a given level of output,
lowering realized efficiency relative to the flexible-price allocation. Thus, AI adoption
can initially reduce (rather than increase) effective productivity, generating a negative
𝑎𝑡 , despite ongoing improvements in the technological frontier. This non-monotonic
pattern is consistent with the "productivity J-curve" emphasized by Brynjolfsson et al.
(2021), whereby major technological innovations initially depress measured productivity
before delivering sustained gains once complementary investments and organizational
adjustments are completed.6 These mechanisms become quantitatively more important
during periods of rapid technological reorganization, such as the diffusion of AI.

Effects of AI on the passthrough of cyclical real marginal cost movements

A second channel though which the diffusion of AI can affect inflation dynamics is
by affecting how marginal-cost fluctuations are transmitted into inflation through the
slope of the Phillips curve, 𝜆. The slope of the Phillips curve is determined by the
interaction between nominal rigidities and real rigidities that shape firms’ price-setting
decisions. Following Gagliardone et al. (2025b) we summarize these forces through the
decomposition:7

𝜆 =
(1 − 𝜃 )

𝜃
(1 − 𝛽𝜃 ) (1 − Ω) Θ. (3)

which highlights three distinct margins governing cost pass-through: the frequency of
price adjustment (𝜃 ), discounting (𝛽), strategic complementarities in price setting (Ω),
and macroeconomic complementarities in production (Θ).

Nominal rigidities—Nominal rigidities limit the speed and extent to which firms can
6The authors emphasize how during early phases of diffusion, firmsmay incur substantial reorganization

costs—such as learning, integration, data cleaning, workflow redesign, and experimentation—that
temporarily divert resources away from production. Coordination failures arise as tasks are reallocated,
and legacy systems coexist imperfectly with new technologies. In this phase, realized efficiency may fall
short of its flexible-price benchmark even as trend TFP continues to improve. See also Bresnahan and
Trajtenberg (1995) for a framework with long diffusion lags and complementarities in the diffusion and
adoption of general purpose technologies.

7See Gagliardone et al. (2025b) for a derivation of the NKPC slope in an environment with
oligopolistically competitive firms.
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adjust prices in response to cost shocks, thereby governing how quickly marginal-cost
fluctuations translate into inflation. To fix ideas, consider a standard Calvo (1983) pricing
environment in which, in any given period, only a fraction 1 − 𝜃 of firms can reoptimize
their prices, while the remaining firms keep prices unchanged. Within the Phillips-curve
slope in Equation (3), the term 1−𝜃

𝜃
captures the frequency of price adjustment: as price

reoptimization becomes more frequent (lower 𝜃 ), a larger share of firms can respond to
cost shocks, increasing cost pass-through into inflation.8

Moreover, due to price stickiness, firms that do adjust internalize the fact that their
prices are expected to remain in place for several periods. As a result, optimal reset prices
are forward looking: firms choose prices to balance current marginal-cost conditions
against expected future costs over the duration of price stickiness. This forward-looking
pricing behavior implies that firms respond less aggressively to contemporaneous cost
shocks when prices are expected to remain fixed for longer. The term (1 − 𝛽𝜃 ) reflects
the role of discounting in price-setting decisions. When firms place greater weight on
future profits (higher 𝛽) and expect prices to remain fixed for longer (higher 𝜃 ), current
pricing decisions become more foreward looking—that is more sensitive to expected
future marginal costs—reducing the strength of inflation responses to current movements
in costs.

The diffusion of AI can affect nominal rigidities by reducing the managerial,
informational, and computational costs of repricing. Automation, real-time demand
forecasting, and algorithmic pricing tools can increase both the frequency and the state
contingency of price adjustment. This corresponds to a decline in effective price stickiness
(a lower 𝜃 ), steepening the Phillips curve and allowing marginal-cost fluctuations to
pass through more rapidly into inflation. While AI does not alter firms’ fundamental
time preferences, it can reshape the information set available to firms and the way
expectations are formed, thereby affecting the effective role of 𝛽 in price-setting decisions.
In forward-looking pricing models, 𝛽 governs the weight firms place on expected future
marginal costs and inflation relative to current conditions. Improvements in data
processing, forecasting accuracy, and real-time monitoring can increase firms’ perceived

8Gagliardone et al. (2025a) develop a state-dependent pricing framework in which the frequency of
price adjustment is endogenous and increasing in the magnitude of cyclical shocks (See also Nakamura and
Steinsson 2010; Alvarez et al. 2022). The authors show that, in the absence of large aggregate disturbances,
the Calvo pricing assumption provides a close approximation to firms’ optimal pricing behavior (Gertler
and Leahy 2008 Auclert et al. 2022).
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ability to anticipate future economic conditions, effectively raising the importance of
expected future outcomes in pricing decisions. In this sense, AI can increase the
operational relevance of 𝛽 , making inflation dynamics more expectation-driven and less
tightly linked to contemporaneous economic slack.

At the same time, AI adoption may increase uncertainty about the medium run
by accelerating structural change in market structure, technology, and competitive
conditions. If firms become less confident about the persistence of future cost or demand
conditions, they may discount the future more heavily in practice, reducing the influence
of expected future marginal costs on current pricing decisions. In such environments,
expectations may become less firmly anchored, and inflation may respond more sharply
to current shocks, increasing volatility for given fundamentals. Thus, even holding deep
preferences fixed, AI can affect inflation dynamics by altering howfirms perceive, forecast,
and discount future economic conditions.

Strategic price complementarities—Strategic complementarities arise when firms’
desired prices depend on competitors’ prices, leading individual firms to adjust prices less
aggressively in response to changes in their current or anticipated production costs. The
parameter Ω ∈ (0, 1) captures the strength of this channel: higher values of Ω imply that
optimal reset prices place greater weight on competitors’ prices and less on firms’ own
marginal costs. As a result, marginal-cost fluctuations translate less into relative price
adjustments and, in the aggregate, into inflation.9

There is growing concern that AI may reshape competitive interactions in
ways that strengthen strategic complementarities in pricing. First, AI adoption
appears to be skewed toward larger firms, reflecting the importance of complementary
intangible investments—such as data, organizational capital, and specialized skills—that
are easier to finance and scale in large organizations (Calvino and Fontanelli 2023;
OECD/BCG/INSEAD 2025; Lenzu et al. 2026). By reinforcing scale advantages, AI may
increasemarket concentration and tilt pricing power toward incumbent firms, particularly

9In models with variable markups, Ω is increasing in the elasticity of desired markups with respect to
relative prices. When demand elasticity is constant—as in the benchmark monopolistic competition model
with Dixit–Stiglitz demand–markups are fixed, Ω = 0, and strategic complementarities are absent. In that
case, firms that reoptimize prices condition only on the discounted stream of their own marginal costs,
competitors’ prices are irrelevant, and the Phillips curve is steeper. When markups vary endogenously,
pricing decisions become strategic complements and cost pass-through is attenuated. See Amiti et al. (2019)
and Gagliardone et al. (2025b) for further discussion.
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those that control compute capacity, data infrastructures, or cloud services. Second, AI
improves information acquisition and processing, potentially increasing the extent to
which firms condition their pricing decisions on competitors’ prices. A growing literature
on algorithmic pricing shows that learning algorithms can sustain supracompetitive
pricing outcomes even in the absence of explicit communication (Calvano et al. 2020),
a mechanism that naturally maps into stronger strategic complementarities.

At the same time, these effects may be counterbalanced by opposing competitive
forces. Widespread AI adoption can increase price transparency, reduce search and
switching costs, and lower barriers to entry—particularly in platform-based and digital
markets—thereby compressing markups and weakening incumbents’ pricing power.
In such environments, strategic complementarities may attenuate and increasing cost
pass-through into inflation. Whether AI ultimately flattens or steepens the Phillips curve
through this channel therefore depends on which of these opposing forces dominates, an
outcome that is likely to vary across sectors, market structures, and stages of AI adoption.

Macroeconomic complementarities—Even when individual firms face identical
price-setting frictions, the aggregate pass-through of cost shocks into inflation can
be dampened by general-equilibrium feedbacks. These forces are captured by the
coefficient Θ ≤ 1, which summarizes the role of macroeconomic complementarities
in the transmission of marginal-cost fluctuations into prices. Macroeconomic
complementarities arise from features of the production environment—such as decreasing
returns to scale, shared factor markets, and input-output linkages—that cause firms’ costs
to move together in response to aggregate disturbances, once all general-equilibrium
feedbacks are taken into account.

Intuitively, when aggregate output expands, higher factor prices, tighter input
markets, and rising intermediate-input costs affect all firms simultaneously. Because
marginal costs rise broadly rather than idiosyncratically, relative cost differences across
firms are compressed. As a result, the gap between a firm’s optimal price and the aggregate
price level increases by less, leading to smaller desired relative price adjustments.10

10The key point is that firms adjust prices to restore relative markups, not to offset changes in the level
of marginal costs per se. When a cost increase is largely idiosyncratic, raising prices improves a firm’s
relative position. By contrast, when cost shocks are aggregate and shared across firms, relative marginal
costs—and hence relative markups—move little. Expected inflation and general-equilibrium feedbacks
then partially restore markups over time, reducing the marginal benefit of aggressive immediate price
adjustment. Macroeconomic complementarities therefore dampen inflation not because marginal costs rise
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These general-equilibrium feedbacks—captured by a parameter Θ < 1—dampen cost
pass-through and flatten the Phillips curve, implying that inflation responds less to
aggregate activity than under partial-equilibrium pricing.

AI can affect inflation dynamics through this channel by reshaping the structure
of production and the nature of general-equilibrium feedbacks. Beyond raising
productivity, AI may alter effective returns to scale, task modularity, and network
dependencies in supply chains and digital infrastructure. To the extent that AI
increases effective returns to scale—by enabling firms to expand output using shared
platforms, software, or data—macroeconomic complementarities weaken and Θ rises
toward one, increasing the sensitivity of inflation to real activity. Conversely, if AI
adoption intensifies input-output linkages or increases reliance on common upstream
inputs and infrastructures, aggregate cost movements may become more synchronized,
strengthening macroeconomic complementarities and dampening cost pass-through into
inflation.

Taken together, these considerations suggest that AI reshapes—rather than
eliminates—the inflation–activity tradeoff, and it does so through multiple margins
that need not move in the same direction. Real-side effects operating through marginal
costs, pricing frictions governing pass-through, and expectation-formation channels
may offset or reinforce one another, rendering the net impact of AI on the slope of the
Phillips curve ambiguous ex ante. Even if individual mechanisms are well understood in
isolation, their joint effect depends on how AI alters the interaction between production
technologies, pricing behavior, and market structure.

Importantly, this ambiguity is likely to be amplified by heterogeneity. While the
analysis above abstracts from cross-industry variation and treats the "aggregate Phillips
curve" as a representative aggregate relationship, in practice inflation dynamics reflect
the aggregation of heterogeneous industry-level Phillips curves. AI may not only change
the structural parameters governing price adjustment and cost pass-through at the firm
or industry level, but also imply a quick and significant reallocation economic activity

less, but because cost increases are common across firms, weakening incentives to adjust prices aggressively.
In the appendix, we derive Θ as a function of the elasticity of substitution across producers, the sensitivity
of marginal costs to output, and the strength of strategic complementarities (see also Gagliardone et al.
2025b). Note that this mechanism is distinct from the role of 𝜒 , which governs how marginal cost responds
to changes in the level of economic activity.
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across sectors with systematically different pricing frictions, production elasticities, and
exposure to cost shocks. As a result, the slope of the aggregate Phillips curve may
evolve more rapidly than implied by within-industry adjustments alone, reflecting both
parameter changes and compositional shifts in economic activity.11

2.2 Cyclical transmission of aggregate demand disturbances and

expectations

In a canonical business-cycle model, the aggregate demand side is captured by the
dynamic investment-saving (IS) relation, a log-linearized Euler equation that relates
current and expected aggregate expenditure, expressed as deviations from natural levels,
to the real interest rate gap:

𝑦𝑡 = E𝑡 {𝑦𝑡+1} −
1
𝜎

(
𝑟𝑡 − 𝑟★𝑡

)
+ 𝜀𝐼𝑆𝑡 , (4)

where the ex-ante real rate is given by 𝑟𝑡 := 𝑖𝑡 − E𝑡 {𝜋𝑡+1} is the real interest rate and
𝑟★𝑡 is the natural (Wicksellian) real rate consistent with zero output gap; 𝜎 governs the
sensitivity of demand to real interest rate gaps; 𝜀𝐼𝑆𝑡 collects demand disturbances.

Mirroring the approach in the previous section, for the purposes of analyzing the
short-run inflationary effects of AI, we abstract from demand-side forces that shift the
natural rate 𝑟★𝑡 or alter preference parameters such as 𝜎 , which are equilibrium objects
discussed in Section 3. Instead, wewill focus on a distinct and empirically relevant channel
through which AI affects aggregate demand at cyclical horizons: expectations.

The diffusion of AI can alter agents’ beliefs about future productivity, income,
and profitability even before these changes materialize in measured costs or potential
output.12 Anticipated AI-driven gains raise expected future income and investment

11 In an environment with cross-industry heterogeneity in nominal rigidities and strategic
complementarities, aggregation implies that the cost-based NKPC can be written as

𝜋𝑡 = 𝜆𝑚𝑐𝑡 + Cov
(
𝜆𝑖 ,𝑚𝑐𝑖,𝑡

)
+ 𝛽 E𝑡 {𝜋𝑡+1},

where 𝜆 :=
∫
𝜆𝑖 𝑑𝑖 is the average slope and 𝜆𝑖 := (1−𝜃𝑖 ) (1−𝛽𝜃𝑖 )

𝜃𝑖
(1 − Ω𝑖 )Θ𝑖 . Aggregate inflation

therefore depends not only on the average pass-through but also on cross-sectional covariances between
marginal-cost fluctuations and industry-specific pricing frictions, such as Cov(𝑚𝑐𝑖,𝑡 , 𝜃𝑖 ), Cov(𝑚𝑐𝑖,𝑡 ,Ω𝑖 ),
and Cov(𝑚𝑐𝑖,𝑡 ,Θ𝑖 ). AI-driven reallocation toward sectors with more flexible pricing, stronger
complementarities, or tighter cost pressures can thus change aggregate inflation dynamics even if
within-industry parameters remain unchanged. These aggregation effects may be further amplified in the
presence of input–output linkages.

12Formally, anticipated AI adoption can be represented as a news shock to future demand conditions,
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returns, stimulating current consumption and investment through intertemporal
substitution. As a result, aggregate demand may expand and the output gap may
open even if contemporaneous productivity and potential output remain unchanged.
This expectations-driven expansion increases utilization and tightens input markets,
generating upward pressure on inflation through the Phillips curve.

These considerations raise a natural question: should AI-driven demand news
shocks be expected to differ systematically from traditional demand shocks? In reduced
form, both operate by shifting the output gap for a given real interest rate gap and
can therefore appear similar on impact. The distinction becomes economically relevant
once one recognizes that AI-related demand pressure reflects revisions in beliefs about
future productivity rather than an exogenous contemporaneous spending impulse. This
difference affects the timing and comovement of output, costs, and inflation, complicates
real-time identification, and increases the sensitivity of inflation dynamics to how
expectations are formed and updated.

A first implication concerns timing and comovement. Because news shocks work
through expectations about future conditions, they tend to generate more front-loaded
movements in current demand than standard "spot" demand shocks. Anticipated
AI-driven gains stimulate consumption and investment today through the entire expected
path of future income and returns, even if productivity improvements have not yet
materialized. As a result, output and marginal costs may rise before supply-side efficiency
gains are reflected in measured productivity. Whether the resulting inflationary pressure
proves temporary or persistent depends on how quickly productivity gains are realized
relative to this initial demand expansion.

This logic connects directly to the efficiency-wedge discussion above. Even when
AI is expected to lower production costs in the long run, its diffusion can generate
short-run inflationary pressure if expectations-driven demand responds more rapidly
than effective productivity. Short-run inflation outcomes therefore depend on the relative
timing and strength of two opposing forces: front-loaded demand driven by expectations
and the gradual realization of cost-reducing productivity gains on the supply side. When
the former dominates, inflation can rise temporarily despite anticipated technological

captured either by revisions in expectations of future output gapsE𝑡 {𝑦𝑡+1} or by innovations to the expected
future path of IS disturbances 𝜀𝐼𝑆𝑡+𝑗 for 𝑗 ≥ 1, rather than by a contemporaneous demand shock 𝜀𝐼𝑆𝑡 .
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progress.13

A second, policy relevant implication concerns "identification". AI-driven demand
news is fundamentally about future supply, but it initially manifests as demand pressure.
In real time, this makes it difficult to distinguish from conventional demand overheating,
particularly when measured productivity responds sluggishly due to adoption frictions,
reorganization costs, or misallocation. As discussed in the context of efficiency wedges,
realized productivity may temporarily lag behind its flexible-price benchmark even
as expectations improve. In such environments, inflationary pressure may reflect
intertemporal substitution ahead of future capacity rather than excess demand relative
to long-run productive potential, posing a challenge for policy calibration.

3 Effects of AI on long-run structural transition

In the log run, a diffused adoption of AI technologies are best understood not as changes
in cyclical transmission, but as shifts in the benchmarks around which monetary policy
stabilizes the economy and as changes in intertemporal allocation.

3.1 Potential output and the natural rate of interest

The long-run implications of artificial intelligence operate through its effects on the
economy’s natural benchmarks—the natural (flexible-price) level of output 𝑦★𝑡 and the
natural real interest rate 𝑟★𝑡 . The natural level of output 𝑦★𝑡 is the level of economic
activity that would prevail in the absence of nominal rigidities; it reflects underlying
fundamentals such as productivity, labor supply, production technologies, and market
structure. The natural real rate of interest 𝑟★𝑡 is the real interest rate consistent with that
same flexible-price allocation. Equivalently, it is the real rate that supports a zero output
gap and stable inflation in the sticky-price economy. As nominal rigidities dissipate over
time, the economy converges toward this flexible-price equilibrium, in which inflation
is stable and real activity is determined solely by preferences, technology, and market
structure.

13The distinction between anticipated and unanticipated AI adoption is emphasized in a
general-equilibrium setting by Aldasoro et al. (2024a), who show that anticipated AI adoption tends
to generate a temporary inflationary response through demand, whereas unanticipated productivity
shocks are more likely to be disinflationary on impact.
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In standard business-cycle frameworks, the relationship between 𝑦★𝑡 and 𝑟★𝑡 is
embedded in the household Euler equation and, by extension, in the dynamic IS relation
(Equation 4). Given a path for flexible-price output and consumption, the natural real
rate adjusts to equate desired saving and investment over time. Higher expected growth
in potential output raises expected consumption growth and the marginal return to
investment, thereby increasing the real interest rate required to induce households to
postpone expenditure. Conversely, forces that depress investment demand or increase
precautionary saving put downward pressure on the natural rate. Movements in
𝑦★𝑡 therefore map naturally into movements in 𝑟★𝑡 through intertemporal allocation
decisions.14

Monetary policy stabilizes the economy around these evolving benchmarks
rather than attempting to influence them directly. Abstracting from unconventional
interventions, monetary policy affects inflation and real activity by influencing deviations
of the policy real rate from 𝑟★𝑡 , not through the level of 𝑟★𝑡 itself—a mechanism made
explicit by the IS equation in (4).

Policy errors therefore arise not because the natural rate moves, but because the
central bank fails to update its assessment of those movements, creating persistent gaps
between the policy real rate and the evolving neutral rate. These considerations map
directly into standard policy rules. For example, under a conventional Taylor-style rule,

𝑖𝑡 = 𝑟★𝑡 + 𝜋 + 𝜙𝜋 (𝜋𝑡 − 𝜋★) + 𝜙𝑥𝑥𝑡 , (5)

changes in 𝑟★𝑡 require corresponding adjustments to the intercept of the policy rule.
If the natural rate rises and policy does not follow, policy becomes unintentionally
expansionary; if the natural rate falls and policy does not follow, policy becomes
unintentionally contractionary. Reacting to inflation and activity alone is therefore
insufficient when benchmark estimates are persistently mismeasured.

AI matters for monetary policy because it can affect both the level and the growth
rate of potential output, as well as the intertemporal trade-offs that determine 𝑟★𝑡 , through
multiple, conceptually standard channels. By raising trend productivity and expanding

14In the canonical New Keynesian model, the natural real rate of interest is pinned down by the Euler
equation evaluated at the flexible-price allocation. Abstracting from preference shocks and wedges, this
implies an approximate log-linear relationship of the form 𝑟★𝑡 = − log 𝛽 + 𝜎 E𝑡 {Δ𝑦★𝑡+1}, where 𝛽 is the
subjective discount factor and E𝑡 {Δ𝑦★𝑡+1} denotes expected growth in natural output. Higher expected
growth raises the natural real rate by increasing the real return required to induce households to postpone
expenditure. See Woodford (2011) and Galí (2015) for formal derivations.
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profitable investment opportunities, AI can increase expected consumption growth and
the marginal return to capital, putting upward pressure on both potential output and
the natural real rate. At the same time, AI may reshape market structure, increase
concentration, or alter the distribution of rents in ways that dampen aggregate investment
demand. AI-driven uncertainty, labor displacement risk, or distributional effects may
also raise precautionary saving, exerting downward pressure on the natural rate. The
effectiveness of monetary policy in anAI-intensive economy therefore hinges on correctly
tracking changes in natural benchmarks and adjusting the stance of policy accordingly,
rather than reacting mechanically to AI-driven changes in activity or prices.

Importantly, while theory provides clear guidance on how 𝑟★𝑡 should enter policy
decisions (Woodford 2011; Galí 2015; Clarida et al. 1999), both 𝑦★𝑡 and 𝑟★𝑡 are unobserved
and subject to substantial real-time uncertainty (Laubach andWilliams 2003; Holston et al.
2017). Rapid structural change driven by AI may exacerbate this challenge by making it
harder to distinguish cyclical movements from shifts in underlying trends. This increases
the value of robustness, gradualism, and careful inference in policy design, even as the
conceptual role of natural benchmarks remains unchanged.

3.2 Intertemporal elasticity and aggregate demand sensitivity

A second long-run channel through which AI affects the conduct of monetary policy
operates through the sensitivity of aggregate demand—consumption and investment—to
movements in real interest rates.

This channel is captured by the parameter 𝜎 , the intertemporal elasticity of
substitution in consumption, in the IS equation (4). In textbook New Keynesian models,
𝜎 is a primitive object deriving from household preferences, capturing the curvature
of utility and the willingness to substitute consumption across time.15 More broadly,
however, 𝜎 should be interpreted as a reduced-form equilibrium object summarizing
all frictions that limit intertemporal reallocation. These include borrowing constraints,
income risk, consumption-smoothing mechanisms, and information frictions.

As we will discuss in Section 4, AI may affect 𝜎 through several slow-moving
15In textbook NK models, the intertemporal elasticity of substitution 𝜎 enters household preferences

together with the inverse Frisch elasticity 𝜑 : 𝑈 (𝐶𝑡 , 𝑁𝑡 ) =
𝐶1−𝜎
𝑡 −1
1−𝜎 − 𝑁

1+𝜑
𝑡

1+𝜑 . Thus, 𝜎 governs the curvature of
utility and households’ willingness to substitute consumption intertemporally.
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structural channels. Improvements in financial intermediation—such as enhanced credit
scoring and risk assessment—can relax borrowing constraints and improve consumption
smoothing, increasing the responsiveness of demand to real interest rates. AI may
also reduce income risk through better forecasting and risk management, lowering
precautionary saving and raising effective intertemporal substitution. In addition, AI can
reduce investment planning and implementation costs, making investment demand more
elasticwith respect to expected returns. Finally, improvements in forecasting and financial
advising may lengthen planning horizons and increase confidence about future outcomes,
further amplifying intertemporal substitution.

Note that, unlike structural transformations that operate through shifts in 𝑦★ and
𝑟★, these effects of AI diffusion operating through 𝜎 matter for central banks because
they shape the strength of monetary policy transmission to real activity, rather than the
equilibrium long-run level of economic activity itself.

4 Implications of AI diffusion for financial stability

While price stability remains the primary objective of central banks, in most jurisdictions
they also play a critical role in safeguarding financial stability, either by mandate or
by necessity. The rapid diffusion of AI technologies—particularly generative AI—will
inevitably intersect with this objective by reshaping financial intermediation, risk
assessment, and the origination and propagation of asset-price shocks. Although
these effects lie outside the frameworks discussed in the previous sections—cyclical
transmission and long-run changes in fundamentals—they interact with them by altering
the financial landscape throughwhichmonetary policy is transmitted to the real economy.

4.1 Impact on financial intermediaries

A growing body of evidence shows that AI is increasingly embedded across core segments
of the financial system that are central to financial intermediation and, a fortiori, financial
stability: lending, insurance, and asset management.

In lending, the integration of GenAI with existing machine-learning-based credit
scoring and underwriting schemes has the potential to expand access to credit and
improve risk assessment, particularly for borrowers with limited credit histories (Berg
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et al. 2020; Fuster et al. 2022). However, these benefits should be weighed against
the nontrivial risks posed by these same tools. First, widespread adoption of these
technologies by financial intermediaries may amplify the procyclicality of credit cycles
by increasing the sensitivity of credit supply to real-time signals or market sentiment.
Moreover, opaque and complex models trained on historical data may embed biases or
perform poorly under structural change, leading to correlated mispricing of risk across
institutions and increasing systemic vulnerability (Aldasoro et al. 2024b; International
Monetary Fund 2024).

In insurance, AI enhances risk classification, pricing, and claims management,
potentially improving efficiency and reducing fraud. However, finer risk segmentation
may weaken traditional risk pooling and increase exposure to tail risks, particularly when
extreme events fall outside the training data used by models (Balasubramanian et al. 2018;
European Insurance and Occupational Pensions Authority 2021. These developments
raise important questions about the long-run insurability of certain risks and the resilience
of insurers’ balance sheets under stress (International Monetary Fund, 2024).

In asset management, AI is increasingly used for portfolio optimization, algorithmic
trading, sentiment analysis, and risk management (Gensler, 2023). While these tools can
improve information processing and execution speed, they may also contribute to faster
and more synchronized portfolio adjustments, increasing market volatility and the risk of
abrupt price movements (Kirilenko et al. 2017).

4.2 The topology of the financial system and the transmission of

monetary policy

The adoption of AI by the financial sector may alter not only individual
institutions’ behavior but also the very topology of the financial system, increasing
interconnectedness, the speed of adjustment, and shaping competitive dynamics. These
changes have direct implications for the transmission and effectiveness of monetary
policy.

A large literature emphasizes that monetary policy affects the real economy not
only—or perhaps not even primarily—through the risk-free real interest rate, but through
financial intermediaries whose balance sheets, funding constraints, and risk-bearing
capacity shape credit spreads and the supply of credit to households and firms (Bernanke
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and Gertler, 1989; Bernanke et al., 1999; Gertler and Karadi, 2011). More recently,
this perspective has been extended to highlight the growing role of market-based
finance—including securitization, private credit, and CLOs—in transmitting monetary
policy through asset prices, leverage, and risk premia (Adrian and Shin 2010; Di Maggio
et al. 2020).

A simple way to connect financial conditions back to the canonical New Keynesian
demand block is to interpret the relevant real rate in the IS equation as the effective real
rate faced by households and firms. In particular, the IS relation can be written as

𝑦𝑡 = E𝑡 {𝑦𝑡+1} −
1
𝜎

(
𝑟𝑡 + 𝜏 𝐼𝑆𝑡︸  ︷︷  ︸

effective real rate

−𝑟★𝑡
)
+ 𝜀𝐼𝑆𝑡 , (6)

where 𝜏 𝐼𝑆𝑡 denotes a a financial wedge—such as a credit spread or external finance
premium—that reflects intermediary balance-sheet conditions, funding constraints, and
market liquidity.16 This representation clarifies why the topology of the financial system
matters for monetary policy: even if the central bank influences market rates through
conventional or unconventional operations, movements in 𝑠𝑡 can materially alter the
effective stance of policy as perceived by the private sector.

To fix ideas, consider a central bank that sets the nominal policy rate in response
to inflation and economic slack, conditional on its assessment of 𝑟★𝑡 , according to the
Taylor rule in Equation (5). For a given setting of the policy rate 𝑖𝑡 , different realizations
of the spread 𝜏 𝐼𝑆𝑡 can therefore imply very different degrees of effective monetary
accommodation or tightening, depending on how financial conditions respond to the
policy action.

AI can affect monetary transmission through financial channels by altering the
behavior of 𝑠𝑡 itself. In particular, AI adoption may make spreads more volatile, more
state-dependent, or more correlated across institutions, increasing the likelihood that
financial conditions tighten abruptly even when inflation is near target and measured
output gaps are small. These effects operate through two closely related mechanisms.

First, AI may reshape competitive dynamics and market structure within
16Just as 𝜏𝑡 captures wedges between factor prices and marginal products, 𝜏 𝐼𝑆𝑡 captures, in reduced form,

wedges between the policy rate and the intertemporal price relevant for private spending decisions. In the
spirit of Bernanke et al. (1999) and Gertler and Karadi (2011), the idea that monetary policy transmits to
the real economy in part through endogenous spreads that depend on intermediary net worth, leverage
constraints, and risk-bearing capacity.
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intermediary sectors—for example, by strengthening economies of scale in data and
model deployment, increasing reliance on a small number of technology providers, or
accelerating the diffusion of similar risk signals—thereby affecting intermediaries market
power, risk-taking incentives, and the elasticity of spreads and credit supply with respect
to policy rates. Second, AI may be adopted differentially across intermediaries with
heterogeneous funding structures and regulatory constraints. If credit intermediation
shifts toward segments characterized by weaker capital regulation, greater maturity
transformation, or distinct risk-management practices, the mapping from policy rates to
aggregate financial conditions may change, altering both the strength and the timing of
monetary policy transmission to real activity.17

4.3 Financial infrastructures and systemic interactions

Another central concern for financial stability is that widespread AI adoption may
promote "model monocultures," in which many financial institutions rely on similar
datasets, algorithms, or foundation models to make decisions. When technological
penetration is high and AI service provision is concentrated, institution-level efficiencies
can also be a source of system-wide vulnerabilities (Financial Stability Board 2017;
Financial Stability Board 2024).

AI may amplify herding behavior and endogenous correlation. If many market
participants react to the same signals or model outputs, asset prices may deviate
persistently from fundamentals and then adjust sharply once beliefs shift (International
Monetary Fund 2024). This mechanism resembles well-known amplification channels in
financial crises, in which relatively small shocks are endogenously magnified through
balance-sheet feedbacks and expectations, as formalized in the financial accelerator
literature (Bernanke et al. 1999) and in models of belief-driven boom–bust cycles (Benigno
and Fornaro 2018).

Other considerations apply to the integration of AI technologies in the payment
system. AI-driven automation, fraud detection, and real-time monitoring can improve
efficiency and operational resilience. At the same time, increased reliance on complex
algorithms and a small number of technological providers may heighten operational and

17A growing literature documents a secular shift toward market-based finance and private credit, with
important implications for both the strength and the timing of monetary policy transmission to real activity
(Fleckenstein et al. 2025; Ivashina 2025).
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cyber risks, creating potential single points of failure with systemic consequences in the
event of outages, cyber incidents, or model failures (McMahon et al. 2024; Kazinnik and
Brynjolfsson 2025).

Finally, the opacity of complex AI systems complicates risk management and
supervision. Errors, biases, or breakdowns in widely used models can become common
shocks rather than idiosyncratic disturbances, so that risks appearing diversified at
the micro level are highly correlated at the system level (International Monetary Fund
2024; Basel Committee on Banking Supervision 2020; Gensler 2023). These features
raise the likelihood that institution-level efficiencies translate into system-wide fragility,
reinforcing the importance of financial stability considerations for central banks in an
AI-intensive economy (Financial Stability Board, 2017; International Monetary Fund,
2024).

4.4 Asset valuations and stock-market crash risk

Finally, one should not understate the potential financial stability risks that the diffusion
and adoption of AI may pose through their effects on asset valuations and expectations,
particularly in equity markets. The rapid progress of generative AI technologies
has generated substantial optimism about future productivity gains, profitability, and
long-run economic growth. This optimism has been reflected in elevated equity
valuations, an increasing concentration of market capitalization in firms perceived to be
at the technological frontier of AI adoption, and very large investment flows aimed at
expanding the capacity required to meet anticipated demand for AI-related services.

As discussed in Sections 2 and 3, to the extent that these valuations and investment
flows reflect rational expectations, they can be understood as part of the transition
to a higher-productivity long-run equilibrium. That transition may nonetheless entail
temporary challenges for price stability along the adjustment path, as well as persistent
risks related to market concentration and the allocation of rents. However, this transition
is inherently uncertain—if not in its ultimate direction, then at least in the timing and
speed with which it unfolds. AI-driven productivity gains may materialize more slowly
than anticipated, may be unevenly distributed across sectors, or may be partially offset by
increased market power accruing to the winners of the AI arms race.

These observations are particularly relevant for the current policy debate. If
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expectations about the pace of this transition are revised abruptly, asset prices may adjust
sharply, giving rise to stock-market corrections or crashes with broad macro-financial
consequences, even when inflation is close to target and output gaps are small (Bank for
International Settlements 2025). Such consequences may include a significant tightening
of financial conditions, impairment of financial intermediaries’ balance sheets, and
disruptions to credit provision.

Excessive leverage and risk-taking behavior may further amplify downside risks
(International Monetary Fund 2024; Gopinath 2025; The Economist 2025), particularly
when the financing that feeds asset valuations and investment is intermediated through
nonbank financial institutions. Recent research emphasizes the rapid expansion of private
credit and other nonbank financing channels—often characterized by greater opacity,
leverage, and maturity transformation—with banks frequently acting as liquidity or credit
backstops (International Monetary Fund 2024; Acharya et al. Forthcominga; Acharya et al.
Forthcomingb).

Owing to the nature of their business models, such firms producers and adopters of
AI technologies tend to rely less on traditional bank lending and more on private credit
and other forms of nonbank financing.18 Although more data are needed before drawing
firm conclusions, this raises a salient concern that the recent AI-led investment wave may
have generated substantial private credit exposures for both banks and nonbank financial
institutions to AI-related firms, including developers, adopters, and firms supplying
complementary inputs and infrastructure.

Similar considerations apply to potential sources of fragility embedded in the
balance sheets of insurance companies. Over the past decade, insurers have increasingly
shifted their asset portfolios toward privately placed debt and securitized corporate
loans (CLOs) issued by nonfinancial firms (Fringuellotti and Santos 2025; Fournier
et al. 2024). These instruments are typically less liquid, more opaque, and subject to
weaker market discipline than publicly traded bonds. While systematic evidence on the
sectoral composition of insurers’ private credit exposures remains limited, it is plausible
that a nontrivial share of this exposure is to firms at the frontier of AI production
and adoption, whose characteristics and funding needs align naturally with the long

18These observations are consistent with evidence showing that firms with high intangible capital
intensity make limited use of bank debt and rely disproportionately on equity and nonbank financing; see
Falato et al. (2022) and Jang et al. (2025).
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investment horizons and return profiles sought by insurance companies.
Taken together, these financial linkages interacting with leveraged financial

structures whose contours are not yet fully understood increase the potential for
valuation-driven shocks to propagate across the entire financial system.

5 Policy Implications and concluding remarks

Artificial intelligence represents a technological transformation whose macroeconomic
implications extend well beyond any single transmission channel. For central banks, the
relevant question is therefore not whether AI matters, but how it matters for the conduct
of monetary policy—specifically, how AI reshapes inflation dynamics, equilibrium
benchmarks, and financial conditions in ways that affect stabilization trade-offs. To
organize these issues, this paper has distinguished between three interrelated dimensions
of direct relevance for monetary authorities: cyclical transmission, structural transition,
and financial stability.

The canonical New Keynesian monetary framework remains a useful and flexible
organizing device for analyzing these effects. Viewed through this lens, the diffusion
of AI does not call for a redefinition of monetary policy objectives, nor does it imply that
central banks should respondmechanically to technological innovation or asset prices per
se. Instead, by altering the mapping from economic conditions into inflation and financial
risks, the diffusion AI will likely complicate the interpretation of familiar indicators
and the application of standard policy rules, requiring greater caution and judgment in
real-time policy assessment.

A central policy implication of the supply-side analysis of shock transmission developed
in the paper is that AI can alter inflation dynamics even when traditional measures
of economic slack appear unchanged. By reshaping the elasticity of marginal costs
with respect to output, the cyclical behavior of real input prices, and the degree of
cost pass-through into prices, AI may weaken—or, in some sectors, strengthen—the
link between inflation and standard indicators such as the output gap or labor market
tightness. For policymakers, this implies that inflation may become a less reliable
real-time signal of cyclical conditions, and that a givenmovement in activitymay generate
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inflationary pressure that differs materially from historical experience.
More fundamentally, AI may alter the inflation–real activity trade-off itself. If AI

allows output to expand with smaller increases in real marginal cost—by lowering the
elasticity of production costs with respect to activity—the effective slope of the output-gap
Phillips curve becomes flatter. In such an environment, a given movement in economic
slack generates weaker inflationary pressure, making inflation less informative about
contemporaneous demand conditions. For monetary policy, the implication is not a
mechanical change in policy-rules, but a shift in the stabilization trade-off: safeguarding
price stability may require smaller movements in economic slack, or tighter financial
conditions, than under historical relationships. This increases the value of robust
policy strategies that perform well under parameter uncertainty and heightens the
importance of real-time inference about the forces driving movements in real production
costs. In practice, this calls for greater emphasis on cost-side diagnostics—including
real marginal cost proxies, input-market conditions, and pricing behavior—rather than
exclusive reliance on reduced-form Phillips curve relationships.

A related challenge concerns real-time inference about equilibrium benchmarks,
including potential output and the natural rate of interest. Rapid AI-driven structural
change can induce persistent uncertainty about these objects, increasing the risk of
policy miscalibration. As emphasized in the analysis, short-run productivity dynamics
associated with AI adoption need not alignwith long-run technological gains: transitional
frictions, reorganization costs, and misallocation can temporarily depress effective
productivity even as the technological frontier expands. For monetary policy, this
underscores the importance of distinguishing between cyclical inflationary pressures
arising from demand and costs, andmovements driven by shifting benchmarks that should
not elicit a stabilization response. At the same time, AI may make monetary policy more
powerful in affecting real economic activity. Policy actions may transmit more rapidly to
inflation and activity as information flows accelerate, expectations adjust more quickly,
and pricing decisions respond with shorter lags. In an environment where cost dynamics,
pricing behavior, and financial conditions evolve jointly and nonlinearly, policy errors are
less likely to be absorbed gradually and more likely to be amplified.

The diffusion of AI also raises new financial stability considerations that interact
closely with monetary policy. By accelerating information processing, encouraging
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reliance on common technologies and models, and interacting with leveraged balance
sheets—often outside the traditional banking system—AI may increase the likelihood that
financial stress originates from expectations-driven valuation dynamics rather than from
conventional macroeconomic imbalances. Sudden asset-price corrections can therefore
tighten financial conditions rapidly, impair intermediaries’ balance sheets, and disrupt
credit provision, even in environments where inflation appears well contained. These
dynamics strengthen the case for a policy framework that clearly distinguishes between
tools aimed at price stability and those aimed at financial stability, while recognizing that
the two domains may interact more tightly in an AI-intensive economy.

A useful way to synthesize the core insights of this paper is through a simple analogy.
If the economy is a car, AI upgrades the engine by raising potential speed—through
higher productivity, expanded capacity, improved information, and altered financial
intermediation—while simultaneously making the steering more sensitive by reshaping
inflation transmission, shifting policy benchmarks, and amplifying financial feedbacks.
The task of central banks is not to slow or accelerate the engine, but to adjust the steering:
calibrating policy in a way that maintains macroeconomic stability as the structure of
the economy evolves. From this perspective, successful monetary policy hinges not
on reacting to AI per se, but on maintaining clarity about what policy can and cannot
control, improving real-time inference about costs and benchmarks, and designing robust
strategies that perform well under heightened structural uncertainty. In this sense, AI
reinforces—rather than overturns—a central lesson of modern monetary policy: effective
stabilization requires a deep and continuously updated understanding of the economy to
which policy is applied.
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A Model appendix

A.1 Setup

The economy is populated by heterogeneous producers (or firms), denoted by 𝑓 , each
operating in an industry 𝑖 ∈ I = [0, 1]. We denote by F𝑖 the set of firms competing in
industry 𝑖 . Each firm is measure zero relative to the economy as a whole but may be large
relative to its industry. Hence, it takes the aggregate expenditure as given but internalizes
the effect of its pricing decisions on the consumption and price index of its industry. Time
is discrete.

Let 𝑃𝑓 𝑡 denote the price charged by each firm for a unit of its output, 𝑃𝑖𝑡 the industry
price index, 𝜑 𝑓 𝑡 a firm-specific relative demand shifter, and 𝑌𝑖𝑡 the real industry output.
For any industry 𝑖 , we consider an arbitrary, invertible demand system that generates a
residual demand function of the following form:

D𝑓 𝑡 := 𝑑 (𝑃𝑓 𝑡 , 𝑃𝑖𝑡 , 𝜑 𝑓 𝑡 )𝑌𝑖𝑡 ∀𝑓 ∈ F𝑖 . (A.1)

Below we follow closely the steps in Gagliardone et al. (2025b) to characterize the firms’
pricing problem and derive the cost-based NKPC. We extend the framework by allowing
for a richer characterization of real marginal cost which accounts for cyclical variation in
factor market frictions and technology.

A.2 The firm pricing problem

Firms adjust their prices during each period in order to maximize expected profits facing
nominal rigidities as in Calvo (1983). Each period they face a probability (1 − 𝜃 ) ∈ [0, 1]
of being able to change their price, independent across time and across firms. Thus, the
price 𝑃𝑓 𝑡 paid by consumers to buy goods produced by firm 𝑓 is either the optimal reset
price if the firm is able to adjust, denoted by 𝑃𝑜

𝑓 𝑡
, or the price it charged in the previous

period, 𝑃𝑓 𝑡−1.
When choosing 𝑃𝑜

𝑓 𝑡
, firms consider both their own costs, the pricing choices made

by competitors, as well as the impact of their own price adjustments on their residual
demand and on the industry-wide price index. Let Λ𝑡,𝜏 denote the stochastic discount
factor between time 𝑡 and 𝑡 + 𝜏 , 𝑇𝐶 𝑓 𝑡 := 𝑇𝐶 (D𝑓 𝑡 ) the real total costs, and 𝑀𝐶𝑛

𝑓 𝑡
the

nominal marginal cost of firm 𝑓 (which we characterize below). Then the optimal reset
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price 𝑃𝑜
𝑓 𝑡
solves the following profit maximization problem:

max
𝑃𝑜
𝑓 𝑡
,{𝑌𝑓 𝑡+𝜏 }𝜏≥0

E𝑡

{ ∞∑︁
𝜏=0

𝜃𝜏

[
Λ𝑡,𝜏

(
𝑃𝑜
𝑓 𝑡

𝑃𝑡+𝜏
D𝑓 𝑡+𝜏 −𝑇𝐶 ( D 𝑓 𝑡+𝜏 )

)]}
,

subject to the sequence of expected demand functions {D𝑓 𝑡+𝜏 }𝜏≥0 in Equation (A.1).
Nominal rigidities generate forward-looking pricing behavior, as firms take into account
that it might not be possible to adjust prices every period. As a result, the optimal reset
price is a weighted average of current and expected future nominal marginal costs and
markups. Denoting by 𝜇𝑓 𝑡 the desired log markup, the FOC of the problem is:

E𝑡

{ ∞∑︁
𝜏=0

𝜃𝜏Λ𝑡,𝜏D𝑓 𝑡+𝜏

[
𝑃𝑜
𝑓 𝑡

𝑃𝑡+𝜏
− (1 + 𝜇𝑓 𝑡+𝜏 )

𝑀𝐶𝑛
𝑓 𝑡+𝜏

𝑃𝑡+𝜏

]}
= 0. (A.2)

Thus, the optimal reset price depends on the expected path of marginal cost and desired
markups over the period the firm expects its price to be fixed, where 𝜃𝜏 is the probability
the firm expects its price to be fixed 𝜏 periods from now.

We log-linearize the FOC in Equation (A.2) around the symmetric steady state with
zero inflation.19 Denoting the variables in logs with lower-case letters, we obtain that the
reset price satisfies:

𝑝𝑜
𝑓 𝑡
= (1 − 𝛽𝜃 )E𝑡

{ ∞∑︁
𝜏=0

(𝛽𝜃 )𝜏
(
𝜇𝑓 𝑡+𝜏 +𝑚𝑐𝑛

𝑓 𝑡+𝜏

)}
. (A.3)

The log-linearized desiredmarkup (in deviation from steady state markup 𝜇𝑓 ) is a function
that depends inversely on the log-difference between the firms’ own reset price and its
competitors’ prices (𝑝−𝑓

𝑖𝑡
):

𝜇𝑓 𝑡 − 𝜇𝑓 = −Γ
(
𝑝𝑜
𝑓 𝑡
− 𝑝

−𝑓
𝑖𝑡

)
+ 𝑢

𝜇

𝑓 𝑡
, (A.4)

where Γ > 0 denotes the markup elasticity with respect to prices and𝑢𝜇

𝑓 𝑡
is a firm-specific

demand shock to the desired markup that depends on the demand shifter𝜑 𝑓 𝑡 . Gagliardone
et al. (2025b) show that, under weak assumptions, the expression in Equation (A.4) holds
for standard frameworks with imperfectly competitive firms, including monopolistic
competition with variable elasticity of demand (Kimball 1995), static oligopoly (Atkeson
and Burstein 2008) and dynamic oligopoly (Wang and Werning 2022). These frameworks
share the property that, in equilibrium, a firm’s elasticity of demand declines as its market

19The choice of the zero-inflation steady state permits simpler notation; but is largely immaterial for our
purposes.
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share increases. Thus, the presence of strategic complementarities in price setting implies
that a relative price increase lowers a firm’s desired markup, dampening the response of
prices to marginal cost.

Substituting the expression for 𝜇𝑓 𝑡+𝜏 in the log-linearized first-order condition, we
obtain the following forward-looking pricing equation:

𝑝𝑜
𝑓 𝑡
= (1 − 𝛽𝜃 )ΘE𝑡

{ ∞∑︁
𝜏=0

(𝛽𝜃 )𝜏
(
(1 − Ω) (𝑚𝑐𝑛

𝑓 𝑡+𝜏 + 𝜇𝑓 ) + Ω𝑝
−𝑓
𝑖𝑡+𝜏

)}
+ 𝑢 𝑓 𝑡 , (A.5)

where 𝑢 𝑓 𝑡 captures residual variation in the markup that depends on the aggregation of
firms’ demand shifters and the changes in the slope of competitors’ reaction function. For
the purposes of this paper, we ignore this term and set it to zero.

The parameter Ω := Γ
1+Γ captures the strength of strategic complementarities and

impacts the firm’s pricing policy by muting the price response to changes in marginal
costs. If the demand elasticity is constant, as in the textbook New Keynesian model
with monopolistically competitive firms, the desired markup is a constant. In this case,
Ω = 0 and the optimal pricing equation simplifies to the familiar formulation where
the reset price exclusively depends on the current and future stream of marginal costs.
Competitors’ prices are then irrelevant.

The parameter Θ ≤ 1 captures macroeconomic complementarities due to
aggregate returns to scale in production. For example, under CES demand with
elasticity of substitution 𝛾 , we have that Θ := 1

1+𝛾 (1−𝛼) (1−Ω) . A higher elasticity of
substitution increases competitive pressure and magnifies the aggregate response of
costs. Similarly, a higher elasticity of cost to output—reflecting stronger decreasing
returns or tighter capacity constraints—amplifies aggregate marginal-cost pressures
as output expands, strengthening macroeconomic complementarities and lowering Θ.
Strategic complementarities interact with these forces in a subtle way. A higher degree
of complementarities in price setting weakens macroeconomic complementarities by
dampening the amplification of marginal costs through output.
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A.3 Aggregation and the cost-based NewKeynesian Phillips curve

To obtain closed form expressions, suppose there are 𝑁 < ∞ in each industry 𝑖 competing
a la Bertrand, and order firms in each industry from 1 to 𝑁 .20 The aggregate price index
(in log-linear terms) is:

𝑝𝑡 =

∫
𝑖∈𝐼

©­« 1
𝑁

𝑁∑︁
𝑓 =1

𝑝 𝑓 𝑖𝑡
ª®¬𝑑𝑖,

(In the paper, we dropped the industry subscript for ease of notation.) Denote by 𝐵★
𝑓 𝑡
for

𝑓 ∈ {1, . . . , 𝑁 } the set of industries in which the 𝑓 -th firm can adjust. The price index can
then be rewritten as:

𝑝𝑡 =
1
𝑁

𝑁∑︁
𝑓 =1

(∫
𝑖∈𝐼/𝐴★

𝑓 𝑡

𝑝 𝑓 𝑖𝑡−1𝑑𝑖 +
∫
𝑖∈𝐴★

𝑓 𝑡

𝑝𝑜
𝑓 𝑖𝑡
𝑑𝑖

)
,

where we are using the fact that firms that cannot adjust set their price to their 𝑡 −1 level,
whereas firms that can adjust set it to the optimal reset price.

Since 𝐵★
𝑓 𝑡
has measure 1 − 𝜃 , and the identity of firms that adjust is an i.i.d. draw

from the total population of firms, using the law of large numbers for each 𝑓 = {1, . . . , 𝑁 }
across industries we have that:21

1
𝑁

𝑁∑︁
𝑓 =1

∫
𝑖∈𝐼/𝐵★

𝑓 𝑡

𝑝 𝑓 𝑖𝑡−1𝑑𝑖 = 𝜃

∫
𝑖∈𝐼

©­« 1
𝑁

𝑁∑︁
𝑓 =1

𝑝 𝑓 𝑖𝑡−1
ª®¬𝑑𝑖 = 𝜃𝑝𝑡−1

and
1
𝑁

𝑁∑︁
𝑓 =1

∫
𝑖∈𝐵★

𝑓 𝑡

𝑝𝑜
𝑓 𝑖𝑡
𝑑𝑖 = (1 − 𝜃 )

∫
𝑖∈𝐼

©­« 1
𝑁

𝑁∑︁
𝑓 =1

𝑝𝑜
𝑓 𝑖𝑡

ª®¬𝑑𝑖.
Defining the average reset price in the economy:

𝑝𝑜𝑡 :=
∫
𝑖∈𝐼

©­« 1
𝑁

𝑁∑︁
𝑓 =1

𝑝𝑜
𝑓 𝑖𝑡

ª®¬𝑑𝑖,
we obtain an equation characterizing the log-linear aggregate price index:

𝑝𝑡 = (1 − 𝜃 )𝑝𝑜𝑡 + 𝜃𝑝𝑡−1, (A.6)
20Letting 𝑁 → ∞, all results hold under Kimball preferences. Note also that the same argument goes

through with minor modifications, but heavier notation, for 𝑁𝑖 ≠ 𝑁 for a non-zero measure of industries.
21The i.i.d. assumption implies that:

∫
𝑖∈𝐵⊆[0,1] 𝑝 𝑓 𝑖𝑡𝑑𝑖 = 𝑃𝑟 (𝐵)

∫
𝑖∈𝐼 𝑝 𝑓 𝑖𝑡𝑑𝑖 . Notice also that∫

𝑖∈[0,1]

(
1
𝑁

∑𝑁
𝑓 =1 𝑝

−𝑓
𝑖𝑡

)
𝑑𝑖 =

∫
𝑖∈[0,1]

(
1
𝑁

∑𝑁
𝑓 =1

[
𝑁

𝑁−1𝑝𝑖𝑡 −
1

𝑁−1𝑝 𝑓 𝑖𝑡
] )
𝑑𝑖 = 𝑝𝑡 .
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with 𝑝𝑡 and 𝑝𝑜𝑡 denoting the aggregate price indices implied by the demand system. Next,
we replace the aggregate reset price, 𝑝𝑜𝑡 , with an expression that depends on aggregate
marginal costs and prices.

Let𝑚𝑐𝑡 = 𝑚𝑐𝑛𝑡 − 𝑝𝑡 denote aggregate real marginal cost (characterized below) and
define aggregate inflation as 𝜋𝑡 = 𝑝𝑡 − 𝑝𝑡−1. Following the steps in Gagliardone et al.
(2025b), we average across firms and industries to obtain an expression for the aggregate
reset price:

𝑝𝑜𝑡 = (1 − 𝛽𝜃 ) ((1 − Ω)Θ𝑚𝑐𝑡 + 𝑝𝑡 ) + 𝛽𝜃E𝑡𝑝
𝑜
𝑡+1

Subtracting 𝑝𝑡 from both sides and using the log-linearized price index:

𝑝𝑜𝑡 − 𝑝𝑡 = (1 − 𝛽𝜃 ) (1 − Ω)Θ𝑚𝑐𝑡 + 𝛽𝜃 (E𝑡𝑝
𝑜
𝑡+1 − 𝑝𝑡 )

Rearranging and combining the equation for the log-linear price aggregate price index in
A.6 with the equation above gives the primitive formulation of the NKPC curve:

𝜋𝑡 = 𝜆 𝑚𝑐𝑡 + 𝛽 E𝑡 {𝜋𝑡+1}, (A.7)

with the slope given by:

𝜆 :=
(1 − 𝜃 ) (1 − 𝛽𝜃 )

𝜃
(1 − Ω)Θ. (A.8)

A.4 Derivation of the real marginal cost gap𝑚𝑐𝑡

To derive the aggregate real marginal cost gap we start from the derivation of real
marginal cost at the firm-level, 𝑚𝑐 𝑓 𝑖,𝑡 , and aggregate by averaging across firms and
industries. In doing so, we omit the firm and industry subscript (𝑓 , 𝑖) for ease of notation.

Each firm chooses a bundle of variable inputs 𝑋 𝑗,𝑡 , 𝑗 = 1, . . . , 𝐽 (e.g., different types
of labor, intermediate inputs, or capital services), with nominal user costs collected in the
vector𝑊 𝑛

𝑡 = (𝑊 𝑛
1,𝑡 , . . . ,𝑊

𝑛
𝐽 ,𝑡
). Output is produced according to the technology

𝑌𝑡 = 𝐴𝑡 𝐻 (𝑋𝑡

)𝛼
,

where 𝐴𝑡 is Hicks-neutral productivity, 𝐻 (·) is an aggregate-input index, and 𝛼 > 0
governs returns to scale in the mapping from aggregate inputs to output.

Throughout, a superscript ★ denotes the flexible-price benchmark allocation,
holding fixed the real frictions that characterize the natural allocation. Hence, real
wedges need not vanish in the flexible-price equilibrium. Lowercase letters denote natural
logarithms, and for any variable 𝑧𝑡 we define 𝑧̂𝑡 ≡ 𝑧𝑡 − 𝑧★𝑡 .
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Cost function and nominal unit cost. Define the nominal cost function

𝐶 (𝑌𝑡 , 𝐴𝑡 ,𝑊
𝑛
𝑡 ,Ξ𝑡 ) ≡ min

𝑋𝑡

𝐽∑︁
𝑗=1

𝑊 𝑛
𝑗,𝑡𝑋 𝑗,𝑡 s.t. 𝑌𝑡 ≤ 𝐴𝑡

(
𝐻 (𝑋𝑡 )

)𝛼
.

The term Ξ𝑡 is a reduced-form placeholder for real input-market frictions (e.g., bargaining
wedges, markups embedded in intermediate-input prices, or financing premia embedded
in user costs). These frictions are not assumed away under flexible prices, so Ξ★

𝑡 is
generally nonzero.

Assume that the aggregate-input index 𝐻 (·) is homogeneous of degree one.
Then producing 𝑌𝑡 units of output requires an aggregate input level satisfying
𝐻 (𝑋𝑡 ) ≥ (𝑌𝑡/𝐴𝑡 )1/𝛼 . By homogeneity, the cost-minimization problem admits a two-stage
representation:

𝐶 (𝑌𝑡 , 𝐴𝑡 ,𝑊
𝑛
𝑡 ,Ξ𝑡 ) =

(
𝑌𝑡

𝐴𝑡

)1/𝛼
· Γ(𝑊 𝑛

𝑡 ,Ξ𝑡 ),

where Γ(𝑊 𝑛
𝑡 ,Ξ𝑡 ) is the minimum nominal cost of producing one unit of the aggregate

input 𝐻 .

Nominal marginal cost. Nominal marginal cost is defined as:

𝑀𝐶𝑛
𝑡 ≡

𝜕𝐶 (𝑌𝑡 , 𝐴𝑡 ,𝑊
𝑛
𝑡 ,Ξ𝑡 )

𝜕𝑌𝑡
.

Differentiating with respect to 𝑌𝑡 yields:

𝑀𝐶𝑛
𝑡 = Γ(𝑊 𝑛

𝑡 ,Ξ𝑡 ) ·
𝜕

𝜕𝑌𝑡

(
𝑌𝑡

𝐴𝑡

)1/𝛼
= Γ(𝑊 𝑛

𝑡 ,Ξ𝑡 ) ·
1
𝛼

(
𝑌𝑡

𝐴𝑡

)1/𝛼 1
𝑌𝑡
.

Equivalently,
𝑀𝐶𝑛

𝑡 =
1
𝛼
Γ(𝑊 𝑛

𝑡 ,Ξ𝑡 ) 𝑌
1
𝛼
−1

𝑡 𝐴
− 1

𝛼

𝑡 .

It is convenient to define 𝜒 ≡ (1/𝛼) − 1, so that 𝜒 > 0 corresponds to decreasing returns
to scale (𝛼 < 1), while 𝜒 < 0 corresponds to increasing returns to scale (𝛼 > 1). We then
have that:

𝑀𝐶𝑛
𝑡 =

1
𝛼
Γ(𝑊 𝑛

𝑡 ,Ξ𝑡 ) 𝑌 𝜒

𝑡 𝐴
−(1+𝜒)
𝑡 .

Taking logs, we obtain

𝑚𝑐𝑛𝑡 ≡ log𝑀𝐶𝑛
𝑡 = log Γ(𝑊 𝑛

𝑡 ,Ξ𝑡 ) + 𝜒 𝑦𝑡 − (1 + 𝜒) 𝑎𝑡 𝑓 𝑝𝑡 − log𝛼,

where 𝑎𝑡 𝑓 𝑝𝑡 ≡ log𝐴𝑡 denotes log technical efficiency.
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Real user-cost index and wedges. We decompose the real unit cost implied by the
cost function into a component reflecting equilibrium factor prices and wedges:

log Γ(𝑊 𝑛
𝑡 ,Ξ𝑡 ) − 𝑝𝑡 =

(
log Γ(𝑊 𝑛

𝑡 , 0) − 𝑝𝑡
)
+ 𝜏𝑡 = (𝑤𝑛

𝑡 − 𝑝𝑡 ) + 𝜏𝑡 ,

where 𝑤𝑛
𝑡 ≡ log Γ(𝑊 𝑛

𝑡 , 0) denotes the (optimized) nominal unit cost implied by factor
prices in the absence of the additional real frictions; 𝜏𝑡 captures distortions summarized
by Ξ𝑡 , that shift effective user costs independently of equilibrium factor prices. Such
wedges may reflect, among others, bargaining frictions in labor markets, financing premia
embedded in user costs, markups in intermediate-input prices, or other input-market
distortions. Importantly, 𝜏𝑡 represents an aggregate (or average) factor-market wedge in
the spirit of Chari et al. (2007). These aggregate wedges are conceptually distinct from
misallocation wedges arising from cross-sectional heterogeneity in the frictions faced by
individual firms when accessing factor markets (Hsieh and Klenow 2009; Baqaee et al.
2024). We capture such misallocation effects instead through the productivity disturbance
𝑎𝑡 , defined below.

Up to first-order, we can express the user-cost index 𝑤𝑛
𝑡 and the factor market’s

wedge 𝜏𝑡 as a function of of individual factors’ prices and wedges. To see this,
recall that the nominal cost function admits the representation 𝐶 (𝑌𝑡 , 𝐴𝑡 ,𝑊

𝑛
𝑡 ,Ξ𝑡 ) =

(𝑌𝑡/𝐴𝑡 )1/𝛼 Γ(𝑊 𝑛
𝑡 ,Ξ𝑡 ). Because the scale term (𝑌𝑡/𝐴𝑡 )1/𝛼 does not depend on individual

input prices, Shephard’s lemma applies directly to Γ(𝑊 𝑛
𝑡 ,Ξ𝑡 ), the minimum nominal cost

of producing one unit of the aggregate input 𝐻 (·). Let 𝑐 𝑗,𝑡 denote the cost share of input
𝑗 :

𝑐 𝑗,𝑡 ≡
𝑊 𝑛

𝑗,𝑡𝑋 𝑗,𝑡

𝐶 (𝑌𝑡 , 𝐴𝑡 ,𝑊
𝑛
𝑡 ,Ξ𝑡 )

=
𝜕 log Γ(𝑊 𝑛

𝑡 ,Ξ𝑡 )
𝜕 log𝑊 𝑛

𝑗,𝑡

.

Evaluating this expression at the flexible-price benchmark yields the reference cost shares
𝑐★𝑗 , which are time-invariant to a first-order approximation because they are computed at
the natural allocation. Taking a first-order Taylor expansion of log Γ(𝑊 𝑛

𝑡 ,Ξ𝑡 ) around the
flexible-price allocation (𝑊 𝑛★

𝑡 ,Ξ★
𝑡 ) and subtracting (𝑝𝑡 − 𝑝★𝑡 ), we obtain the first-order

approximation:

𝑤𝑡 ≡ 𝑤𝑡 −𝑤★
𝑡 ≈

𝐽∑︁
𝑗=1

𝑐★𝑗 𝑤 𝑗,𝑡 , 𝜏𝑡 ≡ 𝜏𝑡 − 𝜏★𝑡 ≈
𝐽∑︁
𝑗=1

𝑐★𝑗 𝜏 𝑗,𝑡 ,

This decomposition clarifies the distinction between real equilibrium factor-price
pressures, summarized by 𝑤𝑡 , and cyclical distortions in input markets that shift
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marginal costs independently of factor prices, summarized by 𝜏𝑡 , both of which enter
the marginal-cost gap that drives inflation dynamics.

Real marginal cost. Define real marginal cost as nominal marginal cost divided by the
aggregate price level. In logs,𝑚𝑐𝑡 ≡𝑚𝑐𝑛𝑡 − 𝑝𝑡 . Substituting the expressions above yields:

𝑚𝑐𝑡 =𝑤𝑡 + 𝜏𝑡 + 𝜒 𝑦𝑡 − 𝑎𝑡 − log𝛼,

where we define the real unit cost index as 𝑤𝑡 ≡ 𝑤𝑛
𝑡 − 𝑝𝑡 and effective productivity—the

component of efficiency relevant for marginal cost—as:

𝑎𝑡 ≡ (1 + 𝜒) 𝑎𝑡 𝑓 𝑝𝑡 + 𝑎𝑡 .

The term 𝑎𝑡 captures cyclical distortions in technical efficiency arising from price
dispersion, wage dispersion, misallocation of inputs (Hsieh and Klenow 2009; Baqaee
et al. 2024), or congestion in factor markets. Under flexible prices, real marginal cost
is𝑚𝑐★𝑡 =𝑤★

𝑡 + 𝜏★𝑡 + 𝜒 𝑦★𝑡 − 𝑎★𝑡 − log𝛼 , where by construction, the productivity distortions
vanish in the flexible-price allocation, so that 𝑎★𝑡 = 0.

Define the cost pressure index 𝑞𝑡 ≡ 𝜒 𝑦𝑡 + 𝑤𝑡 + 𝜏𝑡 . Subtracting term by term the
flexible price benchmark from the time corresponding 𝑡 , we obtain decomposition of the
primitive NKPC in terms of the real marginal cost gap𝑚𝑐𝑡 used in Equation (1) the paper:

𝑚𝑐𝑡 ≡𝑚𝑐𝑡 −𝑚𝑐★𝑡 (A.9)

= 𝑞𝑡 − 𝑎𝑡

= 𝜒 𝑦𝑡 +𝑤𝑡 + 𝜏𝑡 − 𝑎𝑡

This expression shows that deviations of real marginal cost from its flexible-price
benchmark reflect four distinct forces: scale effects associated with deviations of output
from potential (𝜒 𝑦𝑡 ), cyclical movements in real input prices (𝑤𝑡 ), cyclical input-market
wedges (𝜏𝑡 ), and deviations in effective productivity relative to the flexible-price allocation
(𝑎𝑡 ). The latter captures efficiency losses due to misallocation and dispersion induced by
nominal rigidities.
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Aggregation. Aggregating across firms and industries, we obtain the aggregate (aka,
average) real marginal cost gap that enters the primitive NKPC as a forcing variable.

𝑚𝑐𝑡 ≡
∫
𝑖

𝑁∑︁
𝑓 =1

1
𝑁

𝑁∑︁
𝑓 =1

𝑚𝑐 𝑓 𝑖𝑡 𝑑𝑖 −
∫
𝑖

𝑁∑︁
𝑓 =1

1
𝑁

𝑁∑︁
𝑓 =1

𝑚𝑐★
𝑓 𝑖𝑡

𝑑𝑖

Recall that we assumed that each firm faces the same input prices and that the wedges 𝜏𝑡
are aggregate wedges, which implies that t𝑤 𝑓 𝑖𝑡 =𝑤𝑡 and 𝜏𝑓 𝑖𝑡 = 𝜏𝑡 . Thus the construction
of aggregate real marginal cost requires averaging only across firm’s output and and
realized productivity (𝑦𝑓 𝑖𝑡 , 𝑎 𝑓 𝑖𝑡 ).

A.9


	Introduction
	AI and the transmission of cyclical disturbances 
	Cyclical transmission through the supply side
	Cyclical transmission of aggregate demand disturbances and expectations

	Effects of AI on long-run structural transition 
	Potential output and the natural rate of interest
	Intertemporal elasticity and aggregate demand sensitivity

	Implications of AI diffusion for financial stability 
	Impact on financial intermediaries
	The topology of the financial system and the transmission of monetary policy
	Financial infrastructures and systemic interactions
	Asset valuations and stock-market crash risk

	Policy Implications and concluding remarks
	Model appendix
	Setup 
	The firm pricing problem
	Aggregation and the cost-based New Keynesian Phillips curve
	Derivation of the real marginal cost gap "0362mct


