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Abstract

We estimate the value of ending the COVID-19 pandemic using the joint
behavior of stock prices and a vaccine progress index during 2020. In an equi-
librium model of repeated pandemics, the market response to vaccine news
serves to identify the expected loss of wealth from the pandemic, which de-
termines the welfare gain attributable to returning to non-pandemic life. In
our calibrated model, ending the pandemic would have been worth 5-15% of
total wealth. This value rises with greater exposure externality in labor choice.
With uncertainty about pandemic parameters, resolving the uncertainty can
be as valuable as resolving the pandemic itself.
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1 Introduction
Quantifying the economic consequences of pandemics is a crucial step in assessing pol-
icy responses along social, medical, fiscal, and monetary dimensions. This paper builds
on the hypothesis that stock markets contained salient information for gauging the value
of resolving or mitigating the COVID-19 pandemic during 2020. Specifically, the mar-
ket’s reaction to news about progress in development of vaccines impounded information
about the value of shortening the anticipated duration of the pandemic. In the context of
an economic model, the private value reflected in the stock market can be related to so-
cial welfare more broadly. The gain in social welfare attributable to a given shortening in
the expected duration can, within the model, be expressed in units of wealth. The same
calculation can give us the social value of immediately ending the pandemic (i.e., short-
ening its duration to zero), which is one way of summarizing the ex-ante expected cost of
the episode. Effectively, we estimate the willingness-to-pay of a representative agent for
a return to non-pandemic life. Empirically, the key inputs are measures of the expected
duration of the pandemic, and of the market reaction to changes in that expectation. In
the calibrated model, ending the pandemic would have been worth 5-15% of total wealth,
as the expected duration evolved over the sample period.

Our exercise can be viewed as complementary to the standard approach in health
economics of computing the cost/benefits of interventions (including vaccines) via com-
bining their forecasted effects on infections and deaths with some estimates of (or as-
sumptions about) the monetary value of these outcomes. Our approach does not require
us to either model the global epidemiology of the pandemic or to take a stand on the
monetary value of a life. Instead, we need to model the vaccine development process and
the evolution of the underlying economy in pandemic and non-pandemic states. In cali-
brating the model using stock market reactions to vaccine news, a maintained hypothesis
is that the effect of COVID-19 on the rate of growth of all wealth – encompassing human
and social dimensions – is the same as its effect on the rate of growth of private capital,
as reflected in stock prices.

The welfare calculation we undertake is directly analogous to the seminal work of
Lucas (1987) in assessing the costs associated with business cycle risk. Just as that paper
provides a framework for assessing the consequences of policy responses to mitigate con-
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sumption volatility, our work speaks to the cost-benefit analysis in alleviating the threat of
current and future pandemics. Uniquely to the literature studying the welfare cost of dis-
asters, we exploit novel information within the crisis itself to identify the key quantities
in the model. Going beyond our baseline estimate for the welfare gain, our work can also
shed light on how extensions to the economy affect that gain. The value of mitigating the
pandemic risk rises with greater exposure externality in labor choice. With uncertainty
about the stochastic parameters governing pandemic frequency and duration, resolving
the uncertainty can be as valuable as resolving the pandemic itself.

The paper’s analysis proceeds as follows.
The first step is to construct a time-series within 2020 of forecasts for the expected

time to the widespread deployment of a successful vaccine. Our vaccine progress indi-
cator (VPI) is based on the chronology of stage-by-stage progress of individual vaccine
candidates (obtained from the Vaccine Centre at the London School of Hygiene & Tropi-
cal Medicine) and related news (obtained from FactSet). Each day, as described in Section
3, we assign probabilities to each active candidate’s future transition across developmen-
tal phases, or to failure. We then simulate these future transitions for all of the candidates,
and each simulation produces a first-to-succeed candidate.1 Averaging across simulations
gives us that day’s forecast for the expected time remaining until vaccine deployment.

The evolution of our forecast during 2020 is shown in Figure 1. Note that we do not
claim that the VPI is a sufficient statistic for the state of the pandemic at each point in
time, nor even for the state of vaccine development. However, it captures one dimen-
sion – the anticipated time to deployment – that was the subject of intense interest at the
time.Moreover, this forecast becomes a first important determinant of the welfare gain to
resolving the pandemic.

We then relate stock market valuations to the expected time to vaccine deployment
by regressing returns on changes in our vaccine progress indicator. Controlling for large
moves attributable to release of other macroeconomic news, and allowing for some lead-
lag structure in the relationship, we estimate that a reduction in the expected time to
deployment of a vaccine by one year results in an aggregate stock market return of from
4 to 8%. The joint relationship exhibits the right cross-sectional properties, with the co-

1An analogy from credit risk literature is that of a first-to-default basket in which several correlated firms
are part of a basket and the quantity of interest is the expected time to a first default.
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Figure 1: Expected Time to Vaccine Deployment

Note: Figure shows our estimate of the expected time to widespread deployment of a COVID-19
vaccine in years.

movement between returns and changes in the vaccine progress indicator being stronger
for sectors most affected by the onset of COVID-19 (see Figure 5). The stock market sen-
sitivity to changes in the VPI is the second crucial empirical quantity in our welfare cal-
culation.

Armed with these estimates, we next build and calibrate a general equilibrium regime-
switching model of repeated pandemics. The state of the economy can be either in a
pandemic or not. In keeping with a common modeling assumption in the rare disaster
literature (see (Barro, 2006; Gabaix, 2012; Gourio, 2012; Tsai and Wachter, 2015)), the na-
ture of a pandemic is that agents are exposed to a shock that destroys forever a part of the
economy’s stock of wealth.2 Within the pandemic, we model sub-regimes correspond-
ing to observable progress towards resolution of the pandemic. The economy transitions
probabilistically across these states. The value of a claim to the economy’s output re-
sponds to these transitions, and the magnitude of this response identifies the parameters
determining the severity and intensity of the pandemic.

2In the present case, the loss can be viewed as due to a variety of factors including mortality, attrition of
human capital in working from home amidst closures of schools and lack of child care, deadweight losses
in asset value due to default, and reallocation frictions in the labor market.
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In the context of 2020, widespread deployment of an efficacious vaccine was consid-
ered a necessary condition to lay the foundation for a robust economic recovery.3During
our sample period there was little progress on treatments, and natural (herd) immunity
was not in sight. Moreover, with optimistic views at the time about distribution and up-
take, widespread vaccine availability was also seen as a sufficient condition for return to
normalcy. This is a key observation that we exploit. It allows us to interpret the vaccine
deployment forecasts computed in Section 3 as effectively forecasts for the duration of
the pandemic.4 We can therefore map our VPI to the expected transition time across the
sub-regimes in the model. Most importantly, we can use the stock market’s sensitivity to
VPI changes to calibrate the equivalent sensitivity within the model. We show that, given
an expected time to the pandemic’s end, the market sensitivity is essentially a sufficient
statistic for computing the welfare gain due to curtailing the pandemic.

We report the welfare gain to interventions that transition the economy between in-
termediate sub-regimes within the pandemic. With standard parameters employed in
the literature for preferences and output dynamics in the non-pandemic state, the value
of shortening the pandemic by a year is approximately 5% of wealth. Our VPI forecasted
an expected remaining duration of about a year in late April 2020. Hence the calibration
implies ending the pandemic immediately at that point would have been worth 5% of
wealth. At the begining of March, the analogous number is approximatley 15%. These
values are in line with estimates from similar exercises in the literature to assess the wel-
fare cost of rare disasters. We discuss interpretation of our finding and relate it to other
estimates of the cost of COVID-19 in Section 5.

The paper then extends the model in several directions.5 A first extension endog-
enizes the real option to invest in vaccine research so that the speed of progress is an
equilibrium outcome. Although we do not attempt to estimate a production function for

3As Federal Reserve Chairperson Jay Powell remarked to CBS News in May 2020: “For the economy to
fully recover, people will have to be fully confident. And that may have to await the arrival of a vaccine".

4We acknowledge that we are attributing to investors what have turned out to be incorrect beliefs. It is
straightforward to relax the assumption that, during 2020, the market anticipated that vaccine deployment
would be tantamount to resolving the pandemic. Note that our baseline assumption biases our estimate
of the value of ending the pandemic downward because a more skeptical market would react less strongly
to vaccine news. So, holding the observed response fixed, the less success a vaccine is expected to have,
the greater must be the value of complete success.

5To our knowledge, these extensions have not previously been examined in the literature on the welfare
cost of disasters or business cycle risk.
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pharmaceutical R&D, it is clear a priori that the more powerful the available technology
the smaller the welfare cost of a pandemic. Nonetheless, we show that given the ob-
served market response to vaccine progress, and the observed expected duration of the
pandemic, our welfare calculation would not be significantly altered under this version
of the model.

The next generalization endogenizes the magnitude of health shocks via labor choice
in order to study the role of exposure externalities. We assume labor augments agent’s
capital stock in production; however, it also exposes the agent to the pathogen. The agent
thus optimally withdraws labor in the pandemic states, and the magnitude of the labor
withdrawal then determines the equilibrium severity of the shocks to output. However,
agents’ privately optimal labor choice does not fully internalize the exposure created for
other agents.

Using our empirical estimates of the COVID-19 severity, and estimates in the litera-
ture of the withdrawal of labor in Spring 2020, we compute the difference in the welfare
gain with individually optimal labor choice versus that by a central planner. Since the
planner imposes a stricter labor contraction (or lockdown) and thus subjects the economy
to less damage, the welfare gain is approximately 15% lower than under the representa-
tive agent’s policy. This difference rises with the severity of the externality as measured
by the increased degree of lockdown under central planning.

Finally, given the extreme uncertainties during 2020, we relax the assumption that
agents in the economy fully understand the (stochastic) properties of the pandemic.6

Specifically, we assume that agents do not know the regime switching probabilities that
govern the expected duration and frequency of pandemics. Using parameter values from
the calibration with endogenous labor, we find that the welfare gain rises sharply relative
to the full-information model. This effect is stronger – not weaker – when agents have a
preference for later resolution of uncertainty (formally, an elasticity of intertemporal sub-
stitution that is lower than the inverse coefficient of relative risk aversion). Indeed, we
find that the representative agent would be willing to pay as much for resolution of this
parameter uncertainty as for resolving the pandemic itself. An important policy implica-

6Such uncertainty is natural given the rare nature of pandemics and the evolving understanding of con-
nections between various pandemics (SARS, H1N1, COVID-19, etc.). See, for example, “COVID-19 Is Bad.
But It May Not Be the ’Big One’", Maryn McKenna, Wired, June 17, 2020, and “The next pandemic: where
is it coming from and how do we stop it?", Leslie Hook, Financial Times, October 29, 2020.
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tion is that understanding the fundamental biological and social determinants of future
pandemics, may be as important as resolving an on-going pandemic.

To summarize, the contribution of the paper is to bring novel data observed during
2020 to bear on the important question of the ex-ante cost of such pandemics. We show
that two key quantities that we estimate – the expected duration of the crisis and the stock
market response to vaccine progress – are effectively sufficient to identify the welfare gain
to interventions curtailing the pandemic.

As in any such exercise, there are inherent limitations in interpreting the results. The
model provides only a reduced form depiction of the pandemic, of the economy, and
of the stock market. We acknowledge that, in reality, the value of ending the pandemic
depends on factors that we omit, including the state of the population (as in SIR-type
models), the infectiousness of the virus and its variants, and the stance of fiscal and mon-
etary policy. Without adding more state variables, our theory cannot provide a complete
account of stock market behavior during 2020. (Roughly speaking, our calibration im-
plies that the arrival of the pandemic explains about two-thirds of the market drop to the
lows in March, and that unexpected clinical trial success explains about one-third of the
rebound through October.) In focussing solely on the (average) stock market reponse to
vaccine progress, our aim is to tease out one thread of a complex tapestry of economic
forces.

The rest of the paper is organized as follows. Section 2 relates our work to the ex-
isting literature. Section 3 describes the construction of vaccine progress indicator and
estimates its covariance with stock market returns during 2020. Section 4 contains our
main results: we calibrate a model of recurring pandemics to the empirical evidence and
deduce the implied value of returning to non-pandemic life. Section 5 discusses interpre-
tation and validity of our baseline finding. Section 6 develops the extensions described
above. Section 7 summarizes and concludes.

2 Related Literature
As noted in the introduction, our approach to quantifying the cost of the pandemic par-
allels that of Lucas (1987) in assessing the cost of business cycles. While Lucas (1987) finds
small welfare improvements to reducing consumption uncertainty, Tallarini Jr (2000) shows
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that this conclusion is overturned in models with recursive utility when calibrated to
match asset pricing moments. Echoing this finding and foreshadowing our own, Barro
(2009) reports that, in a model with rare disasters, moderate risk aversion, and an elastic-
ity of intertemporal substitution greater than one, society would willingly pay up to 20%
of permanent income to eliminate disaster risk. A number of papers, including Pindyck
and Wang (2013), explore the welfare costs associated with climate risk. The latter work
addresses the issue of how much should society be willing to pay to reduce the probabil-
ity or impact of a catastrophe.

A different approach to determining agent’s valuation of alternative consumption
paths is presented by Alvarez and Jermann (2004) who define the “marginal cost” of busi-
ness cycles as the ratio of a market price of a claim to the true consumption process to that
of an alternative path with the same mean but lower uncertainty. While this approach has
the advantage of being preference-free, it is not obvious how to attain the required mar-
ket prices. (It may well be applicable in the future if pandemic insurance becomes widely
traded.)

Our model is related to Ai (2010) and Gourio (2012). We share many of features of
each, but differ by offering a setting that allows us to connect to our unique empirical
data. Both of those papers feature shocks to the stock of productive capital, with endoge-
nous consumption. Like Ai (2010), our model is in continuous time and allows for fric-
tionless adjustment to capital. That paper also studies the effect of parameter uncertainty,
although not in a setting with rare disasters. We differ from Gourio (2012) in modelling
extended disasters, like pandemics, whose expected duration is a crucial and evolving fea-
ture of the economy.

While the literature studying the economic impact of COVID-19 has exploded in a
short period of time, there is relatively little focus on the role played by vaccine develop-
ment and its progress. We first relate to the theoretical literature in asset pricing that is
closest to our model; we then relate to the empirical literature on observed contraction in
employment and consumption during the pandemic.

Hong et al. (2020b) study the effect of pandemics on firm valuation by embedding
an asset pricing framework with disease dynamics and a stochastic transmission rate,
equipping firms with pandemic mitigation technologies. Similar to our paper, they model
vaccine arrival as a Poisson jump process between pandemic and non-pandemic states.
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Hong et al. (2020a) combine the model of Hong et al. (2020b) with pre- and post-COVID-
19 analyst forecasts to infer market expectations regarding the arrival rate of an effective
vaccine and to estimate the direct effect of infections on growth rates of earnings. In
particular, they develop a regime-switching model of sector-level earnings with shifts in
their first and second moments across regimes.

In both of these papers, the pricing kernel is exogenously specified for the pandemic
and the non-pandemic states. In contrast, our model is general equilibrium in nature
with the representative agent optimally choosing labor and consumption (and, in turn,
investment in capital) to mitigate health risk. Deriving asset prices from first principles
in a regime-switching framework of pandemics – which allows for several sub-states in
a pandemic relating to vaccine progress – is an important theoretical contribution of our
paper. We build upon this setup further to introduce learning when there is parameter
uncertainty about pandemic parameters.7

For empirical work, Hong et al. (2020b) fix expected pandemic duration around one
year but show in comparative statics that asset prices show considerable sensitivity to
the arrival rate of the vaccine. Hong et al. (2020a) use their model to infer the arrival
rate of the vaccine. In contrast, we provide a vaccine progress indicator in the form of an
estimated time to vaccine deployment using actual data and related news on the progress
of clinical trials of vaccines for COVID-19. We relate this vaccine progress indicator to
stock market returns to infer the loss in economic wealth in the pandemic state relative to
the non-pandemic state.

Elenev et al. (2020) incorporate a pandemic state with low, disperse firm productivity
that recurs with low probability for studying government intervention in corporate credit
markets. While we do not model credit markets in our setup, our differentiating novel
features are: construction of a vaccine progress indicator and estimation of its joint rela-
tionship with stock markets, and mapping it into a general equilibrium regime-switching
model of pandemics with asset prices in order to derive an estimate of the value of a
vaccine in alleviating a pandemic.

Kozlowski et al. (2020) model learning effects that lead to long-term scarring after the

7On a technical front, Hong et al. (2020b,a) consider aggregate transmission risk into a SIR-style model,
whereas our model of health risk arising from a pandemic is closer to the literature on rare disasters cited
in the Introduction.
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pandemic is over as policy responses relating to debt forgiveness in the current pandemic
can lead to lower leverage and consumption post-pandemic. Through the learning chan-
nel in our model, there can also be scarring effects wherein agent’s consumption upon
exit from a pandemic does not revert to the pre-pandemic levels due to the increase in
updated probability of future pandemics. This, however, is not the focus of our paper.

Collin-Dufresne et al. (2016) show that learning can amplify the pricing of macroe-
conomic shocks when the representative agent has Epstein-Zin preferences and Bayesian
updating. Our results on learning and the impact of parameter uncertainty on welfare
are related to the findings of both these papers; our model can generate both long-term
scarring in consumption due to updated probability of pandemics and significant contrac-
tion of labor and consumption when parameter uncertainty is high, when the elasticity
of intertemporal substitution (EIS) is low. Interestingly, expected time to deployment of
a vaccine can be considered as a “macroeconomic shock" in our model that affects asset
prices and depends crucially on parameter uncertainty in a manner that interacts with
deep preference parameters.

3 Vaccine Progress Indicator and its Covariance with Stock

Returns
As described in the introduction, the paper’s hypothesis is that during 2020 the stock
market may have conveyed information about the social value of resolving the pandemic.
This section explains our empirical steps towards extracting that information. First, we
construct a method for summarizing the state of vaccine research. Second, we estimate
the stock market response to its changes.

3.1 Measuring Vaccine Progress

Throughout 2020, the unprecedented global effort to develop a vaccine for COVID-19
involved dozens of candidates under study as they made their way through pre-clinical
work and clinical trials. On any given day, the state of the entire enterprise was a high-
dimensional object consisting of multiple pieces of information about all of the projects.
Our goal is to reduce that high dimensional object to a single number summarizing beliefs
at the time. Perhaps the single most discussed aspect of the development effort during
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that year was the anticipated time until widespread availability of a proven candidate.
We therefore construct an estimator of that quantity using a stochastic model of vaccine
progress.

As described in more detail in 3.1.1 below, each day, the model simulates the future
progress of each candidate in order to forecast the time until the first candidate success-
fully deploys. Each run of the simulation takes the current stage of each candidate, then
simulates forward the entire clinical timeline through pre-clinical trials, clinical trials, ap-
plication submission, regulatory approval and vaccine deployment.8 Each clinical stage is
characterized by an expected duration and a probability of failing. We update these prob-
abilities as news arrives about individual candidates: preliminary results or more com-
plete information about earlier trials may be published, released to the press, or leaked.
At each simulated stage, each candidate can either fail (and that candidate’s run ends) or
advance onto the next stage (and the simulation continues). The model then records the
time to deployment among candidates successfully reaching deployment, and the aver-
age time across a large number of runs is that day’s estimate of the expected time until a
successful deployment.

Note that vaccine deployment is a final stage with a non-zero probability of failure.
That is, an approved vaccine possibly still could not attain widespread deployment, e.g.,
due to manufacturing and distribution difficulty, emergence of serious safety concerns,
mutation of the virus, or adoption hesitancy. In other words, observers at the time were
aware that the approval of a vaccine would not necessarily correspond to a “magic bullet”
that instantly terminates the spread of COVID-19 and ends the pandemic.

The forecast incorporates the expectation that the success and failure of candidates
is positively correlated. This positive dependence arises most obviously because all vac-
cines were targeting the same pathogen, and would succeed or fail largely due to its
inherent biological strengths and weaknesses. Candidates also shared one of a handful
of strategies (or platforms) for stimulating immunological response,9 relied on common

8This is a simplification. Candidate vaccines will actually undergo multiple overlapping trial sequences
with different patient populations, delivery modalities, or medical objectives (endpoints). One sequence
could fail while others succeed. Trials can also combine phases I and II or II and III. In our empirical
implementation we focus on the most advanced trial of a candidate. This follows Wong et al. (2018).

9For example, if an RNA-based platform proves to be safe and effective, then all candidates in this family
would have a higher likelihood of success. In October 2020, two candidate vaccines had their trials paused
due to adverse reactions: both were based on adenovirus platforms.
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technological components, resources or abilities, and some research teams concurrently
developed several candidate vaccines. The model incorporates correlation among can-
didates by assuming the stochastic durations of each stage are generated by a Gaussian
copula with positive correlation matrix.

The next subsection provides details on the data and the each step in the construction
of the forecast time-series and discusses some of the underlying assumptions.

3.1.1 Forecast Construction

Figure 2: Simulation Flow Chart

Note: Figure shows the simulation that estimates the expected time until vaccine deployment.

Figure 2 outlines the simulation procedure. We start with N positively correlated
vaccine candidates, with correlation matrixR. Each candidate n is in a state s ∈ S, where

S = {failure,preclinical,phase 1,phase 2,phase 3,application,approval,deployment}
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Figure 3: Number of Active COVID-19 Vaccine Projects

Note: Figure shows the number of active COVID-19 vaccine candidates. Data as of November
2020.

and each state has expected duration τs and baseline probability of success Πbase
s .

Next we augment the state-level, baseline probability of successes with candidate-
specific news. Let ωn,t ∈ Ω denote news published at time t about candidate n. For ex-
ample, Ω could span positive data releases, negative data releases, next state announce-
ments, etc. Then let ∆π :→ [−1,1] be a mapping from news to changes in probabilities.
For each candidate, we cumulate the changes in probabilities from all news from the be-
ginning of our sample t0 up to time t,

∆πnews
n,t =

t

∑
t′=t0

∆π (ωn,t′) .

Finally, we combine it with the baseline probability of success, resulting in a candidate-
specific probability of success that potentially varies over time, even within the same
state,

πtotal
n,s,t =

expΥn,s,t

1 + expΥn,s,t
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where Υn,s,t = log πbase
s

1−πbase
s

+ 2∆πnews
n,t .

We simulate stage-by-stage progress of each candidate and generate the expected time
to first vaccine deployment, similar to a first-to-default credit model. Specifically, on each
day, one run of the simulation repeats steps one and two until candidates have all failed
or deployed:

1. We model each state transition as a 2-state Markov chain with exponentially dis-
tributed times. Draw an N-dimensional multivariate normal random variable

zt = [z1,t, . . . ,zN,t]
′ ∼N (0,R)

and for each candidate, transform to exponential time with intensity λn,s,t =
πn,s,t

τs

tn,s,t = −
logΦ(zn,t)

λn,s,t
.

2. Then draw a success or failure Bernoulli random variable with parameter πs. If fail-
ure, then that candidate’s run is over. Else if success, then that candidate advances
states and the run continues.

3. Calculate each candidate’s time to vaccine deployment as

Tn =

∑s tn,s,t , if candidate deploys

∞ , if candidate fails

4. Then calculate minimum time to vaccine deployment across candidates, minn Tn.

That finishes one run of the simulation. We repeat for 50,000 runs and take the cross-run
average as TD, before advancing to the next day. On each day across runs, we calculate
the average

E[T∗] = (1− µ)TD
t + µTND,

where some fraction, µ, of simulations will result in all candidates not reaching deploy-
ment, so we incorporate TND, an estimated expected time to deployment by a project
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outside of our sample.
We obtain the pre-clinical dates and trial history of vaccine candidates from publicly

available data collated by the London School of Hygiene & Tropical Medicine (LSHTM).
We observe the start dates and durations of each pre-clinical and clinical trial, along with
their vaccine strategy. We augment the LSHTM timeline with news pertinent to vaccine
progress from FactSet StreetAccount. We classify vaccine related stories into seven pos-
itive types and six negative types. The Online Appendix includes more detail on the
number of candidates and breakdown of strategies, the news types and corresponding
probability adjustments, and our choices of parameters, also presenting evidence that our
assumptions are reasonably consistent with the (small) set of observed trial outcomes. We
will validate our choices both by examining robustness to reasonable variations and by
comparing them to other actual ex ante forecasts published during the sample period.

Our indicator of vaccine progress aims to capture expectations about deployment
principally in the U.S. since this is likely to be the primary concern of U.S. markets. Be-
cause of political considerations, we believe that observers at the time judged it to be
very improbable that vaccines being developed in China and Russia would be the first
to achieve widespread deployment in the U.S. Our base case construction for this reason
omits candidates coded in the LSHTM data as originating in Russia or China, retaining
candidates coded as multi-country projects including these two countries. We will also
verify that including them in our index does not change our primary results.

In focusing on the scientific advancement of the individual candidates, our measure
does not attempt to capture general news about the vaccine development environment
and policy. News about the acquisition and deployment of delivery infrastructure by
governments (or the failure to do so) could certainly affect estimates of the time to avail-
ability. We also do not capture the news content of government financial support pro-
grams or pre-purchase agreements. News about regulatory approval standards could
have affected forecasts as well. While we could alter our index based on some assessment
of the impact of news of this type, we feel we have less basis for making such adjustments
than we do for modeling clinical trial progress.

Figure 1 shows the model’s estimation of the expected time to widespread deploy-
ment from January through October of 2020, and Figure 3 shows the number of active
vaccine projects. The starting value of the index, in January, is determined by our choice
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of the parameter TND because, with very few candidates and none in clinical trials, there
was a high probability that the first success would come from a candidate not yet active.
However this parameter effectively becomes irrelevant by March when there are dozens
of projects.

3.1.2 Validation

We are aware of two datasets that contain actual forecasts of vaccine arrival times, as
made in real-time during 2020. As a validation check, we compare our index to these.10

The two data sets are surveys, to which individuals supplied their forecasts of the
earliest date of vaccine availability. Comparisons between these pooled forecasts and
our index require some intermediate steps and assumptions. In both cases, the outcomes
being forecast are given as pre-specified date ranges. Thus, on each survey date, we know
the percentage of respondents whose point forecast fell in distinct bins. For each survey
we estimate the median response, assuming a uniform distribution of responses within
the bin containing the median. Under the same assumption, we can also tabulate the
percentage of forecasters above and below our index.

The first survey is conducted by Deutsche Bank and sent to 800 “global market partic-
ipants” asking them when they think the first “working” vaccine will be “available”. The
survey was conducted four times between May and September. The second survey is con-
ducted by Good Judgement Inc., a consulting firm that solicits the opinion of “elite super-
forecasters.” Their question asks specifically “when will enough doses of FDA-approved
COVID-19 vaccine(s) to inoculate 25 million people be distributed in the United States?”
(Information about the number of responders is not available.) Responses are tabulated
daily, starting from April 24th. For brevity, we examine month-end dates. Table 1 sum-
marizes the comparison.

Our forecasts align well with those of the Deutsche Bank survey, though ours are more
optimistic than the median. The optimism is more pronounced when compared to the
superforecasters early in the pandemic. Although we are within the interquartile range
of forecasts after May, the earlier dates see us in the left-tail of the distribution. A possible
reason is the particular survey question, which specifies an exact quantity of the vaccine

10We do not employ these in our empirical work because the forecasters may condition their views on
contemporaneous stock market reactions, whereas our measure does not employ any financial market
information.
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being distributed in the United States. Respondents may have more skeptical of feasible
deployment than we have assumed. We will examine robustness of our results below to
increasing the probability of an approved vaccine failing in the deployment stage.

3.2 Stock Market Response

We now turn to assessing the stock market’s response to vaccine news. The primary
methodology is straightforward: we regress market returns on changes in the VPI. Our
index construction does not involve any stock market information. Its changes are there-
fore exogenous in the regression context. A relevant consideration, however, is control-
ling for other exogenous news, of which there was a great deal during 2020. To motivate
the salience of vaccine news, consider two events: On May 18 and July 14, 2020, Moderna,
announced good news relating to the progress in its Phase I clinical trials and scheduling
of the next stage of trials.11 The real-time stock market responses are shown in Figure 4,
where the timing of the news releases in the FactSet data is indicated by vertical bars. In
each case the market’s immediate reaction was to rally strongly. In the spirit of the high-
frequency identification literature in emprical macroeconomics, the precise timing of the
news releases (as well as the fact that both occurred outside of normal market hours)
make it very unlikely that the market was responding to non-vaccine news. Note that,
while both events conveyed positive clinical trial information, they concerned only inter-
mediate stage results of one of several candidates. Thus, the responses are consistent with
a large sensitivity of market valuation to vaccine progress.

Returning to the full sample, our approach to the issue of controlling for non-vaccine
news is to exclude days with large stock market moves that were reliably judged to be due
to other sources. Specifically, we employ the classification of Baker et al. (2020) for causes
of market moves greater than 2.5% in absolute value. Those authors enlist the opinion of
three analysts for each such day and ask them to assign weights to types of causes (e.g.,
corporate news, election results, monetary policy, etc). Under their classification, research
on vaccines falls under the category“other”. We view market returns as very unlikely to
have been driven by vaccine news if none of the three analysts assigns more than 25%
weight to this category, or if the return was more negative than -2.5%. The latter exclusion

11See Matt Levine, Money Stuff, May 19, 2020, and Matt Levine, Money Stuff, July 16, 2020 in the internet
appendix.
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Figure 4: Vaccine Progress: High Frequency Identification

Note: The figure plots the price of the SPDR S&P500 ETF (SPY) on two dates during 2020. The
vertical bars show the time of release of positive news relating to clinical trials of Moderna’s vac-
cine.

is based on the fact that there were no significant vaccine setbacks prior to the end of our
data window,12 and on the assumption that positive vaccine progress cannot have been
negative news. We then include dummies for all of the non-vaccine large-news days.
There are 28 such days, 17 of which were in March. While the approach is imperfect, it
avoids putting (endogenous) financial variables on the right hand side of our regressions.
And, at a minimum we are limiting the ability of our estimation to misattribute the largest
market moves to vaccine progress.

Table 2 shows the resulting regression estimates of market impact. These regression
specifications include changes in the vaccine progress indicator in a five day window

12As of the time of this draft, Baker et al. (2020)’s website had classified days through June 2020. We append
September 3 and September 23 as two dates with negative jumps that arguably were driven by non-
vaccine progress related news.
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around each day, t, on which stock returns are measured. Including changes on days
other than the event day-t guards against our imperfect attribution of the date of news
arrival. A priori we suspect it is more likely that, if anything, markets have information
before it is reflected in our index, meaning the relevant reaction would correspond to
the t + 1 or t + 2 coefficients. On the other hand, given the sheer volume of news being
processed during this period, we do not rule out delayed incorporation of information,
which would show up in the t− 1 or t− 2 coefficients. The specifications also include two
lags of the dependent variable to control for short-term liquidity effects. Specifically, the
regression is

Re
m,t = α +

2

∑
h=−2

βh∆VPIt+h + γ1Re
m,t−1 + γ2Re

m,t−2 +
28

∑
j=1

δj1jump j + ϵt (1)

where ∆VPIt is the change in vaccine progress indicator, and 1jump j is a dummy equal to
one on the jth jump date from Baker et al. (2020). The dependent variable is the return to
the value-weighted CRSP index from January 1 through October 31, 2020.

The first column of the table shows results using our baseline vaccine progress indi-
cator. The coefficient pattern shows the largest negative responses on the t− 1 and t + 2
index changes. Focusing on the cumulative impact, the sum of the βs is statistically sig-
nificant at the 1% level. The point estimate implies a stock market increase of 8.6 percent
on a decrease in expected time to deployment of one year.

Returning to Table 2, the second and third columns implement the methodology of
Kogan et al. (2017) (hereafter KPSS). Those authors use an empirical Bayes procedure to
estimate the market value of patents using the stock returns to the patenting firm in an
event window surrounding patent publication date. As in our case, economic logic rules
out a negative response: vaccine progress cannot be unfavorable news just as the value
of a patent must be positive. KPSS employ a truncated normal prior distribution for the
unobserved true response. Conditional on knowing the return standard deviation, the
posterior mean estimate of the response coefficient is then also distributed as a truncated
normal. The estimation methodology generalizes naturally to a multivariate regression
setting (O’hagan (1973)). We follow KPSS in assuming a zero mean under the prior for
the pre-truncated normal distribution, assuming returns are normally distributed, and
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in using the regression residual to estimate the return standard deviation. Note that the
estimation still includes dummy variable for market jump days making the normality
assumption plausible. The table reports posterior mean and standard deviations for the
individual response coefficients and for their sum.13 The methodology is sensitive to
the specification of the prior variance of the coefficient distribution. Both column 2 and
column 3 assume that the pre-truncated normal distribution for βt has standard deviation
equal to 1, which, after truncation, implies that 84% of the distribution mass is below
1.0. We regard this as a conservative choice. Results in the second column use the same
(independent) prior for all the response coefficients. The third column uses a smaller prior
mean for the lead and lag coefficients. Specifically, the assumption is that pre-truncated
standard deviations are 0.7 for the first lead and lag and 0.5 for the second lead and lag.
Both priors produce posterior means for the sum of the five response coefficients that are
lower than the OLS estimate: -6.4% in column 2 and -4.1% in column 3. The calibrations
in the next section will adopt the range of these conservative estimates.

To examine the robustness of the response estimates to the assumptions built into
the vaccine progress index, we repeat the OLS specification estimation with five variants.
These results are shown in Table 3. The first column repeats the original specification from
the prior table. The next two columns vary the assumptions about the effect of news to
phase success probabilities. (Column 2 includes no news adjustments. Column 3 applies
the news adjustments to only the current trial phase, as opposed to all future phases, and
increases the ∆π from news on positive data releases, positive enrollment and dose starts
to 15%, 5% and 5%, respectively) The fourth column increases the base copula correlation
from 0.2 to 0.4. The fifth column lowers the assumed probability of successful deployment
following regulatory approval. As mentioned above, a lower probability of successful de-
ployment may accommodate real-life set backs such as distribution difficulty, emergence
of safety concerns, mutations of the virus, or adoption hesitancy. Finally the sixth column
includes vaccine candidates whose research program is based in Russia or China. In all of
these cases the sum of the response coefficients is highly statistically significant and the
point estimates are in the same range as those in Table 2.

13Moments of the truncated multivariate normal posterior are computed using the algorithm of Kan and
Robotti (2017) using software provided by Raymond Kan. http://www-2.rotman.utoronto.ca/
~kan/research.htm.
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3.3 Industry Responses

As a validity check for our primary findings, we examine the price impact of vaccine
progress in the cross-section of industries. We first gauge each industry’s exposure to
COVID-19 by its cumulative return from February 1, 2020 to March 22, 2020. This period
captures the rapid onset of COVID-19 in the US, with a public health emergency being
declared on January 31, 2020and a national emergency declared on March 13, 2020.Impor-
tantly, this period precedes the Federal Reserve’s announcement of the Primary Market
Corporate Credit Facility and Secondary Market Corporate Credit Facility on March 23,
2020,helping us pin down industry covariances with COVID-19 itself, separate from co-
variances with policy responses.

Figure 5: Industry Sensitivity to Vaccine Progress

Note: Figure plots industry sensitivity to vaccine progress against exposure to COVID-19 as mea-
sured by cumulative returns. Cumulative returns are from February 1, 2020 to March 22, 2020.
Sensitivity to vaccine progress is estimated from March 23, 2020 to October 31, 2020 as in (2).

We then estimate industry sensitivity to vaccine progress over the non-overlapping
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sample from March 23, 2020 to October 31, 2020, by re-estimating (1) sector-by-sector,

Re
i,t = α +

2

∑
h=−2

βh.i∆VPIt+h + γ1,iRe
i,t−1 + γ2Re

i,t−2 +
28

∑
j=1

δj,i1jump j + ϵi,t (2)

where Re
i,t is value-weight excess returns on the 49 Fama-French industry portfolios.

Figure 5 presents the results. Each industry’s sensitivity to vaccine progress is plotted
against its exposure to COVID-19. The relationship is negative and statistically significant
– industries that were more exposed to COVID-19 subsequently saw more positive price
impact as the vaccine was expected to deploy sooner. The industries also exhibit notable
variation. Oil, fabricated products and recreation were among those with higher COVID-
19 exposure and vaccine progress sensitivity, while pharmaceutical products, food prod-
ucts and computer software had lower exposure and sensitivity. The association of indus-
try exposure to COVID-19 with its subsequent sensitivity to our index lends confidence
to the construction and interpretation of the index as, in fact, measuring vaccine progress.

In another validation of the importance of vaccine progress in accounting for asset
dynamics, Lars Lochstoer has shown (in private communication) that market volatility
(as captured by the VIX index) is positively related to the conditional second moment of
the VPI estimated from an EGARCH specification during our sample period.

4 Markov State Model of Pandemics
In this section, we introduce a regime-switching model of pandemics in order to com-
pute the welfare cost in terms of the economy’s primitive objects. In order to connect
the theory to our empirical exercise, we need a model with four attributes: a descrip-
tion of pandemics; a well-defined notion of the value of ending a pandemic; a depiction
of progress towards that objective; and a stock market that is sensitive to that progress.
Our fundamental view of a pandemic is as a process that destroys household wealth, as
in Gourio (2012), with consumption and other policies potentially responding endoge-
nously. For this reason, we work with a production-based framework rather than an
endowment economy.
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4.1 Pandemic Dynamics

We consider the state of the economy to be either in a “non-pandemic” regime or in a
“pandemic” regime. Within the pandemic regime, there can be several sub-states that
correspond to observable progress to returning to normal life.We denote the state as
s ∈ {0,1, . . . ,S − 1,S}, where for ease of notation both state 0 and state S are the same
non-pandemic states, and the others are pandemic states. We assume that the economy
switches between these states based on a Markov-switching or transition matrix. The
transition probabilities are given as follows:

Pr(st+dt =1|st = 0 or S) = ηdt (3)

Pr(st+dt =st|st = 0 or S) = 1− ηdt (4)

Pr(st+dt =s− 1|st = s ∈ [1,S− 1]) = λd(s)dt (5)

Pr(st+dt =s + 1|st = s ∈ [1,S− 1]) = λu(s)dt (6)

Pr(st+dt =st|st = s ∈ [1,S− 1]) = 1− λd(s)dt− λu(s)dt. (7)

That is, η is the probability of switching from the non-pandemic regime to the pandemic
regime, and λd and λu are the respective probabilities in a pandemic state to move “down"
or “up" to the adjacent states. Given this specification, a straightforward Markov chain
calculation yields Et[T⋆|s] where T⋆ is the time at which the state S is attained and the
pandemic is terminated.

The model’s depiction of the pandemic consists of a state-specific stochastic process
for the accumulation of wealth. Specifically, let q denote the quantity of productive capital
of an individual household (which should be viewed as both physical and human capital,
the latter reflecting health as well as intangible capital). We assume that the stock of q is
freely convertible into a flow of consumption goods at rate C per unit time. Then our
specification is that q evolves according to the process

dq = µ(s)qdt− Cdt + σ(s)qdBt − χ(s)qdJt (8)

where Bt is a standard Brownian Motion and Jt is a Poisson process with intensity ζ(s).
We set χ(0) = χ(S) = 0 and χ(s)> 0 for pandemic states. Hence we interpret the Poisson
shock as capturing the risk of an economic loss when the household is hit by a “health dis-
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aster”. In non-pandemic states, µ(0) = µ(S) and σ(0) = σ(S) are the percentage growth
rate (before consumption) and volatility of the wealth stock. In Section 6.2, we generalize
the model to include a production function with optimal labor choice, thus endogenizing
the difference between pandemic and non-pandemic output. To connect to our empirical
work, however, we can work with the model in reduced-form.

Although the specification allows for arbitrary parameter differences across the pan-
demic states (hence potentially capturing diverse aspects of the pandemic), our intention
is rather to interpret the states as differing only in so far as advances in the state reduce
the expected time to exit the pandemic, since the latter is the quantity that we attempt
to measure in the data. Hence, for 0 < s < S, we will take µ(s) = µ(1), σ(s) = σ(1), and
χ(s) = χ,ζ(s) = ζ to all be constants.

For parsimony, model does not include state variables that represent the dynamics of
an infectious disease within the population, as in standard SIR-type models. Obviously
the severity of the pandemic matters for households and investors, and hence affects
the value of ending the pandemic. Likewise, the stance of fiscal and monetary policy,
also not incorporated in the model, affects the economic consequences of a pandemic. In
abstracting from these features, our aim is to capture the impact of variation we measure
empirically, namely, clinical trial progress.

Another assumption worth highlighting concerns the long-run effects of the pan-
demic. Our specification is pessimistic in the sense that loss of wealth due to the health
shocks is permanent. Productive capital q does not get restored when the pandemic ends.
On the other hand, the model is optimistic in the sense that the productive process, dq, does
fully revert to pre-pandemic dynamics. After the pandemic, the world looks stochasti-
cally the same as it did before. In particular, there are no scarring effects, e.g., on the
economy’s growth rate, µ. Both assumptions are important for tractability.

4.2 Agents

We assume the economy has a unit mass of identical agents (households). Each agent has
stochastic differential utility or Epstein-Zin preferences (Duffie and Epstein, 1992; Duffie
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and Skiadas, 1994) based on consumption flow rate C, given as

JJJt = Et

[∫ ∞

t
f (Ct′ ,JJJt′)dt′

]
(9)

and aggregator

f (C,JJJ) =
ρ

1− ψ−1

[
C1−ψ−1 − [(1− γ)JJJ]

1
θ

[(1− γ)JJJ]
1
θ−1

]
(10)

where 0 < ρ < 1 is the discount factor, γ ≥ 0 is the coefficient of relative risk aversion
(RRA), ψ ≥ 0 is the elasticity of intertemporal substitution (EIS), and

θ−1 ≡ 1− ψ−1

1− γ
(11)

The use of recursive preferences is standard in macrofinance models because of their abil-
ity to match financial moments. We recognize the limitations of using a utility specifi-
cation driven by consumption goods, particularly within a crisis when other consider-
ations (e.g., health, social interaction, the safety of others) so strongly affect well-being.
However, using a familiar formulation ensures that our findings are not driven by non-
standard assumptions about utility. Another potentially restrictive assumption, given the
myriad of uncertainties during 2020 about the coronavirus itself, is that agents have com-
plete knowledge of the stochastic properties of the pandemic. In Section 5, we will con-
sider uncertainty about the transition probabilities for a two-state version of the model.

The representative agent’s problem is, in each state s, to choose optimal consumption
C(s) that maximizes the objective function JJJ(s). Section 5 will examine another extension
in which the agent possesses a vaccine research technology and optimally chooses the
rate of research expense.

4.2.1 Solution

We now characterize the solution to the optimization problem.
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Proposition 1. Denote

g(s) ≡ (1− γ)ρ

(1− ψ−1)
− (1− γ)

(
µ(s)− 1

2
γσ(s)2

)
−

(
[1− χ(s)]1−γ − 1

)
(12)

Let H(s)’s denote the solution to the following system of S recursive equations:

g0 ≡ g(0) =
(1− γ)

(ψ− 1)
ρψ (H(0))−ψθ−1

+ η

[
H(1)
H(0)

− 1
]

(13)

g1 ≡ g(1) =
(1− γ)

(ψ− 1)
ρψ (H(s))−ψθ−1

+ λd

[
H(s− 1)

H(s)
− 1

]
+ λu

[
H(s + 1)

H(s)
− 1

]
, (14)

for s ∈ {1, . . . ,S− 1}.

Assuming the solutions are positive, optimal consumption in state s is

C(s) =
(H(s))−ψθ−1

q
ρ−ψ , (15)

and the value function of the representative agent is

JJJ(s) ≡ H(s)q1−γ

1− γ
(16)

Note: All proofs appear in the appendix.

The recursive system is straightforward to solve numerically.14 Henceforth we im-
plicitly assume the parameters are such that a unique solution vector H(s) exists and is
strictly positive.15 An important observation for our calibration exercise is that the pan-
demic parameters only affect the system (and hence its solution) through the constant g1.
More generally, the solution depends on the relative values of g0 and g1. The lower is
g1 relative to g0, the lower is the value function in pandemic states relative to the non-

14In the Appendix, we work out in detail the solution to the 2-state regime-switching model in which
the pandemic regime consists of just one state. Besides illustrating the detailed solution to the model
(Hamilton-Jacobi-Bellman (HJB) equations, labor and consumption choices, and system to determine the
value function), it also serves as the benchmark case for developing the model further with parameter
uncertainty.

15A necessary and sufficient condition for this in the two-regime case is that g1 < g0.
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pandemic state. This difference in welfare values is the basis for our quantification of the
value of a vaccine in alleviating a pandemic.

4.2.2 Value of Exiting the Pandemic

We define the value of ending the pandemic as the certainty equivalent change in the
representative agent’s lifetime value function upon a transition from state s to state 0 (or
to state S):

V(s) ≡ 1−
(

H(s)
H(0)

) 1
1−γ

(17)

This is the percentage of the agent’s stock of wealth q that, if surrendered, would be fully
compensated by the utility gain of reverting to the non-pandemic state. This willingness-
to-pay definition is standard in the literature, since Lucas (1987). In Section 5.1 we com-
pare our findings to work using the same definition to quantify the value of averting other
types of disasters. Using the optimal consumption characterized above, we also obtain
that

Proposition 2. The value ending the pandemic in state s is determined by the ratio of marginal
propensity to consume (c ≡ dC/dq) in the pandemic state s relative to that in the non-pandemic
state, adjusted by the agent’s elasticity of intertemporal substitution (EIS):

V(s) = 1−
(

c(s)
c(0)

)− 1
ψ−1

= 1−
(

C(s)
C(0)

)− 1
ψ−1

(18)

We will estimate this quantity below, under standard assumptions about the non-
pandemic parameters, utilizing the information from our empirical exercise to restrict the
set of pandemic parameters.

4.3 Asset Pricing

Our next step is to examine the model’s counterpart to the sensitivity that we estimated
in Section 3.2. We begin by interpreting “the market portfolio” within the model as a
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claim to the economy’s output.16 Output is the net new resources per unit time, which
is implicitly defined by two endogenous quantities: the change in the cumulative wealth
plus consumption, or dq+Cdt. Denote the price of the output claim as P = P(s,q). By
the fundamental theorem of asset pricing, the instantaneous expected excess return to
holding this claim is equal to minus the covariance of its returns with the pricing ker-
nel. Under stochastic differential utility, and with the value function solution above, the
pricing kernel in our economy is given by

Λt = exp
{∫ t

0

[
ρψ(θ/ψ)H(su)

−ψ/θ
]

du
}

q−γ
t H(st)

From this, we derive the value of the market portfolio in the following proposition.

Proposition 3. The price of the output claim is P = p(s)q where the the constants p(s) solve a
matrix system Y = Xp where X is an S+1-by-S+1 matrix and Y is an S+1 vector both of whose
elements are given in the appendix.

Henceforth we assume the model parameters are such that the matrix X defined
in the proposition is of full rank. The behavior of the price-capital ratio, p(s), accords
with economic intuition: it declines sharply on a move from state s = 0 to s = 1, and
then gradually (and approximately linearly) recovers as s advances. Thus, the quantity
∆log P = log p(s+1)− log p(s) is positive for s > 0 and, in practice, varies little with s.

Next, define T⋆ as the time at which the state S is attained and the pandemic is termi-
nated. It is straightforward to show that its time t expectation, Et[T⋆] is again given by a
linear system, which we omit for brevity. Moreover, for large S, the difference

∆E[T⋆] = E[T⋆|s+1]−E[T⋆|s] ∼ 1
λu

(19)

is effectively constant as well.

16Note that this is not the same as a claim to aggregate consumption. As is well known (see Ai (2010)), in
an economy where the capital stock can be costlessly converted to consumption goods, the consumption
claim’s price is equal to the capital stock, q. However, any wedge between consumption and payouts
to equity will result in a nonconstant price-capital ratio. Our assumption here is that the expected cash
flow to the market portfolio mirrors the expected impact of the pandemic on wealth. In Appendix G
we describe a decentralization of the economy in which this cash flow is the net payout of the corporate
sector to households.
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Combining the above two results, we can readily define the model’s analogue of the
sensitivity that we empirically estimated as

∆log P
∆E[T⋆]

. (20)

For our purposes the crucial property of this quantity, as we explain below, is it allows us
to approximately pin down the pandemic parameters that determine the welfare gain, V,
to returning to the non-pandemic state.

4.4 Calibration and Estimation of V

In this section and the next, we present comparative static results exploring the determi-
nants of the value of ending the pandemic, V, as defined in Section 4.2.2. In doing this,
our approach is to fix the preference and non-pandemic output parameters, and infer the
parameters governing the pandemic from the implied quantity (20).

The former set are taken to be relatively standard values, whose effects on the non-
pandemic economy are well understood. Unless otherwise stated, we will fix the these
to be the values shown in Table 4. The preference parameters are broadly consistent with
the macro-finance literature under stochastic differential utility, although we use a rela-
tively low level of risk aversion. The growth rate and volatility parameters for the wealth
stock are chosen to approximately match the growth rate and volatility of aggregate div-
idends in normal times, consistent with our interpretation of a claim to this stream as
representing the market portfolio.

The crucial quantity for our calibration is the relative loss of output during the pan-
demic. Specifically, asset markets are highly informative about the decline in the expected
growth rate of the stock of wealth, dq/q− Cdt, under the risk-neutral measure. This rate
of loss, which we denote ∆mQ, is driven primarily by the difference µ(1)− µ(0) and by
the expected intensity, χζ, of the Poisson health shocks. (The level of risk aversion and the
Gaussian volatility play smaller roles, via the change of measure.) This is illustrated by
the left panel in Figure 6, which plots the sensitivity of market returns to vaccine progress,
(20), for a wide range of model solutions that differ in their values of the pandemic pa-
rameters. The plot shows that there is effectively a one-dimensional relationship between
the market sensitivity and ∆mQ. Further, the middle panel shows that ∆mQ is itself tightly
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linked to the model parameter g1, which we showed above was a sufficient statistic for
the value of V, given the non-pandemic parameters. This latter relationship is shown in
figure’s right hand panel.

Figure 6: Stock Market Sensitivity Pins Down the Value of Exiting the
Pandemic

Note: Figure shows how the market reaction to vaccine progress, −∆log P/∆E[T⋆], helps pin down the
value V through the decline in expected growth rate of capital q in pandemic states, ∆mQ, g1 as defined in
(14), and other pandemic parameters. Each ⋆ corresponds to a different set of pandemic parameters. The
left panel shows the range of ∆mQ for a given value of−∆log P/∆E[T⋆]. The middle panel shows the range
of g1 for a given value of ∆mQ. And the right panel shows the range of V for a given value of g1. In all three
panels, the unconditional expected duration of the pandemic is 4 years, the current expected time to exit is
2 years, intensity of switching to the pandemic state η = 0.03, and number of pandemic states S = 12. The
pandemic parameters being varied are the expected output growth (µ(1)), output volatility (σ(1)), and the
size of the health shock (χ(1)).

Our estimated values for the market sensitivity in Table 2 using the KPSS methodol-
ogy ranged from 0.041 to 0.064.Using this range, the plots in Figure 6 imply a range of
∆mQ of approximately 0.045 to 0.065, implying g1 in the range of -0.41 to -0.33. This, in
turn, implies V in the range of 6.5 to 9.0 percent of wealth.

The above calculations assume specific values for the timing parameters. In particu-
lar, consistent with our empirical work, Figure 6 fixes the unconditional expected dura-
tion of the pandemic to be 4 years, and the current expected time to exit to be 2 years,
corresponding to our estimate of the actual value in the early spring of 2020. The figure
also takes the pandemic frequency parameter to be η = 0.03. These timing choices have
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little effect on the identification plot in the left panel and none at all on the relationship in
the middle plot. But they do affect V, given the pandemic parameters. We also note that
the solutions in this section will take the number of states to be S = 12, which is arbitrary.
Our results are not sensitive to the choice of the number of states, given the total expected
duration of the pandemic. Hereafter we will denote λu/S as λ without a subscript. We
also set the intensity of regress to be λd = 0, which limits vaccine related volatility. This
choice accords with actual experience: the research setbacks through the Fall of 2020 were
few and had insignificant impacts on our empirical measure of progress.

Figure 7 plots V as a function of η and λ, fixing the pandemic parameters consistent
with the above identification: specifically, ζ = 1,χ = 0.0475,µ1 = µ0,σ1 = σ0, which imply
g1 = −0.367 and ∆mQ = 0.0577. The left panel plots V against 1/λ the expected duration
of the pandemic, while the right panel uses the pandemic frequency η on the horizontal
axis. (The left panel sets η = 0.03 and the right panel sets λ = 0.5. Both panels take the
current state as s = 1.) The right panel shows that the value of ending the pandemic
is actually lower when pandemics are more frequent. Recall that a exercise here only
computes the gain to ending the current pandemic. This is less valuable when a new
pandemic will arise sooner.

Comparing the panels, the model implies a much more important role for the ex-
pected duration of the pandemics than for their frequency. Intuitively, the output loss
∆mQ is a rate, and V depends critically on how long that rate is expected to be experi-
enced. The dashed line in the left-hand plot varies the expected duration by fixing λ and
varying the current state, s. This line is almost identical to the sold one that fixes s and
varies λ, verifying that the precise combination of parameters is not important, given the
forecast mean time, which is the quantity our VPI measures.

From the plot, agents in the economy would be willing to give up as much as 15%
of their wealth to return to normal life when the pandemic is expected to last a little
less than four years, as we estimate may have been the case in mid-January 2020. In the
crucial months of March and April, with our vaccine progress indicator falling towards
one year, the figure implies a value of approximately 5% of total wealth. This 5-15% range
– determined primarily by the range of expected duration – is our baseline finding. By
November 2020, with less than six months expected until successful vaccine deployment,
ending the pandemic immediately would still have been worth over 2% of total wealth.
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Figure 7: Value of Ending the Pandemic

Note: Figure shows the welfare gain, V, as a function of the intensity of switching to the pandemic (non-
pandemic) state η (λ). The left panel plots V against 1/λ. The right panel plots V against η. The left panel
sets η = 0.03 and the right panel sets λ = 0.5. The current state is set as s = 1.

We defined V as the value of transitioning immediately to the non-pandemic state.
Our method speaks, more generally, to the value of any intervention that shortens the
expected duration of the crisis. For example, a partially successful vaccine technology
which cuts this duration in half can be associated with its analogous welfare gain. The
actual deployment of vaccines in 2021 may have achieved something like this. Using the
calibration above, Table 5 shows the fraction of wealth the representative agent would be
willing to pay to lower the expected duration from one value to another. The table entries
are close to constant along each diagonal, indicating that the welfare gain scales almost
linearly with the expected change in duration. A semi-effective vaccine that reduces the
duration from four to two years is worth somewhat less but close to one that reduces the
duration from two years to zero (7.9% versus 8.6%).

5 Discussion
Before considering model extensions in Section 6, this section considers the validity of
our findings in two respects. First, we ask how our baseline findings on welfare costs
should be interpreted in terms of actual dollars, and argue that the magnitudes are sen-
sible economically. Second, given the model’s reduced-form structure, we ask to what
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extent can it offer a plausible depiction of the path of the stock market and consumption
that was actually experienced during 2020. Although there are challenges, we argue that
a consistent interpretation is possible, and discuss the extent to which our conclusions
may be affected by the model’s shortcomings.

5.1 Interpreting magnitude of welfare cost

In assessing our conclusions on the value of ending the pandemic, three natural questions
arise. First, is 5-15% of total wealth a reasonable amount to be willing to pay to avoid or
curtail a pandemic? Second, how should one think about “five percent of total wealth”
in terms of real-world values (e.g., dollars)? Finally, are these magnitudes consistent with
other ways of assessing the cost of COVID-19?

Within the context of the model, the welfare gain estimate is intimately tied to the rate
of loss of wealth (or lower growth rate) due to the expected health shocks. In Section 3, we
found that that an increase in one year in expected duration of the pandemic decreased
stock market wealth by approximately five percent. This led to a calibration of the rate of
loss of wealth (more broadly defined) of a similar number. So sacrificing five percent of
wealth per year of expected duration to avoid this outcome makes sense economically.

As another sanity check, one could compare our estimate to the total drop in stock
market wealth – around 36% – at the onset of the pandemic. This is not the same quantity
that we are estimating. Within the model, the agent’s value function summarizes the
anticipated lifetime consumption path. Households use their stock of wealth to buffer
output (or dividend) shocks. Hence the output claim (stock market) will, in general, be
more sensitive to the arrival of the pandemic than the value function is. However, the
two numbers are not unrelated. Any estimate of the cost of COVID-19 substantially less
than 36% of stock market wealth would be difficult to reconcile with this observation.

Still another argument for the reasonableness of our estimate is its similarity to the
literature that computes the welfare gain of eliminating other types of disasters.17 Barro
(2009) reports that, in a model with rare disasters, moderate risk aversion, and an EIS
greater than one, society would be willing to pay up to 20% of permanent income to
eliminate disaster risk. Tallarini Jr (2000) finds costs to reducing business cycle risk at

17Values are commonly reported as percentage reductions of permanent income. Such percentages are
directly comparable to our percentages of (permanent) reductions in q since consumption is proportional
to q.
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13% on the conservative end. And Pindyck and Wang (2013) estimates the willingness to
pay to reduce the impact of a disaster to 15% of capital stock at 7%.

Turning to the second question, as a baseline value, total U.S. household wealth at the
end of 2019 was approximately $96 trillion, implying that five percent represents about $5
trillion. However, some ambiguity arises in interpretation because of the stylized nature
of the model’s depiction of wealth. A single state variable, q, represents not only house-
hold wealth, but the (book) value of the capital stock and the (market) value of a claim
to all future dividends. One possibility is to view the magnitude of q through the lens of
consumption. Aggregate U.S. nondurable and service consumption in 2019 was approxi-
mately $13.4 trillion. In the model calibration, the marginal propensity to consume (C/q)
is approximately 0.04,18 which would imply that five percent of q represents (0.05/0.04)
times C, or V ≈ $17 trillion.

Dollar values in this range are plausible, and are not out of line with other estimates
of the cost of the pandemic. The decline in U.S. market capitalization – just one compo-
nent of total wealth – translates into $9 trillion. Moving away from values imputed from
financial claims, there is now a substantial literature estimating cost of COVID-19 based
on foregone health and economic activity. As discussed in the introduction, a common
approach in health economics is to assign values to lives and productivity lost due to the
virus. Writing in mid-2020, Cutler and Summers (2020) forecast health losses (includ-
ing both morbidity and mental health) caused by the pandemic and estimate the total
economic cost of COVID-19 to be $16 trillion under the assumption that “it will be sub-
stantially contained by the fall of 2021.” Implicitly, then, this is an estimate of a rate of
loss for one year.19 The similarity of this estimate to our own – despite the very different
inputs and assumptions – lends credence to each.

18Our calibration aligns with estimates of Blundell et al. (2008), Souleles (1999) and Souleles (2002), among
others.

19Focusing just on GDP, CBO (2020) estimates over $7 trillion in lost output through 2030. The IMF’s World
Economic Outlook (IMF (2021)) estimates the collapse could have been three times as large had policy-
makers not enacted significant intervention (including $16 trillion in fiscal support). They further esti-
mate the cumulative loss in output relative to the counterfactual without COVID-19 to be $28 trillion
over 2020–2025. Further, Agarwal and Gopinath (2021) estimates an additional $50 billion in facilitating
vaccine availability would infuse $9 trillion into the global economy through 2025.
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5.2 Interpreting the COVID-19 experience

For tractability, our baseline model omits many factors that played important roles in
2020. We have not included fiscal or monetary policy, for example. (Recall, though,
that our empirical work excluded large market-moving events attributable to non-vaccine
news as classified in Baker et al. (2020)). In the next section, we will examine the effect on
our welfare conclusions of some important generalizations. Before moving beyond the
baseline case, however, we now describe in more detail its implications for the response
of the stock market and of consumption to a pandemic. Comparing these implications
to the actual experience of 2020, we argue that a coherent interpretation is possible when
viewed through the lens of the model. Hence, while there are inevitably descriptive limi-
tations, these need not detract from the paper’s objectives.

Consider first the stock market. From December 31, 2019 to March 23, 2020 the CRSP
value-weighted experienced a return of approximately -36%, continuously compounded.
The market then rebounded fully by early autumn. The cumulative return for the year
was approximately +5% at end of October (where our clinical trial sample stops).

The calibration in the previous section implies a somewhat smaller drop, of -23.6% for
the output claim (our depiction of the stock market) at the onset of a pandemic, based on
our initial VPI forecast of an expected duration of four years. Thus, relative to this data
point, our estimation of the potential damage of the pandemic is conservative compared
to the market’s assessment.

Subsequently, the model implies a partial market recovery due to the observed suc-
cess of vaccine trials. From March 23 through October 30, our forecast of the pandemic’s
duration dropped by 2.5 years, of which 0.6 years was expected. The implied market
response to this progress – calibrated to match the response estimated in Section 3.2 – is
approximately 16.3%.

Thus, without conditioning on any other shocks, the basic dynamics of our model
can account for approximately two-thirds of the observed market decline and about one-
third of the recovery through our sample period. To shed light on factors the model may
be missing, it is useful to decompose the initial market decline into components due to
cash flow news, real interest rate news, changes in the equity risk premium. Recently,
Knox and Vissing-Jorgensen (2021) report empirical estimates of the same decomposition
during 2020 using information in options markets, inflation swaps, and S&P 500 dividend
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futures. We describe in the online appendix a way to identify the return components, rCF,
rRF,and rRP within the model. With the baseline calibration the results are:

rCF = −0.2834, rRF = 0.2201, rRP = −0.1727.

Consistent with Knox and Vissing-Jorgensen (2021), we find substantial and nearly
offsetting positive and negative components of discount rate news, that is rRF + rRP is
small.20 The risk premium component is due to the the pandemic health shocks. As
is well-known from the long-run risk literature, investors with Epstein-Zin preferences
and γ > 1/ψ are averse to uncertainty and growth-rate risk. Also, in the model, real
rates decline on entering the pandemic with the riskless rate turning mildly negative,
consistent with the data. However, the model’s rate is higher in the non-pandemic state
than in the data, leading us to overstate rRF relative to the estimates of Knox and Vissing-
Jorgensen (2021).

Our model differs from Knox and Vissing-Jorgensen (2021) in attributing large effects
to cash flow news. In fact, expected cash flows did decline steeply in early 2020: De-
cember 2020 S&P 500 dividend futures declined more in percentage terms than did the
overall stock market,21 However, as Knox and Vissing-Jorgensen (2021) show, near-term
dividends makes up a small component of market value. So declines in the discounted
sum (e.g., for 10 years ahead) cannot account for a large component of the market drop.
As a result, and combined with the small net discount rate effects, the authors are left
attributing most of the market decline to residual unidentified “long-term effects.”

In our model, there are both short-term cash-flow effects from lower output, as well
long-term effects from the loss of part of the capital stock. Evidently the market was
anticipating less short-run impact, but greater long-term impact, perhaps due to scarring
type effects that are absent from the model. Recall that, while we assume permanent

20More accurately, Knox and Vissing-Jorgensen (2021) find that during two weeks in March there was a
large temporary positive spike in real interest rates due to a severe sell-off in the Treasury bond mar-
ket, combined with a temporary spike in the equity premium as estimated from options market implied
volatility. During that episode, the two discount rate components moved strongly in the same direction,
fully accounting for the market sell-off. Outside that window, however, the net contribution of discount
rate news to explaining cumulative returns is minor.

21The December contract, quoted in units of the S&P 500 index, dropped from 62.5 at the end of 2019 to
39 on 3/23/20, a decline of 47%. Using this contract as a denominator, the price-dividend ratio on the
market actually went up over this period.
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effects of the pandemic on the level, q, we assume purely transitory effects on the growth
rate of dq once the pandemic ends. The market may have not been so sure.

Turning to the implication for our conclusions, it is clear that adding negative long
run effects in order to match the observed market decline (while holding other return
components fixed) will imply larger welfare gains to mitigating the pandemic. It is im-
portant to recognize that, while the model’s return decomposition can be altered (e.g.,
with different preference parameters), this will not necessarily lead to large welfare ef-
fects if we still impose that the calibration matches the magnitude of the market response
to vaccine progress. As described in Section 4, the latter condition effectively pins down
the severity of the pandemic.

Next consider the path of consumption. An extremely prominent feature of the 2020
experience was the rapid plunge in consumption in March and April followed by a com-
plete rebound by early 2021. In the context of the model, consumption is driven primarily
by the wealth process, dq. (The effect of changes in the marginal propensity to consume is
second order.) A large decline in observed consumption is consistent with the occurrence
of one or more health shocks to q in the early part of the year. These Poisson events are
the way in which the pandemic is realized within the model. In fact, the early occurrence
of such a shock – which was not considered above – can also bring the model’s implied
stock market decline directly into line with the observed fall.

However, as just discussed, the model has no mechanism for the reversal of these
shocks after the pandemic ends, still less while the pandemic remains in progress. How,
then, can the model explain the consumption rebound?

In our view, the most coherent interpretation of the consumption experience is that a
large component of the recovery must be regarded as having been unexpected. Indeed,
from the analysis above, it would be seemingly impossible to build a model in which a
strong rebound in consumption is expected ex ante within a pandemic and in which the
stock market drops nearly 40% due to the arrival of the pandemic. Moreover, the strong
rebound in stock prices after March is also consistent with the interpretation of substan-
tial unexpected good news about fundamentals, further helping to reconcile the model’s
implications of a rally only partially explained by vaccine progress. Moreover, evidence
in Hong et al. (2020a) and Gormsen and Koijen (2020), respectively, supports strong posi-
tive revision in corporate cash flows during the pandemic, by examining expectations of
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stocks’ earnings and implied dividend yields.
In the context of the model, unexpected consumption changes are described by the

Gaussian component of wealth shocks, which can be viewed as encompassing mecha-
nisms like (unanticipated) policy interventions that are outside the model. Invoking large
positive shocks is more plausible if the scale of these shocks, governed by σ(s), s > 1, is
large. For parsimony, we chose to fix the parameter σ(s) = σ(0) = 0.05 for all s. This
value makes, for example, the 8% increase in consumption in the third quarter extremely
unlikely. If, alternatively, we set σ(s) = 0.10, s > 1, such a realization, while still large,
becomes a 1.6-σ event, i.e., not unrealistically unlikely.

Returning to implications for the welfare calculation, increasing the Gaussian un-
certainty within the pandemic requires lowering the expected magnitude of the health
shocks in order to maintain consistency with our estimate of the market impact of vac-
cine progress. Such a substitution of less (asymmetric) disaster risk for more (symmetric)
Gaussian risk makes the pandemic somewhat less bad in welfare terms, but does not
qualitatively alter our conclusions. In particular, recalibrating with σ(s) = 0.10, s > 1 re-
duces the welfare benefit of a one-year duration reduction of the pandemic from 4.6% to
3.9% of wealth.

To summarize, fully accounting for the behavior of the financial markets and the real
economy during 2020 is beyond the scope of our baseline stylized model. Nor is it the
main objective of the paper. Nevertheless, the primary contours of the data can be reason-
ably described as an outcome within the model, given certain realizations of the stochastic
shocks, as described above. We have noted the sensitivity of our central findings to some
model variations that might better match the experience of that year. The next section
considers in detail three distinct generalizations of the model.

6 Extensions
We next examine some extensions of the model to highlight features absent in our reduced
form that may make ending the pandemic more or less valuable than our benchmark
estimate.
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6.1 Endogenous Vaccine Development

First, a potential criticism of the model is that it includes no actual vaccine develop-
ment technology. The reason for this is simply that parameterizing and calibrating a
bio-pharmaceutical R&D production function is beyond the scope of our study. How-
ever, there could be a concern that we overstate the value of ending the pandemic by not
giving the economy a real option to address it. We now show a tractable way to do this,
and we explain why our results are consistent with this extension. In a nutshell, opti-
mal research effort will impose a constraint on the parameters that does not affect our
empirical identification of the pandemic duration and severity.

Suppose that, when a pandemic arrives, the representative agent has the ability to
choose an expenditure rate ι that increases the arrival rate of vaccine progress. The most
parsimonious specification would just be linear:

λ(ι) = L0 + L1 ι.

(The discussion will treat the 2-state model. Generalization to S-states is straightforward.)
Given the rate, the dynamics of wealth, dq/q, picks up a new term −ι dt for the duration
of the pandemic. Without loss of generality, we can assert that whatever ι level the agent
chooses in the first pandemic is also optimal for all subsequent pandemics. For notational
simplicity below, define the adjusted drift during the pandemic as

µS(ι) = µ(1)− ι

where µ(1) is the benchmark growth rate without research effort. While this formulation
is too sparse to address issues of public versus private returns to research expenditure,
it does allow us to formulate and solve a model in which vaccine progress (and exiting
from pandemic) is an endogenous outcome.

Notice that, given a choice of ι, the economy behaves exactly as in our reduced-form
case. Hence the solution for optimal consumption and the value function are unchanged.
In particular, we can write the value function within the pandemic as H(1;λ(ι),µS(ι)). To
choose the optimal policy, ι∗, the agent simply maximizes this function. This verifies that
the optimal rate is constant within a state and does not vary across pandemics. Of course,
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a necessary condition for an interior optimum is

∂H
∂µS

= L1
∂H
∂λ

.

Optimality of the research effort does constrain admissible pairs of λ and µS via this
relation.

Clearly in an economy with powerful research technology (where L1 is a large num-
ber), agents can make the pandemic very brief (in expectation) at low cost. Hence, the
endogenous value of λ would be high, and agents would pay less to return to the non-
pandemic state than in an economy with inferior vaccine technology. However, recall
that our benchmark calibration above already conditioned on different values of λ. We
showed that the welfare gain depended strongly on the remaining expected duration of
the pandemic, which could be inferred in the data from our estimation of the expected
time to deployment of a vaccine during 2020.

Now, taking λ as fixed at an observed value λ̂ say, consider the ratio

f (µ̂S) =
∂H
∂µS

∣∣∣∣
λ̂,µ̂S

/
∂H
∂λ

∣∣∣∣
λ̂,µ̂S

.

Given any value of the technology parameter L1, the first order condition above requires
us to use the value of µ̂S satisfying f (µ̂S) = L1. Assuming a solution exists, this is the full
economic content of endogenizing vaccine investment in this setting.

Will imposing this restriction on µS affect our estimated welfare gain? To see why
it will not, recall that the stock market response to vaccine progress pinned down the
quantity that we called ∆mQ, the difference between the (risk neutral) expected growth
rate of q in the pandemic and during normal times. As shown in Figure 6, this difference
effectively determines V (via the intermediate quantity g1) regardless of the values of the
other pandemic parameters. Determining µS from the above first order condition does
not change our empirical inference about ∆mQ.22

To be clear, the conclusion is not that endogenizing vaccine development is unimpor-
tant in determining the value of ending the pandemic. Rather, we are pointing out that

22In terms of the model parameters, ∆mQ depends upon several things besides µS, including the expected
health shocks per unit time and the degree of risk aversion.
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our empirical work has already determined (approximately) the key inputs to that value.
Taking those quantities at face value, adding assumptions about the development tech-
nology and imposing the restriction of optimal investment do not perturb the calculation.

6.2 Endogenous Pandemic Severity and Labor Externalities

In this subsection, we propose a version of the model in which the pandemic parameters
for the wealth process are endogenized through the choice of labor supply. Doing so will
allow us to examine how much the value of curtailing the pandemic is influenced by the
extent to which individual choices deviate from the socially optimal policies.

In this version of the model, wealth accumulates according the stochastic process

dq = ℓαqµdt− Cdt + σℓα/2qdBt (21)

in the non-pandemic state, and

dq = ℓαqµdt− Cdt + σℓα/2qdBt − [ℓε + k + KL]qdJt. (22)

in the pandemic state. As before, C is the endogenous consumption rate, and now ℓ is the
household’s labor supply, and α ∈ (0,1) is the elasticity of expected output with respect
to labor. The results below all go through with constant returns to scale in the drift term.
Crucially, both individual and aggregate labor are assumed to affect the agent’s exposure
to the health shock via the jump size. Let

χ(ℓ, L) ≡ [ℓε + k + KL], (23)

where ε is exposure to the pandemic via private labor, k is exposure to the pandemic un-
related to labor, L is aggregate labor supply, and K is exposure via aggregate labor. These
parameters can capture losses of wealth due to health-induced disruptions to work, the
need to work from home with attendant productivity impact and loss of human capital,
deadweight losses from bankruptcy, and frictions from labor reallocation. We will assume
parametric restrictions on ε, k and K to be small enough that (1− χ) ∈ (0,1). The agent
takes the aggregate supply of labor L as given in her optimization problem.

Agents’ preferences are as in Section 4.2. We assume no disutility to labor supply and
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no frictions in adjusting ℓ. We assume ℓ ∈ [0,ℓ], where the upper bound ℓ is the agents’
total available work capacity. (In the numerical work we normalize ℓ = 1.)

The agent’s problem is now to choose in each state s optimal consumption C(s, L∗(s))
and labor ℓ(s, L∗(s)) that maximizes the objective function. We impose that agents have
rational expectations about L∗(s), the aggregate labor in equilibrium. In other words,
individual agents’ decisions in the aggregate should lead to a wealth (consumption) dy-
namic that is confirmed in equilibrium. This implies the following for wealth dynamics
in the pandemic regime:

dq(s) = [ℓ(s, L∗(s))]αqµdt− C(s, L∗(s))dt + σ[ℓ(s, L∗(s))]α/2qdB− χ(ℓ(s, L∗(s)), L∗(s))qdJt

(24)

Since L∗(s) is a constant for each s, as the agent has rational expectations about L∗(s), the
above dynamics are identical to those assumed by the agent. Substituting for the equi-
librium fixed point that L∗(s) = ℓ(s, L∗(s)), we can then obtain the rational expectations
equilibrium outcomes.

Proposition 4. Equilibrium labor in the non-pandemic state is given by

L(0) = L(S) = ℓ (25)

Equilibrium labor in pandemic states L∗(s) ∀s ∈ {1, . . . ,S− 1} solves23

χ (L(s), L(s)) = k + (ε + K)L(s) =
[
1− (L(s))

1−α
γ ν

]
(27)

where

ν ≡

α
(

µ− 1
2 γσ2

)
ζε

−
1
γ

. (28)

23It can be shown that given α ∈ (0,1), the second order condition for a maximum is satisfied whenever

µ− 1
2

γσ2 > 0 (26)

which also implies ν > 0.
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In the non-pandemic state, the agent faces no cost to supplying labor and exerts ef-
fort fully. However, in the pandemic states, the agent increases exposure to health risk
by supplying labor, which creates a tradeoff between augmenting the capital stock and
reducing the loss of capital that arises from health shocks. A key property of the model is
that the agent contracts labor relative to the non-pandemic state.

Note the externality in our set up via the KL term in the size of the Poisson shock
(where L is aggregate labor) that is not internalized by each agent. A central planner
would factor this in the socially efficient choice of labor. This is tantamount to replacing ε

by (ε + K) in ν above to obtain νCP:

νCP ≡

α
(

µ− 1
2 γσ2

)
ζ(ε + K)

−
1
γ

(29)

Socially efficient labor choice LCP(s) in the pandemic states is then given by

χ (L(s), L(s)) = k + (ε + K)L(s) =
[
1− (L(s))

1−α
γ νCP

]
(30)

It is then straightforward to show that νCP > ν for K > 0 and γ > 0, and hence LCP(s) <
L(s), i.e., the socially efficient choice of labor in pandemic states is smaller than the pri-
vately optimal one.

Given the optimal labor and consumption policies, the model solutions in Proposition
1 can be directly applied. As before, the pandemic parameters only enter the system of
equations via the constants g0 and g1, which we can write compactly as

g(x,y) ≡ (1− γ)ρ

(1− ψ−1)
− xα(1− γ)

(
µ− 1

2
γσ2

)
− y

(
[1− χ(x, x)]1−γ − 1

)
(31)

with g0 = g(ℓ,0) and g1 = g(ℓ(s),ζ).
To quantitatively evaluate the model’s implications, we require that the parameters

are such that the endogenous severity of the pandemic is in line with our empirical esti-
mates. To this end we report the implied ∆mQ for a range of values of K and ε in Table
6.24 Recall, our empirical estimates suggested a value for this quantity in the range of
24The exercise fixes α and k. These parameters have less direct impact on the degree of labor externality.
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0.05-0.06. We also report the optimal labor supply in the pandemic state, ℓ⋆. Some empir-
ical evidence suggests labor contraction≈20% in April 2020 (see, e.g., Cajner et al. (2020))
corresponding to ℓ⋆ ≈ 0.80. The table identifies parameter regions (e.g., the upper left of
the tables) that can match both restrictions.

Table 7 shows the effect on V of the labor market externality for the same range of
parameter values. The left panel provides a direct measure of the scale of the externality
via the ratio of the central planner’s solution for optimal labor in the pandemic to that
actually chosen by agents. With parameters in the region identified above, the socially
optimal lockdown is quite severe with labor restricted to 30%-40% of the privately opti-
mal amount.25 The right panel shows that, in this region, the welfare gain is 12%-19%
lower under the central planner’s solution.

In addition to the finding that ending the pandemic is less valuable under a central
planner, comparing variation across the two panels reveals the pattern that a stronger ex-
ternality (as measured by lower values of ℓ⋆cp/ℓ⋆) are associated with decreasing relative
welfare gains under the central planner. The extra degree of lockdown that the planner
would impose decreases the expected welfare cost. We acknowledge that if the arrival
of the pandemic were to result in social costs that are outside the capital stock dynam-
ics for the agent, then the planner might value the ending the pandemic more than the
representative agent.

6.3 Learning and Uncertainty

We have used the S-state version of our model to study the reaction of markets to vaccine
news within a pandemic. Relating its predictions to the empirical evidence in Section
3 has helped identify plausible parameters affecting the value of a vaccine. Now we
return to the two-state version of our model in order to examine the role of vaccine news
from a different angle. Specifically, we are interested in the accumulation of information
over longer horizons about the frequency and duration of pandemics. We study the effect
upon the value of a vaccine of uncertainty about these quantities and of differing attitudes
towards uncertainty.

25While our model does not feature SIR dynamics, models with SIR dynamics and labor externalities gen-
erally see more severe lockdown policies under a central planner (see Abel and Panageas (2021)).
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6.3.1 Information Structure

Recall that in the two-state model η is the intensity of switching from state 0 (“off”) to
state 1 (“on”) and λ is the intensity of switching from 1 to 0. In this section, we assume
that agents have imperfect information about these intensities.

Let us stipulate that at time zero the agent has beliefs about the two parameters that
are described by gamma distributions, which are independent of each other. Each gamma
distribution has a pair of non-negative hyperparameters, aη,bη and aλ,bλ, that are related
to the first and second moments via

E[η] =
aη

bη , Std[η] =

√
aη

bη , (32)

and likewise for λ.
By Bayes’ rule, under this specification, as the agent observes the switches from one

regime to the next, her beliefs remain in the gamma class with the hyperparameters up-
dating as follows

aη
t = aη

0 + Nη
t

bη
t = bη

0 + tη

where tη represents the cumulative time spent in state 0 and Nη
t represents the total num-

ber of observed switches from 0 to 1. Analogous expressions apply for λ. Thus, during
the “off” regime, the only information that arrives (on a given day, say) is whether or not
we have switched to “on” on that day. If that has occurred, the counter Nη increments by
one and the clock tη turns off (and tλ turns on). In this version of the model, that is the
entirety of the information revelation. In contrast to the previous section, no good or bad
news arrives about progress during a regime. Although this setting lessens the model’s
ability to speak to high-frequency dynamics, it allows us to study the role of uncertainty
in the economy’s longer term evolution.

Under the above information structure, the economy is characterized by a six-dimensional
state vector consisting of the stock of wealth, q, aη,bη, aλ,bλ and the regime indicator S.
However this six-dimensional space can actually be reduced to three.

Since the switches between states alternate, let us define an integer index Mt to be the
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total number of switches Nη
t + Nλ

t and then (assuming we are in state 0 at time 0) Nη
t =

Mt/2 when M is even, and Nλ
t = (Mt + 1)/2 when M is odd. Knowing M (along with

the priors aη
0 and aλ

0 ) is equivalent to knowing aη
t and aλ

t . Given these values, specifying
the current estimates

η̂t ≡ Et[η] and λ̂t ≡ Et[λ] (33)

is equivalent to specifying the remaining hyperparameters bη
t and bλ

t . Thus, solutions
to the model can be described as a sequence of functions HM(η̂, λ̂) for the agent’s value
function at step M.

Compared to the full-information model in Section 4, within each regime the only
new changes to the state come through variation in the estimates η̂t and λ̂t which change
deterministically with the respective clocks tη and tλ. Holding M fixed, the dynamics of
η̂t are given by

dη̂t = d
aη

t

bη
t
= aη

t d
1
bη

t
(34)

= − aη
t

(bη
t )

2
dt (35)

= − (η̂t)2

aη
t

dt. (36)

Under partial information, we proceed as in Section 4 to write-out the HJB equation
with the state variables following the dynamics determined by the representative agent’s
information set. As before, we can conjecture a form of the value function

JJJ =
q1−γ

1− γ
H(η̂, λ̂, M;C,ℓ). (37)

And, as before the first order condition for consumption yields C = q (ρψ) He
1 (where e1 is

defined in Section 4.1). This follows because consumption does not enter into any of the
new terms involving the information variables. Also fortunately, none of the information
variables appears in terms affected by labor supply, ℓ, and the function H drops out of the
first-order condition for ℓ. (Intuitively, nothing about the likelihood of changing regimes
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affects the optimal choice of labor within a regime.) This means that the solutions for ℓ⋆

can be computed independent of the rest of the system.
Using these the results, the HJB system can be written as the infinite-dimensional

linked PDEs, where M runs over the even integers, with the constants g0 and g1 are as
defined in Section 4 (see the Online Appendix for a derivation of (38)-(39):

g0 = ρψ

(
θ

ψ

)
H−ψ/θ

M + η̂

(
HM+1

HM
− 1

)
− (η̂)2

aη HM

∂HM

∂η̂
(38)

g1 = ρψ

(
θ

ψ

)
H−ψ/θ

M+1 + λ̂

(
HM+2

HM+1
− 1

)
− (λ̂)2

aλHM+1

∂HM+1

∂λ̂
. (39)

For large M, the estimation errors for both η and λ, expressed as a fraction of the
posterior estimates, go to zero:

Std[η]
E[η]

=
1√
aη

=
1√

aη
0 + Mt

. (40)

The system always converges to the full-information solution, providing a boundary con-
dition, which, together with the single-regime solutions on the edges of the (η̂, λ̂) plane,
enables computation of all individual H functions.26 It can be shown that, as in the full-
information case, a necessary and sufficient condition for existence of a solution is g0 > g1.

As in the previous section, once the value function is obtained, we can characterize
the certainty equivalent value of a vaccine that produces an immediate transition from
the pandemic state to the non-pandemic state. The next section performs this calculation
and analyzes the drivers of variation in that value.

6.3.2 Results

Table 8 shows numerical solutions for the value of a vaccine using the benchmark pa-
rameters from Section 4 but varying the elasticity of intertemporal substitution (EIS). The
upper two panels show the full-information solution, with the upper right case corre-
sponding to the benchmark ψ = 1.5, whereas the left panel lower the EIS to ψ = 0.15.
There is almost no difference between the two solutions (which verifies the robustness of

26Knowing the solution for higher M enables direct evaluation of the jump-terms in (38)-(39). Knowing the
solution on the inner edges enables explicit approximation of the first partial derivatives.
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the conclusions in Section 4 on this dimension). The bottom two panels show the results
under partial information. Specifically, results are computed under the assumption that
agents’ standard deviation of beliefs about the two parameters are equal to their mean
beliefs. Comparing the right-hand panels, we see that this degree of parameters uncer-
tainty has the effect of raising the level of wealth agents in the economy would be willing
to surrender to curtail the pandemic in the baseline case of a high EIS by between 7 and 15
percentage points, or up to a factor of three times the full information value. The left hand
panels show the same effect, but amplified to an extreme level. With a low intertemporal
elasticity, the representative agent would be willing to sacrifice on the order of 50 to 60
percent of accumulated wealth.

An additional computation that our framework can address is the value of a perma-
nent end to pandemics. Table 9 shows the fraction of wealth agents in the economy would
exchange to live in a world with no pandemics. (Formally, this is equivalent to letting λ

go to infinity.) As expected, the values now show the same pattern as in Table 8, but
exaggerated still further. In this case, eliminating the threat and resolving the parameter
uncertainty can lead to valuation of 25 to 50% for high EIS agents and 60 to 80 percent for
low EIS agents.

The latter finding may be counterintuitive based on the common understanding of
Epstein-Zin preferences under which agents with ψ < 1/γ can be viewed as having a
preference for “later resolution of uncertainty." In the current model, agents facing a pan-
demic are much worse off with parameter uncertainty. This is verified in Table 10 where
we compute the value that agents would pay to resolve parameter uncertainty without
ending the on-going pandemic.

For both values of EIS the numbers are again extremely high, and for the low EIS case
they are even higher than in the previous table. Apparently, in this economy, low-EIS
agents would pay dearly for early resolution of uncertainty. The source of the extreme
welfare loss in this case is the endogenous consumption response. Recall that low-EIS
agents cut their consumption during a pandemic. With parameter uncertainty this re-
sponse becomes extreme because agents cannot rule out the worst case scenario that λ∼ 0,
i.e., that there will be no vaccine and the pandemic effectively lasts forever. This possibil-
ity leads to extreme savings and, consequently, little utility flow from consumption.

Even with high EIS however, the effect of parameter uncertainty is economically large,
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and is again due to agents being unable to rule out worst-case scenarios. From a policy
perspective, the implication of this finding is that, while working to end the current pan-
demic is enormously valuable, equally and perhaps even more valuable is anything that
resolves uncertainty about the frequency and, especially, the duration of current and fu-
ture pandemics. In addition to developing potential cures and vaccines, understanding
the fundamental science behind the fight against viral pathogens and investing in the
infrastructure for future responses can provide crucial gains to welfare.

7 Conclusion
This paper provides an estimate of the value of reducing the expected duration of a pan-
demic using the joint behavior of stock prices and a novel vaccine progress indicator
based on the chronology of stage-by-stage advance of individual vaccine candidates and
related news during 2020. In the context of a general equilibrium regime-switching model
of repeated pandemics, the sensitivity of the stock market to vaccine progress indicator
is essentially determined by the expected rate of loss (or lower growth rate) of wealth
during a pandemic. Our empirical estimate can thus be translated into an implied wel-
fare gain attributable to reverting to the non-pandemic state. With standard preferences
parameters, this gain is approximately 5-15% of wealth, depending on the expected re-
maining duration of the pandemic. This number can also be interpreted as a measure of
the expected cost of the pandemic.

We extend the model to endogenize vaccine research and show that our results are
robust to this generalization. We also endogenize the degree of pandemic severity by
including labor choice, which affects agents’ exposure to the virus. When agents do not
internalize the effect of their exposure choice on the economy’s overall exposure, the cost
of the pandemic rises relative to central planning. The socially optimal lockdown policy
lessens the welfare improvement due to exiting the pandemic.

We also show that the cost rises sharply when there is uncertainty about the stochas-
tic parameters governing the frequency and duration of pandemics. Indeed, we find that
the representative agent would be willing to pay as much for resolution of this param-
eter uncertainty as for resolving the pandemic itself. An important policy implication
is that understanding the fundamental biological and social determinants of future pan-
demics, for instance, whether pandemics are related to zoonotic diseases triggered more
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frequently by climate change, may be as important to mitigating their economic impact
as resolving an immediate pandemic-induced crisis.
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Table 1: Forecast Comparison

Deutsche Bank
Date Survey median VPI % respondents below

May 1.158 0.958 35.0
June 1.162 0.893 31.2
July 0.920 0.595 20.8
Sep 0.625 0.561 44.3

Superforecasters
Date Survey median VPI % respondents below

April 1.902 1.291 16.1
May 1.603 0.958 14.6
June 1.189 0.893 31.0
July 0.808 0.595 32.7
August 0.519 0.606 58.4
September 0.445 0.518 57.2

Note: Table compares forecasts for the earliest date of vaccine availability in years. The top panel
compares the median from a survey conducted by Deutsche Bank, while the bottom panel com-
pares the median from a survey conducted by Good Judgement Inc. The column VPI denotes the
forecast from our estimated vaccine progress indicator, and the last column reports the percent
of respondents from each survey with forecasts below ours. Survey respondents are reported in
calendar intervals. The comparison assumes a uniform distribution of forecasts in time within
the median bin. The survey dates are as of the end of the month in the first column, except the
Deutsche Bank September survey which is for the week ending September 11, 2020.
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Table 2: Stock Market Sensitivity to Vaccine Progress

(1) (2) (3)
OLS KPSS (Prior 1) KPSS (Prior 2)

γ1 -0.070 -0.088 -0.096
(0.067) (0.035) (0.035)

γ2 0.131 0.163 0.168
(0.092) (0.035) (0.035)

βt−2 1.316 -0.536 -0.382
(1.526) (0.423) (0.290)

βt−1 -4.124 -1.924 -1.269
(3.121) (0.746) (0.586)

βt -1.100 -0.942 -0.991
(0.739) (0.592) (0.606)

βt+1 0.719 -0.517 -0.432
(2.054) (0.412) (0.342)

βt+2 -5.404 -2.446 -1.011
(1.729) (0.760) (0.458)

α 0.204 0.240 0.279
(0.097) (0.079) (0.078)

∑2
h=−2 βt+h -8.593 -6.365 -4.086

(0.653) (1.345) (1.056)

N 206 206 206

Note: Table shows the results from regression (1). The dependent variable is daily excess returns
on the market portfolio in percent. Independent variables include two lags of excess returns on
the market portfolio, a five-day window of changes in vaccine progress indicator in years, and
dummy variables for each jump date from Baker et al. (2020) unrelated to news about vaccine
progress. The return on the value-weighted CRSP index is used from January 1, 2020 to October
31, 2020. All columns are employ the baseline specification with news applying to all states, deter-
ministic depreciation, base copula correlation of 0.2, probability of success in the application state
equal to 0.95 and excludes candidates from China and Russia. Column 1 estimates the regression
using OLS. Columns 2 and 3 employ the methodology of Kogan et al. (2017) and assume the pre-
truncated normal distribution for βt has standard deviation equal to 1. Column 2 further uses the
same prior for all response coefficients, while column 3 uses a pre-truncated standard deviation
of 0.7 for the first lead and lag and 0.5 for the second lead and lag. OLS results display Newey-
West standard errors with four lags in parentheses and standard deviation of the F-statistic on
∑2

h=−2 βt+h. KPSS results show posterior standard deviations in parentheses.
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Table 3: Stock Market Sensitivity to Vaccine Progress – Robustness

(1) (2) (3) (4) (5) (6)

News All states None Current state All states All states All states
Depreciation Y N Y Y Y Y
Cor(n,n′) 0.2 0.2 0.2 0.4 0.2 0.2
πbase

approval 0.95 0.95 0.95 0.95 0.85 0.95
Ex-China and Russia Y Y Y Y Y N

γ1 -0.070 -0.067 -0.068 -0.075 -0.073 -0.080
(-1.04) (-1.01) (-1.02) (-1.10) (-1.08) (-1.50)

γ2 0.131 0.116 0.127 0.131 0.134 0.111
(1.43) (1.32) (1.42) (1.42) (1.46) (1.37)

βt−2 1.316 2.389 1.543 1.275 0.959 1.980
(0.86) (1.07) (0.90) (0.73) (0.63) (1.19)

βt−1 -4.124 -5.400 -3.168 -3.566 -3.927 -5.331∗

(-1.32) (-1.36) (-1.21) (-1.16) (-1.31) (-1.80)

βt -1.100 -0.570 -1.046 -1.185 -1.157 1.084
(-1.49) (-0.50) (-1.41) (-1.57) (-1.56) (0.78)

βt+1 0.719 2.085 1.112 0.807 0.600 -0.696
(0.35) (0.79) (0.59) (0.43) (0.30) (-0.44)

βt+2 -5.404∗∗∗ -7.310∗∗∗ -5.189∗∗∗ -4.872∗∗∗ -5.057∗∗∗ -4.171
(-3.13) (-4.30) (-3.65) (-2.84) (-2.72) (-1.61)

α 0.204∗∗ 0.195∗ 0.226∗∗ 0.220∗∗ 0.203∗∗ 0.210∗∗

(2.11) (1.94) (2.28) (2.27) (2.11) (2.14)

∑2
h=−2 βt+h -8.593 -8.806 -6.746 -7.541 -8.582 -7.134

F-stat (P-value) 8.21 (0.00) 5.50 (0.02) 5.37 (0.02) 5.52 (0.02) 8.62 (0.00) 3.69 (0.06)

N 206 206 206 206 206 206

Note: Table shows the results from (1). The dependent variable is daily percent excess returns on
the market portfolio. Independent variables include two lags of excess returns on the market port-
folio, a five-day window of changes in vaccine progress indicator in years, and dummy variables
for each jump date from Baker et al. (2020) unrelated to news about vaccine progress. The first col-
umn is the baseline specification with news applying to all states, deterministic depreciation, base
copula correlation of 0.2, probability of success in the application state equal to 0.95 and excludes
candidates from China and Russia. Column 2 removes news and depreciation; 3 restricts news
to the current state and increases the ∆π from news on positive data releases, positive enrollment
and dose starts to 15%, 5% and 5%, respectively; 4 doubles the base copula correlation to 0.4; 5
decreases the probability of success to 0.85 in the application state; and 6 includes candidates from
China and Russia. The return on the value-weighted CRSP index is used from January 1, 2020 to
October 31, 2020. The table uses Newey-West standard errors with 4 lags; t-statistics are shown in
parentheses. Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4: Parameter Values

Parameter Symbol Value

Coefficient of relative risk aversion γ 4.0
Elasticity of intertemporal substitution ψ 1.5
Rate of time preference ρ 0.04
Non-pandemic expected output growth µ(0) 0.055
Non-pandemic output volatility σ(0) 0.05

Note: Table shows the preference and non-pandemic parameter values used in inferring the welfare benefit
V from the stock market reaction to vaccine progress.

Table 5: Welfare Gain as a Function of Reduction in Expected Duration

T2: EXPECTED DURATION AFTER INTERVENTION (YEARS)
3.50 3.00 2.50 2.00 1.50 1.00 0.50 0

T1:
INITIAL EXPECTED DURATION

4.00 1.98 3.95 5.93 7.92 9.90 11.88 13.85 15.82
3.50 - - 2.02 4.04 6.06 8.08 10.10 12.12 14.13
3.00 - - - - 2.06 4.13 6.19 8.25 10.31 12.36
2.50 - - - - - - 2.11 4.21 6.32 8.42 10.51
2.00 - - - - - - - - 2.15 4.30 6.45 8.59
1.50 - - - - - - - - - - 2.20 4.39 6.58
1.00 - - - - - - - - - - - - 2.24 4.48
0.50 - - - - - - - - - - - - - - 2.29

Note: The table shows the percentage of wealth that the representative would be willing to trade for an
intervention that shortens the pandemic from an initial expected duration of T1 years to another state with
T2 < T1 years remaining in expectation. The pandemic parameters are S = 9,η = 0.03,λ = 0.25,χ = 0.0475,
and ζ = 1.
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Table 6: Endogenous Pandemic Parameters via Labor

ℓ⋆ ∆mQ

K→ K→
0.8471 0.8204 0.7959 0.0517 0.0577 0.0636

←
ε

←
ε0.7885 0.7651 0.7435 0.0509 0.0565 0.0619

0.7357 0.7151 0.6960 0.0503 0.0555 0.0605
0.6880 0.6698 0.6529 0.0497 0.0546 0.0593

Note: Table shows the implied values of equilibrium labor, ℓ⋆, and decline in expected growth rate of q in
pandemic states, ∆mQ, by fixing the elasticity of expected output with respect to labor α = 0.5, exposure
to the pandemic unrelated to labor k = 0.006, intensity of switching to the pandemic state η = 0.04, and
intensity of switching to the non-pandemic state λ = 0.5. Each panel varies the exposure to the pandemic
via private labor, ε, and via aggregate labor, K. ε increases down the rows and takes the values 0.023, 0.024,
0.025 and 0.026, while K increases left-to-right across columns and takes the values 0.018, 0.024 and 0.030.

Table 7: Externality and Welfare Gain

ℓ⋆cp/ℓ⋆ Vcp/V

K→ K→
0.3762 0.2994 0.2450 0.8661 0.8167 0.7725

←
ε

←
ε0.3860 0.3083 0.2530 0.8777 0.8309 0.7884

0.3957 0.3170 0.2609 0.8882 0.8438 0.8031
0.4049 0.3256 0.2686 0.8975 0.8555 0.8165

Note: The left panel provides a direct measure of the scale of the externality via the ratio of the central
planner’s solution for optimal labor in the pandemic to that actually chosen by agents. The right panel
shows the ratio of V as determined by the central planner to that chosen by agents. Both fix the elasticity
of expected output with respect to labor α = 0.5, exposure to the pandemic unrelated to labor k = 0.006,
intensity of switching to the pandemic (non-pandemic) state η = 0.4 (λ = 0.5). Exposure to the pandemic via
private labor, ε, increases down to rows and takes values {0.023,0.024,0.025,0.026}. Exposure via aggregate
labor, K, increases left-to-right and takes values {0.018,0.024,0.030}.
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Table 8: Welfare Gain under Parameter Uncertainty

Low Uncertainty / Low EIS Low Uncertainty / High EIS
λ̂ λ̂

0.2 0.5 1.0 0.2 0.5 1.0
0.01 0.242 0.114 0.058 0.01 0.242 0.116 0.058

η̂ η̂0.05 0.192 0.102 0.055 0.05 0.185 0.102 0.055

High Uncertainty / Low EIS High Uncertainty / High EIS
λ̂ λ̂

0.2 0.5 1.0 0.2 0.5 1.0
0.01 0.633 0.613 0.558 0.01 0.379 0.302 0.222

η̂ η̂0.05 0.456 0.479 0.477 0.05 0.256 0.222 0.186

Note: Table shows the fraction of wealth the agent would be willing to surrender for a one-time transition
out of the pandemic state. High (low) EIS sets ψ = 1.5 (ψ = 0.15). Agents know the parameters λ and η in
low uncertainty, and in high uncertainty have posterior standard deviation equal to their point estimates
of them. All use coefficient of relative risk aversion γ = 4, rate of time preference ρ = 0.04, elasticity of
expected output with respect to labor α = 0.5, output volatility σ = 0.05, expected output growth µ = 0.05,
and exposure to the pandemic via private labor ε = 0.4, unrelated to labor k = 0.1, and via aggregate labor
K = 0.4, and Pt intensity ζ = 1.
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Table 9: Value of Eliminating Pandemics

Low Uncertainty / Low EIS Low Uncertainty / High EIS
λ̂ λ̂

0.2 0.5 1.0 0.2 0.5 1.0
0.01 0.308 0.136 0.068 0.01 0.327 0.148 0.074

η̂ η̂0.05 0.430 0.214 0.111 0.05 0.429 0.239 0.130

High Uncertainty / Low EIS High Uncertainty / High EIS
λ̂ λ̂

0.2 0.5 1.0 0.2 0.5 1.0
0.01 0.813 0.720 0.613 0.01 0.503 0.378 0.265

η̂ η̂0.05 0.831 0.751 0.658 0.05 0.538 0.435 0.335

Note: Table shows the fraction of wealth the agent would exchange to live in a world with no pandemics.
High (low) EIS sets ψ = 1.5 (ψ = 0.15). Agents know the parameters λ and η in low uncertainty, and in high
uncertainty have posterior standard deviation equal to their point estimates of them. All use coefficient of
relative risk aversion γ = 4, rate of time preference ρ = 0.04, elasticity of expected output with respect to
labor α = 0.5, output volatility σ = 0.05, expected output growth µ = 0.05, and exposure to the pandemic
via private labor ε = 0.4, unrelated to labor k = 0.1, and via aggregate labor K = 0.4, and Pt intensity ζ = 1.

Table 10: Value of Information

Low EIS High EIS
λ̂ λ̂

0.2 0.5 1.0 0.2 0.5 1.0
0.01 0.733 0.675 0.587 0.01 0.270 0.273 0.209

η̂ η̂0.05 0.708 0.682 0.617 0.05 0.200 0.255 0.236

Note: Table shows the fraction of wealth the agent would be willing to surrender for a one-time transi-
tion from high to low parameter uncertainty. High (low) EIS sets ψ = 1.5 (ψ = 0.15). Agents know the
parameters λ and η in low uncertainty, and in high uncertainty have posterior standard deviation equal
to their point estimates of them. All use coefficient of relative risk aversion γ = 4, rate of time preference
ρ = 0.04, elasticity of expected output with respect to labor α = 0.5, output volatility σ = 0.05, expected
output growth µ = 0.05, and exposure to the pandemic via private labor ε = 0.4, unrelated to labor k = 0.1,
and via aggregate labor K = 0.4, and Pt intensity ζ = 1.
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