
Internet Appendix for

“A Pyrrhic Victory?

Bank Bailouts and Sovereign Credit Risk”

This Internet Appendix serves as a companion to the paper “A Pyrrhic Victory? Bank

Bailouts and Sovereign Credit Risk”. It contains the proofs to the propositions and other

results that were not included in the main text in order to conserve space.

IA.1 Derivations

IA.1.1 Proof of Lemma 1

Use (6) to substitute for ws in the financial sector’s first-order condition and then take the

derivative with respect to the transfer T0:.

d2f(K0, s0)

ds20

ds0
dT0

psolv + ws
dpsolv
dT0

− c′′(s0)
ds0
dT0

= 0

ds0
dT0

= −ws
dpsolv
dT0

/

(
d2f(K0, s0)

ds20
psolv − c′′(s0)

)
(IA.1)

Since dpsolv/dT0 = p(A1), this term is positive so long as A1 is in the support of Ã1 and the

transfer increases the probability of solvency by decreasing the solvency threshold A1. Hence

the numerator of the right hand side in the second line is negative. That the denominator

is also negative follows from the concavity of f and the convexity of c. This establishes that

the right side is positive and hence ds0/dT0 > 0.



IA.1.2 A Candidate for V (K) based on f(K, s)

Consider the frictionless counterpart to our setting, with psolv = 1. In a dynamic setting, the

expression for V would reflect the value of future production of the non-financial sector as

a function of its future capital, K. For simplicity, consider one extra period of output. The

case of more than one future period should be similar as it is the sum of multiple one-period

output. The output of the additional period is given by maxs f(K, s). It is natural then to

let

V (K) = max
s
f(K, s)− wss

with ws determined by the financial sector’s first-order condition. With f(K, s) = αK1−ϑsϑ,

this implies that

V (K) = (1− ϑ)αK1−ϑs∗ϑ

where s∗ is the optimal choice of s.

Let c(s) = 1
m
sm for m ≥ 2. Then the first-order condition of the financial sector implies

that ws = sm−1 and the first-order condition of the non-financial sector implies that:

ϑαK1−ϑsϑ−1 = ws = sm−1

Solving for s∗, substituting into the expression above for V (K), and simplifying gives:

s∗ = (ϑα)
1

m−ϑK
1−ϑ
m−ϑ

V (K) = (1− ϑ)α
m

m−ϑKγ where γ =
(1− ϑ)

1− ϑ
m

Hence, V (K) has the power form that is used in the paper. Moreover,for m ≥ 2 (which is

assumed), γ < 1.
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IA.1.3 Properties of Expected Tax Revenue: T

For the assumed parametric forms, we obtained the following results:

T = θ0γ
γ

1−γ (1− θ0)
γ

1−γ

dT
dθ0

= γ
γ

1−γ (1− θ0)
γ

1−γ − θ0
γ

1− γ
γ

γ
1−γ (1− θ0)

γ
1−γ−1 =

T
θ

(
1− γ

1− γ
θ0

1− θ0

)
d2T
dθ20

= −2
γ

1− γ
γ

γ
1−γ (1− θ0)

γ
1−γ−1 +

θ0
1− θ0

(
γ

1− γ
− 1

)
γ

1− γ
γ

γ
1−γ (1− θ0)

γ
1−γ−1

The second line shows that dT /dθ0 > 0 on [0, θmax0 ) and dT /dθ0 < 0 on (θmax0 , 1) where

θmax0 solves: γ
1−γ

θmax0

1−θmax0
= 1. It is zero at θmax and at 1 (where T = 0).

The third line implies that d2T /dθ20 < 0 on [0, θmax0 ] so T is increasing but concave on

this region. To see this, note that the third line can be rewritten as:

d2T
dθ20

=

(
−2 +

γ

1− γ
θ0

1− θ0
− θ0

1− θ0

)
γ

1− γ
γ

γ
1−γ (1− θ0)

γ
1−γ−1

We know that −1 + γ
1−γ

θ0
1−θ0 < 0 on [0, θmax0 ] and so, on this region, the leading term in

parenthesis is negative. Since the remaining terms are positive, d2T /dθ20 < 0 in this region.

IA.1.4 The Government’s First-Order Condition

From (3) we obtain the following first order condition of the government for the tax rate, θ0:[
∂f(K0, s0)

∂s0
− c′(s0)

]
ds0
dT0

dT0
dT

dT
dθ0

+ [V ′(K1)− 1]
dK1

dθ0
= 0 (IA.2)

Note that the derivatives of s0 and T here are total derivatives, since the government’s

choices are subject to the equilibrium choices of the financial and non-financial sectors.

As shown above, dT /dθ0 is positive and decreasing (towards zero), but remains positive,

on [0, θmax0 ]. Therefore, the mapping from tax level (θ0) to the marginal rate of transformation

of taxes into tax revenue (dT /dθ0), is invertible on this region. A high tax rate corresponds

to a low marginal rate of transformation of taxes into tax revenue and vice versa. Note

that the optimal tax rate must be in the region [0, θmax0 ], since any further increase in θ0

beyond θmax0 reduces tax revenue and investment. Hence, we can limit the consideration of
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the optimal tax rate to this region. Since dT /dθ0 is positive and the mapping from θ0 to T is

invertible in this region, we can instead consider the government’s first order condition with

respect to T , which turns out to be more intuitive for analyzing the government’s problem.

Dividing (IA.2) through by dT /dθ0, and rewriting (dK1/dθ0)/(dT /dθ0) = dK1/dT we obtain

this alternative first-order condition:[
∂f(K0, s0)

∂s0
− c′(s0)

]
ds0
dT0

+ [V ′(K1)− 1]
dK1

dT
= 0 (IA.3)

where the term dT0/dT , which equals 1 under a no-default government policy, is omitted

from the expression.

IA.1.5 Under-Investment Loss Due to Taxes

We want to obtain an expression for the second term in (8), the transfer version of the

government’s first-order condition:

[V ′(K1)− 1]dK1

dθ0
dT
dθ0

The first-order condition for investment of the non-financial sector, (7), and the para-

metric form for V imply that:

V ′(K1)− 1 = θ0V
′(K1)

= θ0γK
γ−1

Substituting in the parametric form also gives:

dK1

dθ0
=

1

1− θ0
1

γ − 1
K1

Moreover, from (7) we can solve for the equilibrium K1 as a function of θ0:

K1 = γ
1

1−γ (1− θ0)
1

1−γ

We can obtain the numerator to our fraction of interest by multiplying the expressions for
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the two terms together:

[V ′(K1)− 1]
dK1

dθ0
=

θ0γ

(1− θ0)(γ − 1)
Kγ

=
θ0

1− θ0
γ

γ − 1
γ

γ
1−γ (1− θ0)

γ
1−γ

=
T
θ0

θ0
1− θ0

γ

γ − 1

where the second line follows by substituting in the expression for K0 and the third line

follows by substituting in the expression for T . Appendix IA.1.3 derives dT /dθ0. Dividing

the expression for the numerator by the expression for dT /dθ0 shows that the marginal loss

per transfer is given by:

dL
dT

=
[V ′(K1)− 1]dK1

dθ0
dT
dθ0

=
− θ0

1−θ0
γ

1−γ

1− θ0
1−θ0

γ
1−γ

From this it is clear that dL/dT → −∞ as θ0 → θmax (since at θmax the denominator is 0).

Additionally, we have:

d2L
dT 2

=
d2L
dθ0dT

dθ0
dT

< 0 for θ0 ∈ [0, θmax) .

Hence, the marginal loss to the economy is increasing in magnitude (getting worse) as the tax

rate increases up to θmax and expected tax revenue rises to T max. In other words, marginal

tax revenues becomes increasingly expensive to raise as the marginal loss to the economy

from underinvestment rises in the tax rate/level of tax revenues.

IA.1.6 Proof of Proposition 1A

Substituting (6) into (5) and solving, we obtain the equilibrium level of s0 (note that we refer

to the equilibrium level of s0 also as s0, an abuse of notation intended to reduce clutter):

s0 =

(
ϑα

β

) 1
m−ϑ

K
1−ϑ
m−ϑ
0 p

1
m−ϑ
solv
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Now substitute this into the expression for dG/dT to get:

dG
dT

=
∂f(K0, s0)

∂s
(1− psolv)

ds0
dT0

=
1

m− ϑ
(
ϑαK1−ϑ

0

) m
m−ϑ β

−ϑ
m−ϑp

ϑ
m−ϑ−1
solv (1− psolv)

dpsolv
dT0

Taking derivative again with respect to T shows that:

d2G
dT 2

∝
(

ϑ

m− ϑ
− 1

)
p

ϑ
m−ϑ−2
solv (1− psolv)

dpsolv
dT0

− p
ϑ

m−ϑ−1
solv

(
dpsolv
dT0

)2

+ p
ϑ

m−ϑ−1
solv (1− psolv)

d2psolv
dT 2

0

where dT0/dT = 1 is omitted. Since the second term in the above expression is always

negative, a sufficient condition to ensure that d2G/dT 2 < 0 is to ensure that the first and

third terms in the above expression are non-positive. The condition: m − 2ϑ ≥ 0 ensures

that the first term is non-positive. The third term is negative if the slope of the probability

density of Ã1 at A1 is non-positive. Letting Ã1 take a uniform distribution sets this term to

zero.1

Since we have shown that both G and L are concave in T , the government’s problem is

concave in T . Furthermore, the optimum tax revenue, T̂ , must correspond to a tax rate

θ̂ < θmax, because the first-order condition is negative at θmax. To see that this is the case,

note that dL/dT → ∞ as θ → θmax while dG/dT is finite for psolv > 0.

IA.1.6.1 Impact of L1 and ND on T

Let x = L1 or ND. Rewriting (8) using the gain and loss notation as dG/dT + dL/dT = 0

and then taking the derivative with respect to x gives:

d2G
dxdT

+
d2L
dxdT

= 0 (IA.4)

1Using an exponential distribution would also be sufficient. For the log-normal distribution, this term
will be negative for a range of values below a cutoff.
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Using the Implicit Function Theorem, the two terms on the right side evaluate to the fol-

lowing:

d2G
dxdT

=
d

dpsolv

(
dG
dT

){
∂psolv
∂T0

(
∂T0
∂T

dT
dx

+
∂T0
∂x

)
+
∂psolv
∂x

}
d2L
dxdT

=
d2L
dT 2

dT
dx

Substituting into (IA.4) and combining the terms multiplying dT /dx yields:

dT
dx

[
d

dpsolv

(
dG
dT

)
∂psolv
∂T0

∂T0
∂T

+
d2L
dT 2

]
= − d

dpsolv

(
dG
dT

){
∂psolv
∂T0

∂T0
∂x

+
∂psolv
∂x

}
(IA.5)

Note for the left-hand side term in parenthesis:

d

dpsolv

(
dG
dT

)
∂psolv
∂T0

∂T0
∂T

+
d2L
dT 2

=
d2G
dT 2

+
d2L
dT 2

< 0

For x = ND:

∂psolv
∂T0

∂T0
∂x

+
∂psolv
∂x

=
∂psolv
∂T0

(kA − 1) < 0

since ∂T0/∂ND = −1 and ∂psolv/∂ND = (∂psolv/∂T0)kA.

For x = L1:

∂psolv
∂T0

∂T0
∂x

= 0 and
∂psolv
∂x

< 0

so for either value of x, the term in braces on the right side is negative. Finally, the inter-

mediate steps in the proof of the concavity of G in T show that

d

dpsolv

(
dG
dT

)
< 0

Combining these results shows that dT /dx > 0 for x = L1 or ND.

IA.1.6.2 Impact of ND on T0

To show how T0 changes with ND, begin by using the result above for T . In particular,

letting x = ND in (IA.5) and simplifying the right-side expression using ∂psolv
∂T0

∂T0
∂x

+ ∂psolv
∂x

=
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∂psolv
∂T0

(kA − 1) and d2G/(dT0dT ) = d2G/dT 2 gives:

dT
dND

[
d2G
dT 2

+
d2L
dT 2

]
= (1− kA)

d2G
dT 2

dT
dND

=
(1− kA)d

2G
dT 2

d2G
dT 2 + d2L

dT 2

⇒ 0 <
dT
dND

< 1− kA

Since T0 = T −ND,

dT0
dND

=
dT
dND

− 1 ⇒ −1 <
dT0
dNd

< −kA

Moreover, this shows that T0 +kAND, the gross transfer to the financial sector, is decreasing

in ND.

IA.1.7 Proof of Proposition 1B

The tradeoff involved in default is the loss of the deadweight cost D, versus the benefit of

a larger transfer with reduced underinvestment made possible by diluting pre-existing debt.

The net benefit of this tradeoff can be written as follows:∫ T̂0
def−kND

T̂0
no def

dG
dT0

dT0 +

∫ T̂ def
T̂ no def

dL
dT

dT −D (IA.6)

where the first integral is the gain due to increasing the (gross) transfer, while the second

integral is the reduction in underinvestment loss due to reducing tax revenue. Note that

dG/dT0 here is evaluated at the no-default values. If (IA.6) is positive, it is optimal for the

sovereign to choose default, while if it is negative then no-default is optimal.

To prove point (1), take the derivative of (IA.6) with respect to L1 and simplify the

resulting expression to obtain:

∫ T̂0
def−kAND

T̂0
no def

d

dL1

(
dG
dT0

)
> 0

The intermediate steps in Appendix IA.1.4 show that the derivative in the integrand is

positive. As shown in Appendix IA.1.6.2, the gross transfer is decreasing in ND, so T def0 >

kAND + T no def0 and hence the integral is positive.
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To prove the statement for ND, take the derivative of (IA.6) with respect to ND. Sim-

plifying the derivative at the upper integration boundary gives −kAdG/dT0
∣∣
T̂0
def−kAND

while

from the lower boundary we get we get dG/dT0
∣∣
T̂0
no def . The remaining part of the derivative

is: ∫ T̂0
def−kAND

T̂0
no def

d

dND

(
dG
dT0

)
= kA

∫ T̂0
def−kAND

T̂0
no def

d

dT0

(
dG
dT0

)
= kA

(
dG
dT0

∣∣∣
T̂0
def−KAND

− dG
dT0

∣∣∣
T̂0
no def

)
Combining the three parts of the derivatives gives: (1 − kA)dG/dT0

∣∣
T̂0
no def > 0. To show

that the benefit of defaulting is convex in ND, take a second derivative to obtain: (1 −
kA)d2G/dT 2

0

∣∣
T̂0
no defdT no def0 /dND > 0.

Finally, taking the derivative with respect to kA, we obtain −(dG/dT0)ND < 0 at the

upper integration boundary and 0 at the lower boundary. In the interior we obtain

∫ T̂0
def−kAND

T̂0
no def

d

dkA

(
dG
dT0

)
= ND

∫ T̂0
def−kAND

T̂0
no def

d

dT0

(
dG
dT0

)
< 0

so the derivative is negative.

IA.1.8 Optimal Tax Revenue Under Uncertainty

Since NT = (T −ND/H)H and P0 is given by (10) under uncertainty, T0 can be written in

terms of T and H as follows:

T0 = NTP0 = (T − ND

H
)E0

[
min

(
H, R̃V

)]
. (IA.7)

As earlier, the first order condition for the government’s choice of T is given by:

dG
dT0

dT0
dT

+
dL
dT

= 0

Whereas under certainty dT0/dT =1, this is no longer the case. Taking the derivative of T0

in (IA.7) with respect to T (while holding H constant) and then using (9) to substitute into
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the resulting expression gives dT0/dT = P0H. Therefore, the first-order condition for T is:

dG
∂T0

HP0 +
dL
dT

= 0 (IA.8)

with T0 given in (IA.7). The loss due to underinvestment, L, is the same as under certainty.

Recall that it is concave, with the magnitude of the marginal loss, dL/dT , increasing in T .

Similarly, dG/dT0, the gain to the economy from the increased provision of financial services,

remains the same with uncertainty and is decreasing in T0. However, the rate at which T0

increases in T is now HP0 rather than 1. Note that this rate is a constant in T , as P0 is

only a function of H, and is less than 1.2 Finally, the second-order condition for T holds

d2G
∂T 2

0

(HP0)
2 +

d2L
dT 2

< 0

as G and L are concave and HP0 is a function only of H.

IA.1.9 Optimal Probability of Default Under Uncertainty

Changing H affects two components of the government’s objective. As can be seen from

(IA.7), increasing H changes T0. Unlike the case with T , however, increasing H does not

have any effect on investment. Instead, the cost associated with increasing H is that it

increases the probability of default, and so also the expected deadweight cost. The first-

order condition for H shows this tradeoff:

dG
dT0

dT0
dH
−Ddpdef

dH
= 0 (IA.9)

From (10), it is clear that dpdef/dH > 0 and we can think of choosing H exactly as choosing

the probability of default. The effect on T0 = P0NT is less immediately clear, since increasing

H increases NT , but decreases P0. However, (IA.7) shows that dT0/dH > 0. To see this we

break up T0 into two terms based on (IA.7) and consider their derivatives:

d (T − ND

H
)/dH =

ND

H2
> 0 (IA.10)

dE0

[
min

(
H, R̃V

)]
/dH = (1− pdef ) > 0 (IA.11)

2To see this, note that HP0 = E0

[
min

(
H, R̃V

)]
< E0[R̃V ] = 1.
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Demonstrating the equivalence in the second line is straightforward, as shown in Appendix

IA.1.10. We refer to (IA.10) as increasing the dilution of existing bondholders’ claim, since

the increase in H reduces the share of tax revenues that goes to the holders of the existing

debt, ND. We refer to (IA.11) as reducing either the default buffer or precautionary taxation,

since by increasingH, it increases the probability that R̃V < H, in which case the government

defaults. Hence, (IA.10) and (IA.11) show that increasing H (while holding T constant)

increases T0. It immediately follows that dG/dH > 0 and there is a benefit to increasing H.

Substituting in for dT0/dH, the first-order condition becomes:

dG
dT0

(
ND

H2
E0

[
min

(
H, R̃V

)]
+ (T − ND

H
)(1− pdef )

)
−Ddpdef

dH
= 0

Appendix IA.1.10 also shows that as H increases, raising it further becomes decreasingly

effective at increasing T0:

d2T0
dH2

=
−2ND

H3

∫ H

0

xpR̃V (x)dx− (T − ND

H
)pR̃V (H) < 0

where pR̃V (x) denotes the probability density of R̃V evaluated at x. In other words, T0

is concave in H. Together with the concavity of G in T0, this implies that G is concave

in H, e.g., d2G/dH2.3 The implication is that while increasing H provides a benefit to

the government by increasing the transfer through dilution and reduction of precautionary

taxation, the marginal benefit is decreasing. Meanwhile, the government bears a cost for

increasing H; the resulting increased likelihood of default increases the expected deadweight

cost of default.

We assume that at the optimal choice of H, d2 pdef/d
2H ≥ 0.

3Note that in the first-order conditions, we have assumed that the government takes into account the
(negative) impact of higher H on prices. Thus, we have NOT treated the government here as a price-taker.
If we instead treat the government as a price-taker, the resulting conditions are simpler: dT0/dH = P0T
(as dP0/dH is omitted due to the price-taking assumption) and the first-order condition is: dG/dT0(P0T )−
Ddpdef/dH = 0. In this case, concavity of G in H still holds because G is concave in T0.

11



IA.1.10 Uncertainty Calculations

To derive dE0

[
min

(
H, R̃V

)]
/dH, rewrite the expectation as:

E0

[
min

(
H, R̃V

)]
=

∫ H

0

x pR̃V (x)dx+H

∫ ∞
H

pR̃V (x)dx

Now taking the derivative with respect to H, one obtains:

dE0

[
min

(
H, R̃V

)]
/dH =HpR̃V (H)−HpR̃V (H) +

∫ ∞
H

pR̃V (x)dx

=

∫ ∞
H

pR̃V (x)dx

=(1− pdef )

The first line is just the derivative, while the last line follows by definition of pdef .

Using this result we have that:

dT0
dH

=
ND

H2
E0

[
min

(
H, R̃V

)]
+

(
T − ND

H

)
(1− pdef )

Substituting in the expression above for E0

[
min

(
H, R̃V

)]
, taking the derivative with re-

spect to T0, and simplifying gives:

d2T0
dH2

=
−2ND

H3

[∫ H

0

x pR̃V (x)dx+H

∫ ∞
H

pR̃V (x)dx

]
+
ND

H2
(1− pdef )

+
ND

H2
(1− pdef )−

(
T − ND

H

)
pR̃V (H)

=
−2ND

H3

[∫ H

0

x pR̃V (x)dx

]
−
(
T − ND

H

)
pR̃V (H)

Since (T −ND/H) = NT/H > 0, it is clear that d2T0/dH
2 < 0.

IA.1.11 Proof of Proposition 2

The starting point are the first-order conditions for T and for H, given by (IA.8) and (IA.9),

respectively. Substituting out dG
dT0

and rearranging gives the relation
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− dL
dT

dT0
dH

= HP0D
dpdef
dH

= 0 (IA.12)

Differentiating with respect to L1 gives on the left-hand side:

− d
2L
dT 2

dT
dL1

dT0
dH
− dL
dT

d2T0
dT dH

dT
dL1

− dL
dT

d2T0
dH2

dH

dL1

and on the right-hand side:

(1− pdef )D
dpdef
dH

dH

dL1

+HP0D
d2pdef
dH2

dH

dL1

Combining the terms in dT
dL1

gives:

d2L
dT 2

dT0
dH
− dL
dT

d2T0
dT dH

and it is not difficult to see that each term has a positive sign. Combining the terms in dH
dL1

gives:

dL
dT

d2T0
dH2

+ (1− pdef )D
dpdef
dH

+HP0D
d2pdef
dH2

and again each term is positive. Thus, we see that at the optimal values, sgn
(
dT
dL1

)
=

sgn
(
dH
dL1

)
. It remains to show that both of these signs are indeed positive.

To that end, let V represent the objective function of the government with the first-order

conditions given by (IA.8) and (IA.9). Let X = [T , H] be the vector of the two controls.

Then the first order conditions can be written as just dV/dX = 0. Differentiating this with

respect to L1 then gives

dV

dL1dX
+
d2V

dX2

dX

dL1

= 0 .

By assumption, the optimal X is internal and so d2V/dX2 is negative definite. Isolating
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dX/dL1 then gives

dX

dL1

= −
(
d2V

dX2

)−1
dV

dL1dX
.

Premultiplying by dV T

dL1dX
we obtain

dV T

dL1dX

dX

dL1

= − dV T

dL1dX

(
d2V

dX2

)−1
dV

dL1dX
> 0

where the sign follows since the Hessian is negative definite. Since

d2G
dL1dT

> 0

it is straightforward to see that dV
dL1dX

> 0, i.e., both terms in the vector are positive. Hence,

we must have that dX/dL1 > 0 as well since both terms in this vector are of the same sign.

Similar steps prove the result for ϑ.

IA.1.12 Proposition 3

Below we derive the return on financial sector equity, debt, and the sovereign bond. A

complication created by the guarantee is that the number of outstanding sovereign bonds is

state contingent, since it depends on the realization of Ã1. Let NG(Ã1) denote the number

of new bonds issued towards the guarantee. This means there will also be a different price

for sovereign bonds contingent on the realization of Ã1. Hence, P0 will now depend on Ã1,

as will T0. This state-contingency is implicit below but will be omitted to avoid excessive

notation.

Assume that Ã1 ∼ U [Amin, Amax] and consider two types of shocks. The first is a shock

to the value of the risky asset held by the financial sector. This shock changes the mean of

Ã1 by shifting the support of Ã1 by an amount dA. Thus, Ã1 remains uniformly distributed

with the same dispersion, but a different mean. The second shock affects the sovereign

bond price by changing the expected growth rate of future output by dR. For R̃V uniformly

distributed this corresponds to a dR shift in its support.

14



From the model we have that the value of financial sector equity is given by

E =

∫ Amax

A1

(Ã1 + T0 − L1)p(Ã1)dÃ1

where p(Ã1) is the uniform probability density. Calculating the change in E induced by a

shock dA gives

dE

dA
= psolv +

T0(Amax)− T0(A1)

Amax − Amin
= psolv .

The second equality follows by the fact that there is no change in the guarantee once Ã1 > A1

because at this point the financial sector is solvent. Calculating the change in E due to a

shock dR gives

dE

dR
=
dP0(A1)

dR
NTpsolv

Note that since there is no change in the guarantee for Ã1 > A1, the quantity dP0/dR is the

same for any Ã1 > A1.

Next, we have that the value of financial sector debt is given by

D =

∫ Amax

A1

L1p(Ã1)dÃ1 +

∫ A1

Amin

(Ã1 + T0)p(Ã1)dÃ1 +

∫ A1

Amin

(L1 − Ã1 − T0)P0p(Ã1)dÃ1

The last term gives the value of the guarantee. Differentiating, simplifying, and combining

terms gives that the change in D induced by a shock dA is

dD

dA
= (1− psolv)(1− P0(Amin)) +

T0(A)− T0(Amin)

Amax − Amin
(1− P0(Amin))

The change in D due to a shock dR is given by

dD

dR
=

∫ A1

Amin

dP0

dR
NT (1− P0)p(Ã1)dÃ1 +

∫ A1

Amin

(L1 − Ã1 − T0)
dP0

dR
p(Ã1)dÃ1

The second term represents the change in value of the existing guarantee due to the change

in the sovereign bond price. The first term incorporates both the change in the value of the

existing transfer plus the change in the ‘amount’ of guarantee. That is, if dR is positive, the
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transfer increases in value by dT0/dR, but this reduces the amount of guarantee given by

the government for each realization by that same amount. This is true for each realization

of Ã1 under the integral sign.

We now approximate these values by by ignoring the state-dependence of P0 on Ã1 in

the above expressions. This simplifies them to:

dE

dA
= psolv

dE

dR
≈ dP0

dR
NTpsolv

and

dD

dA
≈ (1− psolv)(1− P0)

dD

dR
≈ dP0

dR
NT (1− psolv)(1− P0) +

1

2

dP0

dR
(1− psolv)(A1 − Amin)

By inspection one can then see that the following relation holds for these approximations:

dD ≈ 1− psolv
psolv

(1− P0) dE +
1

2
(1− psolv)(A1 − Amin) dP0

Simple algebra and a substitution then give (12),

dD

D
≈ (1− psolv)(1− P0)

psolv

E

D

dE

E
+

(1− psolv)2(Amax − Amin)

2

P0

D

dP0

P0

.

Hence, we have

dD

D
≈ βE

dE

E
+ βg

dP0

P0

.

where

βE =
(1− psolv)(1− P0)

psolv

E

D

βg =
(1− psolv)2(Amax − Amin)

2

P0

D
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IA.2 Model with State-Contingent Taxation

This section extends the model in the main text so that the government sets the tax rate at

time 2, thereby making the tax rate fully state contingent. Let ω denote the state realized

at t = 2, and let θ̃(ω) and Ṽ (K1)(ω) be the state-contingent tax rate and the realized value

of output. The following proposition gives for the optimal state-contingent tax policy.

Proposition IA.1. Let T0 be the government’s desired transfer and pdef be the maximum

probability of default it is willing to tolerate to achieve it. Assuming the (T0, pdef ) pair is

feasible, the optimal debt issuance N̂T and state-contingent tax rate θ̃(ω) implementing it are

given by:

N̂T = min

(
T0

1− pdef
, max

{
V : prob

(
Ṽ (K1) ≥ V

)
= (1− pdef )

}
−ND

)
and

θ̃(ω) =
N̂T +ND

Ṽ (K1, ω)
on any C ⊂ {ω : Ṽ (K1, w) ≥ N̂T +ND} where prob(C) = (1− pdef )

and
{
θ(ω) : ω ∈ C

}
is chosen in any way that satisfies

E0

[
θ̃(ω)Ṽ (K1, ω)1ω∈C

]
= (N̂T +ND)

(
T0

N̂T

− (1− pdef )
)

Proof: The proof is instructive in clarifying the tax policy given in the Proposition. We

prove its optimality by showing that among all policies that achieve the transfer T0 with

probability of default (no greater than) pdef , it requires the minimum expected tax revenue.

Since underinvestment is a function only of expected tax revenue, the policy induces the

minimum possible underinvestment distortion and is therefore optimal.

To see that the policy given in the Proposition requires the minimum expected tax

revenue, note that for any tax policy, the required expected tax revenue T is bounded below

by the following:

T ≥ (NT +ND)P0

= T0 +NDP0 .

To avoid excess taxation, the government sets T = T0 +NDP0. This is always possible with

state-contingent taxation since the tax rate can be adjusted state-by-state. Furthermore, to

17



minimize T0 +NDP0 given T0 and ND, the government must minimize P0. As P0 = T0/NT ,

this is equivalent to maximizing NT . There are two restrictions on the maximal value of NT ,

(1) NT ≤
T0

1− pdef
(2) NT +ND ≤ max {V : prob (V (K1) ≥ V ) = 1− pdef}

Restriction (1) follows from the fact that P0 ≥ 1− pdef . Restriction (2) follows directly from

the requirement that the probability of default be less than or equal to pdef . The value of

N̂T given in the Proposition is the minimum of (1) and (2). The optimal tax policy θ̂(ω)

then follows directly from T0, pdef and the choice of N̂T . QED.

For an illustration of Proposition IA.1, consider the optimal policy when

N̂T =
T0

1− pdef

holds, which we refer to as case 1. We call the alternative possibility case 2. Under case 1,

the optimal tax policy simplifies to

θ̃(ω) =
N̂T +ND

Ṽ (K1, ω)
with probability 1− pdef

and θ̃(ω) = 0 otherwise (i.e., with probability pdef )

As required, the probability of default is pdef . Moreover, note that P0 = 1− pdef and hence,

as required, the transfer is P0N̂T = T0. Finally, the expected tax revenue raised by the policy

is T̂ = (N̂T + ND)(1 − pdef ) = T0 + ND(1 − pdef ). To see that this the minimal expected

tax revenue necessary required by T0 and pdef , note that for any tax policy, the required

expected tax revenue T is bounded below by the following:

T ≥ (NT +ND)P0

= T0 +NDP0

≥ T0 +ND(1− pdef ) = T̂ .

The first inequality is an equality if there is never any surplus tax revenue. The second

inequality follows from the fact that P0 ≥ (1− pdef ). Under the policy given in Proposition

IA.1, both inequalities are in fact equalities.
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Note that optimal state-contingent taxation does not eliminate the possibility of default.

If anything, it makes it clear that the sovereign uses the possibility of default to dilute

existing bondholders and thereby increase the transfer to the banks without increasing the

underinvestment distortion. This is clearly demonstrated by the expression for the expected

tax revenue under case 1, which can be rewritten as:

T = T0 +ND − pdefND︸ ︷︷ ︸
dilution

with the dilution term indicated. The expression indicates how increasing the probability

of default allows the government to reduce the expected tax revenue necessary to support a

transfer of T0. This highlights the trade-off faced by the sovereign between creditworthiness

and underinvestment.

Hence, the ability to make taxes state contingent does not change the fundamental trade-

off between the size of the bailout, underinvestment, and the probability of default. What it

does give the sovereign is the ability to eliminate any excess taxation and thereby minimize

the amount of underinvestment incurred for any level of transfer and probability of default.

We now conclude the analysis of the optimal taxation policy by showing how to check

the feasibility of a pair (T0, pdef ). This can be checked as follows. First find T̂ corresponding

to the optimal N̂T . Note that N̂T is itself a function of T̂ since the expected tax revenue

determines investment and hence output, i.e., V (K1(T )). This means that P0 = T0/N̂T is

also a function of T̂ . Therefore, T̂ is a solution to the equation

T̂ = T0 + P0(T̂ )ND ,

which holds under the optimal policy since there is no excess taxation. If T > T max (the

Laffer limit on tax revenues) then (T0, pdef ) is infeasible. Otherwise, if N̂T corresponds to

case 1, then (T0, pdef ) is feasible. If N̂T corresponds to case 2, then (T0, pdef ) is feasible if

and only if

E0

[
Ṽ (K1, ω)1ω∈C

]
≥ T̂ − (N̂T +ND)(1− pdef ) .

In words, the maximum tax revenue that can be raised in the default states must be sufficient

to cover the difference between expected total tax revenue and the tax revenue raised in the

non-default states, (N̂T +ND)(1− pdef ).
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IA.2.1 The Optimal Probability of Default and Transfer

We now prove analogs to Propositions 1 and 2 in the main text. It now becomes natural to

take T0 and pdef as the controls instead of T and H. Note that for any feasible pair (T0, pdef )

there is a corresponding unique pair (T , H). For simplicity, we only consider an open region

of the parameter space in which case 1 holds for the optimal T0 and pdef . In this case we

have that

P0 = 1− pdef
N̂T = T0/(1− pdef )

T = T0 +ND(1− pdef ) .

The first-order condition for T0 is similar to that for the model in the main text, save for the

change of variable,

dG
dT0

+
dL
dT

= 0 (IA.13)

where the gain G and loss T functions are the same as in the text and we use the fact that

dT /dT0 = 1 under case 1. Note also that since there is no excess taxation,

H =
NT +ND

T
=

1

P0

.

There are three possible cases for the first-order condition for pdef :

− dL
dT

ND −D ≤ 0 when pdef = 0 (IA.14)

− dL
dT

ND −D = 0 when 0 < pdef < 1 (IA.15)

− dL
dT

ND −D > 0 when pdef = 1 (IA.16)

where we use the fact that dT /dpdef = −ND under case 1. The first region for the FOC

corresponds to pdef = 0. This occurs when the benefit of increasing pdef is low and attains

when the optimal taxation level T̂ is low, resulting in low marginal loss from underinvestment.

The second region corresonds to when the optimal probability of default is internal, and hence

the first-order condition holds with equality. Finally, it is possible to have pdef = 1, in which

case the third region holds. Note that for the first and third regions, any increase in the
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transfer T0 must come from an increase in tax revenues T since pdef is not changing.

The second-order conditions for T0 and for pdef when 0 < pdef < 1 are as follows,

d2G
dT 2

0

+
d2L
dT 2

< 0

d2L
dT 2

N2
D < 0

while the cross-partial is

− d
2L
dT 2

ND

The determinant of the Hessian matrix is therefore

d2G
dT 2

0

d2L
dT 2

N2
D > 0 .

and hence the Hessian is negative definite in this region.

The following proposition shows that the sovereign keeps the probability of pdef at zero

so long as financial sector debt-overhang L1 is low, and increases pdef in L1 when L1 is high.

Proposition IA.2. (1) If financial sector debt-overhang L1 is low, the optimal probability

of default is p̂def = 0. If L1 is sufficiently high, p̂def is increasing in L1. (2) The optimal

transfer T̂0 is increasing in L1.

Proof: When 0 < p̂def < 1, both first-order conditions hold. Substituting the first-order

condition for T0 into that for pdef gives

dG
dT0

ND −D = 0

Taking the derivative of this equation with respect to L1 implies

d2G
dL1dT0

+
d2G
dT 2

0

dT0
dL1

= 0

⇒dT0
dL1

= − d2G
dL1dT0

/
d2G
dT 2

0

> 0

The last inequality follows from the fact that an increase in L1 increases the marginal gain

from the transfer: d2G
dL1dT0

> 0.
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Taking the derivative of the first-order condition for pdef with respect to pdef gives

d2L
dT 2

dT
dL1

ND = 0

which implies that when 0 < p̂def < 1 (i.e., the optimal choice is interior), dT /dL1 = 0, i.e.,

total tax revenues are constant in L1. It follows from T = T0 +ND(1− pdef ) that

0 =
dT0
dL1

−ND
dpdef
dL1

⇒ dpdef
dL1

=
1

ND

dT0
dL1

> 0

Now consider the case of p̂def = 0. The first-order condition for T0 is unchanged when

pdef = 0. Taking its derivative with respect to L1 and rearranging gives

dT0
dL1

= − d2G
dL1dT0

/

(
d2G
dT 2

0

+
d2L
dT 2

)
> 0

The first-order condition pdef is

− dL
dT

ND −D < 0 .

So long as it is negative, p̂def = 0. Taking the derivative of this quantity with respect to L1

gives

− dL
2

dT 2

dT0
L1

ND > 0 .

Hence, the benefit to increasing pdef increases in L1 and can become positive for a sufficiently

large value of L1. QED.

The following proposition looks at the effect of existing sovereign debtND on the sovereign’s

optimal policy. For clarity in interpreting this comparative static, we assume that changing

the stock of existing government debt does not change the value of Ã1+AG. Since an increase

in ND of dND induces an increase in AG, the bank’s holdings of a fraction kA of existing

government debt, of dAG = kAdND, we assume an offsetting unifom shift of −kAdND in the

distribution of Ã1. Hence, any change in psolv is due to the change in the endogenous optimal

transfer T̂0.
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Proposition IA.3. (1) When existing government debt, ND, is low, the optimal probability

of default is p̂def = 0. If ND is sufficiently high then p̂def is increasing in ND. (2) The

optimal transfer T̂0 decreases in ND when p̂def = 0, and increases in ND when 0 < p̂def < 1.

Proof: When 0 < p̂def < 1 both first-order conditions hold and substituting the condition

for T0 into the one for pdef we again have

dG
dT0

ND −D = 0

Taking the derivative of this equation with respect to ND implies

d2G
dT 2

0

dT0
dND

ND +
dG
dT0

= 0

⇒ dT0
dND

= − dG
dT0

/
d2G
dT 2

0

1

ND

> 0

Taking the derivative of the first-order condition for p̂def gives

d2L
dT 2

dT
dND

ND +
dL
dT

= 0

⇒ dT
dND

= − dL
dT

/
d2L
dT 2

1

ND

< 0

It then follows from T = T0 +ND(1− pdef ) that

dT
dND

=
dT0
dND

+ (1− pdef )−ND
dpdef
dND

⇒ dpdef
dND

= − 1

ND

(
dT
dND

− dT0
dND

− (1− pdef )
)
> 0

Now consider the case of p̂def = 0. The first-order condition for T0 is unchanged. Taking its

derivative with respect to ND and rearranging gives

d2G
dT 2

0

dT0
dND

+
d2L

dNDdT
+
d2L
dT 2

0

dT0
dND

= 0

dT0
dND

= − d2L
dNDdT

/

(
d2G
dT 2

0

+
d2L
dT 2

)
< 0

since d2L
dNDdT

= d2L
dT 2

dT
dND

= d2L
dT 2 < 0. Substituting the first-order condition for T0 into that for
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pdef gives

dG
dT0

ND −D < 0 ,

which is the marginal benefit to increasing pdef . So long as it is negative, p̂def = 0. Taking

the derivative of this quantity with respect to ND gives

dG2

dT 2
0

dT0
ND

ND +
dG
dT0

> 0 .

Hence, the benefit to increasing pdef increases in ND and can become positive for a sufficiently

large value of ND.
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