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Abstract

In this Online Appendix, we solve a general equilibrium version of the model in the main text
and show that the predictions of the model are robust to this extension. We also solve a general
equilibrium model where the managerial costs of default are the motivation for firm hedging. We
show that the implications of this calibrated model are qualitatively the same as in the model
with risk averse managers. We also solve a model where default leads to supply disruptions,
which alters the spot price dynamics and thus has implications for the futures risk premium. In
this model higher default risk will tend decrease the futures risk premium as a supply disruption
will benefit the long side of the futures contract. This is counter to our empirical results, which
thus are consistent with the hedging story. Finally, we give some additional empirical results
that were not included in the main paper and describe in more detail the micro data set used
in the paper.
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1 General equilibrium version of main model

In general equilibrium, the consumers’ consumption of other goods will typically be affected by
the frictions in the commodity market. Thus, both the commodity ’demand’ shocks, Ct, and
the marginal intertemporal rate of substitution will be affected when varying the frictions in the
commodity market. Further, a general equilibrium model allow us to calibrate the model to gauge
the likely magnitudes of the effect of the model’s frictions.

We follow the same setup as in the partial equilibrium model given in the main paper, but now
also solve the consumers’problem. Let consumers’preferences be given by:

V = u (C0, Q0) + βE0 [u (C1, Q1)] , (1)

where the felicity function is of the constant elasticity of substitution (CES) form:

u(x, y) =
1

1− γ

{(
x(ε−1)/ε + ωy(ε−1)/ε

)ε/(ε−1)
}1−γ

, (2)

where ε is the intratemporal elasticity of substitution and γ is the level of relative risk-aversion.
The standard intratemporal first order condition implies that the equilibrium commodity spot price
St is given by:

St = ω

(
Ct
Qt

)1/ε

, (3)

as assumed earlier in the partial equilibrium version of the model. However, in the general equi-
librium case we assume that the consumers own a Lucas tree producing the numeraire good At,
as well as the commodity producing firms which produce the aggregate supply of the commodity
Qt. However, the consumers must hire managers to manage the firms (their inventory and hedging
decisions). The manager’s objective function is as in the partial equilibrium case (see Equation
(3) in the main paper).1 Consumers can also invest in the commodity futures markets, but only
through specialized funds who provide an aggregate number of contracts hs as the solution to the
problem given in Equation (8) in the main paper. Denote the cost charged per contract by these
funds as c. We assume the costs are incurred at time 0. The consumers’equilibrium consumption
of other goods in the first period will equal C0 = A0 − c × h∗, where h∗ is the equilibrium open
interest in the futures market, while in the last period C1 = A1.

In equilibrium, consumers’net present value of a marginal investment in a commodity futures
must be zero and so we have that c = E [Λ (S1 − F )]. Therefore, the aggregate loss due to in-
termediation is h∗E [Λ (S1 − F )]. Given the optimal position in futures contracts from Equation

(9) in the main paper, we have that the equilibrium aggregate cost is E[Λ(S1−F )]
γsσ

2
s

2
. The reason the

consumers are willing to incur this cost is the utility gain from moving to more optimal Q0 and Q1

as the futures price affects the commodity producers’inventory decisions. In equilibrium, we have
that E [Λ (S1 − F )] =

γpγs
γs+γp

σ2
sQ1 and so, substituting out σ2

s, we have:

Aggregate cost = c× h∗ =
1

γs

(
γpγs
γs + γp

)2

ω2Q
2(1−1/ε)
1 k, (4)

1We do not model the managers’consumption, but instead argue that this is a reasonable abstraction as there are
very few managers relative to the total population and so their consumption is a minuscule component of aggregate
consumption.
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where k is a positive constant defined earlier. In sum, both the supply of the commodity and con-
sumption of other goods are affected by the combination of hedging demand and limits to arbitrage.
It is clear then that the intertemporal marginal rate of substitution for consumers is explicitly a
function of both equilibrium inventory and the frictions that give rise to hedging demand and costly
intermediation in the futures market:

Λ
(
I , γp, γs

)
= β

(
C1

C0

)−γ1 + ω
(
Q1
C1

)(ε−1)/ε

1 + ω
(
Q0
C0

)(ε−1)/ε


(1/γ−ε)/((ε−1)/γ)

, (5)

where equilibrium consumption of other goods is C0 = A0− 1
γs

(
γpγs
γs+γp

)2
ω2Q

2(1−1/ε)
1 k and C1 = A1.

This analysis shows that the frictions assumed in this paper (limits to arbitrage and producer
hedging demand) in general equilibrium also affect the consumption of other goods and the equity
market pricing kernel. Thus, the covariance term in Equation (12) in the main paper is affected,
not only through the volatility of the commodity price as in the model presented in the main text,
but also through the dynamics of the pricing kernel (Λ). However, the identifying component of the
frictions lies in the risk compensation of the second term in Equation (12) in the main paper, which
is related to the magnitude of desired hedging and the total volatility (including any idiosyncratic
components) of the futures price.

To illustrate the model implications, we calibrate the model using key moments of the data:
in particular, the volatility of the commodity futures returns, commodity expenditure relative
to aggregate endowment (GDP) and aggregate endowment growth. All moments are quarterly,
corresponding to the empirical exercise in the next section. We calibrate the demand shock A1

to roughly correspond with aggregate GDP growth and set µ = 0.004, σ = 0.02 and the initial
demand shock A0 = 1. We set the depreciation rate, δ, to 0.01 and the coeffi cient of relative
risk-aversion, γ, to 2.5 which is within the range typically used in macro economic models. Next,
we calibrate the intratemporal elasticity of substitution ε and the constant ω jointly such that the
standard deviation of futures returns (S1 − F ) /F is about 20% per quarter, as in the data, and the
average commodity expenditure is about 10% of expenditures on other goods. Given the volatility
of demand shocks, this is achieved when ε = 0.1 and ω = 0.01. That is, consumers are relatively
inelastic in terms of substituting the commodity good for other goods, which is reasonable given
our focus on oil and gas in the empirical section.2 We let period 0 and period 1 production, g0 and
g1, be 0.8 and 0.75, respectively, such that inventory holdings are positive as in the data.

[Figure 1 about here]

The severity of the model’s frictions are increasing in the variance aversion of producers and
speculators, γp and γs. As we posit mean-variance preferences, the values of these coeffi cients do
not directly correspond to easily interpretable magnitudes (such as might be the case with relative
risk-aversion). We therefore use the following two economic measures to calibrate a reasonable range

2This also justifies our implicit model assumption that price risk outweighs quantity risk for the producers. As
pointed out by, e.g., Hirshleifer (1988), if the opposite is the case, producers would hedge by going long the futures
contract.
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for each of these parameters. First, we let the loss to the firm from hedging, h∗E [Λ (S1 − F )] , be
between 0.1% and 1% of firm value and, second, we let the abnormal quarterly Sharpe ratio earned
by speculators be between 0.05 and 0.25. The variation in these quantities is shown in the two top
graphs of Figure 1, where γp ∈ {2, 4, ..., 20} on the horizontal axis and γs ∈ {8, 40} is shown as a
dashed line for high speculator risk-aversion and a solid line for low speculator risk-aversion.

The remaining plots in Figure 1 show that the futures risk premium is indeed increasing in
producer and speculator risk-aversion, while the spot price and inventory are decreasing. The
calibration implies economically significant variation in both spot and futures risk premiums. In
particular, for high speculator risk-aversion (corresponding to their earning a quarterly Sharpe ratio
of about 0.25) and high hedging demand (corresponding to a loss of about 0.8% of firm value due
to hedging), the abnormal quarterly futures risk premium is about 6%, whereas for low producer
hedging demand and speculator risk-aversion (Sharpe ratio of about 0.05 and loss from hedging
of about 0.1% of firm value), the abnormal futures risk premium is less than 1%. The standard
risk component of the futures risk premium, captured by the covariance term in Equation (12) in
the main text, shows a much more modest increase in response to changes in γp and γs, indicating
an important role for market specific variables that capture the constraints in the model that will
not be captured by standard controls for time-varying risk premiums. The decrease in inventory
is about a 1% to 9% change in the level. The effect on percentage spot price changes is about the
same as that for the futures risk premium, since the cost of carry relation holds when there is no
stock-out. In sum, reasonable levels of the costs of hedging and required risk compensation leads
to economically significant abnormal returns in the futures market, and concomitant changes in
inventory and spot prices that are consistent with the intuition from the partial equilibrium model.

Figure 1 also illustrates an intuitive interaction between speculator risk tolerance and producer
hedging demand. In particular, the response of the abnormal futures risk premium to changes in
producer hedging demand is smaller when speculator risk tolerance is high. These are times when
speculators are willing to meet the hedging demand of producers with small price concessions. If,
conversely, speculators are more risk-averse, the price concession required to meet an additional
unit of hedging demand is high.

[Figure 2 about here]

Figure 2 shows a slighty different calibration of the model that sets ε = 0.08 and ω = 0.012.
While the futures risk premium and spot price implications qualitatively are the same, the figure
shows that equilibrium inventory in some cases in fact increases when producers’ fundamental
hedging demand increases, contrary to the intuition in the partial equilibrium model. This happens
even though the spot price is still decreasing in producers’fundamental hedging demand as before.
The reason for this is that it is the ratio of Ct to Qt that matters for spot prices and that Ct in the
general equilibrium case is endogenous and also a function of the magnitude of the frictions in the
futures market. We have checked a large variety of reasonable parameter configurations and, with
the exception of the inventory prediction, the predictions of the model with respect to the futures
risk premium and the link to the spot price are robust and as described above.
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2 Model with costs of default as hedging motive

In the model in the main paper, firm hedging is modeled as being due to managerial risk aversion.
In the following, we present an alternative model where costs of default explicitly makes default risk
the determinant of hedging behavior. As will be clear, such a model is somewhat less transparent
than the mean-variance framework applied in the model in the main text. In particular, the default
risk model does not yield an analytical expression of the risk premium in terms of fundamental
variables. Also, debt default and limited liability of equity gives an incentive to risk shift and
increase risk in bad states. Thus, this model introduces a trade-off between managerial costs of
default and risk shifting in terms of the propensity to hedge. In the following, we show that the
implications of the model with explicit default costs and the ensuing hedging demand qualitatively
yield the same implications as the model with managerial risk aversion, given a model calibration
corresponding to that in the main paper and for levels of firm leverage as that found for our sample
of firms. The latter is shown in Table 2 in the main paper.

The speculators’objective function and the exogenous shocks are assumed to be the same as
in the model in the main text and so these components are not repeated here. The producers’
problem, however, is the key difference.

2.1 The producers’problem

The manager of the producing firm now maximizes firm value and has no preference-induced hedging
demand. However, upon default, the manager bears a deadweight cost C (for instance, due to a
loss in human capital). The firm has debt due in period 1 with face value m. This debt is taken to
be ’old’debt and exogenous to the problem.

In the following, we let lower case i and h denote the individual manager’s inventory and hedging
decisions, while I and H denote the corresponding aggregate quantities. Otherwise, the notation
is the same as that in the main paper. The managers’problem is then:

max
i,h

S0 (g0 − i) + E [Λ {S1 (g1 + (1− δ) i) + h (F − S1)−m} |NoDefault]× (1− Pr {Default})
(6)

−E [ΛC|Default]× Pr {Default}

s.t. i ≥ 0.

Default happens if:

S1 (g1 + (1− δ) i) + h (F − S1) < m

m

S1 <
m− hF

g1 + (1− δ) i− h (7)

assuming that g1 + (1− δ) i − h > 0 in equilibrium. Varying m is our comparative static and we
will link m to our measures of default risk later.

The speculators’FOC is the same as in the model in the main text:

hs =
E [Λ (S1 − F )]

γSσ
2
S

, (8)
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where in equilibrium h = hs. We can the write the futures risk premium as:

E

[
Λ

(
S1 − F
F

)]
= E [Λ]E

[
S1 − F
F

]
+ cov

(
Λ,
S1

F

)
m

E

[
S1 − F
F

]
= −Rfcov

(
Λ,
S1

F

)
+RfE

[
Λ

(
S1 − F
F

)]
= −Rfcorr (S1,Λ)σΛσF +RfγSFH

∗σ2
F , (9)

where σF ≡
√
E
[
((S − F ) /F )2

]
= σS

F is the standard deviation of the futures’returns. Unlike

the model with managerial risk aversion, the model considered here does not yield an analytical
expression for aggregate open interest H∗, and therefore we unfortunately do not obtain an ana-
lytical expression of the futures risk premium in terms of fundamental parameters. We solve the
model numerically and show the model’s implications for relevant parameterizations.

2.2 Equilibrium and model solution

We will solve a partial equilibrium version of this model where for ease of exposition we let the net
risk-free rate equal zero, and where we assume that the exogenous pricing kernel, relevant for the
value of the producer firms, is constant. Thus, Λ = 1. In this case:

E [ΛC|Default]× Pr {Default} = C × Pr {Default}

= C

∫ m−hF
g1+(1−δ)i−h

−∞
f (S1) dS1. (10)

Given the demand function, St = ω
(
At
Qt

)1/ε
and the log-normality of A1 (lnA1 ∼ N

(
µ, σ2

)
), and

since inventory and new supply is known at time 0, S1 is lognormally distributed. Thus:

C

∫ m−hF
g1+(1−δ)i−h

−∞
f (S1) dS1 = C × Φ

ε ln
(

max
[
0, m−hF

g1+(1−δ)i−h

])
− ε lnω + lnQ1 − µ

σ

 , (11)

where Φ (·) is the cumulative density function of the standard Normal distribution. In the following,
we consider the case where m > hF and g1 + (1− δ) i − h > 0 (ie, the case where the firm is not
fully hedged and default is possible), and so we will drop the max operator in the above expression.

Define x2 ≡
ε ln

(
m−hF

g1+(1−δ)i−h

)
−ε lnω+lnQ1−µ

σ .
Note that:

ln
S1

S0
=

1

ε
ln a1 +

1

ε
ln

1

A0Q1/Q0
∼ N

(
(µ− ln (A0Q1/Q0)) /ε, σ2/ε2

)
. (12)

Thus, we can apply the Black-Scholes formula to show that:3

(g1 + (1− δ) i− h)E

[
max

[
S1 −

m− hF
g1 + (1− δ) i− h, 0

]]
= (13)

3 In Black-Scholes the mean growth of the log price change is r − 1
2
σ2. This drift term is then the counterpart of

(µ− lnA0Q1/Q0) /ε in the model at hand.
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(g1 + (1− δ) i− h)× S0 × Φ (x1)− (m− hF )× Φ (−x2) ,

where we have used the fact that the risk-free rate is set to zero, and where:

x1 =
ε ln S0(g1+(1−δ)i−h)

m−hF + µ− ln (A0Q1/Q0) + σ2/ε

σ

=
ε ln g1+(1−δ)i−h

m−hF + µ− lnQ1 + ε lnω + σ2/ε

σ
, (14)

x2 = −
ε ln S0(g1+(1−δ)i−h)

m−hF + µ− ln (A0Q1/Q0)

σ

=
ε ln m−hF

g1+(1−δ)i−h − µ+ lnQ1 − ε lnω

σ
. (15)

Note that the last equality coincides with the original definition of x2. Since Φ (−x) = 1 − Φ (x),
the producers’objective function can now be written:

max
i,h

S0 (g0 − i)−m+ hF + (g1 + (1− δ) i− h)× S0 × Φ (x1)

− (C + hF −m)× Φ (x2) (16)

s.t. i ≥ 0.

The first order condition with respect to firm level inventory then implies that:

1

1− δ = Φ (x1) + φ (x1)
ε

σ
+ φ (x2)

ε

σ

C + hF −m
S0 (g1 + (1− δ) i− h)

− λ, (17)

where φ (·) is the probability density function of the standard Normal distribution and λ is the
LaGrange multiplier on the inventory constraint.

The producers’first order condition with respect to short hedging h is then:

F

S0
− Φ (x1) + φ (x1)

ε

σ

(
F (g1 + (1− δ) i− h)

m− hF − 1

)
=
F

S0
× Φ (x2) + φ (x2)

ε

σ

C + hF −m
S0 (g1 + (1− δ) i− h)

m− F (g1 + (1− δ) i)
m− hF . (18)

Combing these first order conditions yield (setting λ = 0, as we will focus on the case of no stock-out
here), we get the somewhat simpler equation:

F

S0
− 1

1− δ + φ (x1 (F, i, h,Q1))
ε

σ

F (g1 + (1− δ) i− h)

m− hF

=
F

S0
× Φ (x2 (F, i, h,Q1))− F

S0
φ (x2 (F, i, h,Q1))

ε

σ

C + hF −m
m− hF (19)

Solving for equilibrium, we first note that Equation (19) gives the futures price F as a function of
aggregate inventory, after we substitute out the hedging demand using the speculators’first order
condition, imposing market clearing:

H =
E [S1]− F
γsσ

2
S

, (20)
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noting also that E [S1] = ωQ
−1/ε
1 eµ/ε+

1
2
σ2/ε2 . Next, we solve for equilibrium inventory using Equa-

tion (17) substituting out H and F so the only unknown is inventory. With equilibrium inventory
in hand, finding the equilibrium hedging and futures price is immediate using Equations (18) and
(20).

2.3 Comparative statics

The two parameters of interest is the firm’s debt level m (really, firm leverage), which is the driver
of producer hedging demand, and speculator capital constraints, γs. We calibrate the parameters
of the model as described in the main text of the paper. In particular, we let ε = 0.1, ω = 0.01,
γs ∈ {8, 40}, δ = 0.01, µ = 0.004, σ = 0.03, A0 = 1, g0 = 0.8, g1 = 0.75, C = 0.05. Our measures
of default risk, the Zmijewski score and the EDF, are both positively related firm leverage, which
we use as the aggregate default risk measure from the model. In the data and as given in Table
2 in the main text, leverage is computed using the market value of equity and the book value
of debt: Leverage = m

E+m ,where E denotes the value of equity given the optimal inventory and
hedging decision and m is the book value of debt.

Figure 3 reproduces this alternative model’s counterparts to Figures 1 with the leverage measure
of default risk on the horizontal axis. The changing default risk is achieved by varying the net debt
level m. We vary the debt level such that the costs of hedging remains typically less than 1% of
firm value and focus on the cases where leverage and default probabilities are such that the hedging
demand exceeds the risk shifting motive and producers therefore are short in the futures market,
as in the data.

[Figure 3 about here]

As shown by the figure, an increase in default risk, increases the futures risk premium, and
decreases the spot price and inventory. This effect is stronger when speculator risk aversion is high,
consistent with the model with managerial risk aversion presented in the main paper. It should
be noted that for leverage levels lower than 20%, the futures risk premium goes negative, and
producers choose to go long the futures contract in order to increase risk due to the risk shifting
motive given limited liability. As we show in the empirical micro study, increasing default risk is
associated in the data with larger short hedging positions. This is the case we consider in the above
calibration, which also has leverage levels on par with those in the data, as given in Table 2.

3 Model where producer default leads to supply disruption

In this section we consider a default risk model similar to that in the previous section, but where
upon default a fraction α of the period 1 supply of the commodity is lost. This supply disruption
will impact the spot price and therefore its conditional mean and variance, which in turn will affect
the cost of hedging.
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3.1 The producers’problem

The manager of the producing firm now maximizes firm value and has no preference-induced hedging
demand. However, upon default, the manager bears a deadweight cost C (for instance, due to a
loss in human capital). The firm has debt due in period 1 with face value m. This debt is taken to
be ’old’debt and exogenous to the problem.

In the following, we let lower case i and h denote the individual manager’s inventory and hedging
decisions, while I and H denote the corresponding aggregate quantities. Otherwise, the notation
is the same as that in the main paper. The managers’problem is then:

max
i,h

S0 (g0 − i) + E [Λ {S1 (g1 + (1− δ) i) + h (F − S1)−m} |NoDefault]× (1− Pr {Default})
(21)

−E [ΛC|Default]× Pr {Default}
s.t. i ≥ 0.

In the event of a default, a fraction α of the period 1 supply is lost. That is, upon default
α (g1 + (1− δ) I) of the commodity is in the aggregate not brought to the market period 1 equilib-
rium supply is therefore Q1|default = (1− α) (g1 + (1− δ) I). Default happens if:

S−1 (g1 + (1− δ) i) + h
(
F − S−1

)
< m

m

S−1 <
m− hF

g1 + (1− δ) i− h (22)

assuming that g1 + (1− δ) i − h > 0 in equilibrium, and where S−1 ≡ ω
(

A1
Q1|NoDefault

)1/ε
, where

Q1|NoDefault ≡ g1 + (1− δ) I. That is, the default event is determined based on the price that
would prevail if there is no aggregate default event. This assumption is necessary in order to obtain
equilibrium in the model. Otherwise, there is a region of outcomes for A1 where the competitive
equilibrium does not exist. For instance, consider the case where S1 given no default would be so
low as to trigger default, but where the supply disruption in the case of a default would increase
the spot price S1 to a level where the firms are solvent. Again, varying m is again our comparative
static and we assume in the following that Λ = 1.

Notice that the producer’s problem is exactly the same as before, as the loss upon default is
borne by debt-holders. However, speculator’s are still exposed to the supply disruption event in
the case of default. Thus, the conditional volatility and expectation of S1 is different in this model.
In particular:

E [S1] = E [S1|NoDefault] Pr {NoDefault}+ E [S1|Default] Pr {Default}
= S0 × Φ (x1) + ω (g1 + (1− δ) (1− α) I)−1/ε eµ/ε+

1
2
σ2/ε2 − S0 × Φ (x̃1) , (23)

where4

x1 =
ε ln g1+(1−δ)I−H

m−hF + µ− ln (g1 + (1− δ) I) + ε lnω + σ2/ε

σ
, (24)

x̃1 =
ε ln g1+(1−δ)I(1−α)−H

m−hF + µ− ln (g1 + (1− δ) (1− α) I) + ε lnω + σ2/ε

σ
, (25)

4To see the this, first note that E [S1|NoDefault] Pr {NoDefault} is the same as in the model with no supply
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and as before Φ (·) is the standard normal cumulative density function. Note the presence of 1−α
in the above equations, which takes into account the supply disruption.

The variance of the period 1 spot price is then:

σ2 (S1) = E
[
S2

1

]
− E [S1]2

note that lnS1 is normally distributed and that we need to find E
[
e2s1

]
where s1 = lnω + a1/ε−

1
ε lnQ1. We have that 2s1 − 2s0 = 2 (µ− ln (Q1A0/Q0)) /ε + 2σε η1, where η1 ∼ N (0, 1). Again,
using results from the Black-Scholes formula, we have that:

E
[
S2

1 |NoDefault
]
× Pr {NoDefault} = S2

0 × Φ (x3) , (26)

where

x3 =
ε ln

S20(g1+(1−δ)I−H)
m−hF + 2 (µ− ln ((g1 + (1− δ) I)A0/Q0)) + 4σ2/ε

2σ
. (27)

Similarly, we have that:

E
[
S2

1 |Default
]
× Pr {Default} = ω2 (g1 + (1− δ) (1− α) I)−2/ε e2µ/ε+2σ2/ε2 − S2

0 ×Φ (x̃3) , (28)

where

x̃3 =
ε ln

S20(g1+(1−δ)I(1−α)−H)
m−hF + 2 (µ− ln ((g1 + (1− δ) (1− α) I)A0/Q0)) + 4σ2/ε

2σ
. (29)

Using these expressions, we have that:

σ2 (S1) = E
[
S2

1

]
− E [S1]2

= S2
0 × Φ (x3) + ω2 (g1 + (1− δ) (1− α) I)−2/ε e2µ/ε+2σ2/ε2 − ... (30)

S2
0 × Φ (x̃3)− E [S1]2 . (31)

With the mean and variance of S1 in hand, we use the speculator’s first order condition and the
market clearing condition in the futures market to substitute out H of the equilibrium equations
as before:

H =
E [S1]− F
γsσ

2 (S1)
. (32)

In sum, the supply disruption does not directly affect the producer’s problem. However, the
speculators face a different mean and variance of the spot price, which affects their demand. Thus,
the supply disruption will affect the cost of hedging.

disruption. Second, note that

E [S1|Default] Pr {Default} = E

[
S1|S−1 <

m−HF
g1 + (1− δ) I −H

]
Pr

{
S−1 <

m−HF
g1 + (1− δ) I −H

}
= E [S1|Q1 = g1 + (1− δ) I]− ...

E

[
S1|Q1 = g1 + (1− δ) I AND S−1 ≥

m−HF
g1 + (1− δ) I −H

]
Pr

{
S−1 ≥

m−HF
g1 + (1− δ) I −H

}
= ω (g1 + (1− δ) (1− α) I)−1/ε eµ/ε+

1
2
σ2/ε2 − S0 × Φ (x̃1) .
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3.2 Comparative statics

The relevant comparative static for this model is with respect to α —the amount of supply lost in
the event of default. The case α = 0 corresponds to the case of no supply disruption as analyzed
in the first section of this online Appendix. Otherwise, we keep the parameters the same as in the
model with no supply disruption.

Figure 4 shows the futures risk premium versus α for the case where speculator risk aversion
is high (γS = 40) and the firm leverage is around 25%, as is the mean value in the data. This
corresponds to m = 0.0517. The top plot shows that the futures risk premium is decreasing in the
supply disruption. This is intuitive: a negative supply shock means the spot price increases. An
increase in the price benefits the long side of the futures contract and thus decreases the futures
risk premium.

The lowe plot in Figure 4 shows that the variance of the next period’s spot price is decreasing in
the supply disruption α. This occurs as the supply disruption is an implicit hedge for the demand
shock: a supply disruption, which only happens in default when the demand shock is low, leads to
a higher spot price. As in the previous model, for low levels of leverage it is possible to get the
opposite effect on the risk premium as producers will go long when the risk shifting effect dominates
their futures demand, as discussed for the model in the previous section.

[Figure 4 about here]

In sum, a supply disruption related to default risk in the model calibrated to the mean leverage
level in the data leads to a lower futures risk premium. This is the opposite of what we find in
the data, we conclude that this effect, if present, is not the dominating factor for determining the
empirical relation between the futures risk premium and aggregate producer default risk.

4 Additional empirical results

In this section, we present additional empirical results and robustness tests relative to those pre-
sented in the main paper.

4.1 Time-varying equity factor exposures

[Figure 5 about here]

Table 1 shows the effect of default risk after controlling for the realized covariance of the futures
return and the Fama-French (1993) three factor model. We choose these factors as this model is
the most common factor model used in studies of the cross-section of equity returns. This is thus
a robustness test in terms of controlling for standard risk factors, allowing for time-varying factor
exposures.

The realized covariances are constructed quarterly using daily data on the commodity futures
return, as well as the factor returns. The realized covariance is simply the sum of the product
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of the commodity return and the factor over the quarter. These tests effectively allow for time-
varying correlation between the commodity futures return and the risk factors, as well as time-
varying volatility of both commodity and factor returns. Figure 5 shows that there indeed are large
variation in these correlations. In fact, they often flip signs. Notably, however, the covariances are
very small, hovering around zero except for in recession periods where commodity prices have been
strongly affected. For instance, during the recession in 1991 with the onset of the first Iraq war,
market covariances become large and negative as the market dropped while oil prices increased. In
the recent financial crisis, the covariances with the market sky-rocketed, but had the opposite sign
(see Tang and Xiong (2009)).

Table 1 shows that including these controls do not change the main results - the hedging demand
channel is still a statistically and economically significant predictor of commodity futures returns
in our sample. The commodity futures tend to move negatively with the market factor, negatively
with the size factor, but positively with the book-to-market factor. We conclude that time-varying
factor exposure cannot account for the variation in the commodity futures risk premiums related
to time-variation in commodity sector aggregate default risk.

[Table 1 about here]

4.2 Additional results: inventory

We next turn to the implications for variation in the default risk measures on aggregate commodity
inventory levels. The impact of producers’ inventory decision of increased fundamental hedging
demand is typically negative, but per the discussion of the general equilibrium model in Section 2
in the main paper, this implication does not hold for all reasonable parameterizations of this model.
Thus, the sign here is an empirical question.

An instrumental variables approach is needed to answer this question. In particular, transitory
demand shocks (the At’s in the model) will affect both measures of default risk and inventory
with opposite signs, even though there is no causal relation between the two. For instance, a
transitory negative shock to demand will increase inventory holdings even in a frictionless model
such as Deaton and Laroque (1992). At the same time, the resulting lower spot price will affect
the measures of default risk negatively. Thus, we need an instrument for default risk at time t+ 1
that’s unrelated to the demand shock at time t + 1, but related to the inventory decision at time
t + 1. Since the default risk measures are quite persistent, with use the fitted measure of default
risk from an AR(1) as the instrumented default risk variable: DefRiskIVi,t+1 = α̂i + β̂iDefRiski,t

where α̂i and β̂i are the AR(1) regression coeffi cients obtained from the full sample regression
and adjusting the β̂i for the well-known small-sample bias in the AR(1) coeffi cient. We run the
individual regressions:

∆ii,t+1 = βi ×DefRiskIVi,t+1 +
3∑
j=1

γi,j∆ii,t+1−j + ControlV ariablest + ui,t+1, (33)

and the pooled regression:

∆ii,t+1 = β ×DefRiskIVi,t+1 +
3∑
j=1

γi,j∆ii,t+1−j + ControlV ariablest + ui,t+1, (34)
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where i is the log inventory level and ∆ denotes the first difference operator. Table 2 shows that
high default risk indeed is associated with lower levels of inventory in every regression, for all
commodities and both default risk measures. The effect is significant at the 5% level fro Crude
Oil and in the pooled regressions for both default risk measures, as well as for Gasoline for the
Zmijewski-score. The effect is significant at the 10% level for heating oil for the EDF measure of
default risk. For the remainder the coeffi cients on default risk are not significant, although all have
a negative sign. A one standard deviation increase in aggregate default risk decreases the inventory
by 7% to 10% of its standard deviation in the pooled regressions, which in turn tends to depress
current spot prices and increase future spot prices, consistent with the forecasting results shown in
Table 3. For Crude Oil, which is the largest market, this inventory response is 16% to 17% of its
standard deviation for a one standard deviation increase in the default risk measures.

[Table 2 about here]

4.3 Additional results: the futures basis

The commodity basis spread, defined in our setting as the difference between the spot price and
the futures price relative to the spot price:

basisτt ≡
St − F (τ)

t

St
(35)

, is often used as an indicator of future expected spot prices and also of expected returns in the
futures market. In particular, Hong and Yogo (2010) show that the aggregate basis across all
commodities has some forecasting power for future commodity returns. Gorton, Hayashi, and
Rouwenhorst (2010) show that the basis is a powerful predictor of the cross-section of commodity
returns. The model in Section 2 in the main paper, however, predicts that the individual commodity
basis is not affected by the commodity sector default risk unless there is an inventory stock-out.
This predictions is a bit stark and comes from the two period set up. Routledge, Seppi, and Spatt
(2000) show that the probability of a stock-out does affect the basis in a multiperiod setting.

To investigate whether the default risk measures can help explain the commodity basis spread,
we apply the same instrumental variables approach as we did for the inventory regressions. In
particular, a transitory negative demand shock will tend to increase the basis as well as default
spread, even if there is no causal relationship between the two. We run the individual commodity
regressions:

basisi,t+1 = βi ×DefRiskIVi,t+1 + γibasisi,t + ControlV ariablest + ui,t+1. (36)

and the pooled regression:

basisi,t+1 = β ×DefRiskIVi,t+1 + γibasisi,t + ControlV ariablest + ui,t+1. (37)

Table 3 shows that in the pooled regressions for the EDF measure, the basis indeed increases by
14% of its standard deviation for a one standard deviation in aggregate default risk, significant

12



at the 5% level. For the Zmijewski-score, the estimated increase is 15%, but this number is not
significant at conventional levels. For Crude Oil, which is the largest market, the effect is stronger
(21% and 22%), where the EDF is significant at the 5% level and the Zmijewski-score is significant
at the 10% level. Otherwise, Heating Oil has the EDF positive and significant at the 5% level as
well. The remaining coeffi cients are not significant at conventional levels, but, with the exception
of Gasoline for the EDF, they are all positive. Thus, overall there is a positive relation between
the basis as we define it in Equation (35) and the default risk measures, but the regressions reveal
that a large fraction of the variation in the basis is not related to variation in producer default risk,
consistent with the model.

[Table 3 about here]

4.4 Additional results: CFTC hedger positions

In the main paper, we show that the default risk measures in pooled regressions across all com-
modities are positively, significantly related to the CFTC measures of net hedger positions. The
net hedger position is calculated as net commercial traders’short futures positions divided by the
sum of net, lagged commercial traders’and non-commercial traders’positions. Table 4 gives the
same regressions for the individual commodities in two ways. First, we simply run contemporane-
ous regressions of hedger positions for each commodity on the corresponding default risk measures.
All right hand side and left hand side variables have been normalized to have zero mean and unit
variance. As the table shows, a one standard deviation increase in hedger positions is in the pooled
regression significantly associated with on average a 10% increase in the CFTC hedger positions.
At the individual commodity level, however, the significance is only there for heating oil, while the
magnitude of the coeffi cients are overall comparable across commodities.

The regressions in Panel A of Table 4 may, however, not pick up the pure effect of increased
default risk on the CFTC hedger positions. In particular, higher default risk is associated with
negative shocks to the spot price. The latter means that speculators have incurred losses which
may make them more risk averse which, all else equal, means the futures risk premium increases.
The ensuing higher cost of hedging may be suffi ciently large so as to make producer scale back on
their hedge, even though their default risk increases. To isolate the effect of default risk alone, we
apply an instrumental variable approach. In particular, we regress the default risk measure on its
lag and use the predicted default risk from this regression as the instrument for current default risk.
We also include the lagged CFTC hedger position in the regression. Panel B of Table 4 shows the
results of running this regression. In this case the coeffi cients are somewhat higher —in the pooled
regression the coeffi cients imply a CFTC hedger measure response of 17% to 23% of its standard
deviation to a one standard deviation increase in the default risk measures. Also, all coeffi cients in
the individual regressions are now positive and higher than in the contemporaneous regression.

[Table 4 about here]
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5 Description of Micro Data

The EDGAR database contains quarterly or annual statements for 94 firms with SIC code 1311.
These firms’reports available following the issuance of the Financial Accounting Standards Board’s
(FAS) 133 regulation “Accounting for Derivative Instruments and Hedging Activities”in June 1998.
The reports are available for fiscal years ending after 15th of June 2000 —we therefore begin our
sample for quarterly reports in Q1 of 2000 and end in Q4 of 2010.

Since the introduction of FAS 133, firms are required to measure all financial assets and liabil-
ities on company balance sheets at fair value. In particular, hedging and derivative activities are
usually disclosed in two places. Risk exposures and the accounting policy relating to the use of
derivatives are included in “Market Risk Information.”Any unusual impact on earnings resulting
from accounting for derivatives should be explained in the “Results of Operations.”Additionally,
a further discussion of risk management activity is provided in a footnote disclosure titled “Risk
Management Activities & Derivative Financial Instruments.”

While firms are required to recognize derivative positions as assets or liabilities on their balance
sheet given this accounting standard, the current market value of a derivative in most cases does
not allow one to infer the notional exposure or even the direction of trade (for example, consider
an exchange traded futures contract). Thus, it is necessary to read the management’s notes on
hedging behavior which gives qualitative information of the amount and nature of hedging. Our
94 firm sample required the reading of around 2,500 quarterly and annual reports over the sample
period.

To make the onerous task of manually reading and deciphering all of these reports manageable
and also to quantify the qualitative information given in the reports, we created a set of fields to
be filled out for each firm quarter with a “0”for “No”, a “1”for “Yes”and missing if there is no
clear information in the report. The fields we employ in the paper are:

For each quarter and firm:

use derivatives?
futures or forwards?
swaps?
options?
significant short crude?
significant long crude?

The first question is simply "Does the firm allow for using derivatives to manage risk?" There
are 2,400 firm-quarter reports where we were able to determine from the report whether they did,
and these firm-quarters constitute the main sample. In 88% of the firm-quarters the answer was
affi rmative. Note that this does not necessarily mean that a firm is using derivatives that quarter
— it may just mean that the management wrote in the report a generic statement that the firm
may use derivatives to manage risk. Furthermore, in 47.7% of the firm-quarters forwards or futures
were used, in 80.6% of the firm-quarters swaps were used, and in 81.8% of the firm-quarters options
(typically a short collar position) were used.5

5We focus on short-term commodity futures - the most liquid derivative instruments in the commodity markets -
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The dominant commodity exposure hedged by firms is Crude Oil. We therefore concentrate
our efforts on determining whether the firm had a significant long or short position in Crude Oil
derivatives. In some cases, the actual notional positions in the derivatives were given, and in
such cases, we specify that a significant position is one in which the management hedged at least
25% of production. In many cases, however, we infer the existence of a significant position from
management statements that ‘most’or ‘a large part of’the production is hedged using a particular
type of derivatives position.

We also filled in the following fields not used in the paper:

For each quarter and firm:

speculating using derivatives?
hedging using derivatives?
short crude derivatives exposure?
increased short derivatives crude oil exposure?
decreased short derivatives crude oil exposure?
minor short crude derivatives exposure?
no crude derivatives exposure?
minor long crude derivatives exposure?

These fields are used as checks relative to the main fields used in the analysis, so as to minimize
reporting errors —either from the report itself or in the interpretation of the reports. If an incon-
sistency is apparent, the report is asked to be re-read. For instance, if a firm is tagged as having
increased the short crude derivatives exposure, but at the same time being tagged for having no
crude derivatives exposure, an inconsistency is noted. If a firm is tagged for having short crude
derivatives exposure but is not tagged for hedging or is tagged for speculation, an inconsistency is
noted. If a firm goes from minor crude to significant crude short exposure, the firm must be tagged
also for the ‘increased short derivatives exposure’field. If not, an inconsistency is noted.

Minor short or long derivatives exposure corresponds to less than 25% of current set production
plans. There is not always suffi cient information to determine exactly the percentage of production
and inventory that is hedged, and qualitative judgements are then made. For instance, if the
management writes that ‘a large (or significant or substantial or considerable) fraction of Crude
Oil production and inventory is hedged using derivatives, this is deemed as significant short crude
derivatives exposure. It is important to note that in most cases, a qualitative judgment must
be made. Finally, we also did a number of random checks where we read the underlying reports
to ensure that the manual data collection and codification was executed with high accuracy and
consistency.

in our empirical analysis. However, a considerable fraction of the hedging is done with swaps, which are provided by
banks over-the-counter, and often are longer term. On the one hand, this indicates that a significant proportion of
producer’s hedging is done outside the futures markets that we consider. On the other hand, banks in turn hedge their
aggregate net exposure in the underlying futures market and in the most liquid contracts. For instance, it is common
to hedge long-term exposure by rolling over short-term contracts (e.g., Metallgesellschaft). A similar argument can
be made for the net commodity option imbalance held by banks in the aggregate. Therefore, producers’aggregate
net hedging pressure is likely to be reflected in trades in the underlying short-term futures market.
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Figure 1 - General Equilibrium Model Predictions

Figure 1: All plots have producer fundamental hedging demand (γp = 2, 4, ..., 20) on the horizontal
axis. The dashed line corresponds to high speculator capital constraints (γs = 40), while the solid
line is the case of low speculator capital constraints (γs = 8). The two top plots show the cost of
hedging as a proportion of firm value (left) and the quarterly Sharpe ratio of the abnormal returns
earned by speculators. The two middle plots show (on the left) the component of the futures
risk premium due to the covariance with the equity market pricing kernel and (on the right) the
component due to the combination of hedging pressure and limits to arbitrage. The two lowest
graphs show the current spot price and the optimal inventory. Here the elasticity of intratemporal
substitution (ε) equals 0.1 and the weight of the commodity in the utility function (ω) equals 0.01.
The other numbers used in the calibration of the model are given in the text.
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Figure 2 - Comparative statics from default risk model

Figure 2: All plots have producer fundamental hedging demand (γp = 2, 4, ..., 20) on the horizontal
axis. The dashed line corresponds to high speculator capital constraints (γs = 40), while the solid
line is the case of low speculator capital constraints (γs = 8). The two top plots show the cost
of hedging as a proportion of firm value (left) and the quarterly Sharpe ratio of the abnormal
returns earned by speculators. The two middle plots show (on the left) the component of the
futures risk premium due to the covariance with the equity market pricing kernel and (on the
right) the component due to the combination of hedging pressure and limits to arbitrage. The two
lowest graphs show the current spot price and the optimal inventory. In this case, the elasticity of
intratemporal substitution (ε) equals 0.08 and the weight of the commodity in the utility function
(ω) equals 0.012 - slightly different from the case shown in Figure 1. The other numbers used in
the calibration of the model are given in the text.
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Figure 3 - Comparative statics from default risk model
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Figure 3: The figure shows moments from the default risk model, corresponding to the moments
shown for the model with managerial risk averison in the main text. The x-axis is always producer
leverage, measured as the book value of debt over the sum of the book value of debt and the market
value of equity. The parameters of the model is given in the text. The solid line corresponds to
the case with low speculator risk aversion, while the dashed line corresponds to the case with high
speculator risk aversion.
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Figure 4 - Supply disruption versus futures risk premium and return variance
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Figure 4: The top plot shows the futures risk premium, defined as E[S1−FF ] versus the fraction of
period 1 supply lost in the event of a default. The case shown here corresponds to a prducer firm
leverage of 24% as is the average in the sample we use in the empirical analysis. The speculator risk
aversion is high (γs = 40), but the results are qualitatively the same for low speculator risk aversion
(not shown). The bottom plot shows the variance of period 1’s spot price versus the fraction of
supply lost in the case of a default, for the same economy as in the top plot. The parameters of
the model is given in the text.
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Figure 5 - Realized covariances between Fama-French factors and commodity futures
returns

Figure 5: The figure shows the realized covariance between the commodity futures returns and the
three Fama-French factors; the market return, the return to small firms minus the return to large
firms (SMB), and the return to high book-to-market firms minus the return to low book-to-market
firms (HML). The realized covariance is calculated using daily returns to both the factors and
the futures positions (next to nearest to maturity contract). The sample periods vary as different
futures contracts were introduced at different times. The vertical axis gives the realized covariance,
while the horizontal axis gives the year.
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Table 1 - Futures return forecasting regressions:
Covariance controls

Table 1: The table shows the results from regressions of Crude Oil, Heating Oil, Gasoline, and
Natural Gas futures returns on lagged default risk of oil and gas producers, as measured by the
Expected Default Frequency (EDF ) and Zmijewski-score (Zm) of firms with SIC code 1311. In
addition to the usual controls (aggregate default risk, forecasted GDP growth, and the risk-free
rate), the regression also has on the right hand side the realized covariance between the futures
return and the three Fama-French factors: The market return, the return to the size factor (SMB),
and the return to the book-to-market factor (HML). The realized covariance in a quarter is cal-
culated from daily returns to the futures and the factors. Heteroskedasticity and autocorrelation
adjusted (Newey-West; 3 lags) standard errors are used. In the joint regression in the right-most
column, Rogers standard errors are used to control for heteroskedasticity, cross-correlation, and
autocorrelation (3 lags). ∗ denotes significance at the 10% level, ∗∗ denotes significance at the 5%
level, and ∗∗∗ denotes significance at the 1% level.

Dependent variable: next quarter futures return (rit,t+1)
Crude Oil Heating Oil Gasoline Natural Gas All

EDF Zm EDF Zm EDF Zm EDF Zm EDF Zm

Cov(rM , ri) −15.1∗∗∗ −13.5∗∗∗ −11.1∗∗ −10.7∗∗ −11.7∗∗ −11.4∗∗ 2.27 4.41 −10.3∗∗ −9.58∗∗

(5.21) (4.60) (5.30) (5.00) (4.89) (4.47) (8.22) (6.48) (4.32) (3.87)

Cov(rSMB , ri) −35.3 −28.1 −8.02 −5.20 −8.23 −6.01 7.48 4.83 −9.68 −6.95∗∗

(27.2) (23.8) (28.2) (26.0) (21.3) (18.5) (22.6) (20.1) (22.5) (20.0)

Cov(rHML, ri) 30.2 32.2 15.8 15.4 24.6 24.1 17.2 20.4∗ 19.8 21.2

(20.2) (20.3) (19.5) (19.8) (18.9) (19.7) (13.6) (12.7) (13.8) (14.1)

DefRisk 0.077∗∗ 0.051∗∗ 0.048∗∗ 0.034∗∗ 0.046 0.031 0.044 0.053∗ 0.047∗ 0.038∗∗

(0.031) (0.021) (0.021) (0.017) (0.031) (0.022) (0.043) (0.035) (0.026) (0.017)

controls? yes yes yes yes yes yes yes yes yes yes
R2 25.9% 20.0% 15.9% 15.3% 22.4% 21.6% 7.8% 10.2% 13.8% 13.4%

N 107 110 122 125 101 104 79 82 404 421
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Table 2 - Inventory vs. default risk

Table 2: The table shows the results from regressions of log changes in Crude Oil, Heating Oil,
Gasoline, and Natural Gas inventories on three lags of the respective inventory changes, and lagged
default risk of oil and gas producers, as measured by the Expected Default Frequency (EDF )
and Zmijewski-score (Zm) of producers for Crude and Natural Gas and refiners for Heating Oil
and Gasoline. The other controls in the regressions are lagged futures basis, aggregate default
risk, forecasted GDP growth, the risk-free rate, as well as quarterly dummy variables (seasonality),
Heteroskedasticity and autocorrelation adjusted (Newey-West; 3 lags) standard errors are used.
In the joint regression in the right-most column, Rogers standard errors are used to control for
heteroskedasticity, cross-correlation, and autocorrelation (3 lags). ∗ denotes significance at the 10%
level, ∗∗ denotes significance at the 5% level, and ∗∗∗ denotes significance at the 1% level.

Dependent variable: next quarter log inventory change
(
∆Iit,t+1

)
Crude Oil Heating Oil Gasoline Natural Gas All

EDF Zm EDF Zm EDF Zm EDF Zm EDF Zm

DefRiskt −0.170∗∗ −0.155∗∗ −0.106∗ −0.034 −0.120 −0.062∗∗ −0.006 −0.015 −0.096∗∗ −0.067∗∗

(0.081) (0.065) (0.058) (0.035) (0.096) (0.068) (0.023) (0.016) (0.047) (0.038)

controls? yes yes yes yes yes yes yes yes yes yes
R2 38.0% 39.5% 80.8% 80.7% 29.9% 32.0% 92.4% 92.7% 43.0% 44.8%

N 107 110 122 125 100 103 79 82 408 420

23



Table 3 - The Futures Basis

Table 3: The table shows the results from regressions of the futures basis for Crude Oil, Heating
Oil, Gasoline, and Natural Gas on lagged default risk of oil and gas producers, as measured by the
Expected Default Frequency (EDF ) and Zmijewski-score (Zm). The futures basis is defined as
St−Ft
Ft

. The controls in the regressions are lagged futures basis, aggregate default risk, forecasted
GDP growth, the risk-free rate, as well as quarterly dummy variables (seasonality). Heteroskedas-
ticity and autocorrelation adjusted (Newey-West; 3 lags) standard errors are used. In the joint
regression in the right-most column, Rogers standard errors are used to control for heteroskedas-
ticity, cross-correlation, and autocorrelation (3 lags). ∗ denotes significance at the 10% level, ∗∗

denotes significance at the 5% level, and ∗∗∗ denotes significance at the 1% level.

Dependent variable: The Futures Basis (IV)
Crude Oil Heating Oil Gasoline Natural Gas All

EDF Zm EDF Zm EDF Zm EDF Zm EDF Zm

DefRisk 0.214∗∗ 0.222∗ 0.190∗∗ 0.164 −0.016 0.035 0.073 0.109 0.138∗∗ 0.151
(0.100) (0.117) (0.093) (0.104) (0.127) (0.122) (0.110) (0.100) (0.069) (0.093)

controls? yes yes yes yes yes yes yes yes yes yes
R2 25.3% 27.7% 9.3% 9.4% 9.5% 9.8% 5.2% 5.4% 9.1% 10.1%
N 107 110 122 125 100 103 79 82 408 420
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Table 4 - CFTC net hedger positions

Table 4: Panel A shows the results from regressions of net short hedger positions relative to total
hedger positions for Crude Oil, Heating Oil, Gasoline, and Natural Gas, as recorded by the CFTC
(commercial positions), on contemporaneous default risk of oil and gas producers, as measured by
the Expected Default Frequency (EDF ) and Zmijewski-score (Zm). The controls in the regressions
are the futures basis, aggregate default risk, forecasted GDP growth, the risk-free rate, the lagged
CFTC net short hedger position, as well as quarterly dummy variables (seasonality). Panel B
shows the same regression but where the net short hedger positions are regressed on controls and
the lagged default risk measures. Heteroskedasticity and autocorrelation adjusted (Newey-West; 3
lags) standard errors are used. In the joint regression in the right-most column, Rogers standard
errors are used to control for heteroskedasticity, cross-correlation, and autocorrelation (3 lags).
∗ denotes significance at the 10% level, ∗∗ denotes significance at the 5% level, and ∗∗∗ denotes
significance at the 1% level.

Dependent variable: CFTC short hedger positions (contemporaneous)
Panel A: Crude Oil Heating Oil Gasoline Natural Gas All

EDF Zm EDF Zm EDF Zm EDF Zm EDF Zm

DefRisk 0.090 0.140 0.259∗∗ 0.253∗∗∗ −0.010 0.083 0.035 0.076 0.097∗∗ 0.152∗∗∗

(0.138) (0.109) (0.121) (0.107) (0.062) (0.102) (0.115) (0.066) (0.048) (0.044)

controls? yes yes yes yes yes yes yes yes yes yes
R2 10.4% 14.4% 9.0% 10.7% 39.7% 39.8% 51.7% 64.4% 16.3% 20.1%

N 91 95 103 107 96 100 64 68 354 370

Dependent variable: CFTC short hedger positions (IV)
Panel B: Crude Oil Heating Oil Gasoline Natural Gas All

EDF Zm EDF Zm EDF Zm EDF Zm EDF Zm

DefRisk 0.179 0.259∗∗ 0.307∗∗ 0.394∗∗∗ 0.121 0.083 0.038 0.085 0.172∗ 0.225∗∗∗

(0.146) (0.128) (0.139) (0.122) (0.125) (0.085) (0.108) (0.053) (0.096) (0.067)

controls? yes yes yes yes yes yes yes yes yes yes
R2 11.2% 16.6% 10.8% 18.4% 42.4% 41.6% 51.1% 71.8% 17.6% 21.8%

N 92 95 104 107 97 100 65 71 358 370

25


