Testing Macroprudential Stress Tests: The Risk of Regulatory Risk Weights

#### Viral Acharya, Robert Engle and Diane Pierret

NYU Stern School of Business - The Volatility Institute

Carnegie-Rochester-NYU Conference, November 15, 2013

Crises occur when

- Common asset shock (Shleifer and Vishny (1992))
- Short-term debt rollover problems (Diamond and Dybvig (1983))

Why don't we obtain privately efficient outcomes?

- Externalities (Acharya, Pedersen, Philippon and Richardson (2010))
- Debt-overhang problem (Jensen and Meckling (1976), Myers (1977)): undercapitalized banks do not raise capital on their own

Macroprudential stress tests can help address this market failure:

- Bring capitalization of the financial sector in line with market perceptions of risk
- Restore financial sector's access to short-term funding

Regulators assess capital requirements in "normal" times by

- attaching risk weights to different asset classes
- requiring a fraction of risk-weighted assets be funded with equity

Regulatory risk weights are, however, currently static in nature

Risks of asset classes change over time, especially in "stress" times

• changing the ability to fund assets with leverage in private markets

Stress tests could potentially help in dealing with this "risk that risks will change" (Engle (2009))

Macroprudential stress tests: part of the macroprudential toolkit (Greenlaw et al. (2012))

Concerns on macro stress tests:

- Stress tests remain microprudential (Greenlaw et al. (2012))
- Basel risk regulation (capital ratios)
  - Capital ratios are not a binding constraint (Hanson et al. (2011))
  - Regulatory risk weights are inconsistent (Basel Committee on Banking Supervision (2013); Haldane (2011, 2012))

### An alternative to stress tests: Vlab

We provide a test of regulatory macro stress tests by comparing their outcomes to those from a simple methodology (Vlab) that relies on publicly available market data.

The Volatility Laboratory (Vlab): vlab.stern.nyu.edu/welcome/risk/ Vlab

SRISK: the capital a firm would need to raise in the event of a crisis (Acharya et al. (2010, 2012); Brownlees and Engle (2011))

$$SRISK_{it} = \mathsf{E}_t \left[ k (Debt_{it+h} + MV_{it+h}) - MV_{it+h} | R_{mt+h} \le -40\% \right]$$
$$= kDebt_{it} - (1-k)(1 - LRMES_{it}) * MV_{it}$$

where  $MV_{it}$  is the market value of equity of the bank,  $LRMES_{it}$  is its long-run marginal expected shortfall, and k is the prudential capital ratio.

Static regulatory risk weights are flawed

- Actual and stressed regulatory risk weights have no link with the realized risk of banks during a crisis
- Regulatory risk weights are informative only when we control for other more important risk factors (leverage ratio, market risk)
- Provide perverse incentives to build exposures to low-risk weight asset categories (see Acharya and Steffen (2013) for empirical evidence).



- 2 Testing the efficacy of regulatory risk weights
- 3 Testing stressed losses
- 4 Testing stressed capital shortfalls

#### Macro stress tests sample

2 Testing the efficacy of regulatory risk weights

3 Testing stressed losses

4 Testing stressed capital shortfalls

In the US: the Board of Governors of the Federal Reserve

- Supervisory Capital Assessment Programme (SCAP) 2009
- Comprehensive Capital Analysis and Review (CCAR) 2011 2012 2013

EU-wide stress tests:

- Committee of European Banking Supervisors (CEBS) 2009 2010
- European Banking Authority (EBA, ex-CEBS) 2011
- EBA Capital Exercise 2011 (not a stress test)

|                         | Disclosure | Institutions                     | Tier 1 Capital | Scenario horizon  |
|-------------------------|------------|----------------------------------|----------------|-------------------|
| SCAP 2009               | May 2009   | 19 US BHCs                       | 837 \$ bn      | 2009 - 2010       |
| CCAR 2012               | March 2012 | 19 US BHCs                       | 907 \$ bn      | Q4 2011 - Q4 2013 |
| CCAR 2013               | March 2013 | 18 US BHCs                       |                | Q4 2012 - Q4 2014 |
| CEBS 2010               | July 2010  | 91 banks, 65%<br>of EU-27 assets | 1162 € bn      | 2010 - 2011       |
| EBA 2011                | July 2011  | 90 banks, 65%<br>of EU-27 assets | 1218 € bn      | 2011 - 2012       |
| EBA Capital<br>Exercise | Dec 2011   | 65 banks, excl.<br>Greek banks   | 1190 € bn      | no scenario       |

### The context of stress tests disclosure

2 stress tests are followed by an economic recession: CCAR 2011 (US) and EBA 2011 (EU). Only EBA 2011 discloses bank-level output of the stress test.

6-month realized return after disclosure of EBA 2011: S&P500 -4.89%; EUROSTOXX50 -20.67%; ACWI World -13.47%



10/27



### 2 Testing the efficacy of regulatory risk weights

- 3 Testing stressed losses
- 4 Testing stressed capital shortfalls

# Regulatory risk weight vs. market risk weight (EBA 2011)

Stressed regulatory risk weight =  $RWA_S/TA_S$ Vlab RWA:  $SRISK \le 0 \Leftrightarrow MV \ge \frac{k}{1-(1-k)LRMES}TA$  (Acharya, Engle and Richardson (2012))

Vlab risk weight =  $(1 - (1 - k)LRMES)^{-1}$  (rank correlation: -0.238)

Dexia and BNP: below 25% quantile of  $RW\!A_S/T\!A_S$ , above the 75% quantile of Vlab risk weight distribution



# Forecasting risk: realized volatility regression (EBA 2011)

|                               | 1       | 2       | 3       | 4       | 5       | 6       |
|-------------------------------|---------|---------|---------|---------|---------|---------|
| Constant                      | 4.39**  | -0.12   | 6.34**  | 5.34**  | 1.70    | 0.12    |
|                               | (0.27)  | (1.82)  | (0.83)  | (0.88)  | (1.89)  | (1.90)  |
| Book-to-market                | 0.03**  | 0.03**  | 0.03**  | 0.03**  | 0.03**  | 0.04**  |
|                               | (0.001) | (0.001) | (0.002) | (0.002) | (0.002) | (0.004) |
| Vlab risk weight              |         | 2.50*   |         |         | 2.62**  | 2.99**  |
|                               |         | (0.96)  |         |         | (0.79)  | (0.78)  |
| EBA T1 LVGR, scenario end     |         |         | -39.99* |         | -41.39* | -62.44* |
|                               |         |         | (16.82) |         | (19.02) | (26.39) |
| EBA risk weight, scenario end |         |         |         | -1.75   |         | 3.56    |
|                               |         |         |         | (1.52)  |         | (2.08)  |
| F-test                        | 11.48** | 10.2**  | 11.88** | 6.43**  | 12.72** | 11.25** |
| Adj. R <sup>2</sup> (%)       | 16.78   | 26.14   | 29.50   | 17.28   | 40.34   | 44.10   |

\* Significant parameters at 5%; \*\* at 1%. Standard errors in parentheses. Sample size: 53



2) Testing the efficacy of regulatory risk weights



4 Testing stressed capital shortfalls

#### Stress tests vs. Vlab losses

- Vlab MV loss = LRMES \* MV
- Stress test "Loss" is the projected loss over the stress scenario horizon
- Stress test "Net Loss" = max(0, Projected Loss Projected Revenue)

|           |             | Stress test | s estimates | Vlab estimates |
|-----------|-------------|-------------|-------------|----------------|
| US        | Sample      | Loss        | Net loss    | MV loss        |
| SCAP 2009 | 18 US BHCs  | 590 \$ bn   | 229 \$ bn   | 438 \$ bn      |
| CCAR 2012 | 18 US BHCs  | 529 \$ bn   | 226 \$ bn   | 447 \$ bn      |
| CCAR 2013 | 17 US BHCs  | 457 \$ bn   | 197 \$ bn   | 525 \$ bn      |
| EU        | Sample      | Loss        | Net loss    | MV loss        |
| CEBS 2010 | 50 EU banks | 425 € bn    | 39 € bn     | 399 € bn       |
| EBA 2011  | 53 EU banks | 381 € bn    | 70 € bn     | 402 € bn       |

### Stress tests vs. Vlab losses: rank correlations

- Vlab MV loss = LRMES \* MV
- Stress test "Total Loss" is the projected loss over the stress scenario horizon
- Stress test "Total Net Loss" = Projected Loss Projected Revenue
- Loan losses and trading losses are the most important sources of losses (85% in the CCAR 2012)

| Panel A: Rank correlations with Vlab MV loss |           |           |           |           |          |  |  |
|----------------------------------------------|-----------|-----------|-----------|-----------|----------|--|--|
| Stress tests losses                          | SCAP 2009 | CCAR 2012 | CCAR 2013 | CEBS 2010 | EBA 2011 |  |  |
| Loan losses                                  | 0.580*    | 0.555*    | 0.662**   | 0.837**   | 0.751**  |  |  |
| Trading losses                               | 0.477*    | 0.660**   | 0.589*    | 0.731**   | 0.694**  |  |  |
| Total Loss                                   | 0.682**   | 0.851**   | 0.842**   | 0.830**   | 0.760**  |  |  |
| Total Net Loss                               | 0.280     | 0.604**   | 0.507*    | -0.296*   | -0.476** |  |  |

\* Significant parameter at 5%; \*\* at 1%.

# Forecasting losses during the European sovereign debt crisis (EBA 2011)

Realized loss<sub>*i*,*t*,*W*</sub> = 
$$-MV_{it} * \sum_{t+1}^{t+1+W} \ln(p_{it}/p_{it-1})$$

where t = 06/30/2011 and W = 130 (six months).

| Panel A: Performance in predicting the 6-month realized EUR loss |                  |         |              |                |       |  |
|------------------------------------------------------------------|------------------|---------|--------------|----------------|-------|--|
|                                                                  |                  | Rai     | nk correlati | RMSE of losses |       |  |
|                                                                  | Estimated losses | Large   | Small        | All            | All   |  |
| Vlab                                                             | MV loss          | 0.293   | 0.610        | 0.832          | 5086  |  |
|                                                                  |                  | (0.289) | (0.000)      | (0.000)        |       |  |
| EBA                                                              | Total Loss       | 0.557   | 0.527        | 0.803          | 4945  |  |
|                                                                  |                  | (0.000) | (0.000)      | (0.000)        |       |  |
| EBA                                                              | Total Net Loss   | 0.329   | -0.100       | -0.272         | 11202 |  |
|                                                                  |                  | (0.232) | (0.549)      | (0.048)        |       |  |

P-values in parentheses.

# Forecasting <u>returns</u> during the European sovereign debt crisis (EBA 2011)

| Panel B: Performance | in | predicting | the | 6-month | realized | returns |
|----------------------|----|------------|-----|---------|----------|---------|
|----------------------|----|------------|-----|---------|----------|---------|

|      |                  | Rank correlations |         |         | RMSE of returns |  |
|------|------------------|-------------------|---------|---------|-----------------|--|
|      | Estimated losses | Large             | Small   | All     | All             |  |
| Vlab | LRMES            | 0.350             | 0.314   | 0.299   | 0.553           |  |
|      |                  | (0.201)           | (0.055) | (0.029) |                 |  |
| EBA  | T1C return       | 0.546             | 0.339   | 0.354   | 0.767           |  |
|      |                  | (0.035)           | (0.038) | (0.009) |                 |  |

P-values in parentheses. EBA T1C return: change in T1C (%) from the EBA stress scenario

# EBA capital increase under stress (EBA 2011)

The projected profits under the EBA stress scenario lead to increasing Tier 1 capital levels for many SRISK top banks



Some banks are making profits during the EBA stress scenario

- EBA stress scenario is a deviation of the baseline scenario
- The net interest income is increasing for some banks due to higher interest rates
- Directional market risk stress test: "depending upon the size and direction of their exposures, banks may make gains on certain portfolios"

Different assumptions on the projected  $\ensuremath{\mathsf{PPNR}}$  (Pre-Provision Net Revenue) in the CCAR

- low net interest income due to low interest rate, flat yield curve environment
- low non-interest income due to falling asset prices and sharply contracting economic activity
- higher operational losses included in the PPNR

- Macro stress tests sample
- 2 Testing the efficacy of regulatory risk weights
- 3 Testing stressed losses
- Testing stressed capital shortfalls

## Stress tests capital shortfalls vs. SRISK

Vlab SRISK = kDebt - (1 - k)(1 - LRMES) \* MV

Stress test disclosed capital shortfall =  $max(0, [k' * RWA_S - Capital_S])$ 

|             |             | Stress tests e | Vlab estimates |                  |
|-------------|-------------|----------------|----------------|------------------|
| US          | Sample      | Threshold k'   | Shortfall      | SRISK (k=8%)     |
| SCAP 2009   | 18 US BHCs  | 4% T1CR        | 63.1 \$ bn (9) | 674 \$ bn (18)   |
|             |             |                |                |                  |
| EU          | Sample      | Shortfall      | Shortfall      | SRISK (k=5.5%)   |
| CEBS 2010   | 50 EU banks | 6% T1R         | 0.2 EUR bn (1) | 796 EUR bn (48)  |
|             |             |                |                |                  |
| EBA 2011    | 53 EU banks | 5% T1CR        | 1.2 EUR bn (4) | 886 EUR bn (51)  |
|             |             |                |                |                  |
| EBA Capital | 44 EU banks | 9% T1CR        | 72 EUR bn (22) | 1059 EUR bn (42) |
| Exercise    |             |                |                |                  |

In parentheses: number of banks with capital shortfall > 0 under stress. T1R = Tier 1 Capital ratio, T1CR = Tier 1 Common Capital ratio (US), Core Tier 1 Capital ratio (EU).

# SCAP capital buffer vs. SRISK (SCAP 2009)

Vlab SRISK = kDebt - (1 - k)(1 - LRMES) \* MV

SCAP capital buffer =  $max(0, [k' * RWA_S - Capital_S])$ (k=0.08, k'=0.04, rank correlation: 0.507)



# EBA capital shortfall vs. SRISK (EBA 2011)

Vlab SRISK = kDebt - (1 - k)(1 - LRMES) \* MV

EBA disclosed capital shortfall =  $max(0, [k' * RWA_S - Capital_S])$ (k=0.055, k'=0.05, rank correlation: -0.273)



# EBA capital excess vs. SRISK (EBA 2011)

Vlab SRISK = kDebt - (1 - k)(1 - LRMES) \* MV

EBA 'absolute' capital shortfall (RWA) =  $k' * RWA_S - Capital_S$ (k=0.055, k'=0.05, rank correlation: -0.790)



# Risk-based capital vs. leverage-based capital shortfall (EBA 2011)

Risk-based shortfall  $k' * RWA_S - Capital_S$ (correlation with SRISK: -0.790) Total shortfall (53 banks): 1.2 EUR bn Leverage-based shortfall  $k * TA_S - Capital_S$ (correlation with SRISK: 0.679) Total shortfall: 390 EUR bn



# Conclusion

- Vlab and stress tests *projected losses* are well correlated & both predict well the actual realized losses during the European sovereign debt crisis.
- The *required capitalization* in stress tests is found to be inadequate ex post (especially in Europe), compared to SRISK.
- This discrepancy arises due to the reliance on *regulatory risk weights*.

Static regulatory risk weights are flawed and provide perverse incentives to build exposures to low-risk weight asset categories (Acharya and Steffen (2013)).

Recommendations:

- complement the assessment of banks and system risks with market measures of risk
- use multiple ratios in bank capital requirements to reduce regulatory arbitrage (e.g. T1CR *and* T1 LVGR)