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Appendix A contains proofs of the propositions in Section 2 of the paper, and describes a
decentralization of the economy that motivates viewing the output claim as representing the
market portfolio.

Appendix B includes additional details on construction of the vaccine progress indicator as
described in Section 3.

Appendix C presents extensions of the model to include endogenous investment in a miti-
gation technology, and endogenous labor supply.

Appendix D discusses the experiences of the stock market and consumption during 2020
as interpreted through the lense of the model.



A Proofs

A.1 Proof of Proposition 1

Proposition 1. Denote

g(s) ≡ (1− γ)ρ

(1− ψ−1)
− (1− γ)

(
µ(s)− 1

2
γσ(s)2

)
−

(
[1− χ(s)]1−γ − 1

)
(A.1)

Let H(s)’s denote the solution to the following system of S recursive equations:

g0 ≡ g(0) =
(1− γ)

(ψ− 1)
ρψ (H(0))−ψθ−1

+ η

[
H(1)
H(0)

− 1
]

(A.2)

g1 ≡ g(1) =
(1− γ)

(ψ− 1)
ρψ (H(s))−ψθ−1

+ λd

[
H(s− 1)

H(s)
− 1

]
+ λu

[
H(s + 1)

H(s)
− 1

]
, (A.3)

for s ∈ {1, . . . ,S− 1}.

Assuming the solutions are positive, optimal consumption in state s is

C(s) =
(H(s))−ψθ−1

q
ρ−ψ , (A.4)

and the value function of the representative agent is

JJJ(s) ≡ H(s)q1−γ

1− γ
. (A.5)

Proof. From the evolution of capital stock for the representative agent (8), we obtain the Hamilton-
Jacobi-Bellman (HJB) equation as follows for each state s:

0 = max
C

[
f (C,JJJ(s))− ρJJJ(s) + JJJq(s)(qµ(s)− C)

+
1
2

JJJqq(s)q2σ(s)2 + ζ(s) [JJJ(s) (q(1− χ(s)))− JJJ(s)(q)]

+ λu(s) [JJJ(s + 1)(q)− JJJ(s)(q)] + λd(s) [JJJ(s− 1)(q)− JJJ(s)(q)]
]

(A.6)
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Taking the first-order condition with respect to C(s) in HJB equation (A.6), we obtain

fc(C,JJJ(s))− JJJq(s) = 0. (A.7)

Using f (C,JJJ) from (10) and taking the derivative with respect to C, we obtain

fc =
ρC−ψ−1

[(1− γ)JJJ(s)]
1
θ−1

. (A.8)

Substituting the conjecture JJJ(s) in equation (A.5) yields

fc =
ρC−ψ−1

H(s)
γ−ψ−1

1−γ qγ−ψ−1
. (A.9)

Then, for state s ∈ {0, . . . ,S}, we obtain by substituting JJJq(s) = H(s)q−γ in (A.7), and simplify-
ing:

C(s) =
H(s)−θψ−1

q
ρ−ψ . (A.10)

To verify the conjectured form of the value function, we plug it in to the HJB equation (A.6)
and reduce it to the recursive system in the proposition via the following steps:

1. substitute the optimal policy C(s) into the HJB equation (A.6);

2. cancel the terms in q which have the same exponent; and

3. group terms not involving H(s) constants into g(0) for state s = 0 and g(s) for state s ∈
{1, . . . ,S− 1}

to reach equations (A.1) – (A.3). This system of recursive equations can be solved numerically
with the final condition in Proposition 2: H(s) = H(0), that states 0 and S are non-disaster
states. □
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A.2 Proof of Proposition 2

Proposition 2. The welfare gain to ending the disaster state s is determined by the ratio of marginal
propensity to consume (c ≡ dC/dq) in the disaster state s relative to that in the non-disaster state,
adjusted by the agent’s elasticity of intertemporal substitution (EIS):

V(s) = 1−
(

c(s)
c(0)

)− 1
ψ−1

= 1−
(

C(s)
C(0)

)− 1
ψ−1

(A.11)

Proof. The welfare gain to ending the disaster V(s) satisfies:

JJJ(0)(q) = JJJ(0) [(1−V(s))q] (A.12)

where JJJ(0) is evaluated at (1−V(s))q. Substituting for JJJ(s) from (A.5), we obtain

H(0)q1−γ

(1− γ)
=

H(0) [(1−V(s))q]1−γ

(1− γ)
(A.13)

which yields

V(s) = 1−
(

H(s)
H(0)

) 1
1−γ

. (A.14)

Then, substituting for C(s) from (A.4) and recognizing marginal propensity to consume, c(s),
equals dC

dq = C(s)
q , yields Proposition 2.

A.3 Proof of Proposition 3

This proof of Proposition 3 treats the case of the generalized version of the model with endoge-
nous labor supply.

Proposition 3. The price of the output claim is P = p(s)q where the constants p(s) solve a matrix
system Y = Xp where X is an S + 1-by-S + 1 matrix and Y is an S + 1 vector both of whose elements
are given in the appendix.

Proof. To begin, we derive the pricing kernel and the risk-free rate. Under stochastic differential
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utility, the kernel can be represented as

Λt = e
∫ t

0 fJJJdu fC (A.15)

where
f (C, J) = ρ

Cϱ

ϱ
((1− γ)JJJ)1− 1

θ − ρθJJJ (A.16)

where ϱ = 1− 1
ψ ,θ = 1−γ

ϱ . As shown in Section 4, the value function and the consumption flow
rates are:

JJJ = q1−γH(s)/(1− γ) and C = ρψH(s)e q(s)q (A.17)

where e = 1−ψ
1−γ . Together these imply

fC = ρCϱ−1 ((1− γ)JJJ)1− 1
θ (A.18)

or

fC = ρ
(
ρψH(s)eq

)ϱ−1
(
(1− γ)

(
q1−γH(s)/(1− γ)

))1− 1
θ . (A.19)

Simplifying, we get:

fC = ρ1+ψ(ϱ−1)H(s)e(ϱ−1)+ θ−1
θ q(ϱ−1)+ (1−γ)(θ−1)

θ . (A.20)

The exponent of ρ is: 1 + ψ(ϱ− 1) = 1 + ψ(− 1
ψ ) = 0. The exponent of q is: (ϱ− 1) + (1−γ)(θ−1)

θ .

Substitute θ = 1−γ
ϱ to get: (ϱ− 1) + ϱ(1−γ

ϱ − 1) = −γ. The exponent of H(s) is

e(ϱ− 1) +
θ − 1

θ
⇒ 1− ψ

1− γ

(
− 1

ψ

)
+

1− γψ

ψ(1− γ)
= 1 (A.21)

Hence, fC = H(s)q−γ. Next, to evaluate fJJJ, note that

fJJJ = ρ
Cϱ

ϱ

(
1− 1

θ

)
[(1− γ)JJJ]−

1
θ (1− γ)− ρθ (A.22)
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Plugging in for C and JJJ we get:

fJJJ = ρ

(
ρψH(s)eq

)ϱ

ϱ

(
1− 1

θ

)[
(1− γ)

(
q1−γH(s)/(1− γ)

)]− 1
θ
(1− γ)− ρθ (A.23)

or

fJJJ = ρ

(
ρψH(s)eq

)ϱ

ϱ

(
θ − 1

θ

)[(
q1−γH(s)

)]− 1
θ
(1− γ)− ρθ. (A.24)

This can be expressed as:

fJJJ =
1
ϱ

ρ1+ψϱH(s)eϱqϱ

(
θ − 1

θ

)
(1− γ)q

γ−1
θ H(s)−

1
θ − ρθ. (A.25)

Collecting terms:

fJJJ =
1
ϱ

ρ1+ψϱH(s)eϱ− 1
θ qϱ+ γ−1

θ

(
θ − 1

θ

)
(1− γ)− ρθ. (A.26)

Here the exponent of ρ is : 1 + ψϱ = ψ, and the exponent of H(s) is: eϱ− 1
θ = eϱ− ϱ

1−γ = e, and

the exponent of q is: ϱ + γ−1
θ = 0. Hence,

fJJJ =
1
ϱ

ρψH(s)e
(

θ − 1
θ

)
(1− γ)− ρθ = ρψH(s)e(θ − 1)− ρθ = c(s)(θ − 1)− ρθ. (A.27)

So, we conclude that
Λt = e

∫ t
0 fJJJdu fC = q−γH(s)e

∫ t
0 [c(s)(θ−1)−ρθ]du. (A.28)

The riskless interest rate, r(s) is minus the expected change of dΛ/Λ per unit time. Applying
Itô’s lemma to the above expression yields drift (or dt terms)

c (θ − 1)− ρθ − γ(ℓαµ− c) + γ(γ + 1)ℓασ2 (A.29)

where ℓ(0) = ℓ̄ = 1 and ℓ(s) = ℓ⋆ for s > 0. Note that the term (ℓαµ− c) is the drift of dq/q. To

A.5



these terms we add the expected change from the jumps in the state s for s = 0:

η

(
H(1)
H(0)

− 1
)
≡ η̃ − η (A.30)

which serves to define the risk-neutral jump intenstity η̃. For s > 0 the expected jumps include
both up and down changes in s as well as jumps in q−γ:

λu

(
H(s + 1)

H(s)
− 1

)
+ λd

(
H(s− 1)

H(s)
− 1

)
+ ζ((1− χ)−γ − 1) ≡ (λ̃u − λu) + (λ̃d − λd) + (ζ̃ − ζ)

(A.31)

where the risk neutral intensities are defined as for η. The full expression for r(0) is then

−
{

c(0) (θ − 1)− ρθ − γ(µ− c(0)) + γ(γ + 1)σ2 + (η̃ − η)
}

. (A.32)

For s > 0 we have r(s) as

−
{

c(s)(θ − 1)− ρθ − γ((ℓ⋆)αµ− c(s)) +
1
2

γ(γ + 1)(ℓ⋆)ασ2 + (λ̃u − λu) + (λ̃d − λd) + (ζ̃ − ζ))

}
.

(A.33)

We return to these expressions after deriving the pricing equation for the output claim.

By the fundamental theorem of asset pricing, the instantaneous expected excess return to the
claim P(q, s) must equal minus covariance of the returns to P with the pricing kernel. Deriving
these two quantities and setting them equal yields the pricing system, to which the proof will
construct the solution.

The expected excess return to the claim P(q, s) is the sum of its expected capital gain and its
expected payout, minus rP. In the nondisaster state, this is

1
2

σ2q2Pqq(q,0) + (µ− c(0))qPq(q,0) + η(P(q,1)− P(q,0)) + µq− r(0)P(q,0) (A.34)
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whereas in the disaster states it is

1
2
(ℓ⋆)ασ2q2Pqq(q, s) + ((ℓ⋆)αµ− c(s))qPq(q, s)

+λu(P(q, s + 1)− P(q, s)) + λd(P(q, s− 1)− P(q, s)) + ζ(P((1− χ)q, s)− P(q, s))

+µ(ℓ⋆)αq− ζχq− r(s)P(q, s). (A.35)

Next, we need to derive the covariance of the returns to P with dΛ/Λ. As mentioned in the text,
in addition to the usual contribution of covariance from the capital gains dP/P, the covariance
also includes the contribution from the dividends themselves, which are risky in this model.
There are also contributions from both Brownian comovement and co-jumps in q and s. The
Brownian terms are

−γ(ℓ⋆)ασ2[qPq(q, s) + q] (A.36)

for s > 0, or just −γσ2[qPq + q] for s = 0. The co-jump terms for s > 0 are

ζ[P((1− χ)q, s)− P(q, s)− χq] [(1− χ)−γ − 1]

+λu[P(q, s + 1)− P(q, s)]
[

H(s + 1)
H(s)

− 1
]
+ λd[P(q, s− 1)− P(q, s)]

[
H(s− 1)

H(s)
− 1

]
(A.37)

or

[P((1− χ)q, s)− P(q, s)− χq] [ζ̃ − ζ]

+[P(q, s + 1)− P(q, s)][λ̃u − λu] + [P(q, s− 1)− P(q, s)][λ̃d − λd]. (A.38)

For s = 0 the corresponding expression is just

[P(q,1)− P(q,0)][η̃ − η]. (A.39)

We now equate the expected excess return to minus the above covariance to obtain the dif-
ference/differential equation system that P must solve. Rather than repeating the general ex-
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pressions, we instead conjecture that the the solutions are linear in q and deduce the resulting
system. Under linearity Pqq = 0 and Pq = p, a constant that depends on s.

Plugging in the conjectured form, and cancelling a q, in states s > 0 the pricing equation
says

((ℓ⋆)αµ− c(s))p(s) + λu(p(s + 1)− p(s)) + λd(p(s− 1)− p(s)) (A.40)

− χζ p(s) + µ(ℓ⋆)α − ζχ− r(s)p(s)− γ(ℓ⋆)ασ2[p(s) + 1] (A.41)

− χ[p(s) + 1] [ζ̃ − ζ] + [p(s + 1)− p(s)][λ̃u − λu] + [p(s− 1)− p(s)][λ̃d − λd]

= 0. (A.42)

Leaving the constant terms on the left, the right side consists of

p(s+1) terms: − λu − [λ̃u − λu] = −λ̃u, (A.43)

p(s−1) terms: − λd − [λ̃d − λd] = −λ̃d, (A.44)

and p(s) terms:

−((ℓ⋆)αµ− c(s)) + λu + λd + χζ + r(s) + γ(ℓ⋆)ασ2 + χ[ζ̃ − ζ] + [λ̃u − λu] + [λ̃d − λd] (A.45)

or
r(s) + c(s)− (ℓ⋆)α(µ− γσ2) + λ̃u + λ̃d + χζ̃. (A.46)

The remaining constants on the left are

µ(ℓ⋆)α − ζχ− γ(ℓ⋆)ασ2 − χ[ζ̃ − ζ]. (A.47)

or
(ℓ⋆)α(µ− γσ2)− χζ̃. (A.48)

The above equations define a linear system for p(1) to p(S− 1). The pricing equation for
s = 0 says

(µ− c(s))p(0) + η(p(1)− p(0)) + µ− r(0)p(0)− γσ2[p(0) + 1] + [p(1)− p(0)][η̃ − η] = 0,
(A.49)
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or

µ− γσ2 = p(0)[r(0) + c(0)− (µ− γσ2) + η̃]− p(1) η̃. (A.50)

This equation closes the system on the low end. At the high end, the system is closed via
p(S) = p(0).

Altogether the system may be written in matrix form,


r(0) + c(0)− (µ− γσ2) + η̃ −η̃ 0 · · ·

−λ̃d r(s) + c(s)− (ℓ∗)α(µ− γσ2) + χζ̃ + λ̃d + λ̃u −λ̃u 0

0
. . .

. . .
. . .

.

.

.
. . .

. . .
. . .

−λ̃u 0 · · ·

 p =


(µ− γσ2)

(ℓ⋆)α(µ− γσ2)− χζ̃

.

.

.

.

.

.

.

.

.

 .

Assuming the parameters are such that the right-hand matrix is of full rank, the system has a
unique, finite solution.

A.4 Output Claim

The model in Section 2 views the stock market as a claim to the economy’s future output flow,
defined as the change in the stock of wealth before consumption. This subsection clarifies the
reasons for this definition, offers a decentralization that supports it, and also notes alternative
claims that can achieve the same objectives.

First, our aim is to tractably depict a market that responds to news about vaccine progress, as
captured by the state variable s. As is well known, in an economy where the capital stock can
be costlessly converted to consumption goods, the unit price of the capital stock is constant and
equal to 1.0. Or, in our notation, the value of q is q. Moreover, this is also equal to the value of
a claim to all future consumption. In many applications, this is still a reasonable depiction of
the market portfolio. But it does not describe the dynamic that we are interested in modeling.1

The consumption claim is a knife-edge case, however. Any wedge between consumption and

1Recall that in our model changes in the state s do not directly alter q.
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payouts to equity will result in a nonconstant ratio P/q. In particular, claims whose cash flows
vary more with the state of the pandemic will have prices that do so as well. The key feature
of the claim that we price is that its expected cash flow mirrors the impact on wealth of the
pandemic.

To see how the flow that we are valuing could constitute the payouts to owners of corporate
claims, consider the following decentralization.

1. Households own the capital stock and rent it to goods-producing firms.

2. Firms produce output µ(s) q dt + σ(s) q dWt per unit time.

3. Firms purchase insurance against pandemic shocks −χ q dJ from an insurance sector.

4. The market portfolio consists of a claim to the profits of both sectors plus the rental con-
tract for the capital stock.

The assumption that firms rent productive capital from households is standard in macroe-
conomics. Notice that in step 1, the rental is effectively a riskless bond in that the “face value”
of q is insured. Thus in this economy households separate risky and safe claims.

We assume the parameter values are such that positivity in all states holds, and we verify
this for each case in our numerical work. We also verify that P/q < 1, i.e., that financial claims
in the portfolio comprise a subset of the economy’s total wealth.

Finally, it is worth clarifying that it is not necessary for our results to assume that holders
of the portfolio bear the losses of the pandemic shock as a negative dividend. Our results are
mathematically the same for an alternative claim that pays the (risk-neutral) expected output
rate per unit time in each state.

B Vaccine Progress Indicator
This section includes additional details on construction of the vaccine progress indicator. Each
day’s forecast is computed via simulation as described in Section 2 of the paper. The procedure
is depicted graphically in the flow chart Figure A.1.

The simulation takes as input a timeline of COVID-19 vaccine candidates’ stage-by-stage
progress from the London School of Hygiene & Tropical Medicine.2 We observe the start dates
2This version of the paper uses the timeline available on November 2, 2020.
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Figure A.1: Simulation Flow Chart

Note: Figure shows the simulation that estimates the expected time until vaccine deployment.

of each pre-clinical and clinical trial, along with their vaccine strategy. Table A.1 breaks down
the number of candidates at each state at the end of our sample. We also observe each candi-
date’s strategy. Table A.2 summaries the main strategies along with the number of candidates
following each.

We then augment πbase
s with 233 news articles from FactSet StreetAccount, split into pos-

itive and negative news types. Table A.3 shows the number of articles by news type, while
Table A.4 shows the top ten candidates by news count.

B.1 Data and Parameters

The simulation takes as input a timeline of COVID-19 vaccine candidates’ stage-by-stage progress
from the London School of Hygiene & Tropical Medicine. We observe the start dates of each
pre-clinical and clinical trial, along with their vaccine strategy. Vaccines typically take years to
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Table A.1: Vaccine States

State # Candidates Example Candidates

Preclinical 210
Amyris Inc

Baylor College of Medicine
Mount Sinai

Phase I
Safety Trials 20

Clover/GSK/Dynavax
CSL/University of Queensland

Imperial College London

Phase II
Expanded Trials 18

Arcturus/Duke
Osaka/AnGes/Takara Bio

Sanofi Pasteur/GSK

Phase III
Efficacy Trials 11

AstraZeneca/Oxford
BioNTech/Fosun/Pfizer

Moderna

Note: Table describes the number of vaccine candidates in each state, along with example institutes.
Data are from the London School of Hygiene & Tropical Medicine’s COVID-19 Tracker. Data are as of
November 2, 2020.

develop, and institutes have combined phases in an effort to accelerate the timeline. Follow-
ing Wong et al. (2018), we adopt each candidate’s most advanced state. We also observe each
candidate’s strategy.

Since candidates share a common virus target, and potentially common institutes or strate-
gies, we define pairwise correlations in an additive manner. For two candidates n ̸= n′:

ρ(n,n′) =


0.2 baseline

add 0.2 if shared institute

add 0.1 if shared strategy.

Table A.5 lists our parameter choices of durations and baseline probabilities of success. Our
baseline success probabilities are based upon estimates in Pronker et al. (2013), and augmented
by our own sample of historical outcomes of infectious disease vaccine trials from pharmaceu-
tical research firm BioMedTracker. Our baseline duration estimates are based on projections
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Table A.2: Vaccine Strategies

Type Description # Candidates

RNA
(genetic)

Consist of messenger RNA molecules which code for parts of
the target pathogen that are recognised by our immune system
(’antigens’). Inside our body’s cells, the RNA molecules are
converted into antigens, which are then detected by our immune cells.

33

DNA
(genetic)

Consist of DNA molecules which are converted into antigens
by our body’s cells (via RNA as an intermediate step). As with RNA
vaccines, the antigens are subsequently detected by our immune cells.

21

Viral
Vector

Consist of harmless viruses that have been modified to contain antigens
from the target pathogen. The modified viruses act as delivery systems
that display antigens to our immune cells. Replicating make extra copies
of themselves in our body’s cells. Non-replicating do not.

56

Protein Consist of key antigens from the target pathogen that are recognised
by our immune system. 78

Inactivated Consist of inactivated versions of the target pathogen. These are
detected by our immune cells but cannot cause illness. 16

Attenuated
Consist of living but non-virulent versions of the target pathogen.
These are still capable of infecting our body’s cells and inducing an
immune response, but have been modified to reduce the risk of severe illness.

4

Note: Table describes the number of vaccine candidates in each strategy. 51 candidates have other, virus-
like particle or unknown strategies. Data from the London School of Hygiene & Tropical Medicine’s
COVID-19 Tracker. Data as of November 2, 2020.

from the pharmaceutical and financial press during 2020 as detailed in the appendix above.
Table A.6 summarizes the distribution of time spent in each state in our simulation. Fol-

lowing Wong et al. (2018), we adopt each candidate’s most advanced state. We track days
spent in each state until the next state starts, only among candidates that have successfully
transitioned to the next state. The realized outcomes for durations are reasonably consistent
with our choices of parameters, in particular for Phase I and Phase II. And the standard devia-
tions of durations are less than the mean is consistent with the Gaussian copula assumption of
positively correlated outcomes.

We then augment πbase
s with 233 news articles from FactSet StreetAccount, split into posi-

tive and negative news types. Table A.7 lists the news types along with their changes in prob-
abilities.
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Table A.3: Number of Articles by News Type

News Type Number of Articles

Release positive data 79
Announce next state 45
Positive regulatory action 30
Positive preclinical progress 22
Announce dosage start 21
Positive enrollment 17
State ahead of schedule 7
State resumed 5
State paused 4
State behind schedule 1
Negative regulatory action 1
Negative enrollment 1

Total 233

Note: Table shows the count of news articles by news type.

Table A.4: Number of Articles by Top 10 Candidates

Candidate Number of Articles

Moderna 37
BioNTech / Fosun Pharma / Pfizer 25
Oxford / AstraZeneca 23
Johnson & Johnson / Beth Israel Deaconess Medical Center 21
Inovio Pharmaceuticals 18
Novavax 14
Arcturus / Duke 10
Vaxart 9
Medicago / GSK / Dynavax 8
Takis / Applied DNA / Evvivax 8

Note: Table the number of news articles for the top ten candidates by article count.
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Table A.5: State Durations and Probabilities of Success

State τs (years) πbase
s (%)

Preclinical 0.6 5
Phase I 0.2 70
Phase II 0.2 44
Phase III 0.4 69
Application 0.1 88
Approval 0.5 95

Table A.6: Vaccine States

Days in State

Min Max Mean Median SD

Preclinical 1.0 233.0 94.6 90.5 59.2

Phase I 17.0 103.0 51.9 27.0 39.8

Phase II 6.0 152.0 86.8 89.0 54.5

Note: Table shows statistics on days spent in each state before transitioning, among candidates that have
successfully transitioned to the next state. Following Wong et al. (2018), we adopt each candidate’s most
advanced state. Data are from the LSHTM and are as of November 2, 2020.

Table A.7: News and Changes in Probabilities

Positive Negative
News type ∆π (%) News type ∆π (%)

Announce next state +5 Pause in state -25
State ahead of schedule +2 State behind schedule -15
Release positive data +5 Release negative data -60
Positive regulatory action +3 Negative regulatory action -50
Positive preclinical progress +1 Negative preclinical progress -2
Positive enrollment +1 Negative enrollment -5
Dose starts +1
State resumes after pause +5

Note: Table shows the positive and negative news types, along with their changes in probabilities.
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C Extensions
This appendix considers two extensions of the model: one with endogenous investment in
a disaster mitigation technology, and a second with endogenous labor supply that increases
exposure to the disaster shocks.

C.1 Endogenous Vaccine Development

The model in Section 2 includes no actual vaccine development technology. The reason for this
is simply that parameterizing and calibrating a bio-pharmaceutical R&D production function
is beyond the scope of our study. However, there could be a concern that we overstate the value
of ending the pandemic by not giving the economy a real option to address it. We now show
a tractable way to do this, and we explain why our results are consistent with this extension.
In a nutshell, optimal research effort will impose a constraint on the parameters that does not
affect our empirical identification of the pandemic duration and severity.

Suppose that, when a pandemic arrives, the representative agent has the ability to choose
an expenditure rate ι that increases the arrival rate of vaccine progress. The most parsimonious
specification would just be linear:

λ(ι) = L0 + L1 ι.

(The discussion will treat the 2-state model. Generalization to S-states is straightforward.)
Given the rate, the dynamics of wealth, dq/q, picks up a new term −ι dt for the duration of
the pandemic. Without loss of generality, we can assert that whatever ι level the agent chooses
in the first pandemic is also optimal for all subsequent pandemics. For notational simplicity
below, define the adjusted drift during the pandemic as

µS(ι) = µ(1)− ι

where µ(1) is the benchmark growth rate without research effort. While this formulation is too
sparse to address issues of public versus private returns to research expenditure, it does allow
us to formulate and solve a model in which vaccine progress (and exiting from pandemic) is
an endogenous outcome.

Notice that, given a choice of ι, the economy behaves exactly as in our reduced-form case.
Hence the solution for optimal consumption and the value function are unchanged. In partic-
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ular, we can write the value function within the pandemic as H(1;λ(ι),µS(ι)). To choose the
optimal policy, ι∗, the agent simply maximizes this function. This verifies that the optimal rate
is constant within a state and does not vary across pandemics. Of course, a necessary condition
for an interior optimum is

∂H
∂µS

= L1
∂H
∂λ

.

Optimality of the research effort does constrain admissible pairs of λ and µS via this relation.
Clearly in an economy with powerful research technology (where L1 is a large number),

agents can make the pandemic very brief (in expectation) at low cost. Hence, the endogenous
value of λ would be high, and agents would pay less to return to the non-pandemic state than in
an economy with inferior vaccine technology. However, recall that our benchmark calibration
above already conditioned on different values of λ. We showed that the welfare gain depended
strongly on the remaining expected duration of the pandemic, which could be inferred in the
data from our estimation of the expected time to deployment of a vaccine during 2020.

Now, taking λ as fixed at an observed value λ̂ say, consider the ratio

f (µ̂S) =
∂H
∂µS

∣∣∣∣
λ̂,µ̂S

/
∂H
∂λ

∣∣∣∣
λ̂,µ̂S

.

Given any value of the technology parameter L1, the first order condition above requires us to
use the value of µ̂S satisfying f (µ̂S) = L1. Assuming a solution exists, this is the full economic
content of endogenizing vaccine investment in this setting.

Would imposing such a restriction on µS affect our estimated welfare results? To see why
it will not, recall from Section 2.6 that the stock market response to news about the state (i.e.,
vaccine progress) effectively identifies the welfare gradient directly. The precise choice of indi-
vidual model parameters is, to a first approximation, irrelevent, conditional on matching this
moment. Requiring that µS satisfies the above first order condition would take away one de-
gree of freedom in the calibration. But choosing the remaining disaster parameters (e.g. χ) to
yield the same stock market response would restore the same empirical conclusions.

To be clear, the conclusion is not that including a vaccine development technology does
not affect the welfare costs of the pandemic. Rather, we are pointing out that our empirical
work has already pinned down the key inputs to that value. Taking those quantities at face
value, adding assumptions about the development technology and imposing the restriction of
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optimal investment do not perturb the calculation.

C.2 Endogenous Pandemic Severity and Labor Externalities

In this subsection, we develop a version of the model in which the pandemic parameters for
the wealth process are endogenized through the choice of labor supply. Doing so will allow us
to examine how much the value of curtailing the pandemic is influenced by the extent to which
individual choices deviate from the socially optimal policies.

In this version of the model, wealth accumulates according the stochastic process

dq = ℓαqµdt− Cdt + σℓα/2qdBt (A.51)

in the non-pandemic state, and

dq = ℓαqµdt− Cdt + σℓα/2qdBt − [ℓε + k + KL]qdJt. (A.52)

in the pandemic state. As before, C is the endogenous consumption rate, and now ℓ is the
household’s labor supply, and α∈ (0,1) is the elasticity of expected output with respect to labor.
The results below all go through with constant returns to scale in the drift term. Crucially, both
individual and aggregate labor are assumed to affect the agent’s exposure to the health shock
via the jump size. Let

χ(ℓ, L) ≡ [ℓε + k + KL], (A.53)

where ε is exposure to the pandemic via private labor, k is exposure to the pandemic unrelated
to labor, L is aggregate labor supply, and K is exposure via aggregate labor. These parameters
can capture losses of wealth due to health-induced disruptions to work, the need to work from
home with attendant productivity impact and loss of human capital, deadweight losses from
bankruptcy, and frictions from labor reallocation. We will assume parametric restrictions on ε,
k and K to be small enough that (1− χ) ∈ (0,1). The agent takes the aggregate supply of labor
L as given in her optimization problem.

Agents’ preferences are as in the text. We assume no disutility to labor supply and no
frictions in adjusting ℓ. We assume ℓ ∈ [0,ℓ], where the upper bound ℓ is the agents’ total
available work capacity. (In the numerical work we normalize ℓ = 1.)
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The agent’s problem is now to choose in each state s optimal consumption C(s, L∗(s)) and
labor ℓ(s, L∗(s)) that maximizes the objective function. We impose that agents have rational
expectations about L∗(s), the aggregate labor in equilibrium. In other words, individual agents’
decisions in the aggregate should lead to a wealth (consumption) dynamic that is confirmed in
equilibrium. This implies the following for wealth dynamics in the pandemic regime:

dq(s) = [ℓ(s, L∗(s))]αqµdt− C(s, L∗(s))dt + σ[ℓ(s, L∗(s))]α/2qdB− χ(ℓ(s, L∗(s)), L∗(s))qdJt

(A.54)

Since L∗(s) is a constant for each s, as the agent has rational expectations about L∗(s), the
above dynamics are identical to those assumed by the agent. Substituting for the equilibrium
fixed point that L∗(s) = ℓ(s, L∗(s)), we can then obtain the rational expectations equilibrium
outcomes.

Proposition 1. Equilibrium labor in the non-pandemic state is given by

L(0) = L(S) = ℓ (A.55)

Equilibrium labor in pandemic states L∗(s) ∀s ∈ {1, . . . ,S− 1} solves3

χ (L(s), L(s)) = k + (ε + K)L(s) =
[
1− (L(s))

1−α
γ ν

]
(A.56)

where

ν ≡

α
(

µ− 1
2 γσ2

)
ζε

−
1
γ

. (A.57)

Proof. The HJB equation for each state s ∈ {1, . . . ,S− 1} is now

0 = max
C,ℓ

[
f (C,JJJ(s))− ρJJJ(s) + JJJq(s)(ℓαqµ− C) +

1
2

JJJqq(s)ℓαq2σ2 + ζ [JJJ(s) (q(1− χ))− JJJ(s)(q)]

+ λu(s) [JJJ(s + 1)(q)− JJJ(s)(q)] + λd(s) [JJJ(s− 1)(q)− JJJ(s)(q)]
]

(A.58)

3It can be shown that given α ∈ (0,1), the second order condition for a maximum is satisfied whenever µ− 1
2 γσ2 >

0, which also implies ν > 0.

A.19



Using the conjecture for the objective function in the text for JJJ(s), calculating the derivatives
with respect to q, JJJq(s) = H(s)q−γ and JJJqq(s) =−γH(s)q−γ−1, and differentiating with respect
to labor ℓ, we obtain the first-order condition as

JJJq(q)αℓ
α−1µq +

1
2

JJJqq(q)αℓα−1σ2q2 − JJJq (q(1− χ)) ζεq = 0 (A.59)

where we have suppressed state s in the notation. This in turn simplifies toα
(

µ− 1
2 γσ2

)
ζε

 ℓα−1 − [1− χ]−γ = 0 (A.60)

where χ(ℓ, L) = k + εℓ+ KL. In rational expectations equilibrium L(s) = ℓ(s), which gives us
that optimal labor in pandemic state L⋆(s) ∀s ∈ {1, . . . ,S− 1} satisfies (A.56):

χ (L(s), L(s)) = k + (ε + K)L(s) =
[
1− (L(s))

1−α
γ ν

]
(A.61)

where

ν ≡

α
(

µ− 1
2 γσ2

)
ζε

−1/γ

. (A.62)

The second-order condition with respect to ℓ is satisfied (see footnote 7 above) whenever(
µ− 1

2 γσ2
)
> 0. For the non-pandemic state s = 0 or s = S, the third term in first-order con-

dition (A.59) is absent; therefore, we obtain that labor is at the highest possible level L(0) =
L(S) = ℓ, whenever α

(
µ− 1

2 γσ2
)
> 0.

In the non-pandemic state, the agent faces no cost to supplying labor and exerts effort fully.
However, in the pandemic states, the agent increases exposure to health risk by supplying
labor, which creates a tradeoff between augmenting the capital stock and reducing the loss of
capital that arises from health shocks. A key property of the model is that the agent contracts
labor relative to the non-pandemic state.

Note the externality in our set up via the KL term in the size of the Poisson shock (where L
is aggregate labor) that is not internalized by each agent. A central planner would factor this
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in the socially efficient choice of labor. This is tantamount to replacing ε by (ε + K) in ν above
to obtain νCP:

νCP ≡

α
(

µ− 1
2 γσ2

)
ζ(ε + K)

−
1
γ

(A.63)

Socially efficient labor choice LCP(s) in the pandemic states is then given by

χ (L(s), L(s)) = k + (ε + K)L(s) =
[
1− (L(s))

1−α
γ νCP

]
(A.64)

It is then straightforward to show that νCP > ν for K > 0 and γ > 0, and hence LCP(s) < L(s),
i.e., the socially efficient choice of labor in pandemic states is smaller than the privately optimal
one.

Given the optimal labor and consumption policies, the model solutions in Proposition 2 can
be directly applied. As before, the pandemic parameters only enter the system of equations via
the constants g0 and g1, which we can write compactly as

g(x,y) ≡ (1− γ)ρ

(1− ψ−1)
− xα(1− γ)

(
µ− 1

2
γσ2

)
− y

(
[1− χ(x, x)]1−γ − 1

)
(A.65)

with g0 = g(ℓ,0) and g1 = g(ℓ(s),ζ).
To quantitatively evaluate the model’s implications, we require that the parameters are

such that the endogenous severity of the pandemic is in line with our empirical estimates. A
useful summary statistic for the severity is the reduction in the expected growth of wealth
(computed under the risk-neutral measure) which we label ∆mQ. For reference, under the
basline calibration in the text, the value of this quantity is approximately 0.06. We report below
the implied ∆mQ for a range of values of K and ε in Table A.8.4 We also report the optimal labor
supply in the pandemic state, ℓ⋆. Some empirical evidence suggests labor contraction ≈20%
in April 2020 (see, e.g., Cajner et al. (2020)) corresponding to ℓ⋆ ≈ 0.80. The table identifies
parameter regions (e.g., the upper left of the tables) that can match both restrictions.

Table A.9 shows the effect on V of the labor market externality for the same range of pa-
rameter values. The left panel provides a direct measure of the scale of the externality via the

4The exercise fixes α and k. These parameters have less direct impact on the degree of labor externality.
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Table A.8: Endogenous Pandemic Parameters via Labor

ℓ⋆ ∆mQ

K→ K→
0.8471 0.8204 0.7959 0.0517 0.0577 0.0636

←
ε

←
ε0.7885 0.7651 0.7435 0.0509 0.0565 0.0619

0.7357 0.7151 0.6960 0.0503 0.0555 0.0605
0.6880 0.6698 0.6529 0.0497 0.0546 0.0593

Note: Table shows the implied values of equilibrium labor, ℓ⋆, and decline in expected growth rate of q in pan-
demic states, ∆mQ, by fixing the elasticity of expected output with respect to labor α = 0.5, exposure to the pan-
demic unrelated to labor k = 0.006, intensity of switching to the pandemic state η = 0.04, and intensity of switching
to the non-pandemic state λ = 0.5. Each panel varies the exposure to the pandemic via private labor, ε, and via
aggregate labor, K. ε increases down the rows and takes the values 0.023, 0.024, 0.025 and 0.026, while K increases
left-to-right across columns and takes the values 0.018, 0.024 and 0.030.

ratio of the central planner’s solution for optimal labor in the pandemic to that actually cho-
sen by agents. With parameters in the region identified above, the socially optimal lockdown
is quite severe with labor restricted to 30%-40% of the privately optimal amount.5 The right
panel shows that, in this region, the welfare gain is 12%-19% lower under the central planner’s
solution.

In addition to the finding that ending the pandemic is less valuable under a central plan-
ner, comparing variation across the two panels reveals the pattern that a stronger externality
(as measured by lower values of ℓ⋆cp/ℓ⋆) are associated with decreasing relative welfare gains
under the central planner. The extra degree of lockdown that the planner would impose de-
creases the expected welfare cost. We acknowledge that if the arrival of the pandemic were to
result in social costs that are outside the capital stock dynamics for the agent, then the planner
might value the ending the pandemic more than the representative agent.

5While our model does not feature SIR dynamics, models with SIR dynamics and labor externalities generally see
more severe lockdown policies under a central planner (see Abel and Panageas (2021)).
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Table A.9: Externality and Value of a Cure

ℓ⋆cp/ℓ⋆ Vcp/V

K→ K→
0.3762 0.2994 0.2450 0.8661 0.8167 0.7725

←
ε

←
ε0.3860 0.3083 0.2530 0.8777 0.8309 0.7884

0.3957 0.3170 0.2609 0.8882 0.8438 0.8031
0.4049 0.3256 0.2686 0.8975 0.8555 0.8165

Note: The left panel provides a direct measure of the scale of the externality via the ratio of the central planner’s
solution for optimal labor in the pandemic to that actually chosen by agents. The right panel shows the ratio of the
value of a cure as determined by the central planner to that chosen by agents. Both fix the elasticity of expected
output with respect to labor α = 0.5, exposure to the pandemic unrelated to labor k = 0.006, intensity of switching
to the pandemic (non-pandemic) state η = 0.4 (λ = 0.5). Exposure to the pandemic via private labor, ε, increases
down to rows and takes values {0.023,0.024,0.025,0.026}. Exposure via aggregate labor, K, increases left-to-right
and takes values {0.018,0.024,0.030}.

D Interpreting the COVID-19 stock market experience
For tractability, our model omits many factors that played important roles in 2020. We have
not included fiscal or monetary policy, for example. (Recall, though, that our empirical work
excluded large market-moving events attributable to non-vaccine news as classified in Baker
et al. (2020)). We now describe in more detail its implications for the response of the stock mar-
ket and of consumption to a pandemic. Comparing these implications to the actual experience
of 2020, we argue that a coherent interpretation is possible when viewed through the lens of the
model. Hence, while there are inevitably descriptive limitations, these need not detract from
the paper’s objectives.

Consider first the stock market. From December 31, 2019 to March 23, 2020 the CRSP value-
weighted experienced a return of approximately -36%, continuously compounded. The market
then rebounded fully by early autumn. The cumulative return for the year was approximately
+5% at end of October (where our clinical trial sample stops).

The calibration in the paper implies a somewhat smaller drop, of -25% for the output claim
at the onset of a pandemic, based on our initial VPI forecast of an expected duration of four
years. Thus, relative to this data point, our estimation of the potential damage of the pandemic
is conservative compared to the market’s assessment.
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Subsequently, the model implies a partial market recovery due to the observed success of
vaccine trials. From March 23 through October 30, our forecast of the pandemic’s duration
dropped by 2.5 years, of which 0.6 years was expected. The implied market response to this
progress – calibrated to match the response estimated in our empirical work – is approximately
16%.

Thus, without conditioning on any other shocks, the basic dynamics of our model can ac-
count for approximately 70% of the observed market decline and about one-third of the recov-
ery through our sample period. To shed light on factors the model may be missing, it is useful
to decompose the initial market decline into components due to cash flow news, real interest
rate news, changes in the equity risk premium. One way to identify these return components,
rCF, rRF,and rRP within the model is as follows.

1. Assume that, on a switch to a pandemic, the parameters of the process dq change as
described in Section 2. Solve the asset pricing system given in Proposition 3, but with-
out any risk-adjustments (i.e., under the physical measure) and fixing the riskless rate in
the pandemic, r(1), to be its non-pandemic value, r(0), as computed under the original
benchmark calibration.

• Call the resulting price-dividend ratio p̃(s).

• Define the percent change in this on entering the pandemic rCF = log( p̃(1)/ p̃(0)) to
be the return due to cash flow news.

2. Solve the same pricing system, still under the physical measure, but now allowing r(1) to
be its pandemic value in the calibrated model.

• Call the new price-dividend ratio p̂.

• Call rRF = log( p̂(1)/ p̂(0))− rCF the return due to real interest rate news.

3. As in the text, let p(s) denote the price-dividend ratio under the full model.

• Call the residual rRP = log(p(1)/p(0))− rRF − rCF the return due to risk premium
news.
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With the baseline calibration the results are:

rCF = −0.328, rRF = 0.284, rRP = −0.206.

Recently, Knox and Vissing-Jorgensen (2022) report empirical estimates of the same de-
composition during 2020 using information in options markets, inflation swaps, and S&P 500
dividend futures. Consistent with their work, we find substantial and nearly offsetting positive
and negative components of discount rate news, that is rRF + rRP is small.

The risk premium component in our model is due to the threat of Poisson shocks. As
is well-known from the long-run risk literature, investors with Epstein-Zin preferences and
γ > 1/ψ are averse to uncertainty and growth-rate risk. Also, in the model, real rates decline
on entering the pandemic with the riskless rate turning mildly negative, consistent with the
data.

Our model attributes large effects to cash flow news. In fact, expected cash flows did de-
cline steeply in early 2020: December 2020 S&P 500 dividend futures declined more in percent-
age terms than did the overall stock market,6 However, as Knox and Vissing-Jorgensen (2022)
show, near-term dividends makes up a small component of market value. So declines in the
discounted sum (e.g., for 10 years ahead) cannot account for a large component of the market
drop. As a result, and combined with the small net discount rate effects, the authors attributing
most of the market decline to residual unidentified long-term effects.

In our model, there are both short-term cash-flow effects from lower output, as well long-
term effects from the loss of part of the capital stock. Evidently the market was anticipating
less short-run impact, but greater long-term impact, perhaps due to scarring type effects that
are absent from the model. Recall that, while we assume permanent effects of the pandemic
on the level, q, we assume purely transitory effects on the growth rate of dq once the pandemic
ends. The market may have not been so sure.

Turning to the implication for our conclusions, it is clear that adding negative long run
effects in order to match the observed market decline (while holding other return components
fixed) will imply larger welfare gains to mitigating the pandemic. It is important to recognize
that, while the model’s return decomposition can be altered (e.g., with different preference

6The December contract, quoted in units of the S&P 500 index, dropped from 62.5 at the end of 2019 to 39 on
3/23/20, a decline of 47%. Using this contract as a denominator, the price-dividend ratio on the market actually
went up over this period.
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parameters), this will not necessarily lead to large welfare effects if we still impose that the
calibration matches the magnitude of the market response to vaccine progress. As described in
the text, the latter condition effectively pins down the severity of the pandemic.

Next consider the path of consumption. An extremely prominent feature of the 2020 ex-
perience was the rapid plunge in consumption in March and April followed by a complete
rebound by early 2021. In the context of the model, consumption is driven primarily by the
wealth process, dq. (The effect of changes in the marginal propensity to consume is second or-
der.) A large decline in observed consumption is consistent with the occurrence of one or more
down jumps in q in the early part of the year. These Poisson events are the way in which the
pandemic is realized within the model. In fact, the early occurrence of such a shock – which
was not considered above – can also bring the model’s implied stock market decline directly
into line with the observed fall.

However, as just discussed, the model has no mechanism for the reversal of these shocks
after the pandemic ends, still less while the pandemic remains in progress. How, then, can the
model explain the consumption rebound?

In our view, the most coherent interpretation of the consumption experience is that a large
component of the recovery must be regarded as having been unexpected. Indeed, from the
analysis above, it would be seemingly impossible to build a model in which a strong rebound in
consumption is expected ex ante within a pandemic and in which the stock market drops nearly
40% due to the arrival of the pandemic. Moreover, the strong rebound in stock prices after
March is also consistent with the interpretation of substantial unexpected good news about
fundamentals, further helping to reconcile the model’s implications of a rally only partially
explained by vaccine progress. Moreover, evidence in Hong et al. (2021) and Gormsen and
Koijen (2020), respectively, supports strong positive revision in corporate cash flows during
the pandemic, by examining expectations of stocks’ earnings and implied dividend yields.

In the context of the model, unexpected consumption changes are described by the Gaus-
sian component of wealth shocks, which can be viewed as encompassing mechanisms like
(unanticipated) policy interventions that are outside the model. Invoking large positive shocks
is not implausible if the scale of these shocks, governed by σ(s), s > 1, is large. Our calibration
too σ(s) = 0.075 (or 3.75% per quarter) for the pandemic states. With this value, the 8% increase
in consumption in the third quarter of 2020 is approximately a two standard deviation event
(depending on the assumed conditional mean), unlikely but not impossible.
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To summarize, fully accounting for the behavior of the financial markets and the real economy
during 2020 is beyond the scope of our baseline stylized model. Nor is it the main objective
of the paper. Nevertheless, the primary contours of the data can be reasonably described as
an outcome within the model, given certain realizations of the stochastic shocks, as described
above.
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