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Online Appendix A: Solution to the Bank’s Problem (Exogenous

Price Setting)

Lemma 1: Unless α∗ = 0, α∗ is interior and the SOC is satisfied.

Proof:

Define u0
B ≡

1
eI

[B − eL − eI(x̄1 + lx2)].

1. Suppose eL + eI x̄1 > B. Then,

eL + eI(x̄1 + lx2) > B ∀l,
and eL + eIp > B since p ≥ x̄1 ⇒ u0

B < 0. Also,
∂uB
∂α < 0⇒ uB < 0 ∀α ∈ [0, eI ].

2. Now, suppose α = eI .

Then eL + pα ≥ B, so that uB → −∞. In turn,

α ∈ [0, eI ] maps one-for-one onto uB ∈ [−∞, u0
B < 0]

3. For u ∼ N (0, σ2),

g(u) = 1√
2πσ2

e
−u2
2σ2 , and

g′(u) = 1√
2πσ2

(−u
σ2 )e

−u2
2σ2 .

Then (1− l)x2g
′(uB)− g(uB) = 1√

2πσ2
e

−u2
2σ2
[
(1− l)x2(−uB

σ2 )− 1
]
> 0 iff (1− l)x2(−uB) > σ2

⇔ (−uB) > σ2

(1−l)x2
⇔ (−uB) < ūB(l) ≡ −σ2

(1−l)x2 , or equivalently,

α > ᾱ(l) ≡ u−1
B (ūB(l)), where uB(u−1

B (x)) = x.

(a) Suppose ūB(l) > u0
B.

Then, ∂2E
∂α2 < 0 for α ∈ [ᾱ(l) < 0, eI ].

(b) Suppose ūB(l) < u0
B.

Then ∂2E
∂α2 < 0 for α ∈ [ᾱ(l) > 0, eI ] and

∂2E
∂α2 > 0 for α ∈ [0, ᾱ(l)].

4. Note that E(α = eI) = eL + eIp−B and E(α = 0) =
∫∞
u0B

[eL + eI(x1 + x2)−B]. And,

∂E
∂α =

∫∞
u0B

[(u− uB) + (1− l)x2]g(u)du+ (B−eL−eIp)
(eI−α)

[1−G(uB) + (1− l)x2g(uB)]

→ −∞ as α→ eI . It follows then that α∗, the solution to the FOC, satisfies α∗ < eI .

We now consider α over the following cases (see Figures 11 (a) - (f)):

Case I: ūB(l) > u0
B.

From (3) above,
∂2E
∂α2 < 0 for α ∈ [ᾱ(l) < 0, eI ]. Then we have two sub-cases:

Case Ia: If α∗ > 0, then α∗ is the global maximum.

Case Ib: If α∗ < 0, then ∂E
∂α < 0 ∀α > α∗ since ∂2E

∂α2 < 0
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⇒ α = 0 is the global maximum.

Case II: ūB(l) < u0
B .

Then ∂2E
∂α2 < 0 for α ∈ [ᾱ(l) > 0, eI ] and ∂2E

∂α2 > 0 for α ∈ [0, ᾱ(l)]. Again, we have two

sub-cases:

Case IIa: ∂E
∂α

∣∣
α=0

> 0.

Then, ∂E
∂α

∣∣
α=ᾱ(l)

> 0 since ∂2E
∂α2 > 0 ∀α ∈ [0, ᾱ(l)].

∴ α∗ ∈ [ᾱ(l), eI ] since ∂E
∂α

∣∣
α=eI

< 0.

Then, α∗ is the global maximum.

Case IIb: ∂E
∂α

∣∣
α=0

< 0.

Case IIbi: Then if ∂E
∂α

∣∣
α=ᾱ(l)

< 0, α∗ /∈ [ᾱ(l0 < eI ], and α = 0 is the global

maximum.

Case IIbii: Or, if ∂E
∂α

∣∣
α=ᾱ(l)

> 0, then α∗ ∈ [ᾱ(l), eI ] and α = α∗ or 0 based on

whether E(α∗) > E(α = 0) or vice-versa.

Thus, the only possible solutions are α = 0 or α = α∗, the solution to the FOC.

Proposition A1: As B increases, there exists a value B̂ such that α = 0 is the gloal optimum.

Proof:

From equation (6), we have

∂E

∂α
=

1

(eI − α)

[
−E + (eL + eIp−B)(1−G(uB) + (1− l)x2g(uB))

]
= 0.

Thus,

∂2E

∂α∂B
=

1

(eI − α)

[
−∂E
∂B
− [1−G(uB) + (1− l)x2g(uB)] + (eL + eIp−B)(−g(uB) + (1− l)x2g

′(uB))
∂uB
∂B

]
Since

∂uB
∂B

=
1

(eI − α)
and

∂E

∂B
= −[1−G(uB)]− (1− l)x2g(uB),

we have that

∂2E

∂α∂B
=

(eL + eIp−B)((1− l)x2g
′(uB)− g(uB))

(eI − α)2
.
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For all interior solutions,

sign

(
dα∗

dB

)
= sign

(
∂2E

∂α∂B

)
.

From the proof of Lemma 1, the SOC is satisfied for all interior solutions, and (1 − l)x2g
′(uB) >

g(uB). By the solvency condition, eL + eIp−B > 0. Therefore, dα∗

dB > 0 for interior solutions.

In general, as B increases, the interior α∗ → eI . We have shown, however, that E(α = 0) >

E(α∗ → eI). Therefore, as B increases, there exists a threshold value B̂ such that α = 0 is the

global optimum.

Proposition A2: When α∗ = 0, duB
dB > 0.

Proof:

For all interior solutions,
duB
dB

=
∂uB
∂B︸︷︷︸
>0

+
∂uB
∂α︸︷︷︸
<0

dα∗

dB︸︷︷︸
>0

(For signs, see Equation 7 and Online Appendix A, Proposition 1).

In general, duB
dB cannot be signed. When the solution to the bank’s problem is at the α∗ = 0

corner, however, the rightmost terms will disappear, and therefore duB
dB > 0 and the probability of

default is also increasing.
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(a) Case Ia from Appendix A, Lemma 1 (b) Case Ib from Appendix A, Lemma 1
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(c) Case IIa from Appendix A, Lemma 1 (d) Case IIbi from Appendix A, Lemma 1
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eI	  0	   α*	  
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(e) Case IIbii(1) from Appendix A, Lemma 1 (f) Case IIbii(2) from Appendix A, Lemma 1

Online Appendix A Figures 1 (a)-(f): Demonstration of Cases in Lemma 1
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Online Appendix B: Equity Issuance Model

Suppose that instead of implementing asset-based deleveraging, the broker-dealer engages in finan-

cial deleveraging by issuing equity at date 0 and retaining the proceeds as a cash buffer for repaying

debt in the future. We assume for tractability and for obtaining an interior solution that there is a

convex cost of issuing debt. These costs can represent direct underwriting costs as well as indirect

costs resulting from adverse selection problems in issuance (Myers and Majluf, 1984).

Formally, the firm raises an amount of equity k at issuance cost c(k) = 1
2γk

2, γ > 0. Then

the no-default condition at date 1 is givey by

eL + eI(x̄1 + u) + eI lx2 + k ≥ B, or

u ≥ uB(k) ≡ 1

eI
[B − k − eL − eI x̄1 − eI lx2].

As is clear, we can either assume that equity raised is retained as cash or alternatively that it is

used to reduce leverage by repurchasing debt (or calling it) at face value.

Suppose that the equity value post recapitalization is E(k). Then raising equity of k would

require selling a stake θ of existing shareholder wealth to new shareholders, such that

θE(k) = k.

Then, the current shareholders maximize their share of equity value (1− θ)E(k) = E(k)−k, where

E(k) ≡
∫ ∞
uB

[eL + eIx1 + eIx2 + k −B]g(u)du− 1

2
γk2.

Thus, the equity issuance problem is

max
k

Ê(k) ≡ E(k)− k.

The FOC is given by∫ ∞
uB

g(u)du− [eL + eI(x̄1 + uB) + eIx2 + k −B]
∂uB
∂k
− γk − 1 = 0.

Noting that ∂uB
∂k = − 1

eI
and substituting for uB(k), we obtain the simplified FOC∫ ∞

uB

g(u)du+ (1− l)x2g(uB)− γk − 1 = 0, or

PR(u ≤ uB(k)) = (1− l)x2g(uB)− γk.
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The SOC is given by

(−g(uB) + (1− l)x2g
′(uB))

∂uB
∂k
− γ

=
g(uB)− (1− l)x2g

′(uB)

eI
− γ.

We refer the reader to Online Appendix A for proof that either the SOC holds or the solution is

at a corner.1 For interior solutions, k∗, the optimal equity issuance, is given by

∂Ê

∂k
= 0.

In turn,

∂2Ê

∂k∂l
+
∂2Ê

∂k2

dk∗

dl
= 0.

Provided that the SOC is interior, then ∂2Ê
∂k2

< 0, so

sign

(
dk∗

dl

)
= sign

(
∂2Ê

∂k∂l

)
.

Differentiating the FOC with respect to l, we obtain ∂2Ê
∂k∂l = −(1 − l)x2

2g
′(uB). For u ∼ N (0, σ2)

and uB < 0, g′(uB) > 0 and so ∂2Ê
∂k2

< 0. This, in turn, implies that dk∗

dl < 0.

In other words, as the LOLR becomes more generous, the extent of financial deleveraging

by issuing equity capital declines. The intuition is the same as before. While a complete analysis

of the problem would require considering corner solutions that arise whenever the SOC does not

hold, and also requires ensuring that the required equity stake to sell γ = k
E(k) < 1, this sketch of

the model with equity issuance highlights that asset-based and recapitalization-based deleveraging

behave similarly in the strength of the LOLR. Since the lack of recapitalization by banks has been

the focus of other studies (Acharya et al. 2014 and Acharya et al. 2011b, among others), we focus

in this paper on asset sales.
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