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1 Introduction
This paper studies the real effects of parameter uncertainty in a model of repeated dis-
asters. Among the many deeply alarming aspects of the COVID-19 pandemic was the
realization of how little we knew about what would happen. Structural uncertainty about
the forces at work encompassed many dimensions. We focus on two of these that seemed
especially salient: uncertainty about the persistence (or duration) of the crisis, and uncer-
tainty about its recurrence (or frequency) in future. Such uncertainty appears pervasive
and spans economic disasters beyond pandemics. Uncertainty about the duration and
frequency of recessions and financial crises is also realistic and potentially important.
The same considerations are also likely to be relevant in the context of climate-related
disasters.

Our model depicts disasters as regimes in which the stock of wealth (potentially in-
cluding human wealth) is subject to exogenous destruction. The economy transitions
stochastically between these episodes and “normal times.” Agents update their beliefs by
observing the frequencies of transitions, and optimally solve their investment/consumption
problem given that information. We derive closed-form expressions for belief dynamics,
and we obtain the value function and optimal policies under generalized preferences up
to a tractable system of difference/differential equations. We contrast agents’ welfare,
policies, and incentives in the partial-information or parameter-uncertainty setting to the
full-information setting. Our main finding is that uncertainty about the persistence of
states makes agents appear to overweight the likelihood of the current state lasting effec-
tively forever. This can lead to seemingly pessimistic behavior in bad times and optimistic
behavior in good times.

The mechanism driving this is that Bayesian updating implies negative duration depen-
dence, i.e., that the longer the current state lasts, the longer it is expected to last. This dy-
namic is very general: the absence of a transition in a given observation interval is infor-
mation that must rationally shift the posterior density for the transition intensity towards
zero regardless of the form of prior beliefs. Negative duration dependence is equivalent
to transition times subjectively exhibiting a decreasing hazard function. Unconditionally,
this means that beliefs about future regime durations are described by heavy tailed dis-
tributions. Most importantly, when agents form expectations about future consumption
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and wealth, they give extra weight to the possibility of the current regime being very
long-lived. These are “best case scenarios” prior to a disaster, and “worst case scenarios”
during one.

Moreover, these effects are strongly increasing as parameter uncertainty increases.
This property is also not due to a particular specification of the prior. As precision de-
clines, negative duration dependence increases, and the unconditional expected waiting
time for the next transition, T, can become unbounded even holding fixed the mean belief
about the transition probability. This is depicted graphically in Figure 1 when observers
have belief about the switching probability per unit time, λ, that is described by a gamma
distribution with mean E[λ] = 1 and variance 1/a. The figure illustrates how, for low
values of the precision parameter the expected waiting time, E[T], becomes increasingly
determined by the possibility that the true value of the intensity is close to zero. These
effects are very general: The pattern in Figure 1 is similar if the belief distribution is log-
normal instead of gamma, for example.

The paper’s analysis is based on comparisons of the representative agent’s lifetime
value function across states or economies. We express these comparisons in terms of
welfare costs, meaning the fraction of wealth the agent would be willing to surrender to
exchange one state for another. We first compute the value of ending a disaster, and show
that the benefit is much higher with partial information compared to the full information
benchmark. Similarly, the welfare gain from reducing the severity of an on-going disaster
increases strongly with parameter uncertainty.

These welfare differences map directly to investment incentives. If the economy is
augmented to include a mitigation technology, it is straightforward to show that invest-
ment in this activity at the onset of a disaster would optimally be higher under parameter
uncertainty.1

The observation that disasters are subjectively much worse under incomplete infor-
mation raises the topic of the value of information. How much would the economy ben-
efit from increasing precision about the transition parameters, even without altering the
current disaster state? The answer is surprisingly large. The welfare gain from removing
parameter uncertainty is as large as (and, in some cases, larger than) the benefit of ending
the disaster. Compared to the full information economy, imprecision acts as an amplifica-
tion mechanism for perceived risk, leading agents to respond to a disaster with extreme

1In a similar vein, Barnett et al. (2023) show that uncertainty about infectious parameters within a pan-
demic leads a central planner with ambiguity averse preferences to impose stricter quarantine measures
compared to the full-information benchmark.
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conservatism in their investment/consumption behavior.
As with mitigation incentives, our findings have strong implications for investment

in information production. We again consider endowing the economy with a technology
to increase information precision. This technology is itself extremely valuable due to the
very high marginal value of information when precision is low.

The paper thus contributes to the literature that assesses the welfare costs of disas-
ter risk (see Barro (2009), Martin (2008), Pindyck and Wang (2013), Martin and Pindyck
(2015), Jordà et al. (2020), Martin and Pindyck (2021), and Hong et al. (2022)). Reduc-
ing uncertainty about the evolution of disasters (e.g., through epidemiological modeling
in the case of pandemics) may be an extremely valuable mechanism for reducing their
perceived harm.

Figure 1: Information Precision and Expected Transition Time

Note: The top line plots the expected waiting time in years for the end of a regime when ob-
servers have belief about the intensity per unit time of a switch, λ, that are described by a
gamma distribution with mean E[λ] = 1 and variance 1/a, where a is the variable on the hori-
zontal axis. The lower lines depict the contribution to this expectation of different components
of the belief distribution.
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The information dynamics of the model, as outlined above, imply, however, that the
welfare and incentive effects reverse in advance of a disaster. Beliefs about the arrival rate
also exhibit negative duration dependence, which increases when information is impre-
cise. Repeating the welfare computations in normal times, we show that, in some settings,
information about the arrival rate can be welfare-destroying: agents may be subjectively
better off with imprecise beliefs. We show that this effect can coexist with the strong posi-
tive value of information during a disaster. Turning again to incentives, when agents have
the real option to invest in a mitigation technology prior the onset of a disaster, we show
that agent with imprecise information about the disaster frequency optimally choose less
mitigation than those with full information. As a parallel result, we show that agents with
less precise information value disaster insurance less.

Taken together, the model describes a belief dynamic across regimes that may feature
simultaneous optimism and pessimism. There is, in fact, empirical support for this impli-
cation. A well established branch of behavioral economics takes as given the observation
that economic decision makers tend to ignore the risk of rare adverse events in good times
and exaggerate them in bad times. The theory of diagnostic expectations has been formu-
lated precisely to account for the evidence of this pattern (see Bordalo et al. (2022) for a
recent overview). Moreover, in common with the implication in our model, that theory
stresses that agents overreact more to recent news when it is more salient, which could
be viewed as equivalent to settings in which there is less precision of prior information.
While agents are not overreacting in our model, they would appear to be doing so to an
observer with full information. Their consumption/investment behavior would appear
increasingly optimistic prior to a crisis, and then increasingly pessimistic during one. In
business cycle terms, their forecasts (e.g., for future output) would be highest at peaks
and lowest at troughs.

2 Related Literature
A number of papers study learning problems in the context of models with disasters. It
may be helpful to highlight distinguishing features of our setting and the focus of our
contribution. A feature common to many models is an exogenous shock process (hitting
consumption, or output, or the capital stock) whose intensity is unobservable and pos-
sibly time-varying. (Such models include Benzoni et al. (2011), Wachter and Zhu (2019),
and Hong et al. (2022).) We also have such a shock process, and its intensity varies over
time: it is zero in normal times and positive in a disaster regime. However, we assume
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that agents do know this shock intensity.
Collin-Dufresne et al. (2016) also study a 2-regime rare disaster economy with learn-

ing about the switching parameters. They show that, when risk aversion exceeds the
inverse of the elasticity of intertemporal substitution, even small amounts of persistence
uncertainty can produce large effects on the equity premium and Sharpe ratio. The mech-
anism they highlight is the increase due to learning in the subjective volatility of con-
sumption growth and marginal utility. In contrast, while our setting is similar, the real
effects we document are driven by the drift of the parameter estimates (the duration de-
pendence), not their revisions.2

In emphasizing uncertainty about persistence, our paper also shares similarities with
Gillman et al. (2014) and Ghaderi et al. (2022) in which regimes of differing growth dif-
fer in their expected duration. These models assume the regime itself is unobservable.3

Hence agents’ beliefs about the persistence of current conditions is formed from a mixture
over exponential distributions. In our model, agents do know whether or not they are in
a disaster regime; but, in contrast, they do not know the switching intensities conditional
on the regime. Another related work is Andrei et al. (2019) in which agents do not ob-
serve the mean-reversion speed of current consumption shocks and thus face persistence
risk. In their model, as in ours, the persistence risk is asymmetric: increasing news about
persistence is positive in good times and negative in bad.

Most of the above papers focus on the implications of their specifications for asset
pricing. An exception is Hong et al. (2022) who study implications of time-varying dis-
aster beliefs for willingness to pay for mitigation efforts in the presence of externalities.
Our focus too is on welfare effects. We highlight, in particular, the interaction between
unobservable persistence and the current state of the economy in determining the value
of information and investment incentives.

3 Model
In this section, we introduce a regime-switching model of disasters under partial informa-
tion. Our fundamental view of a disaster is as a process that destroys household wealth,
as in Gourio (2012), with consumption responding endogenously. For this reason, we
work with a production-based framework rather than an endowment economy. Our goal

2In addition, many of our findings are larger in magnitude when the elasticity of intertemporal substitution
is less than the inverse of the coefficient of risk aversion.

3David and Veronesi (2013) model learning about unobservalble inflation regimes. In Bianchi et al. (2022),
agents are uncertain about the duration of monetary policy regimes.
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is to study how the representative agent’s value and consumption functions vary with
information precision.

3.1 Disaster Dynamics

Following Nakamura et al. (2013), we consider the state of the economy to be either in a
“non-disaster” regime or in a “disaster” regime, and denote the state as s ∈ {0,1,}. Let η

denote the probability per unit time (or, intensity) of a disaster arrival, and let λ denote
the probability per unit time of a disaster ending.

The model’s depiction of the disaster consists of a state-specific stochastic process for
the accumulation of wealth. Specifically, let q denote the quantity of productive capital
of an individual household (which could be viewed as both physical and human capital,
the latter reflecting health as well as intangible capital). We assume that the stock of q
is freely convertible into a flow of consumption goods at rate C per unit time. Then our
specification is that q evolves according to the process

dq = µ(s)qdt − Cdt + σ(s)qdBt − χ(s)qdJt (1)

where Bt is a standard Brownian Motion and Jt is a Poisson process with intensity ζ(s).
We set χ(0) = 0 and χ(1)> 0 for the disaster state. The Poisson shock captures the risk of
an economic loss to the household. While we refer to the occurrence of the state s = 1 as
the “disaster” (i.e., independent of whether or how many wealth shocks actually occur),
this is a matter of semantics. Somewhat more common in the literature would be to
label these dJ shocks themselves as the “disasters”, in which case our model maps to a
particular specification of time-varying disaster risk, being either “on” or “off” depending
on the regime.4

An assumption worth highlighting concerns the long-run effects of the disaster. Our
specification is pessimistic in the sense that loss of wealth due to the J shocks is perma-
nent. Productive capital q does not get restored when the disaster ends. On the other
hand, the model is optimistic in the sense that the productive process, dq, does fully revert
to pre-disaster dynamics. After the disaster, the world looks stochastically the same as
it did before. In particular, there are no long-run scarring effects, e.g., on the economy’s
growth rate, µ. Both assumptions are important for tractability. In Section 4 we will con-
sider augmenting the economy to include real options to mitigate the disaster or acquire

4Besides Gourio (2012), important contributions to the literature on time-varying disaster risk include
Gabaix (2012), and Tsai and Wachter (2015).
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information.

3.2 Information Structure

As discussed in the introduction, within a disaster there is likely to be deep uncertainty
about all the governing parameters. Our focus on the timing parameters is motivated
by the experience of COVID-19 in which the likely duration of the pandemic and the
frequency of future pandemics were especially urgent questions to resolve. In our context,
the switching intensities η and λ, are assumed unobservable.

The paper’s main findings stem from very general properties of Bayesian learning in
this setting. First, within a regime, the non-occurrence of a transition over an interval ∆t
is information that must rationally shift probability mass for beliefs about the transition
intensity towards zero. Hence, the longer a regime lasts, the longer it is expected to last.
This negative duration dependence happens regardless of the form of the prior distribution,
but, notably, is stronger when prior information is less precise: Bayes’ rule gives more
weight to recent information (“the data”) and less to old (“the prior”) when the latter is
relatively uninformative. A key consequence of negative duration dependence is that the
expected transition time is always greater than the inverse of the (expected) intensity –
which is what it would be under full information – and increases with imprecision.

We will assume that at time zero the agent has beliefs about the two intensity param-
eters that are described by gamma distributions, which are independent of each other.
Each gamma distribution has a pair of non-negative hyperparameters, aη,bη and aλ,bλ,
that are related to the first and second moments via

E[η] =
aη

bη , Std[η] =

√
aη

bη , (2)

and likewise for λ. The relative precision about η, defined as its mean divided by its stan-
dard deviation, is

√
aη.

By Bayes’ rule, under this specification, as the agent observes the switches from one
regime to the next, her beliefs remain in the gamma class with the hyperparameters up-
dating as follows

aη
t = aη

0 + Nη
t

bη
t = bη

0 + tη

where tη represents the cumulative time spent in state 0 and Nη
t represents the total num-
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ber of observed switches from 0 to 1. Analogous expressions apply for aλ and bλ. Thus,
while in s = 0, the only information that arrives (on a given day, say) is whether or not
we have switched to s = 1 on that day. If that has occurred, the counter Nη increments by
one and the clock tη turns off and tλ turns on. The system is assumed to start in the state
s = 0 with Nη = Nλ = 0.

The model thus pastes together two linked learning regimes. In each regime, we have
a finite dimensional filter in the sense that the two updated parameters fully characterize
beliefs about that regime. Further, η̂t ≡ Et[η] = aη/bη, and it remains the case that the
agent views this number as the probability per unit time of an instantaneous switch from
s = 0 to s = 1 (again with equivalent expressions for the other regime.)

This type of gamma-exponential conjugate system is well studied in stochastic pro-
cess theory (e.g., see Harris and Singpurwalla (1968) and Rubin (1972)). Under these
beliefs, the explicit measure for the switching time is described by a Lomax distribution
(Lomax (1954)), whose expectation (in the s = 0 regime) is 1/η̂ times aη/(aη − 1). This can
be infinite when the relative precision of knowledge of η is low (as illustrated in Figure
1). Similarly the variance of the waiting time explodes for low precision. As we will see,
these features have important consequences for the agents’ welfare and optimal behavior
in our economy.

3.3 Preferences

We assume the economy has a unit mass of identical agents (households). Each agent has
stochastic differential utility or Epstein-Zin preferences (Duffie and Epstein, 1992; Duffie
and Skiadas, 1994) based on consumption flow rate C, given as

JJJt = Et

[∫ ∞

t
f (Ct′ ,JJJt′)dt′

]
(3)

and aggregator

f (C,JJJ) =
ρ

1 − ψ−1

[
C1−ψ−1 − [(1 − γ)JJJ]

1
θ

[(1 − γ)JJJ]
1
θ −1

]
(4)

where 0 < ρ < 1 is the discount factor, γ ≥ 0 is the coefficient of relative risk aversion
(RRA), ψ ≥ 0 is the elasticity of intertemporal substitution (EIS), and

θ ≡ 1 − γ

1 − ψ−1 (5)
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The use of recursive preferences is standard in macro-finance models because of their
ability to match financial moments. We recognize the limitations of using a utility speci-
fication driven by consumption goods, particularly within a crisis when other consider-
ations (e.g., health, social interaction, the safety of others) so strongly affect well-being.
However, using a familiar formulation ensures that our findings are not driven by non-
standard assumptions about utility.

The representative agent’s problem is, in each state s, to choose optimal consumption
C(s) that maximizes the objective function JJJ(s).

3.4 Solution

Under the model’s information setting, the economy is characterized by a six-dimensional
state vector consisting of the stock of wealth, q, aη,bη, aλ,bλ and the regime indicator S.
However this six-dimensional space can be reduced to three when solving the agent’s
optimization problem.

Since the switches between states alternate, we can define an integer index Mt to be
the total number of switches Nη

t + Nλ
t and then Nη

t = Mt/2 when M is even, and Nλ
t =

(Mt + 1)/2 when M is odd. Knowing M (along with the priors aη
0 and aλ

0 ) is equivalent
to knowing aη

t and aλ
t . Given these values, specifying the current mean estimates η̂t and

λ̂t is equivalent to specifying the remaining hyperparameters bη
t and bλ

t .
Within each regime the only changes to the state (apart from q) come through varia-

tion in the estimates η̂t and λ̂t which change deterministically with the respective clocks
tη and tλ. Holding M fixed, the dynamics of η̂t are given by

dη̂t = d
aη

t

bη
t
= aη

t d
1
bη

t

= − aη
t

(bη
t )

2
dt

= − (η̂t)2

aη
t

dt. (6)

The latter expression says that, until new information arrives, η̂ decays quadratically and
deterministically to zero at a rate that is faster when aη is small. This dynamic defines the
negative duration dependence of the system and illustrates its dependence on the degree
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of information precision.5

The agent’s Hamilton-Jacobi-Bellman (HJB) equation links the value functions for
states with successively more history. For large M, the estimation errors for both η and λ

go to zero:

Std[η]
E[η]

=
1√
aη

=
1√

aη
0 + Mt

.

Thus the system converges to the full-information solution, which is characterized by two
coupled algebraic equations. The appendix establishes the following:

Proposition 1. Let H(η̂, λ̂, M) denote the solutions to system of coupled first-order differential
equations in the appendix. Assuming these are positive, optimal consumption is

C = ρψ (H)−
ψ
θ q, (7)

and the value function of the representative agent is

JJJ ≡ H(s)q1−γ

1 − γ
. (8)

Note: All proofs appear in the appendix.

The appendix also describes a straightforward and fast solution algorithm for the
system, and discusses necessary conditions for existence of a unique positive solution.
(We verify that these our satisfied in our numerical work below.)

4 Results
We now turn to numerical analysis to illustrate the real effect of parameter uncertainty on
the economy. Our baseline calibration fixes the growth rate µ(s) and Gaussian volatility
σ(s) across regimes to be 0.04 and 0.05. (The values are chosen to approximately capture
the growth rate and volatility of aggregate dividends in non-disaster times.) The disaster
shock size is set to χ = 0.04. We fix the disaster shock intensity to be 1.0 in order to

5The ODE in (6) has the exact solution

η̂t =
1

1
η̂0

+ t
aη

0

where t is the time since the regime began.
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interpret χ as the expected loss of wealth per year. We use baseline preference parameters
(γ = 4, ψ = 1.5, ρ = 0.04) that are broadly consistent with the macro-finance literature
under stochastic differential utility. We explore the role of these choices below.

4.1 Information Precision in a Disaster

To start, we examine the welfare consequences of parameter uncertainty within a disas-
ter. Since Lucas (1987), a large literature has analyzed the welfare costs of aggregate risks
in business cycle models in order to quantify incentives to reduce such risks. Here, we
extend this line of research to encompass the perceived risk that stems from parameter un-
observability. We address two main questions. First, comparing partial information to full
information, how much worse is the disaster compared to the non-disaster state? Second,
how much would agents pay to gain information about the unknown parameters?

For any pair of economies or states, {i, j}, we report the fraction of wealth that the
representative agent would be willing to pay for a one-time transition from the worse (j)
to the better state (i). The welfare gain is computed as the certainty equivalent change in
the representative agent’s lifetime value function :

1 −
(

H(j)
H(i)

) 1
1−γ

This definition is standard in the literature.

4.1.1 Welfare Gain from Curtailing a Disaster

To quantify the severity of disasters under our base parameterization, Table 1 reports the
welfare gain for ending a disaster, that is, to transitioning from s = 1 to s = 0 holding
everything else fixed. In the context of a pandemic, this could be viewed as the value of a
perfectly effective cure or vaccine. Each cell of the table shows this gain for three values
of λ̂ and two values of η̂. The top panel shows the result when there is no uncertainty
about the parameters. Here the upper left cell shows that, in this benchmark case, agents
would be willing to pay between roughly 5% and 20% of wealth to return to the normal
economic state. The values are intuitively reasonable in the sense that, for η = 0.01 say,
they are not too far from just the expected duration of the disaster (1/λ) times the expected
loss of wealth per year, χ = 0.04. Reading across the top panel, the preference parameters
do not have large effects on the the full-information values. The bottom panel shows the
same computation when agents’ current uncertainty about the timing parameters (their
posterior standard deviation) is equal to their mean belief about each of them, or their
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relative precisions are 1.0 for both. This is our baseline case of partial information.6 Com-
pared to the top panel, the partial information situation is subjectively much worse.

Adding parameter uncertainty greatly increases the resources that the economy would
be willing to expend to find a cure or otherwise limit the damage. Indeed, an analogous
computation (omitted for brevity) shows that the welfare benefit from lowering the dis-
aster severity (χ) by any fixed amount is also much larger under partial information. To
see how these welfare differentials map into investment incentives, suppose now that
the economy is endowed with a real option to undertake a lump-sum expenditure, I, to
reduce the severity according to χ = g(I/q) for an arbitrary function g > 0 with g′ < 0.
By an argument that we formalize in the online appendix, the sensitivity of the welfare
function H to χ effectively pins down the marginal benefit of I. Hence, for any parame-
terization of the mitigation technology, we can assert that the optimal investment will be
strictly greater under partial information than under full information.

4.1.2 Welfare Gain from Resolving Parameter Uncertainty

The results above immediately raise the question of how much agents would be willing to
pay to resolve parameter uncertainty, even without curtailing the current disaster. Panel
(A) of Table 2 answers this question. For each of the preference configurations considered
and for nearly all values of η̂ and λ̂, the value of resolving the parameter uncertainty is as
large or larger than the value of resolving the ongoing disaster.7

It is perhaps not surprising that risk averse agents would be willing to pay to resolve
parameter uncertainty. However, as we will see below, this need not always be the case.
Moreover, here, it is the magnitude of the value that is surprising. The numbers are much
larger than typically found in analogous calculations in the literature for other types of
risk. In a similar setting, Collin-Dufresne et al. (2016) show that, using a myopic utility
benchmark, uncertainty about the persistence of the bad state is an order of magnitude
more important than uncertainty about other parameters, e.g., growth rates and volatili-
ties in the two regimes.

Comparing the results in Panel (A) across preference specifications, the value of re-
solving parameter uncertainty increases with higher risk-aversion (γ), and is lower with
a lower time discount factor (ρ). The γ effect is intuitive: parameter risk increases the

6In this case the gamma prior is an exponential distribution. Results are similar for differing initial preci-
sions.

7Note that the welfare gain is an understatement in that it excludes any “instrumental value” of informa-
tion, for example, upon agents’ ability to avert future disasters. The model contains no mechanism by
which knowing more about λ and η allows agents to affect them.
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subjective volatility of wealth, which agents dislike. Less apparent is the effect of ρ.
Why should agents with a longer time horizon (lower subjective discount rate) care so
strongly about information? Recall that when agents do not know the true value of λ,
their expected time until the end of the disaster is governed by a Lomax distribution
whose expectation explodes as the precision of their information declines. Put differently,
with parameter uncertainty, worst case scenarios come into play. When there is insufficient
evidence to rule them out, the current disaster may look effectively permanent.8 Agents
cannot rule out that λ ∼ 0, i.e., that the disaster will effectively last for their entire lifetime.
Hence, its impact on welfare can be enormous when agents have a long time horizon (low
discount rate).

The largest effects in Panel (A) come from lowering the elasticity of intertemporal
substitution. This is noteworthy because there is a common understanding of Epstein-
Zin preferences under which agents with ψ ≤ 1/γ can be viewed as having a preference
for “later resolution of uncertainty,” which might suggest that they value information less
than high EIS agents, whereas here the result is precisely the opposite.9

To understand this, note that, with recursive preferences, agents with low EIS cut con-
sumption when the economy enters the disaster state. This is because a low EIS implies
strong consumption smoothing motives, and the prospect of lower future wealth moti-
vates a sharp increase in savings. By contrast, a higher EIS implies relatively more con-
cern with investment risk than consumption smoothing. Agents with a high EIS therefore
decrease investment in a disaster, since investment is exposed to greater risk. However,
the differing consumption responses do not make disasters worse per se for agents with
a low EIS: the top panel of Table 1 shows little effect of the EIS under full information.
Instead, it is the extreme decrease in consumption as information precision declines that
leads to the large welfare losses for these agents. This is again due to the time horizon
effect. With low precision of information about λ, there is a chance that the withdrawal
of consumption will be effectively permanent.10

As with mitigation, there is a direct mapping from the welfare costs of information

8Note that this dynamic is not driven by our distributional assumptions. For any positively valued density,
decreasing precision while holding the mean fixed necessarily implies placing more mass near zero.

9See Epstein et al. (2014) for an examination of the welfare consequences of varying the timing of the reso-
lution of uncertainty.

10In Van Nieuwerburgh and Veldkamp (2006) and Kozlowski et al. (2020) learning effects within downturns
endogenously cause the downturns to last longer. In our case, the uncertainty-induced investment and
consumption distortions do not affect the length of the disaster. However, negative duration dependence
implies that the perceived duration lengthens the longer the episode goes on.
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to investment incentives. The findings here imply that the ability to produce informa-
tion about the underlying determinants of disaster duration would be an extremely valu-
able real option. Indeed, we can again consider augmenting the economy to have a one-
time investment opportunity to increase information precision. In the online appendix,
we show that, under a simple linear information production technology, agents endoge-
nously attain almost the full value of information with only a fraction of the expenditure.
This value-added of the technology stems from the rapid increase in agents’ value func-
tion from even moderate increases in information quality. From a policy perspective, the
implication of the extreme marginal value of information in a disaster is that fundamen-
tal research can crucially complement (or perhaps even substitute for) efforts to directly
affect the course of the disaster.

4.2 Parameter Uncertainty Prior to a Disaster

The analysis above immediately suggest an unexpected corollary: all of the conclusions
may be reversed prior to a disaster. Low precision of information about the disaster inten-
sity in normal times could lead to agents acting as if they overweight best case scenarios,
namely, that a disaster will never materialize. We now show that, indeed, this can be
the case. Moreover, we will see that both types of effects – pessimistic in a disaster and
optimistic beforehand – may co-exist.

4.2.1 Value of Information

We start by examining the welfare effect of uncertainty about η when s = 0. This effect
can be isolated by setting the prior precision for λ to be very high, so that, effectively
agents know its value. Panel (B) of Table 2 shows the value of information under these
conditions. In the baseline case, the value of information about η indeed can be negative,
although the magnitude is not large economically. Working against the effect of longer
subjective waiting time until a disaster is the effect of risk aversion: the value function
is concave in η̂, so higher posterior variance lowers welfare through this channel. With
γ = 2 the effect can be economically significant: when the point estimate η̂ is large the
representative agent would be willing to give up to 2.1% of wealth to not learn the true
disaster frequency.

When information about both λ and η is imprecise, the former typically matters more
in the sense that full information is overall welfare improving in both states. Intuitively,
the worst-case scenarios still loom large prior to a disaster. However, we can vary the
degree to which duration dependence operates in each regime by observing that the per-
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centage drift in the means (which drives the effect) scales with the ratio of the mean to
the precision. Thus, when η̂/aη

0 and λ̂/aλ
0 are similar, we obtain similar belief dynam-

ics in the two states. The top panel of Figure 2 illustrates this co-existence of pessimism
and optimism in terms of growth rate expectations. Using the parameters in that figure
together with γ = 1, the welfare cost of parameter uncertainty is 3.2% of wealth in the
disaster and -3.5% before it. Hence, the incentives to acquire information alternate sign in
the two states.

4.2.2 Disaster Mitigation Incentives

We saw above that, when information about disaster duration was imprecise, agents had
stronger incentive to end or curtail the disaster. But that logic would now also be expected
to flip. When agents place more weight on best-case scenarios, their incentives to invest
in mitigation are weaker. To make this explicit, again consider endowing the economy
with a one-time real option to expend resources to lower the disaster severity. But now
the investment decision is made prior to the onset of a disaster. We argued above that,
for any given mitigation technology, the optimal amount invested will scale with the
sensitivity of the (log) value function to χ.

The lower panel Figure 2 plots log H as a function of the disaster severity under full
and partial information.11 When s = 1 (right panel) we verify our assertion above that the
slope is steeper under partial information. However, with these parameters, when s = 0
(left panel) the relation is reversed. We can conclude that, for any smooth specification of
the mitigation technology, lower precision of information will result in underinvestment
or underpreparedness relative to full-information in advance of a disaster.

4.2.3 Pricing of Disaster Insurance

Another way of capturing preparedness incentives is via willingness to pay for insurance
against a disaster. So consider the price of a financial contract which pays 1 upon the
arrival of the next disaster. This contract is in net zero supply and does not affect real
outcomes. However, its price provides a measure of agents’ assessment of the likelihood
and timing of a disaster, as well as its consequences in marginal utility terms. Then,

Proposition 2. The price, P, in the non-disaster state of the claim which pays 1 upon the arrival

11Recall the full value function is negative, so higher values of H are worse.
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of the next disaster, satisfies the equation

− (η̂)2

aη

∂P
∂η̂

+ η̂
H(η̂, λ̂, M + 1)

H(η̂, λ̂, M)
(1 − P) − r0 P = 0 (9)

where r0 is the riskless rate.12

Given the value function solutions, this is a first-order differential equation in η̂, with
boundary condition P(0) = 0. Figure 3 plots the solutions for the parameter set we have
been considering. In line with the intuition that partial information leads to longer ex-
pected waiting times, we see that the contract is substantially underpriced relative to its
full-information value.

This section has shown that information about disaster frequency can be welfare re-
ducing because, with less information, agents rationally believe a disaster may never ma-
terialize (the expected waiting time becomes unbounded) even when the mean intensity
of disasters is held fixed. The other phenomena that we have illustrated (optimistic fore-
casts, underinvestment in mitigation, undervaluing insurance) are all manifestations of
the same belief dynamic. This negative value of information may shed light on failure
to prepare adequate for disasters and on “don’t look up” behavior of seemingly willful
ignorance towards their threat.13

5 Conclusion
This paper considers a regime-switching disaster model when agents do not know the
true transition probabilities. We find a surprising dichotomy: the welfare benefit of in-
formation about the unobservable parameters can be extreme within a disaster and yet
small or even negative prior to one. The finding stems from two general properties of
Bayesian updating in this situation. First, beliefs about transition intensities exhibit nega-
tive duration dependence, resulting in a decreasing hazard function for regime changes.
This implies that the unconditional distribution of the exit time from the current regime is
fatter tailed, with a higher expectation than under full information. Second, imprecision
heightens the possibility that the probability of change is small. Agents in the economy
then act, in effect, as if the current state may never end, even holding fixed their estimate

12The rate and the pricing kernel are derived in terms of the model primitives in the Appendix.
13Models with costly information processing have also been used to explain failure to prepare for disasters.

See Maćkowiak and Wiederholt (2018). Aversion to information is explicitly modelled in the preference
specification of Andries and Haddad (2020).
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of the instantaneous probability of it ending. This can result in seemingly exaggerated
pessimistic behavior within a disaster (e.g., extreme reductions in consumption) at the
same time as seemingly exaggerated optimistic behavior (e.g. reduced expenditure on
mitigation or insurance) in non-disaster times.
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Table 1: Welfare Gain to Ending Disaster

(A) Full Information

Benchmark ψ = 0.20

λ̂ λ̂
0.2 0.5 1.0 0.2 0.5 1.0

η̂
0.01 0.188 0.090 0.046

η̂
0.01 0.205 0.093 0.046

0.05 0.147 0.081 0.0447 0.05 0.162 0.085 0.045

γ = 2 ρ = 0.02

λ̂ λ̂
0.2 0.5 1.0 0.2 0.5 1.0

η̂
0.01 0.160 0.079 0.042

η̂
0.01 0.225 0.100 0.048

0.05 0.135 0.072 0.04 0.05 0.166 0.091 0.047

(B) Partial Information

Benchmark ψ = 0.20

λ̂ λ̂
0.2 0.5 1.0 0.2 0.5 1.0

η̂
0.01 0.340 0.288 0.235

η̂
0.01 0.777 0.808 0.827

0.05 0.246 0.225 0.201 0.05 0.646 0.700 0.739

γ = 2 ρ = 0.02

λ̂ λ̂
0.2 0.5 1.0 0.2 0.5 1.0

η̂
0.01 0.292 0.214 0.156

η̂
0.01 0.519 0.531 0.537

0.05 0.232 0.186 0.147 0.05 0.350 0.378 0.405

The table shows the fraction of wealth the agent would be willing to surrender for a one-time transi-
tion out of the disaster state. In Panel (A), agents in the economy know the parameters λ and η. In
Panel (B), they have posterior standard deviation equal to their point estimates of these quantities. The
benchmark parameters are given in Section 4.
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Table 2: The Value of Information

(A) During a Disaster

Benchmark ψ = 0.20

λ̂ λ̂
0.2 0.5 1.0 0.2 0.5 1.0

η̂
0.01 0.235 0.234 0.220

η̂
0.01 0.934 0.931 0.921

0.05 0.182 0.239 0.232 0.05 0.922 0.928 0.922

γ = 2 ρ = 0.02

λ̂ λ̂
0.2 0.5 1.0 0.2 0.5 1.0

η̂
0.01 0.178 0.164 0.131

η̂
0.01 0.641 0.688 0.666

0.05 0.148 0.169 0.152 0.05 0.485 0.619 0.645

(B) Prior to Disaster

Benchmark ψ = 0.20

λ̂ λ̂
0.2 0.5 1.0 0.2 0.5 1.0

η̂
0.01 0.001 0.001 0.000

η̂
0.01 0.012 0.002 0.001

0.05 -0.008 -0.000 0.001 0.05 0.079 0.026 0.007

γ = 2 ρ = 0.02

λ̂ λ̂
0.2 0.5 1.0 0.2 0.5 1.0

η̂
0.01 -0.001 -0.000 -0.000

η̂
0.01 0.050 0.015 0.004

0.05 -0.021 -0.007 -0.002 0.05 0.044 0.047 0.023

Panel (A) shows the fraction of wealth that the representative agent would be willing to surrender
for a transition from partial information to full information (as defined in Table 1) while remaining in
the disaster state. Panel (B) shows the fraction of wealth the agent would surrender for a transition
from partial information to full information about the disaster intensity η while remaining in the non-
disaster state. The agent is assumed to have full information about λ. Benchmark parameters are given
in Section 4.
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Figure 2: Optimism and Pessimism

Panel A: Parameter Uncertainty and Growth Forecasts

Panel B: Parameter Uncertainty and Mitigation Incentives
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Panel (A) plots subjective expectations for the growth of wealth to different horizons, T. The
left panel shows agents’ forecasts when in normal times. The right panel shows forecasts
during a disaster. The plots take the agent’s posterior expected switching intensities for the
two states to be (0.05,0.20) with respective posterior standard deviations of (0.05,0.10). Panel
(B) plots the log value function multiplier, H, as a function of the disaster severity χ also within
the disaster (right) and nondisaster (left) states. For each plot, the full-information economy’s
values are plotted as dotted (red) lines and the partial information ones as solid (blue) lines.
Panel (B) uses the benchmark parameters given in the text with γ = 1.01.22



Figure 3: Disaster Insurance Pricing

The figure plots the price of a contract paying 1 upon the arrival of the next disaster as a
function of the mean arrival intensity, η̂. Other parameter values are the same as in Figure 2.
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Online Appendix

A Proofs and Derivations

A.1 Full Information

To prove Proposition 1, we first treat the case of full-information in which the only state
variables are s ∈ {0,1} and q. For ease of notation, define the following combination of
preference parameters:

e0 ≡
θ

ψ
ρψ and e1 ≡ −ψ

θ
. (A.1)

Also define λ(0) = η,λ(1) = λ.

Lemma Denote

g(s) ≡ θ ρ − (1 − γ)

(
µ(s)− 1

2
γσ(s)2

)
− ζ(s)

(
[1 − χ(s)]1−γ − 1

)
(A.2)

for s ∈ {0,1}. Let H(s)’s denote the solution to the following system of recursive equations:

g0 ≡ g(0) = e0 (H(0))e1 + η

[
H(1)
H(0)

− 1
]

(A.3)

g1 ≡ g(1) = e0 (H(1))e1 + λ

[
H(0)
H(1)

− 1
]

(A.4)

Assuming the solutions are positive, optimal consumption in state s is

C(s) = ρψ (H(s))e1 q, (A.5)

and the value function of the representative agent is

JJJ(s) ≡ H(s)q1−γ

1 − γ
. (A.6)

Proof. Using the evolution of capital stock for the representative agent (1) the Hamilton-
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Jacobi-Bellman (HJB) equation for each state s can be written:

0 = max
C

[
f (C,JJJ(s))− ρJJJ(s) + JJJq(s)(qµ(s)− C)

+
1
2

JJJqq(s)q2σ(s)2 + ζ(s) [JJJ(s) (q(1 − χ(s)))− JJJ(s)(q)]

+ λ(s)
[
JJJ(s′)(q)− JJJ(s)(q)

]
]
]

(A.7)

for s = {0,1} and s′ = {1,0}.
Taking the first-order condition with respect to C(s) in (A.7), we obtain

fc(C,JJJ(s))− JJJq(s) = 0. (A.8)

Using f (C,JJJ) from (4) and taking the derivative with respect to C, we obtain

fc =
ρC−ψ−1

[(1 − γ)JJJ(s)]
1
θ −1

. (A.9)

Substituting the conjecture JJJ(s) in equation (8) yields

fc =
ρC−ψ−1

H(s)
γ−ψ−1

1−γ qγ−ψ−1
. (A.10)

Then, for state s, we obtain by substituting JJJq(s) = H(s)q−γ in (A.8), and simplifying:

C(s) =
H(s)−θψ−1

q
ρ−ψ (A.11)

which agrees with (7) using the definitions of the constants in (A.1).
To verify the conjectured form of the value function, we plug it in to the HJB equation

(A.7) and reduce it to the recursive system in the proposition via the following steps:

1. substitute the optimal policy C(s) into the HJB equation (A.7);

2. cancel the terms in q which have the same exponent; and

3. group constant terms not involving Hs and define them to be g(0) for state 0 and
g(1) for state 1.

The third step yields the system of recursive equations A.3, A.4.
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Regularity Conditions
The functions H(s) are necessarily bounded by the limiting solutions in which the econ-
omy is never in a disaster, Hmin

0 , or is always in a disaster, Hmax
1 . It is straightforward to

show that these constants are given by

Hmin
0 =

(
g0

e0

)1/e1

and Hmax
1 =

(
g1

e0

)1/e1

.

These quantities are real and positive if g0, g1, and e0 all have the same sign. Given this, it
can be shown that a necessary and sufficient condition for existence of a unique solution
is that g1 < g0.

A.2 Proposition 1: HJB System with Parameter Uncertainty

Proof. As noted in the text, the model can be parameterized in terms of the state variables
M, η̂, λ̂, and q, where M = Mt is an integer counter that increases on a state switch such
that M0 = 0 and even numbered states are the non-disaster epochs and odd numbered
states are the disasters. Also, in the non-disaster states, λ̂ is constant, while η̂ is constant in
disasters. As a consequence, compared with the derivation above for the full-information
case, there is now only one additional source of variability in each regime. The dynamics
of η̂ are given in (6) with an analogous expression for and λ̂. And note that, under the
agents’ information set, the dynamics of the wealth variable q are identical to the full
information dynamics.

As a result, the HBJ equations under partial information are the same as (A.7) above
(with state 0 and state 1 being replaced by M and M + 1) with the addition of a single
term on the right side:

− (η̂)2

aη

∂JJJ(0)
∂η̂

(A.12)

for s = 0, and

− (λ̂)2

aλ

∂JJJ(1)
∂λ̂

(A.13)

for s = 1. Since, under the agent’s information set, the state switches are a point-process
with instantaneous intensities η̂ and λ̂, these quantities also replace their full information
counterparts, η and λ, in multiplying the jump terms in the respective equations.
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The next steps in the derivation involving the first order condition for optimal con-
sumption are unchanged from the full-information case. This follows because consump-
tion does not enter into any of the new terms involving the information variables. Re-
place JJJ by the conjecture q1−γ

1−γ H(η̂, λ̂, M), then a common power of q term is cancelled,
and the whole equation is divided by H. These manipulations lead to the above two
terms showing up on the right hand side, in a system that is otherwise identical to the
full-information system (A.3) and (A.4).

g0 = e0He1
M + η̂

(
HM+1

HM
− 1

)
− (η̂)2

aη HM

∂HM

∂η̂
(A.14)

g1 = e0He1
M+1 + λ̂

(
HM+2

HM+1
− 1

)
− (λ̂)2

aλHM+1

∂HM+1

∂λ̂
(A.15)

where the constants g0 and g1 are as defined in Lemma 1 above.

A.2.1 Solution Algorithm

In the full information case, solution of the algebraic system over a grid in the (η̂, λ̂) plane
is straightforward. The unknown constants H(s) are bounded by the limiting solutions
in which the economy is never in a disaster, Hmin

0 , or is always in a disaster, Hmax
1 . The

former corresponds to η = 0 and the latter to λ = 0.
For the general case, we pick a large even integer Mmax and assume that the economy

has converged to the full information solution with s = 0 at Mmax and s = 1 at Mmax − 1.
Given these solutions, the HBJ system for M = Mmax − 2 is just a first order ODE, since
the jump terms in (A.14)-(A.15) can be explicitly evaluated. For even values of M, the
boundary condition at η̂ = 0 is again the full-information solution because the posterior
standard deviation

√
aη η̂ is also zero. (Note that the value of λ̂ is immaterial if disasters

cannot arise.) Likewise, for odd values of M, the boundary condition at λ̂ = 0 is given
by the full-information solution. Hence, the first-order ODEs can be explicitly solved in
alternating directions. The procedure is then repeated for all lower values of M.

A.3 Pricing Kernel, Riskless Rate and Proposition 2

This section first derives the pricing kernel and riskless rate under partial information.
The results are then used to prove Proposition 2 Section 4.2 which describes the pricing
equation of insurance against a disaster.
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Under stochastic differential utility, the kernel can be represented as

Λt = e
∫ t

0 fJJJdu fC (A.16)

where the aggregator function is given in (4). With the form of the value function and the
optimal consumption rule from Proposition 1, evaluating the partial derivatives yields
(after some rearrangement)

Λt = q−γ H(η̂, λ̂, M) e
∫ t

0 [cu (θ−1)−ρθ]du (A.17)

where c = c(η̂, λ̂, M) ≡ C/q is the marginal propensity to consume.
The riskless rate is minus the expected rate of change of dΛt/Λt under the agents’

information set. Applying Itô’s lemma, for even values of M, the expected change is

c (θ − 1)− ρθ − γ(µ − c) +
1
2

γ(γ + 1)σ2

− (η̂)2

aη

1
H

∂H
∂η̂

+ η̂

(
H(M + 1)

H(M)
− 1

)
.

A key simplification is to observe that, by the HJB equation derived above (see (A.14)), the
latter two terms in this expression can be replaced by g0 − θ

ψ c. This causes all of the terms
involving c to exactly cancel. Using the definition of g0 in (A.2), the remaining terms are
just −µ + γσ2. Hence we have shown

r0 = µ − γσ2.

Repeating the above steps for odd values of M and applying the same trick yields

r1 = µ − γσ2 − ζχ(1 − χ)−γ.

Turning to the insurance claim, the asset is assumed to make a terminal payout of 1.0 upon
the occurrence of the next disaster. Proposition 3 characterizes its price in normal-times
prior to that disaster.

Proof. We conjecture that the price, P, of the insurance is not a function of wealth, q.
Moreover, when s = 0, the state variables aη, aλ, and λ̂ are all fixed, and η̂ evolves deter-
ministically according to (6).
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By the definition of the pricing kernel, for any claim in the economy, its instantaneous
payout per unit time (in this case, zero) times Λ must equal minus the expected change
of the product process PΛ, or

L(Λ(qt, st, η̂t) P(st, η̂t))/Λt = 0, (A.18)

where L(X) is the drift operator E[dX]/dt under the agents’ information set.
Using Itô’s lemma for jumping processes to expand the expected change,

− (η̂)2

aη

∂P
∂η̂

+ µΛ P + η̂

(
H(M + 1)

H(M)
− P

)
= 0

where we have written µΛ for the deterministic terms in dΛt/Λt and used the fact that
P(M + 1) = 1.

Next, add and subtract η̂(H(M+1)
H(M)

− 1)P and use the fact that the expected growth rate
of the pricing kernel is minus the riskless rate:

r0 = −µΛ − η̂

(
H(M + 1)

H(M)
− 1

)
to get (9):

− (η̂)2

aη

∂P
∂η̂

− r0P + η̂
H(M + 1)

H(M)
(1 − P) = 0.

A.4 Real Options

A.4.1 Mitigation

The text in Section 4 describes endowing the model economy with a one-time real option
to invest in a mitigation technology to alter a structural parameter, χ, via χ = g(i) where
I is a lump-sum investment and i = I/q. Since the option is a one-shot decision, the
post-investment economy is identical to the original model (without the technology) and
hence its value function is as derived in the main propositions.

Then, the assertion is that, for two otherwise equal economies E1 and E2, if the sen-
sitivity of the value function, H, to χ is weaker in E1 than in E2, then, if a solution to
the real-options problem exists in E2, a solution also exists in E1 with smaller optimal
investment.
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To see this, view H as a function of χ, and the problem is to choose i to maximize
the H(g(i))(1 − i)1−γ/(1 − γ) with first order condition −g′(i) ∂ log H(g(i))/∂χ = (γ −
1)/(1 − i). Assume γ > 1. Then the right side (the marginal cost) is an unbounded in-
creasing function of i on [0,1) which is the same for both economies. Call it RHS(i). On
the left side (the marginal benefit), the first term is the same for both economies. The
hypothesis is that ∂ log H(χ)/∂χ is smaller in E1 than in E2 for all χ implying that the
second term is smaller. Hence LHS1(i) < LHS2(i) for all i. Assume LHS2 is continu-
ous and declining. Then, if an interior solution, i∗2 , exists, it follows that on [i∗2 ,1) we
have LHS1 < LHS2 < RHS, meaning that there cannot be a solution for E1 in this region.
Hence, either there is a solution i∗1 < i∗2 or no interior optimum exists and i∗1 = 0 in E1.

A.4.2 Information Production

The top panel of the table below presents the optimal information investment as a fraction
of wealth when the economy contains the technology that alters information precision
according to a(i) = a0 + 100 i, where i = I/q is the lump-sum investment. The option to
make this investment is a one-time occurence at the on-set of a disaster.

The lower panel reports the welfare gain, in units of wealth, of the investment. The
difference between the respective panels can be interpreted as the value-added of the
technology.
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Table A.1: Information Production

(A) Optimal Investment

Benchmark ψ = 0.20

λ̂ λ̂
0.2 0.5 1.0 0.2 0.5 1.0

η̂
0.01 0.06 0.07 0.04

η̂
0.01 0.12 0.14 0.07

0.05 0.06 0.07 0.04 0.05 0.12 0.15 0.08

γ = 2 ρ = 0.02

λ̂ λ̂
0.2 0.5 1.0 0.2 0.5 1.0

η̂
0.01 0.03 0.03 0.02

η̂
0.01 0.12 0.15 0.07

0.05 0.03 0.03 0.03 0.05 0.12 0.15 0.15

(B) Welfare Gain

Benchmark ψ = 0.20

λ̂ λ̂
0.2 0.5 1.0 0.2 0.5 1.0

η̂
0.01 0.182 0.227 0.189

η̂
0.01 0.921 0.928 0.917

0.05 0.137 0.201 0.182 0.05 0.899 0.922 0.914

γ = 2 ρ = 0.02

λ̂ λ̂
0.2 0.5 1.0 0.2 0.5 1.0

η̂
0.01 0.120 0.124 0.094

η̂
0.01 0.544 0.667 0.636

0.05 0.095 0.116 0.108 0.05 0.398 0.573 0.614
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