Do firms mitigate climate impact on employment? Evidence from US heat shocks

Viral Acharva¹ Abhishek Bhardwai² Tuomas Tomunen³

¹NYU Stern

²Tulane University

³Boston College

January 2024

Motivation

"Heat stress is projected to reduce total working hours worldwide by 2.2 per cent and global GDP by US\$2,400 billion in 2030. For workers and businesses to be able to cope with heat stress, appropriate policies, technological investments and behavioural change are required."

- International Labor Organization Report (2019)

Research questions

- 1. Do firms mitigate the impact of heat shocks on employment?
- 2. Does mitigation occur by (a) hiring new workers at unaffected peer locations, (b) entering into new locations or (c) moving existing employees to unaffected peer locations?
- 3. What factors (firm-specific, region-specific, industry-specific) affect mitigation activity?
 - Hypotheses to understand mechanisms and costs/benefits for firms (later slide)
- 4. What are the implications for local economies?

Research questions

- 1. Do firms mitigate the impact of heat shocks on employment?
- 2. Does mitigation occur by (a) hiring new workers at unaffected peer locations, (b) entering into new locations or (c) moving existing employees to unaffected peer locations?
- 3. What factors (firm-specific, region-specific, industry-specific) affect mitigation activity?
 - Hypotheses to understand mechanisms and costs/benefits for firms (later slide)
- 4. What are the implications for local economies?

Answering these questions is challenging because:

- Measuring heat exposure and within-firm employment reallocation is difficult without granular data
- Employment changes can be firm-driven or worker-driven
 - Firm-driven response depends on constraints and governance
 - Worker-driven response can be within-region or across-regions

- 1. Firms experiencing heat shocks:
 - Increase employment in unaffected peer locations, open establishments in new locations

Takeaway: Firms mitigate impact of heat shocks on aggregate employment but induce spatial redistribution of economic activity

- 1. Firms experiencing heat shocks:
 - Increase employment in unaffected peer locations, open establishments in new locations
 Takeaway: Firms mitigate impact of heat shocks on aggregate employment but induce spatial redistribution of economic activity
- 2. Mitigation response is stronger in:
 - Firms with fewer financial constraints (↑ size, ↓ leverage) & more ESG-oriented investors
 - Industries where workers have higher outdoor exposure
 - Takeaway: Firms spend resources to prevent heat-related decline in labor productivity

- 1. Firms experiencing heat shocks:
 - Increase employment in unaffected peer locations, open establishments in new locations
 Takeaway: Firms mitigate impact of heat shocks on aggregate employment but induce spatial redistribution of economic activity
- 2. Mitigation response is stronger in:
 - Firms with fewer financial constraints (↑ size, ↓ leverage) & more ESG-oriented investors
 - Industries where workers have higher outdoor exposure
 Takeaway: Firms spend resources to prevent heat-related decline in labor productivity
- 3. After facing heat shocks, firms shift workforce:

From: Counties experiencing more acute, chronic, and compound heat stress

To: Counties with less projected heat-damage & better economic conditions († GDP growth)

Takeaway: Mitigation is important as climate change becomes more extreme

- 1. Firms experiencing heat shocks:
 - Increase employment in unaffected peer locations, open establishments in new locations
 Takeaway: Firms mitigate impact of heat shocks on aggregate employment but induce spatial redistribution of economic activity
- 2. Mitigation response is stronger in:
 - Firms with fewer financial constraints (\uparrow size, \downarrow leverage) & more ESG-oriented investors
 - Industries where workers have higher outdoor exposure
 Takeaway: Firms spend resources to prevent heat-related decline in labor productivity
- 3. After facing heat shocks, firms shift workforce:

From: Counties experiencing more acute, chronic, and compound heat stress

To: Counties with less projected heat-damage & better economic conditions (↑ GDP growth)

Takeaway: Mitigation is important as climate change becomes more extreme

- 4. After heat shocks materialize, employment growth
 - Decreases in affected county, increases in peer counties (i.e., connected by firm networks)
 Takeaway: Positive employment spillover across counties through firm networks

Related literature

- 1. Extreme heat and firm performance
 - Addoum et al. (2020), Jin et al. (2021), Addoum et al. (2023), Pankratz et al. (2023),
 Ponticelli et al. (2023)
 - Extreme heat adversely impacts establishment revenue and costs
- 2. Firm response to climate shocks
 - Lin et al. (2020), Pankratz and Schiller (2021), Bartram et al. (2022), Castro-Vincenzi (2023)
 - Firms terminate supplier relationships and increase investments in flexible production technologies in response to climate shocks
- 3. Firms' establishment networks
 - Gabaix (2011), Tate and Yang (2015), Giroud and Mueller (2015, 2019), Gumpert et al. (2022)
 - Establishment networks can propagate economic shock across distant regions

This paper: Firms respond to heat-related profitability shocks by relocating operations

Overview

1. Data


- 2. Results
 - 2.1 Impact of heat shocks: Single vs. multi-location firms
 - 2.2 Firm mitigation: Reallocation to unaffected counties
 - 2.2.1 Mitigation across firms
 - 2.2.2 Mitigation across regions
 - 2.2.3 Mitigation across industries
 - 2.3 Does mitigation vary by type of shock (acute, spells, chronic)?
 - 2.4 Other and compound climate hazards
 - 2.5 Impact of heat shocks on county-level outcomes
 - 2.6 Does employee-level mitigation and migration explain our results?

1. Data: Sources

- 1. Dun & Bradstreet Global Archive Files
 - Establishment-level data on employment
 - 50,000 multi-establishment firms across 3,000 counties
 - Time period is 2009 to 2020
 - Drop very small firms (average employment below 100)
- 2. Spatial Hazard Events and Losses Database for the United States (SHELDUS) County-level data on heat-related hazards
- 3. Other datasets: Current Population Survey (for migration), Compustat (for firm financials), PRISM (for daily temperature data), CRA Analytics (for bank presence)

1. Data: Realized heat shocks across the U.S.

Figure: Highlighted counties experienced ≥ 1 hot days

Definition: Hot Days are days when a loss (property, crop, injury, or fatality) occurred from a heat hazard according to SHELDUS

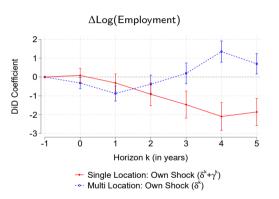
1. Data: Key variables

Definition: For firm f, county c, and year t, we define:

$$\begin{aligned} \text{Own Shock}_{c,t} &= \text{Log}(1 + \text{\#Hot Days}_{c,t}) \\ \text{Peer Shock}_{f,c,t} &= \text{Log}(1 + \text{\#Hot Days, Other}_{f,c,t}) \\ \text{where, $\#$Hot Days, Other}_{f,c,t} &= \sum_{c' \neq c} \frac{\text{Employment}_{f,c',t-2}}{\text{Employment}_{f,c,t-2}} \times \text{\#Hot Days}_{c',t} \end{aligned}$$

1. Data: Key variables

Definition: For firm f, county c, and year t, we define:

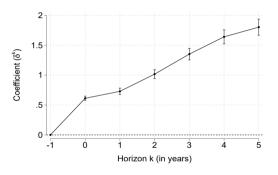

$$\begin{aligned} \text{Own Shock}_{c,t} &= \text{Log}(1 + \text{\#Hot Days}_{c,t}) \\ \text{Peer Shock}_{f,c,t} &= \text{Log}(1 + \text{\#Hot Days, Other}_{f,c,t}) \\ \text{where, $\#$Hot Days, Other}_{f,c,t} &= \sum_{c' \neq c} \frac{\text{Employment}_{f,c',t-2}}{\text{Employment}_{f,c,t-2}} \times \text{\#Hot Days}_{c',t} \end{aligned}$$

Summary Statistics (Firm-County-Year Panel):

	Mean	SD	5%tile	Median	95%tile
Employment	106	644	2	20	350
# Establishments	2.2	5.5	1	1	6
#Hot Days	.47	3	0	0	2
#Hot Days, Other	1,092	14,710	0	.69	2,776
Own Shock	.12	.47	0	0	1.1
Peer Shock	2.4	2.9	0	.52	7.9

2.1 Impact of heat shocks: single vs. multi-location firms

 $\Delta \mathsf{Log}(\mathsf{Employment})_{\!f,t-1 \to t+k} = \gamma^k \times \mathsf{Firm} \; \mathsf{Shock}_{\!f,t} \times \mathsf{Single} \; \mathsf{Location}_{\!f} + \delta^k \times \mathsf{Firm} \; \mathsf{Shock}_{\!f,t} + \alpha_f + \alpha_t + \varepsilon_{\!f,t}$



Key Result: One SD increase in firm-shock:

- 0.47% decline in 3-year employment growth for single-location firms
- No significant decline in multi-location firms

2.2. Firm mitigation: Reallocation to unaffected peer counties

$$\Delta \mathsf{Log}(\mathsf{Employment})_{f,c,t-1 \to t+k} = \delta^k \times \mathsf{Peer} \; \mathsf{Shock}_{f,c,t} + \alpha_f + \alpha_{c,t} + \varepsilon_{f,c,t}$$

Key Result: Consider a firm with equal employment in two counties (c and c'). Over a 3-year horizon,

- 1 hot day in c' \Longrightarrow 0.7% ↑ in employment growth in c
- Mean employment growth in the sample is 2.4%

2.2. Firm mitigation: Reallocation to new counties

Entry In New County $_{f,t} = \gamma imes \mathsf{Firm} \; \mathsf{Shock}_{f,t-1} + \alpha_f + \alpha_t + \varepsilon_{f,t}$

	Entry In New County $\times100$					
	Average Chronic Non-Chi					
L.Firm Shock	0.177*	0.002	0.252***			
	(0.092)	(0.071)	(0.077)			
Firm FE	✓	✓	✓			
Year FE	\checkmark	\checkmark	✓			
Observations	540,874	540,874	540,874			
\bar{y}	8.833	4.385	6.411			
Adj. R ²	0.270	0.225	0.244			

Key Result: One SD increase in firm-shock:

- 0.09 pp increase in the probability of entering a new county
- Effect is stronger when the new county is not exposed to chronic heat stress
- * Counties exposed to chronic heat stress are those in the top quintile of the distribution of the number of hot days during the 1960-2008 period

Hypotheses (heterogeneity of mitigation)

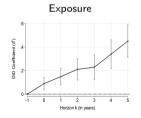
- 1. Understanding the mechanisms:
 - Is the mitigating response stronger in the case of
 - Heat-exposed firms?
 - (Towards) Counties less exposed to heat stress?
 - Industries with workers at risk of injuries or fatalities due to heat stress?
 - Primary alternative candidate: Employee-, rather than Employer-, level mitigation
 - Is mitigation stronger for larger firms vis-à-vis smaller firms, within-county vs across-counties?
 - Is there inward migration of workers to benefiting counties?

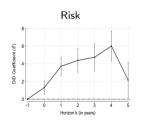
Hypotheses (heterogeneity of mitigation)

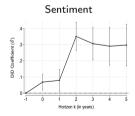
- 2 Understanding costs and benefits to firms from mitigation:
 - Is the mitigating response stronger in the case of
 - Firms with management/shareholders keen/incentivized to address climate change?
 - Less-leveraged firms as they focus on long-term resilience rather than short-term gains?
 - (Towards) Counties with more competitive rather than concentrated labor markets?
 - (Towards) Nearby counties due to the cost of breaking firm relationships with clients and customers?
 - Economic times when resilience costs easier to incur?

3 Descriptive inquiries:

- Acute, chronic heat stress; Other physical climate risks; Compound physical climate risks

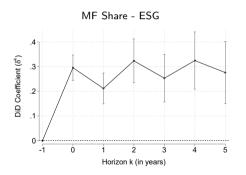

2.2.1. Mitigation across firms


Mitigation is higher when:


Exposure, Risk, and Sentiment towards climate change is higher

Definitions: Following Sautner et al. (2023),

- Exposure is the overall frequency of climate change bi-grams in earnings call transcript
- Risk corresponds to bi-grams associated with risk-related words
- Sentiment corresponds to bi-grams associated with positive/negative tone words



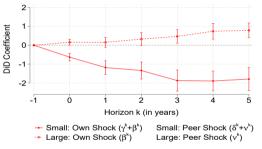
Key Result: Employment reallocation to unaffected counties is higher in firms more exposed and sensitive to climate change factors

2.2.1. Mitigation across firms (contd.)

Mitigation is higher when:

- Shareholding of ESG-classified mutual funds is higher
- Definition: We follow ESG classification of Cohen et al. (2021)

Key Result: Employment reallocation to unaffected counties is higher if firm's mutual fund investors are ESG-oriented

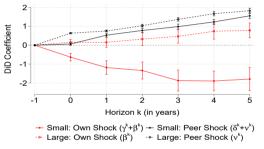

2.2.1. Heterogeneity across firms: Firm financials

$\Delta Log(Employment)_{t-1,t+k} imes 100$					
k=+2	k=+2	k=+2	k=+2	k=+2	
0.263*** (0.066)	2.016*** (0.083)	1.972*** (0.087)	2.002*** (0.095)	0.672 (0.856)	
-11.377*** (0.295)				-12.162*** (0.830)	
1.091*** (0.066)				1.401* (0.849)	
	-0.275 (0.565)			-0.701 (0.586)	
	0.533*** (0.091)			0.534*** (0.094)	
		0.525 (0.506)		-0.467 (0.558)	
		0.305*** (0.070)		0.117 (0.082)	
			6.645*** (0.563)	7.461*** (0.595)	
			0.176** (0.080)	0.047 (0.091)	
✓	✓	✓	✓	✓	
✓	✓	✓	✓	✓	
	Compustat	Compustat	Compustat	Compustat	
				463,256	
2.424 0.043	4.206 0.035	4.206 0.035	4.206 0.036	4.206 0.036	
	0.263*** (0.066) -11.377*** (0.295) 1.091*** (0.066)	k=+2 k=+2 0.263*** 2.016*** (0.066) (0.083) -11.377*** (0.295) 1.091*** (0.066) -0.275 (0.565) 0.533*** (0.091) Full D&B Compustat 4,015,976 463.256 2.424 4.206	k=+2 k=+2 k=+2 0.263*** 2.016*** 1.972*** (0.066) (0.083) (0.087) -11.377*** (0.295) (0.087) 1.091*** (0.066) 0.525 (0.565) 0.533*** (0.091) 0.525 (0.506) 0.305*** (0.070) 0.070) 0.070)	k=+2 k=+2 k=+2 k=+2 0.263*** 2.016*** 1.972*** 2.002*** (0.066) (0.083) (0.087) (0.095) -1.1.377*** (0.295) (0.095) (0.095) 1.091*** (0.066) 0.525 (0.565) 0.533*** (0.091) 0.525 (0.506) 0.305*** (0.070) 6.645**** (0.563) 0.176** (0.080) 0.000 0.000 V V V V Full D&B Compustat Compustat Compustat 4015,976 463,256 463,256 463,256 2.424 4.206 4.206 4.206 4.206	

2.2.1. Heterogeneity across firms: Firm size

$$\begin{split} \Delta \mathsf{Log}(\mathsf{Employment})_{f,c,t-1 \to t+k} &= \gamma^k \times \mathsf{Own} \; \mathsf{Shock}_{c,t} \times \mathsf{Small} \; \mathsf{Firm}_f + \beta^k \times \mathsf{Own} \; \mathsf{Shock}_f \\ &+ \delta^k \times \mathsf{Peer} \; \mathsf{Shock}_{f,c,t} \times \mathsf{Small} \; \mathsf{Firm}_f + \nu^k \times \mathsf{Peer} \; \mathsf{Shock}_f + \alpha_f + \alpha_t + \alpha_c + \varepsilon_{f,c,t} \end{split}$$

Definition: Small firm: Average employment ≤ 250 (sample median)

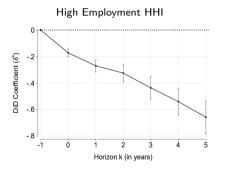

Key Result: Consider a firm with equal employment in two counties – c and c'. Over 3-year horizon, **1** hot day in $c' \implies \text{Employment growth}$

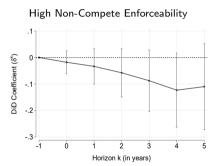
- in c': 0.9% ↓ in small firms and 0.2% ↑ in large firms
- Mean employment growth in the sample is 2.4%

2.2.1. Heterogeneity across firms: Firm size

$$\begin{split} \Delta \mathsf{Log}(\mathsf{Employment})_{f,c,t-1 \to t+k} &= \gamma^k \times \mathsf{Own} \; \mathsf{Shock}_{c,t} \times \mathsf{Small} \; \mathsf{Firm}_f + \beta^k \times \mathsf{Own} \; \mathsf{Shock}_f \\ &+ \delta^k \times \mathsf{Peer} \; \mathsf{Shock}_{f,c,t} \times \mathsf{Small} \; \mathsf{Firm}_f + \nu^k \times \mathsf{Peer} \; \mathsf{Shock}_f + \alpha_f + \alpha_t + \alpha_c + \varepsilon_{f,c,t} \end{split}$$

Definition: Small firm: Average employment ≤ 250 (sample median)

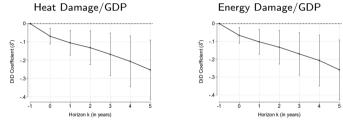

Key Result: Consider a firm with equal employment in two counties – c and c'. Over 3-year horizon, 1 hot day in $c' \implies$ Employment growth

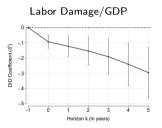

- in c': 0.9% ↓ in small firms and 0.2% ↑ in large firms
- in c: 0.5% ↑ in small firms and 0.7% ↑ in large firms
- Mean employment growth in the sample is 2.4%

▶ Table

2.2.2. Mitigation across regions

$$\Delta \mathsf{Log}(\mathsf{Employment})_{f,c,t-1 \to t+k} = \delta^k \times \mathsf{Peer} \; \mathsf{Shock}_{f,c,t} \times \mathsf{County} \; \mathsf{Characteristic}_{c,t} + \gamma^k \mathsf{Peer} \; \mathsf{Shock}_{f,c,t} + \alpha_f + \alpha_{c,t} + \varepsilon_{f,c,t} \times \mathsf{County} \; \mathsf{Characteristic}_{c,t} + \gamma^k \mathsf{Peer} \; \mathsf{Shock}_{f,c,t} + \alpha_f + \alpha_{c,t} + \varepsilon_{f,c,t} \times \mathsf{County} \; \mathsf{Characteristic}_{c,t} + \gamma^k \mathsf{Peer} \; \mathsf{Shock}_{f,c,t} + \alpha_f + \alpha_{c,t} + \varepsilon_{f,c,t} \times \mathsf{County} \; \mathsf{Characteristic}_{c,t} + \gamma^k \mathsf{Peer} \; \mathsf{Shock}_{f,c,t} + \alpha_f + \alpha_{c,t} + \varepsilon_{f,c,t} \times \mathsf{County} \; \mathsf{Characteristic}_{c,t} + \gamma^k \mathsf{County}_{c,t} + \alpha_f + \alpha_{c,t} + \varepsilon_{f,c,t} \times \mathsf{County}_{c,t} + \alpha_f + \alpha_{c,t} + \alpha_f + \alpha_f$$



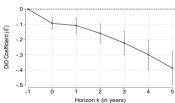

Key Result: Employment reallocation to unaffected counties is higher if their labor markets are competitive

2.2.2. Mitigation across regions (contd.)

$$\Delta \mathsf{Log}(\mathsf{Employment})_{f,c,t-1 \to t+k} = \delta^k \times \mathsf{Peer} \; \mathsf{Shock}_{f,c,t} \times \mathsf{County} \; \mathsf{Characteristic}_{c,t} + \gamma^k \mathsf{Peer} \; \mathsf{Shock}_{f,c,t} + \alpha_f + \alpha_{c,t} + \varepsilon_{f,c,t}$$

Definitions: Exposure measures from SEAGLAS (Hsiang et al., 2017)

Key Result: Employment reallocation to unaffected counties is higher if they have lower exposure to heat-related damage

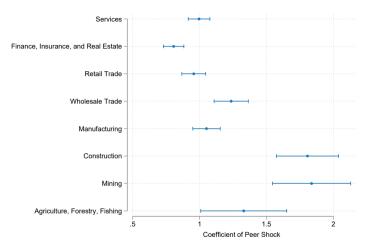

2.2.2. Mitigation across regions (contd.)

$$\begin{split} \Delta \mathsf{Log}(\mathsf{Employment})_{f,c,t-1 \to t+k} &= \delta^k \times \mathsf{Peer} \; \mathsf{Shock}_{f,c,t} \times \mathsf{High} \; \mathsf{Economic} \; \mathsf{Stress}_{c,t} \\ &+ \gamma^k \mathsf{Peer} \; \mathsf{Shock}_{f,c,t} + \alpha_f + \alpha_{c,t} + \varepsilon_{f,c,t} \end{split}$$

Definitions:

- High economic stress: Negative growth in real GDP during t-1

High economic stress



Key Result: Employment reallocation to unaffected counties is higher if they have lower economic stress

2.2.3. Mitigation across industries

Key Result: Employment reallocation to unaffected counties is higher if workers are more exposed to physical heat

2.2.3. Mitigation across industries

$$\begin{split} \Delta \mathsf{Log}(\mathsf{Employment})_{f(i),c,t-1 \to t+k} &= \delta^k \times \mathsf{Peer} \; \mathsf{Shock}_{f(i),c,t} \times \mathsf{Industry} \; \mathsf{Characteristic}_{i,t-1} \\ &+ \gamma^k \mathsf{Peer} \; \mathsf{Shock}_{f(i),c,t} + \alpha_{f(i)} + \alpha_{c,t} + \varepsilon_{f(i),c,t} \end{split}$$

Definitions:

- Teleworking: Dingel and Neiman (2020) classification based on feasibility of remote work
- Tradable: geographical concentration-based classification of Mian and Sufi (2014)

		$\Delta Log(Employment)_{t-1,t+k} imes 100$					
	k=+0	k=+1	k=+2	k=+3	k=+4	k=+5	
Peer Shock	0.453***	0.783***	1.099***	1.436***	1.760***	2.002***	
	(0.023)	(0.032)	(0.044)	(0.055)	(0.068)	(0.077)	
Telework × Peer Shock	0.222***	-0.078***	-0.116***	-0.119***	-0.164***	-0.271***	
	(0.018)	(0.023)	(0.030)	(0.035)	(0.041)	(0.043)	
Peer Shock	0.624***	0.710***	1.004***	1.333***	1.620***	1.779***	
	(0.018)	(0.028)	(0.039)	(0.051)	(0.061)	(0.069)	
Non-Tradable \times Peer Shock	-0.077***	0.122***	0.088**	0.130***	0.148***	0.174***	
	(0.020)	(0.029)	(0.038)	(0.047)	(0.055)	(0.059)	
Observations \bar{y}	5,556,578	4,727,432	4,015,976	3,379,161	2,797,759	2,267,637	
	0.770	1.785	2.424	3.213	3.899	4.748	
Firm FE County × Year FE	√	√	√	√	√	√	

2.3. Does mitigation vary by type of shock (acute)?

$$\Delta \mathsf{Log}(\mathsf{Employment})_{f,c,t-1 \to t+k} = \delta^k \times \mathsf{Peer} \; \mathsf{Shock} \; (\mathsf{Type})_{f,c,t} + \alpha_f + \alpha_{c,t} + \varepsilon_{f,c,t}$$

Definitions:

- Acute stress: peer shock calculated using hot days with non-zero property damage

		$\Delta Log(Employment)_{t-1,t+k} imes 100$					
	k=+0	k=+1	k=+2	k=+3	k=+4	k=+5	
	Pane	l (a): Heat	stress (base	eline)			
Peer Shock	0.612*** (0.018)	0.728*** (0.027)	1.017*** (0.038)	1.352*** (0.049)	1.640*** (0.060)	1.803*** (0.069)	
	Pai	nel (b): Acı	ite heat str	ess			
Peer Shock (Damages)	0.708*** (0.021)	0.920*** (0.031)	1.546*** (0.049)	1.822*** (0.057)	2.113*** (0.063)	2.014*** (0.068)	
Observations \bar{y}	5,556,578 0.770	4,727,432 1.785	4,015,976 2.424	3,379,161 3.213	2,797,759 3.899	2,267,637 4.748	
Firm FE County × Year FE	✓ ✓	√	√	√	√	✓ ✓	

2.3. Does mitigation vary by type of shock (spells)?

$$\Delta \mathsf{Log}(\mathsf{Employment})_{f,c,t-1 \to t+k} = \delta^k \times \mathsf{Peer} \; \mathsf{Shock} \; (\mathsf{Type})_{f,c,t} + \alpha_f + \alpha_{c,t} + \varepsilon_{f,c,t}$$

Definitions:

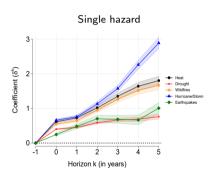
 Heat spells: peer shock calculated using hot days that occurred in a consecutive spell of three or more days

		$\Delta Log(Employment)_{t-1,t+k} imes 100$							
	k=+0	k=+1	k=+2	k=+3	k=+4	k=+5			
Panel (a): Heat stress (baseline)									
Peer Shock	0.612*** (0.018)	0.728*** (0.027)	1.017*** (0.038)	1.352*** (0.049)	1.640*** (0.060)	1.803*** (0.069)			
Panel (c): Heat spells									
Peer Shock (Spells)	0.594*** (0.017)	0.675*** (0.025)	0.937*** (0.035)	1.257*** (0.045)	1.540*** (0.054)	1.674*** (0.062)			
Observations \bar{y} Firm FE County × Year FE	5,556,578 0.770 ✓	4,727,432 1.785 ✓	4,015,976 2.424 ✓	3,379,161 3.213 ✓	2,797,759 3.899 ✓	2,267,637 4.748 ✓			

2.3. Does mitigation vary by type of shock (chronic)?

$$\Delta \mathsf{Log}(\mathsf{Employment})_{f,c,t-1 \to t+k} = \delta^k \times \mathsf{Peer} \; \mathsf{Shock} \; (\mathsf{Type})_{f,c,t} + \alpha_f + \alpha_{c,t} + \varepsilon_{f,c,t}$$

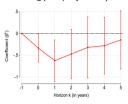
Definitions:


 Chronic stress: peer shock calculated using hot days occurring in counties s in the top quintile of the distribution of the number of hot days during the 1960-2008 period

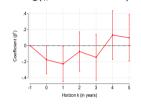
		$\Delta Log(Employment)_{t-1,t+k} imes 100$							
	k=+0	k=+1	k=+2	k=+3	k=+4	k=+5			
	Panel (a): Heat stress (baseline)								
Peer Shock	0.612*** (0.018)	0.728*** (0.027)	1.017*** (0.038)	1.352*** (0.049)	1.640*** (0.060)	1.803*** (0.069)			
Panel (d): Chronic heat stress									
Peer Shock (Chronic)	0.771*** (0.021)	0.885*** (0.030)	1.196*** (0.041)	1.555*** (0.053)	1.824*** (0.063)	2.012*** (0.074)			
Observations \bar{y} Firm FE County \times Year FE	5,556,578 0.770 ✓	4,727,432 1.785 ✓	4,015,976 2.424 ✓	3,379,161 3.213 ✓	2,797,759 3.899 ✓	2,267,637 4.748 ✓			

2.4. Other and compound climate hazards

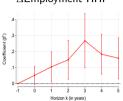
$$\Delta \mathsf{Log}(\mathsf{Employment})_{f,c,t-1 \to t+k} = \delta^k \times \mathsf{Peer} \; \mathsf{Shock} \; (\mathsf{Type})_{f,c,t} + \alpha_f + \alpha_{c,t} + \varepsilon_{f,c,t}$$



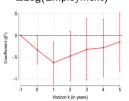
Key Result: Employment reallocation is stronger in response to compound shocks. Firms handle all forms of climate risks.

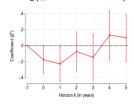

2.5. Impact of heat shocks on county-level outcomes (Own Shock)

$$\Delta Y_{c,t-1 \to t+k} = \beta \times \text{Own Shock}_{c,t} + \alpha_c + \alpha_t + \varepsilon_{c,t}$$

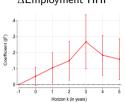


Δ Log(# Establishments)


∆Employment HHI


2.5. Impact of heat shocks on county-level outcomes (Own Shock)

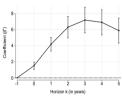
$$\Delta Y_{c,t-1 \to t+k} = \beta \times \text{Own Shock}_{c,t} + \alpha_c + \alpha_t + \varepsilon_{c,t}$$



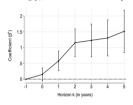
 $\Delta Log(\# Establishments)$

ΔEmployment HHI

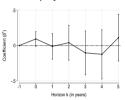
Economic Magnitudes (3 year period):


- $-1\% \uparrow$ in Own Shock $\implies 0.7\% \downarrow$ in employment growth, $0.3\% \downarrow$ in establishment growth, 0.13% \(\gamma\) in HHI growth
- $-1\% \uparrow$ in Peer Shock $\implies 6.9\% \uparrow$ in employment growth, 1.2% \uparrow in establishment growth, 0.4% ↑ in HHI growth

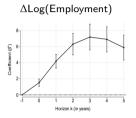
Key Result: Heat shocks lead to lower employment and establishment growth, higher concentration

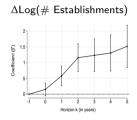

2.5. Impact of heat shocks on county-level outcomes (Peer Shock)

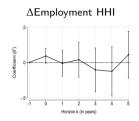
$$\Delta Y_{c,t-1 \to t+k} = \beta \times \text{Peer Shock}_{c,t} + \alpha_c + \alpha_t + \varepsilon_{c,t}$$



$\Delta Log(\# Establishments)$



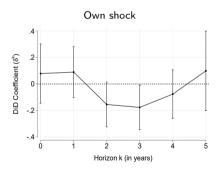

Δ Employment HHI

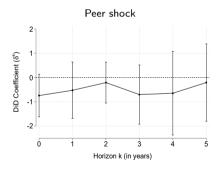


2.5. Impact of heat shocks on county-level outcomes (Peer Shock)

$$\Delta Y_{c,t-1 \to t+k} = \beta \times \mathsf{Peer} \; \mathsf{Shock}_{c,t} + \alpha_c + \alpha_t + \varepsilon_{c,t}$$

Economic Magnitudes (3 year period):


- -1% ↑ in Own Shock $\implies 0.7\%$ ↓ in employment growth, 0.3% ↓ in establishment growth, 0.13% ↑ in HHI growth
- − 1% ↑ in Peer Shock \implies 6.9% ↑ in employment growth, 1.2% ↑ in establishment growth, 0.4% ↑ in HHI growth


Key Result: Heat shocks lead to higher employment and establishment growth in peer counties

2.6. Does employee-level mitigation and migration explain our results?

In-Migration_{h,c,t} =
$$\gamma^k \times \mathsf{Shock}_{c,t-k} + \alpha_D + \alpha_c + \alpha_t + \epsilon_{w,c,t}$$

Definition: In-Migration $_{w,c,t}$ is an indicator that equals one if any member of the household h residing in county c in year t migrated into their current location for a work-related reason during the previous year

Conclusion

- Evidence suggests that
 - Heat shocks impact local counties and small firms
 - BUT
 - Multi-establishment firms relocate workers away from impacted locations to their unaffected, less exposed, locations
 - In a manner consistent with firm-level costs and benefits of mitigation
 - Particularly for acute, chronic and compound climate stress

Open questions

- Are mitigating firms more resilient to FUTURE stress?
- How much does mitigation help in the aggregate to insulate economy against climate change?

Next steps

- Further disentangle worker-driven and firm-driven reallocation (job postings)
- Within-firm mitigation across occupational groups

Heat Is Costing the U.S. Economy Billions in Lost Productivity

From meatpackers to home health aides, workers are struggling in sweltering temperatures and productivity is taking a hit.

NYT (7/31/2023)

ECONOMY

Weeks of Extreme Heat Strain Small Businesses and Economy

Infrastructure holds up but risk of failure rises as hot weather persists

WSJ (7/15/2023)

Heat Wave Intensifies Energy Crisis in Europe

Natural-gas prices surge to a record, and electricity prices rally as high temperatures spur bidding war for the fuel

WSJ (8/16/2022)

China's worst heatwave in 60 years is forcing factories to close

CNN (8/16/2022)

We ask: do firms respond to these heat-related profitability shocks by relocating?

Robustness: Different measures

$$\Delta \mathsf{Log}(\mathsf{Employment})_{f,c,t-1 \to t+k} = \delta^k \times \mathsf{Peer} \; \mathsf{Shock}_{f,c,t} + \alpha_f + \alpha_{c,t} + \varepsilon_{f,c,t}$$

Definition: Peer Shock, $\mathsf{Alt}_{f,c,t}$ is the lagged-employment-weighted number of hot days across all the peer counties of c where firm f has employment in year t

	$\Delta Log(Employment)_{t-1,t+k} imes 100$							
	k=+0	k=+1	k=+2	k=+3	k=+4	k=+5		
		Pa	nel (a)					
Peer Shock, Alt	0.703*** (0.058)	0.446*** (0.073)	0.323*** (0.090)	0.731*** (0.111)	1.130*** (0.136)	1.092*** (0.151)		
Firm FE	✓,	✓,	✓,	✓,	✓,	✓,		
County × Year FE Observations	5,521,381	√ 4,697,477	3,990,510	√ 3,357,697	2,779,954	2,253,138		
ÿ .	0.769	1.782	2.420	3.208	3.892	4.740		
Adj. R ²	0.010	0.026	0.040	0.055	0.072	0.090		

Robustness: Different measures (contd.)

$$\Delta \mathsf{Log}(\mathsf{Employment})_{f,c,t-1 \to t+k} = \delta^k \times \mathsf{Peer} \; \mathsf{Shock}_{f,c,t} + \alpha_f + \alpha_{c,t} + \varepsilon_{f,c,t}$$

Definition: Peer Shock, $(Est-Wt)_{f,c,t}$ is the total number of peer hot days weighted by the number of establishments in the peer county (relative to those in county c)

	$\Delta Log(Employment)_{t-1,t+k} imes 100$							
	k=+0	k=+1	k=+2	k=+3	k=+4	k=+5		
		Pan	el (b)					
Peer Shock, (Est-Wt)	0.304*** (0.014)	0.031* (0.017)	0.080*** (0.022)	0.229*** (0.028)	0.378*** (0.034)	0.388*** (0.038)		
Firm FE	✓	✓	✓	✓	✓	✓		
County × Year FE	✓	✓	✓	✓	✓	✓		
Observations	5,556,578	4,727,432	4,015,976	3,379,161	2,797,759	2,267,637		
\bar{y}	0.770	1.785	2.424	3.213	3.899	4.748		
Adj. R ²	0.010	0.026	0.040	0.055	0.072	0.090		

Robustness: Different measures (contd.)

$$\Delta \mathsf{Log}(\mathsf{Employment})_{f,c,t-1 \to t+k} = \delta^k \times \mathsf{Peer} \; \mathsf{Shock}_{f,c,t} + \alpha_f + \alpha_{c,t} + \varepsilon_{f,c,t}$$

Definition: Peer Shock, $(Eq-Wt)_{f,c,t}$ is the equal-weighted average of hot days in peer counties. We employ firm and county-year fixed effects in each specification and cluster standard errors at the county level

	$\Delta Log(Employment)_{t-1,t+k} imes 100$							
	k=+0	k=+1	k=+2	k=+3	k=+4	k=+5		
		Pan	iel (c)					
Peer Shock, (Eq-Wt)	0.154** (0.068)	0.518*** (0.095)	0.903*** (0.109)	0.899*** (0.131)	0.947*** (0.146)	0.645*** (0.136)		
Firm FE County × Year FE	√	√	√	√	√	V		
Observations \bar{y}	5,556,578 0.770	4,727,432 1.785	4,015,976 2.424	3,379,161 3.213	2,797,759 3.899	2,267,637 4.748		
Adj. R ²	0.010	0.026	0.040	0.055	0.072	0.090		

Robustness: Different fixed-effects

$$\Delta \mathsf{Log}(\mathsf{Employment})_{f,c,t-1 \to t+k} = \delta^k \times \mathsf{Peer} \; \mathsf{Shock}_{f,c,t} + \alpha_f + \alpha_{c,t} + \varepsilon_{f,c,t}$$

	$\Delta Log(Employment)_{t-1,t+k} imes 100$						
	k=+0	k=+1	k=+2	k=+3	k=+4	k=+5	
		Panel (a)				
Peer Shock	1.172***	2.096***	2.895***	3.600***	4.170***	4.783***	
	(0.030)	(0.051)	(0.072)	(0.092)	(0.112)	(0.130)	
Firm × Year FE	✓	✓	✓	✓	✓	✓	
County × Year FE	✓	✓	✓	✓	✓	✓	
Observations	5,514,632	4,688,481	3,980,139	3,346,619	2,768,822	2,242,546	
ÿ	0.763	1.777	2.413	3.199	3.880	4.724	
Adj. R ²	0.087	0.091	0.093	0.095	0.099	0.101	
		Panel (b)				
Peer Shock	0.806***	1.070***	1.494***	1.992***	2.355***	2.637***	
	(0.026)	(0.039)	(0.055)	(0.071)	(0.089)	(0.105)	
Firm FE	✓	√	✓	√	√	√	
County \times Industry \times Year FE	✓	✓	✓	✓	✓	✓	
Observations	3,543,500	2,958,823	2,471,510	2,046,260	1,668,440	1,329,900	
\bar{y}	0.880	2.009	2.759	3.666	4.459	5.453	
Adj. R ²	-0.014	0.012	0.036	0.060	0.088	0.117	

Robustness: Different outcome

$$\Delta \mathsf{Log}(\mathsf{Employment})_{f,c,t-1 \to t+k} = \delta^k \times \mathsf{Peer} \; \mathsf{Shock}_{f,c,t} + \alpha_f + \alpha_{c,t} + \varepsilon_{f,c,t}$$

	$\Delta Log(\# \; Establishments)_{t-1,t+k} imes 100$						
	k=+0	k=+1	k=+2	k=+3	k=+4	k=+5	
Peer Shock	0.133*** (0.006)	0.022*** (0.007)	0.039*** (0.009)	0.110*** (0.012)	0.178*** (0.016)	0.198*** (0.018)	
Firm FE	√	√	√	√	√	√	
County × Year FE	✓	✓	✓	✓	✓	✓	
Observations	5,556,578	4,727,432	4,015,976	3,379,161	2,797,759	2,267,637	
\bar{y}	0.554	1.211	1.520	1.918	2.305	2.759	
Adj. R ²	0.021	0.044	0.064	0.086	0.114	0.144	

→ Back

Heterogeneity across firms: Firm size

 $\Delta \mathsf{Log}(\mathsf{Employment})_{\!f,c,t-1 \to t+k} = \gamma^k \times \mathsf{Own} \; \mathsf{Shock}_{c,t} \times \mathsf{Small} \; \mathsf{Firm}_f + \beta^k \times \mathsf{Own} \; \mathsf{Shock}_{c,t} + \mathsf{FE} + \varepsilon_{f,c,t}$

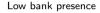
	$\Delta Log(Em$	$\Delta Log(Employment)_{t-1,t+k} \times 100$				
	k=+2	k=+2	k=+2			
Own Shock	0.067	0.385**				
	(0.132)	(0.179)				
Small Firm × Own Shock		-1.706***	-1.717***			
		(0.350)	(0.357)			
Firm FE	√	√	√			
County FE	✓	✓				
Year FE	✓	✓				
County × Year FE			✓			
Observations	3,930,760	3,930,760	3,930,617			
ÿ	2.452	2.452	2.453			
Adj. R ²	0.042	0.042	0.040			

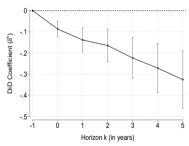
▶ Back

2.2.2. Mitigation across varying distance from the shock

$$\Delta \mathsf{Log}(\mathsf{Employment})_{\!f,c,t-1 \to t+k} = \sum_{(d_1,d_2)} \delta^k_{(d_1,d_2)} \times \mathsf{Peer} \; \mathsf{Shock}_{\!f,c,t,(d_1,d_2)} + \alpha_f + \alpha_{c,t} + \varepsilon_{f,c,t}$$

	$\Delta Log(Employment)_{t-1,t+k} imes 100$							
	k=+0	k=+1	k=+2	k=+3	k=+4	k=+5		
Peer Shock≤100	0.485*** (0.038)	0.682*** (0.054)	0.911*** (0.069)	1.075*** (0.085)	1.186*** (0.094)	1.332*** (0.108)		
Peer Shock∈(100,250]	0.361*** (0.027)	0.451*** (0.037)	0.588*** (0.047)	0.738*** (0.060)	0.832*** (0.074)	0.842*** (0.087)		
Peer Shock∈(250,500]	0.253*** (0.018)	0.261*** (0.026)	0.368*** (0.035)	0.480*** (0.046)	0.537*** (0.055)	0.545*** (0.065)		
Peer Shock∈(500,750]	0.385*** (0.018)	0.430*** (0.027)	0.592*** (0.037)	0.784*** (0.051)	0.903*** (0.061)	0.970*** (0.071)		
Firm FE	✓	✓	✓	✓	✓	✓		
County × Year FE	✓	✓	✓	✓	✓	✓		
Observations	5,527,471	4,698,487	3,988,344	3,353,575	2,774,744	2,247,523		
\bar{y}	0.763	1.776	2.413	3.200	3.882	4.731		
Adj. R ²	0.011	0.027	0.040	0.055	0.071	0.088		




2.2.2. Mitigation across regions

$$\Delta \mathsf{Log}(\mathsf{Employment})_{f,c,t-1 \to t+k} = \delta^k \times \mathsf{Peer} \ \mathsf{Shock}_{f,c,t} \times \mathsf{Low} \ \mathsf{bank} \ \mathsf{presence}_{c,t} + \gamma^k \mathsf{Peer} \ \mathsf{Shock}_{f,c,t} + \alpha_f + \alpha_{c,t} + \varepsilon_{f,c,t}$$

Definitions:

Low bank presence: Below median credit availability

Key Result: Employment reallocation to unaffected counties is lower if they have weaker credit availability

▶ Back