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Abstract

We study how firms manage two potential defaults: Financial default on their debt

obligations, and operational default, i.e., failing to deliver on obligations to customers.

Since operational hedging requires upfront costs, firms with limited ability to raise cap-

ital substitute between hoarding cash (financial hedging) to mitigate financial default

risk and spending on inventories and supply-chain diversification (operational hedging)

to mitigate operational default risk. Thus higher credit risk lowers marginal produc-

tion costs and all else being equal, raises markup, a relationship that is stronger for

financially constrained firms. Empirically, operational hedging measured by inventory

and supply-chain diversification lowers markup and raises cost of goods sold. As pre-

dicted, markup increases and cost of goods sold decreases with the firm’s credit risk,

especially in episodes where capital markets impose financial constraints.

Keywords: financial default, operational default, resilience, liquidity,

risk management, inventory, supply chains

JEL: G31, G32, G33

∗We are grateful to Winston Dou (discussant), Andrea Gamba (discussant), Zhiguo He, Yunzhi Hu,

Uday Rajan, Adriano Rampini (discussant), Dimitri Vayanos and seminar participants at UNC Chapel

Hill, 2021 ASSA annual meeting, 2021 CICF, 2021 University of Connecticut Finance Conference, 2021

International Risk Management Conference, 13th Annual Financial Market Liquidity Conference, 2023 AFA

annual meeting, and The 18th Annual Conference in Financial Economics Research by Eagle Labs, for helpful

comments.
†Corresponding author: New York University, Stern School of Business, CEPR, ECGI and NBER:

vva1@stern.nyu.edu.
‡University of Illinois at Urbana-Champaign, Gies College of Business, NBER: halmeida@illinois.edu.
§New York University, Stern School of Business: yamihud@stern.nyu.edu.
¶Purdue University: liu2554@purdue.edu.



1. Introduction

We analyze how firms manage two types of obligations. Firms have financial debt contracts

and operational contracts to deliver goods and services to customers. Economic shocks can

make firms face financial default on their debt obligations, as well as operational default

where they fail to deliver on their obligations to customers. Given limited cash flows and

constraints on accessing the capital market, firms need to decide how to allocate their re-

sources to mitigate the risk of these two types of default. We study a model of how firms

substitute between these two default risks and present empirical evidence that supports the

predictions of our model.

While financial default is a well-studied area in Financial Economics, there is significantly

less work on operational default. The Covid-19 pandemic and its aftermath have raised

the issue of corporate operational resilience to shocks that disrupt supply chains, lead to

depletion of inventory and adversely affect firms’ ability to deliver their products and services.

To tackle such negative shocks, firms employ operational hedging methods that include

holding excess inventory, increasing the pool of suppliers and shifting some of them to more

secure locations, and maintaining backup capacity. These operational hedging methods are,

however, financially costly. Firms are nevertheless willing to endure some higher costs of

production in order to mitigate the risk of operational disruption and default on their ability

to deliver on their obligations to customers. Such a failure not only impairs the firms’ cash

flow but they also impose a penalty on their reputation and franchise value.

A global survey by the Institute for Supply Management finds that by the end of May

2020, 97% of organizations reported that they would be or had already been impacted

by coronavirus-induced supply-chain disruptions.1 Consequently, U.S. manufacturing was

operating at 74% of normal capacity, with Europe at 64%. The survey also finds that while

firms in North America reported that they are likely to have inventory to support current

1https://www.prnewswire.com/news-releases/covid-19-survey-round-3-supply-chain-disr

uptions-continue-globally-301096403.html. See also “Businesses are proving quite resilient to the
pandemic”, The Economist, May 16th 2020, and “From ‘just in time’ to ‘just in case’”, Financial Times,
May 4, 2020.

1

https://www.prnewswire.com/news-releases/covid-19-survey-round-3-supply-chain-disruptions-continue-globally-301096403.html
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operations, confidence had declined to 64% in the U.S., 49% in Mexico and 55% in Canada.

In Japan and Korea too, many firms were not confident that they would have sufficient

inventory for Q4; and, almost one-half of the firms are holding inventory more than usual.

In response, 29% of organizations were planning or have begun to re-shore or near-shore some

or most operations.2 However, such operational resiliency is not being favored by all firms.

Several corporate chief executive officers (CEOs) and investors contend that operational

hedging is costly and occurs at the cost of financial efficiency.3

Our paper studies this tension between operational resiliency and financial efficiency,

viz., the tradeoff that the firm faces between allocating cash to operational hedging or to

the prevention of financial distress. The firm’s need to optimally balance these two hedg-

ing demands —financial hedging and operational hedging — can help explain the lack of

operational resilience in some firms, in particular, highly-leveraged, financially-constrained

firms.

In our theoretical setting, a competitive (price-taking) levered firm faces two risks. First,

a shock to cash flows from assets in place, which results in cash shortfall, may also result in

financial default which wipes out the equity holders’ value. Second, a shock that disrupts the

firm’s operation also reduces its output and its income. The shocks are potentially correlated,

driven (say) by a common underlying macroeconomic driver. Both financial and operational

defaults impose a loss on the value of the firm. The firm allocates its cash inflow to build

up a buffer to mitigate the financial default risk, and to build up operational resiliency that

helps delivering on its customers’ contracts.

To put another way, our model captures a situation in which operational hedging increases

future cash flows by minimizing the risk of operational disruption, but financial default can

cause the firm to cease operations before the benefits of operational default materialize. That

is, there is a potential maturity mismatch between operational and financial risk. Firms can

mitigate this maturity mismatch by borrowing against long-term cash flows which are en-

2“Reshoring” and “nearshoring” are the processes of bringing the manufacturing of goods to the firm’s
country or a country nearby, respectively.

3“Will coronavirus pandemic finally kill off global supply chains?” Financial Times, May 27, 2020. https:
//www.ft.com/content/4ee0817a-809f-11ea-b0fb-13524ae1056b
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hanced by operational hedging. Doing that can potentially alleviate the need of substituting

between financial hedging and operational hedging. However, this is feasible only if the firm

can pledge future cash flow to outside investors. This intuition gives rise to our key pre-

diction: if pledgeability is limited, financial and operating hedging become substitutes. In

other words, a financially constrained and leveraged firm must decide between using cash to

mitigate the risk of financial default or to mitigate the risk of operational default.

Our main prediction is thus that for a firm with significant credit risk and difficulty in

raising capital, operational hedging decreases with the firm’s credit spread which increases

in financial default risk. Since operational hedging raises the firm’s cost of production and

lowers the profit margin, higher credit risk, which lowers operational hedging, raises the

profit margin or the “operational spread”. This results in a positive relationship between

credit spread and operational spread.4

We empirically test our model’s main prediction that the operational spread, measured

by markup, or (Sales− cost of goods sold)/sales, widens in the firm’s credit risk, the latter

being measured by Altman’s Z-score (Altman, 1968, 2013). The higher is the negative Z-

score, the greater the credit risk. Z-score is a proxy for the risk of default in the near

term, and thus captures the notion of credit risk in our model. We test the hypothesis

controlling for firm characteristics including its market power, measured as an indicator of

top-4 sellers in a firm’s Fama-French 48 industry, and a firm’s sales divided by the total

sales of the Fama-French 48 industry that the firm belongs to. The results support our

hypothesis. The estimated effect is statistically and economically significant: an increase

of one standard deviation in the firm’s negative Z-score raises the firm’s markup by 5.0%

relative to the sample median markup. We also find that higher credit risk strongly lowers

the cost of goods sold after controlling for the firm’s sales and characteristics, confirming the

operational hedging mechanism via which credit risk affects the markup.

An important prediction of our model is that financial constraints increase the positive

4In our model, the effect of credit risk on operational hedging is due mostly to lack of funds to spend on
operational hedging, which is an investment in operational resiliency, and not per se due to debt overhang,
which reduces the incentives to invest due to leverage, as in Myers (1977).
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relationship between the firm’s markup and its credit risk. We thus test whether the positive

markup-credit risk relationship becomes stronger during financing shocks. First, using the

NBER-designated recessions, during which financing becomes generally constrained, we find

a significantly more positive relationship between markup and credit risk during recessions.

This relationship is not entirely driven by movement in product prices: there is a similarly

significant negative relationship between the cost of goods sold and credit risk during reces-

sions. Second, we employ shocks to firms’ credit supply during the subprime crisis following

Chodorow-Reich (2014)’s study of the negative impact on firms of the exogenous shocks

to their relationship banks, following the collapse of Lehman Brothers in September 2008,

which increased financial constraints on firms. We find that for firms that were exposed

to the exogenous credit-supply shocks, credit risk had a significantly more positive effect

on markup and a significantly more negative effect on cost of goods sold. This test helps

alleviate concerns about the endogeneity of credit risk as we study the effect of the pre-crisis

credit risk on the post-crisis markup and cost of goods sold for financially-constrained firms.5

We attend to an alternative explanation that ties the link between a firm’s credit risk

and its markup to market power. Chevalier and Scharfstein (1994) and (Gilchrist et al.,

2017) suggest that liquidity-constrained firms with market power can raise prices (or keep

prices higher in downturns) in order to boost their short-run profitability to support their

immediate liquidity needs, even if it hurts their market share and long-term profitability.

Notably, all our regressions include control variables that proxy for the firm’s market power

as well industry-year-quarter fixed effects which capture industry-wide changes in product

prices and in concentration ratios.

We further test explicitly the market power explanation by adding to our main test of

the markup-credit risk relationship an interaction term between the firm’s credit risk and

two measures of its market power, an indicator for top-4 sellers in the firm’s industry or

the firm’s sales divided by its industry’s total sales. By the market power hypothesis, the

markup-credit risk relationship should be positive only for firms with higher market power

5Some other studies also examine the impact of the subprime mortgage crisis on firms’ other real decisions
(Giroud and Mueller, 2016).
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who set their own prices. However, we find that market power has no significant effect on the

markup-credit risk relationship, which should be positive by our model’s prediction. This

applies for the entire sample, for the recessions and for the 2008 shocks to lending banks.

Even in recessions, the positive markup-credit risk relationship does not rise with market

power.

Finally, we test an ex-post prediction of our model. If credit risk is high enough, then

avoiding financial default becomes the dominant consideration affecting firm value, and vari-

ation in our empirical operational hedging measure does not protect the firm’s value against

shocks that can trigger operational default. We test this prediction using stock returns dur-

ing the Covid era (2020 – 2021). Our model suggests that pre-Covid operational hedging

choices should matter less for firms that enter Covid with high credit risk already. We find

results that are consistent with the predictions of our theory. Operational hedging does help

firms preserve their franchise values after a bad operational shock occurs, but only if their

credit risk is relatively low.

In summary, our novelty is in proposing that firms need to hedge not only against a

default on their financial contracts — their debt obligations —but also against a default on

their operational contracts, their obligations to deliver products to their customers. Both

hedging needs impose demands on their limited resources and induce a tradeoff between

them for firms facing financial constraints.

1.1 Related literature

Our paper is related to studies of the real effects of financing frictions (see Stein (2003) for

a review) which show that financing frictions can affect investment decisions and employ-

ment (Lemmon and Roberts, 2010; Duchin, Ozbas, and Sensoy, 2010; Almeida et al., 2012;

Giroud and Mueller, 2016, among others). The literature also studies the effect of financial

constraints and financial distress on financial policies such as cash, credit lines, and risk

management (e.g., Almeida, Campello, and Weisbach, 2004; Sufi, 2009; Bolton, Chen, and

Wang, 2011; Acharya, Davydenko, and Strebulaev, 2012).
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In particular, our paper relates closely to Rampini and Viswanathan (2010). They show

that more financially distressed firms may reduce risk management to save liquidity for

current investment. However, our paper differs from Rampini and Viswanathan (2010) in

three important ways. First, in Rampini and Viswanathan (2010), debt is fully collateralized

in all states, which makes debt riskless. Thus, their model is silent regarding the relationship

between a firm’s credit risk and risk management. In contrast, in our model debt is risky

because of uncertainty in cash flow and maturity mismatches between the firm’s cash flow

and debt obligations. Second, we introduce the notion of operational risk — default risk

on supplier contract — that rationalizes a firm’s incentive to engage in operational hedging.

This notion allows us to study the relationship between credit risk and a firm’s operational

hedging policy. Third, one key model implication in Rampini and Viswanathan (2010) is that

a firm with lower net worth does not conserve any liquidity, because its return on investment

is so high that it exceeds the return on liquidity hoarding. In our paper, an incentive to

conserve liquidity arises for firms with lower net worth due to the presence of risky debt.

This latter pattern is documented in Acharya, Davydenko, and Strebulaev (2012); however,

they do not analyze the interaction of credit and operational risk, which we study both

theoretically and empirically.

Our paper also relates to Froot, Scharfstein, and Stein (1993), who propose a theory

for the rationale for corporate hedging. In Froot, Scharfstein, and Stein (1993), hedging

against cash shortfalls helps the firm mitigate the risk of not being able to finance valuable

investment opportunities. In a more recent paper, Gamba and Triantis (2014) study firms’

risk management policies through holding liquid assets (cash equivalent), purchasing financial

derivatives, and maintaining operational flexibility. They demonstrate that the strongest

motivation for hedging is to avoid financial distress. They show in the model that the three

risk management tools are more of complements than substitutes, and cash holding is the

most effective out of these three risk management mechanisms. We highlight instead that

avoidance of financial default can make financial hedging and operational hedging substitutes.

In our model, operational hedging is not a means to avoid financing shortfall, but it is rather

6



the other way around: Hedging against a shortfall of cash that presents a financial default risk

reduces the resources allocated to operational hedging for firms facing financial constraints or

having low pledgeability of cash flows.6 Recently, Hu, Varas, and Ying (2021) theoretically

show that long-term debt has the benefit of risk management — long-term creditors share

the loss of the firm value during the economic downturn. Consistently, we show that a firm’s

overall credit risk imposes a higher pressure for the firm to give up more operational hedging,

in order to conserve more cash to withstand the imminent financial default risk.

Finally, our paper adds to the emerging literature of risk management in production

networks. Kulchania and Thomas (2017) find that firms hold more cash to mitigate the

consequences of supply chain disruption led by deregulation of trucking industry. Recently,

Grigoris, Hu, and Segal (2022) empirically and theoretically study the relationship between

trade credit extension to customers and risk premia. Specifically, firms that offer more

trade credit earn lower risk premia. Finally, Ersahin, Giannetti, and Huang (2024) exploit

the incidence of natural disasters to study how production networks adapt to idiosyncratic

shocks, finding that trade credit extension keeps supply chains stable except when suppliers

are financially constrained. By offering more trade credit to customer firms, a supplier firm

hedges against its customer firms’ default risk, and therefore lowers the cost of searching for

new customers. Our novelty lies with the fact that we allow firms to default on both debt

contracts and contracts with their customers. This extension gives rise to the competition

between financial and operational hedging for the limited liquidity resources of the firm.

2. The model

2.1 Model setup

This section develops a model of a competitive (price-taking) levered firm’s optimal opera-

tional hedging policy in the presence of costly financial default (default on debt service) and

6See Bianco and Gamba (2019) for a recent theoretical contribution focusing on the risk management
role of inventory. They focus on an all-equity firm so do not analyze the effect of credit risk on operational
hedging as we do.

7



costly operational default (default on the supplier contract). Our model introduces opera-

tional hedging in the setting of financial hedging of Acharya, Davydenko, and Strebulaev

(2012), where we model financial hedging as saving cash in order to avoid default on its debt

maturing before the settlement date of supplier contract.

The model features a single-levered firm with existing debt F in a three-period economy:

t = 0, 1, 2. The debt is payable at t = 1. The firm has assets in place that generate a cash

flow xt at each period t = 0, 1. x2 represents the “franchise value”. Additionally, the firm

has an outstanding supplier contract that stipulates a delivery of I units of goods at unit

price p at t = 2. We assume that the firm is a price-taker in its supplier contracts.

There is a random shock u that affects both the firm’s cash flow at t = 1 and its capacity

to fulfill the supplier contract. The latter impact can be due to supply chain disruptions. In

this sense, u is a systematic shock. The value of u is realized at t = 1. Specifically, the firm’s

cash flow at t = 1 is given by x1 = x̄1 + u, and its production capacity is reduced from I to

(1 − δ(u))I, where δ(u) is decreasing and convex in u with continuous and finite first and

second order derivatives. The probability distribution of u is given by the density function

g(u) with support [0,∞), the associated cumulative distribution function being G(u) and

the hazard function h(u) being defined as h(u) = g(u)
1−G(u)

. To derive analytical solutions, we

assume that u is exponentially distributed on [0,∞) with density function g(u) = αe−αu.

Then the cumulative distribution function G(u) = 1 − e−αu. Notably, the hazard function

h(u) is a constant α.7 Figure 1 illustrates the timeline of the model, which we further

elaborate upon next.

7Exponential distribution is a special case of Gamma distribution, which has been widely used to model
the jump size distribution of uncertainty shocks in finance (e.g., Johnson, 2021).
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t

0

Debt level F is maturing in t = 1.

A contract for output I is deliverable in t = 2.

Cash flow x0 is realized.

Operational hedging amount i is chosen.

Cost K(I + i) is sunk. The remaining cash is saved.

1

cash flow x1 = x̄1 + u is realized.

Debt F matures.

If x0 + x̄1 + u < F +K(I + i),

financial default occurs.

2

p[(1− δ(u))I + i] + x2 is realized.

2

If [1− δ(u)]I + i < I,

operational default occurs.

p[(1− δ(u))I + i] + (1− λ)x2

is realized.

Figure 1: The timeline of the model

At date t = 0, the assets in place generate a positive cash flow x0 > 0. In the meantime,

the firm starts producing I units of goods scheduled for delivery at t = 2. Moreover, the firm

can choose to hedge the operational risk by making a marginal investment i, resulting in the

total units of delivered goods being (1 − δ(u))I + i. i can also be interpreted as inventory,

and/or spare production capacity.8 The cost of the production and operational hedging is

summarized by an increasing and convex cost function K(I + i) with continuous and finite

first and second order derivatives.

To start with, we assume that market frictions preclude the firm from accessing outside

financing at t = 0, 1. Thus, the firm’s disposable cash at date-0 comes entirely from its

internal cash flow. Thus, the cash reserve is c = x0 − K(I + i). We assume that legacy

debt F payable at t = 1 cannot be renegotiated due to high bargaining costs; for example,

it might be held by dispersed bondholders prone to coordination problems. Notice that the

debt payment must be made out of the firm’s internal funds, c + x1. Failure to repay the

debt in full at t = 1 results in financial default and liquidation, in which case future cash

flow from the contractual delivery investment, p[(1− δ(u))I + i], and the franchise value, x2,

are lost. Since the period-1 cash flow, x1, is random, there is no assurance that the firm has

8In our model the firm is operationally inflexible in the sense that its production amount is confined by
the size of the customer contract. We do so to focus on the firm’s operational hedging decisions, rather than
its investment/disinvestment decisions.
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enough liquidity to repay the debt in full. Even if there is no financial default, failure to

deliver I units of goods can result in operational default, leading to a loss of the franchise

value, x2, by a portion λ ∈ (0, 1). This can be interpreted as, for example, a reputation loss

with its customers who can switch to alternate suppliers.

2.2 Discussion

Before proceeding further, we want to stress that the exact specification of the model can vary

widely without affecting the results qualitatively, as long as four assumptions are satisfied.

First, default involves deadweight costs to shareholders. Although we assume that all future

cash flows are lost in default, an extension to a partial loss is straightforward. Second,

the outstanding debt matures before the supplier contract settlement date, giving rise to a

maturity mismatch between the debt contract and the supplier contract. Third, external

financing cannot be raised against the income from the supplier contract settlement at date-

2. If the firm can pledge a large enough fraction of the income from the supplier contract

settlement as collateral, then current and future cash holdings can be viewed as substitutes,

and there is no role for precautionary savings of cash. As a result, the tension between

financial hedging and operational hedging breaks down. In reality, the condition of partial

pledgeability is likely to be universally met. While the base case model assumes that external

financing is prohibited, Section 3.1 extends the model by allowing the firm to borrow up to

a certain fraction τ of its cash flow from contract settlement at t = 2, and shows that our

main results hold as long as τ is sufficiently small, i.e., the pledgeability level is sufficiently

low. Fourth, the shock at t = 1 must affect both the date-1 cash flow and the firm’s ability

to honor the supplier contract. Although we assume a single random shock that affects

both the cash flows from assets in place and its production capacity, extending our model to

multiple shocks is possible.
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2.3 Optimal hedging policies

The firm’s optimal hedging policy depends on the relative likelihood of financial default to

operational default, which, in turn, depends on the relative magnitudes of shock thresholds

that triggers financial and operational defaults. We determine these thresholds next.

The amount of cash available for debt service at date 1 is x0 − K(I + i) + x1, where

x0 − K(I + i) is the cash reserve and x1 = x̄1 + u is the interim-period cash flow from

assets. The “financial default boundary”, uF , is the minimum shock level that allows the

firm to repay F in full and avoid default: uF = F +K(I + i) − x0 − x̄1 = F̄ +K(I + i),

where F̄ = F − x0 − x̄1 is the net debt, i.e., debt minus date 0 and 1 predictable cash flows.

The financial default boundary uF increases with the level of net debt (F̄ ) and operational

hedging level (i). For all realizations of u between 0 and uF , the firm defaults on its debt

contract and equity holders are left with nothing.

We also allow the firm to default on the supplier contract. The amount of goods that the

firm can deliver at date-2 is (1−δ(u))I+i. If this amount is less than the production commit-

ment I, the firm defaults on the supplier contract. Correspondingly, the “operational default

boundary”, uO, is the minimum shock level that allows the firm to deliver its contractual

amount of goods in full and avoid operational default: (1−δ(uO))I+i = I, or uO = δ−1
(
i
I

)
.

Since the loss function δ is decreasing in u, its inverse function δ−1 is decreasing in i. This

means that the operational default boundary uO is decreasing with i, the level of operational

hedging the firm chose at date-0. In this sense, operational hedging reduces the operational

default risk. For all realizations of u between 0 and uO, the firm defaults on its supplier

contract and equity holders lose a portion λ of the franchise value x2.

Define D(i, F̄ ) as the difference between financial and operational default thresholds for

given net debt level F̄ and operational hedging policy i:

D(i, F̄ ) ≡ uF − uO = F̄ +K(I + i)− δ−1

(
i

I

)
. (2.1)

As will be clear later, operational default boundary uO only enters into equity value
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function if it is larger than the financial default boundary uF . Thus, the main challenge in

solving the model is that both uF and uO are endogenously determined by the firm’s hedging

policy. In the remaining of this subsection, we solve for the firm’s optimal operational hedging

policy. The detailed proofs are in Appendix I.B.9

2.4 Benchmark: Optimal hedging policy ī when F = 0

When F̄ is close to zero, the financial default boundary is always smaller than the operational

default boundary given the first-best hedging choice ī that ignores credit risk.10

2.5 Optimal hedging policy i∗ when uF ≥ uO

If the firm’s inherited debt level is so high that the financial default boundary is greater than

the operational default boundary for i ∈ [0, ī], then the firm would have already declared

financial default at date-1 for the shock values that would trigger the operational default.

Thus, operational default boundary does not enter the equity value function in this case.

In Appendix IB.2, we show that in this case, a unique optimal operational hedging policy

exists and the optimal hedging policy decreases with the firm’s inherited debt level.

2.6 Optimal hedging policy î∗ when uF < uO

We now turn to the more interesting case in which the firm’s inherited debt level is sufficiently

low such that the financial default boundary is always below the operational default boundary

for i ∈ [0, ī]. In this case, the operational default boundary enters the equity value function.

The equity value is E given in (IB.5), minus the expected cost proportional to the date-2

franchise value, λx2. Therefore, the equity value is:

Ê = E −
∫ uO

uF

λx2g(u)du , (2.2)

9It is straightforward to consider hedging being undertaken by a manager who maximizes equity value
net of personal costs arising from firm’s bankruptcy (see, for example, Gilson (1989)).

10We formally show this in Appendix IB.1.
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Equity holders choose the optimal level of operational hedging i to maximize Ê, which

yields the following first-order condition:

p−K ′(I + i) = [V (uF , i)− λx2]h(uF )K
′(I + i) +

λx2g(uO)

[1−G(uF )]Iδ′(uO)
. (2.3)

Define î∗ as the firm’s hedging policy that satisfies (2.3). A marginal increase in operational

hedging will yield a marginal profit equal to its markup p −K ′(I + i). However, the effect

of a marginal increase in i on the firm’s expected loss from operational default and financial

default is opposite. On the one hand, a marginal increases in operational hedging increases

the expected cost of financial default by increasing the financial default boundary uF .
11 On

the other hand, a marginal increase in operational hedging decreases the expected cost of

operational default since it reduces the operational default boundary uO, which is captured

by the last term of the first-order condition (2.3). Therefore, the first-order condition (2.3)

says that the firm chooses the hedging policy î∗ such that the marginal profit (“markup”)

is equal to the marginal increase of the expected financial default cost net of the marginal

decrease of the expected operational default cost.

We show in Appendix IB.3 that the first-order condition (2.3) admits a unique and

positive interior solution î∗ that maximizes E subject to D(i, F̄ ) > 0 for i ∈ [0, ī], under

some mild technical conditions. Comparing the first-order conditions (IB.2), (IB.6) and

(2.3), it is straightforward that ī > î∗ > i∗. Intuitively, when the firm’s inherited net debt

F̄ is sufficiently low such that the operational default boundary uO dominates the financial

default boundary uF , and in turn, operational default risk is the main concern of equity

holders, the firm will invest more on operational hedging. The following lemma, proved in

Appendix IB.3, formalizes the above statement.

Lemma 2.1. If the production commitment I is sufficiently high and K′(I+ī)
I

is sufficiently

low, then ī > î∗ > i∗.

We also prove in Appendix IB.3 that when uF < uO for i ∈ [0, ī], the firm’s optimal

11Notice that the loss conditional on a financial default is reduced by λx2. This is because the firm has
already lost λx2 due to operational default when it declares financial default.
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operational hedging policy î∗ decreases in its inherited net debt level:

Lemma 2.2. When F̄ is such that 0 < uF < uO for i ∈ [0, ī], the optimal operational hedging

policy î∗, if exists, decreases in the firm’s net debt level F̄ .

2.7 Optimal hedging policy and net debt F̄

The next proposition states the main results of our paper: The firm faces a tradeoff between

saving cash (financial hedging) and investing in operational hedging. When the firm is more

financially leveraged in the interim, i.e., having higher net debt levels F̄ maturing at date-

1, financial hedging motive dominates the operational hedging motive and the firm cuts

investment in operational hedging to conserve more cash in order to better hedge against

the financial default risk. As a result, the optimal operational hedging, denoted generically

by i∗∗ to span various cases, is (weakly) lower.

Proposition 2.1. The firm’s optimal operational hedging policy i∗∗ decreases in net debt F̄ .

3. Model extensions

3.1 The effect of partial pledgeability

In our base case model of Section 2, the firm has no access to external financing. The model

can be extended to consider the effect of partial pledgeability (“PP”) of cash flows from

supplier contract settlement. We use subscript PP to denote respective quantities for this

extension. The results from such extension are qualitatively identical to the base case in

which the firm cannot pledge any date-2 cash flow to the creditors.

Suppose that at t = 1 the firm can use a fraction τ of its proceeds from date-2 supplier

contract settlement (which is τp[(1 − δ(u))I + i]) as collateral for new financing, where

0 ≤ τ ≤ 1. Here, τ = 0 corresponds to our base case of extreme financing frictions, when the

firm cannot raise any external financing against its future cash flow, whereas τ = 1 implies
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frictionless access to external capital with payment backed by future cash flow. In practice,

τ can also represent the ease of access to cash flow financing.

Conditional on survival, raising new financing at t = 1 in this setting is value-neutral.

Therefore, we can assume without loss of generality that the firm always raises the amount

equal to the cash shortfall when the cash flow shock hits the financial default boundary,

given by τp[(1 − δ(uF,PP ))I + i.12 Thus, cash available for debt service at date 1 is x0 −

K(I + i) + x1 + τp[(1− δ(uF,PP ))I + i], which is the sum of the cash reserve x0 −K(I + i),

the random cash flow x1 = x̄1 + u, and the newly borrowed amount τp[(1− δ(uF,PP ))I + i].

While the operational default boundary uO is the same as the base case, the financial default

boundary is now given as:

uF,PP = F̄ +K(I + i)− τp[(1− δ(uF,PP ))I + i] . (3.1)

As long as τ is sufficiently low, the optimal hedging policy is of the same form as that in

the baseline case. Consequently, the optimal operational hedging, denoted by i∗∗PP , is lower

when the inherited net debt level F̄ is higher.

Proposition 3.1. If τ < τ̄ , the firm’s optimal operational hedging policy i∗∗ decreases in F̄ .

When τ = 0, the general case is reduced to the zero-pledgeability case in Section 2. Since

all the quantities are continuous in τ , Proposition IB.2 and Proposition 3.1 hold for small

enough τ , i.e., τ ∈ [0, τ̄ ]. Furthermore, the F -region in which debt level does not affect the

optimal hedging policy increases with τ .

12Raising this amount is always feasible for u ∈ [uF,PP ,∞]. Recall that δu decreases in u by assumption,
thus the pledgeable income τp[(1− δ(u))I + i] increases in u.
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3.2 Operational spread and credit spread

The credit spread is defined by the ratio between the face value of debt F and the market

value of debt L minus 1, where the market value of debt is given as:

L = F −
∫ uF

0

[uF − u− τp (δ(uF )− δ(u)) I] g(u)du . (3.2)

The second term on right-hand side is the expected bankruptcy cost. The operational spread

is the markup, p−K ′(I+ i). Intuitively, holding x0 and x̄1 constant, the optimal operational

hedging policy i∗∗ decreases in debt level F by Proposition 2.1. Thus, credit spread and

operational spread are positively correlated, as long as the market price of debt, L
F
, decreases

in F . In the next section, we numerically show that the operational spread and credit spread

are positively correlated.

3.3 Debt maturity

So far, we assume that the firm’s existing debt matures at date-1, before the supplier contract

delivery. What happens if the debt matures at date-2, at the same date as the contract

delivery? If the debt maturity date is aligned with the delivery date of the supplier contract,

then the firm can use its entire cash flow from its supplier contract settlement to pay off

its debt. Thus, the optimal operational hedging policy in the “long-term” debt case is the

same as the case of perfect pledgeability (τ = 1). In fact, although we interpret τ as the

pledgeability of the cash flow from the supplier contract, we can also treat (1 − τ) as the

proportion of the firm’s debt that matures before the contract delivery, i.e., the degree of

maturity mismatch between the firm’s debt and the duration of its operational cash flows.

3.4 Hedging along the supply chain

We can modify our model slightly to accommodate the case in which the firm hedges

against the operational default risk by choosing multiple suppliers instead of choosing spare
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production capacity or excess inventory. Suppose that the production function becomes

K = K(I, n), in which n ≥ n denotes the measure of suppliers that the firm chooses to enlist

in the production process, and n denotes the minimal measure of suppliers that the firm

needs to keep the production running.13 We assume that it is more costly if the firm chooses

a more diversified supply chain, i.e., n being large. Mathematically, it means that the first-

and second-order partial derivatives of K with respect to n are both positive: Kn(I, n) > 0

and Knn(I, n) > 0. We assume that the production loss function δ(u, n) depends on both

the production shock u and the measure of suppliers n. Consistent with the baseline model,

δ(u, n) is decreasing and convex in both u and n with continuous and finite first- and second-

order derivatives, δu(u, n) < 0, δn(u, n) < 0, δuu(u, n) > 0 and δnn(u, n) > 0. In addition, we

assume that the cross-partial derivative of δ(u, n), δun(u, n) < 0.

In this setting, the operational default threshold uO is such that δ(uO, n) = 0. Then

∂uO

∂n
= − δn(uO,n)

δu(uO,n)
< 0. It can be verified that the second-order derivative of uO with respect

to n is greater than zero, which is the same as the baseline case. In this setting, our previous

arguments still go through. In particular, operational hedging measured as supply chain

hedging (n) is decreasing in the firm’s financial leverage and credit risk.

4. Numerical analysis

This section presents comparative statics from the model above. We illustrate the corre-

lations between the optimal hedging policy i∗∗ and debt F maturing at date-1, as well as

between the credit spread and operational spread, as implied by the model solutions in

Section 2.14

Throughout this section, we focus on the generalized version of the model in Section 3.1

with pledgeability level τ ∈ [0, 1]. For numerical illustration, the cash flow shock u follows an

exponential distribution with rate parameter α = 0.05, i.e., the probability density function

13We assume that n represents the measure, instead of number of suppliers, in order to use the first-order
conditions, consistent with our baseline model.

14Our model treats the debt level (F ) as a model primitive. We can introduce the tax benefit of debt and
solve for the optimal capital structure, but this is not the focus of our paper.
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of u, g(u) = 0.05e−0.05u. The production loss function is assumed to be δ(u) = e−u. Consis-

tent with neoclassic investment literature (Bolton, Chen, and Wang, 2011), we assume that

a quadratic production cost function K(I + i) = κ(I + i)2, in which κ = 0.1.15

Figure 1 presents the firm’s optimal operational hedging policies i∗∗ given different debt

levels F . The blue, red and yellow lines represent the cases of low (τ = 0), intermediate

(τ = 0.4) and high pledgeability (τ = 0.8) cases, respectively. In all three cases, the optimal

hedging policy i∗∗ is flat when the debt level F is low: debt does not affect the firm’s optimal

hedging policy when the debt level is sufficiently low, i.e., the debt is guaranteed to be paid

off at date-1 regardless of the date-1 production shock levels. As F increases, i∗∗ exhibits

a negative correlation with the debt level maturing at date-1. Moreover, the negative slope

is steeper and holds for a wider range of debt levels F the lower is the pledgeability τ .

Overall, the optimal operational hedging policy decreases in the amount of debt maturing

in the interim, especially if the firm faces difficulty in raising external funds, i.e., has a low

pledgeability τ .

[INSERT Figure 1.]

Next, we plot the firm’s credit spread against its operational spread, i.e., the markup

p − K ′(I + i). Along the equilibrium path of the optimal hedging policies given different

debt levels F , the credit spread and operational spread are positively correlated. This

positive relationship is stronger when the firm’s pledgeability τ is lower. This is consistent

with the novel implication of our model: when the firm’s credit risk is higher, the firm cuts

the operational hedging activity by a larger extent to save more cash at date-0 and better

hedge against the financial default risk, leading to a higher markup.

[INSERT Figure 2.]

15The other parameter values for numerical analysis are as follows: I (Contractual delivery amount) = 3,
λ (Proportional cost of operational default) = 0.5, p (Unit price) = 1.2, t (Tax rate) = 0.3, x0 (Cash flow at
date-0) = 5, x̄1 (Certain cash flow at date-1) = 5, and x2 (Franchise value at date-2) = 10.
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5. Empirical analysis

Our model produces two hypotheses on the link between operational hedging and credit

risk. First, greater credit risk or probability of default lowers operational hedging, indicated

by an increase in the price-to-unit cost difference, or the firm’s markup. Second, the pos-

itive relationship between markup and credit risk is stronger for firms that are financially

constrained, as indicated in our model by a lower pledgeability of future cash flows.

In our empirical analysis, we measure operational hedging by Markup = (Sales −

CGS)/Sales, where CGS is the cost of goods sold. Increased spending on operational

hedging lowers Markup. Operational hedging is measured by a higher level of inventory,

whose hoarding indicates the propensity of the firm to engage in operational hedging, and

by greater breadth of supply chains, which includes expanding and diversifying the number

of suppliers that the firm works with.16

We begin our empirical analysis by presenting an example that illustrates the interaction

between the firm’s credit risk and its operational hedging policies. Vail Resorts, Inc., a

mountain resort company that is included in our sample, was heavily indebted before the

subprime mortgage crisis and the Great Recession. In its 2008 and 2009 annual reports,

management expressed concerns regarding the company’s highly levered capital structure.

Item 1A, Risk Factors, says: “Our indebtedness could adversely affect our financial health

and prevent us from fulfilling our obligations.”To make things worse, its lenders (e.g., U.S.

Bank and Wells Fargo) experienced a 2.7% drop in loan provision during the financial crisis.

Correspondingly, Vail held 5.6% less inventory (on average, scaled by its sales) during the

recession period compared to the periods before that, and it also terminated the strategic

alliance program with Ricoh Co., Ltd. a Japanese company that was Vail’s office equipment

supplier and stopped being a significant customer with General Mills, a consumer food

company (Source: FactSet Revere database). In the meantime, its markup increased by

10.7%. Thus, a high credit risk in a period of tight financing appears to have lowered Vale’s

16Operational hedging may encompass other measures; inventory and supply chain diversification may be
the most salient and easy to measure.
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inventory and forced the company to reduce its contracting with its suppliers, which lowered

its per-unit costs.

Our formal empirical analysis is structured as follows. First, we validate that our pro-

posed measures of operational hedging are consistent with our model mechanics. In the

model, operational hedging mitigates the effects of shocks to firms’ output, which is equiv-

alent to its sales if a firm is a price-taker. We start by testing whether higher levels of

inventory and supply chain breadth mitigate the negative effect on sales of economic shocks

measured by the NBER-designated recessions. We then test whether Markup, our measure

of the operational spread, declines with inventory and supply chain breadth.

We then test the two central predictions of the model. First, we estimate the effect on

Markup and on CGS of the firm’s credit risk, measured by the negative value of Altman’s

(1968) Z-score, which indicates the likelihood of default and positively affects the credit

spread. We control for firm characteristics and fixed effects as well as for market power in

these tests.

Second, and most importantly, we use financing shocks to test whether lower pledgeability

or tighter financial constraints strengthen the positive relationship between Markup and

credit risk. In the first test, we examine the relationship between Markup and −(Z−score)

during NBER-designated recession periods, when capital markets are depressed and financing

is scarce. In the second test, we employ the impact of the subprime mortgage crisis of 2008

on lenders’ ability to provide credit to borrowers, following Chodorow-Reich (2014). We

test whether exposed firms — those whose lenders were more strongly hit by the crises —

exhibited after the crisis a stronger relationship between their Markup (and CGS) and their

−(Z − score) measured before the crisis. In these tests, we directly consider the possibility

that the effect of financing shocks operates through market power (firms’ ability to raise

prices) rather than through a cost channel as predicted by our model.
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5.1 Data and empirical definition

We now describe these empirical results in detail. We employ quarterly data from 1971 to

April 2020, a span of 197 quarters, from Compustat. We exclude firms in the financial indus-

tries (SIC codes 6000-6999) and utility industries (SIC codes 4900-4949), and firms involved

in major mergers (Compustat footnote code AB). We include firm-quarter observations with

market capitalization greater than $10 million and quarterly sales more than $1 million at

the beginning of the quarter, inflation adjusted to 2019. Our sample includes 18, 338 firms

with an average asset value of $2.7 billion dollars (inflation adjusted to the end of 2019).

Altogether we have 573, 041 firm-quarters.

5.1.1 Variable definitions

Our first dependent variable is the operational spread or Markup, defined as sales (SALEQ)

minus cost of goods sold (COGSQ) divided by sales. This measure of the price-unit cost

spread proxies for our model’s marginal cost of production of the contracted output quantity.

Our second dependent variable is the cost of goods sold (COGSQ), scaled by assets (ATQ),

which by our model increases with operational hedging.

Our key explanatory variable proxies for the firm’s ability to pay off its debt liabilities,

viz., the negative of Altman’s (1968) Z-score17. The model includes variables that control for

the firm’s investment needs and its debt capacity. We control for firm size by including total

assets in logarithms. To control for the firm’s investment opportunities we include Tobin’s Q,

the sum of common shares outstanding (CHOQ) multiplied by the stock price at the close

of the fiscal quarter (PRCCQ), preferred stock value (PSTKQ) plus dividends on preferred

stock (DV PQ), and liabilities (LTQ), scaled by total assets (e.g., Covas and Den Haan,

2011). To control for the firm’s debt capacity, we include cash holdings (CHEQ), cash flow

(IBQ +DPQ) and tangible assets (PPENTQ), all scaled by total assets. In models with

CGS/Assets as the dependent variable we add to the control variables contemporaneous sales-

17In our calculation of the Z-score we use OIBDP instead of EBIT because the latter is not available in
Compustat quarterly data.
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to-assets ratio since cost of goods sold is partly and mechanically related to sales. The models

include two variables that control for market power, given that markup is associated with

monopoly power (Lerner, 1934) and with inventory behavior (e.g., Amihud and Medenelson,

1989). One is a dummy variable that equals one if the firm ranks among the top four sellers

in the industry in a given quarter and zero otherwise, using Fama and French’s 48 industries.

The second variable is the firm’s sales/industry sales.

The variables that indicate operational hedging are inventory and supply chain breadth.

Inventory (INV TQ) scaled by sales indicates operational hedging, proxying for the excess

production indicated by i in the theoretical model.18 The 2020 Covid-19 pandemic high-

lighted the importance of inventory — which in many cases was impossible to replenish at

reasonable cost or in a timely manner — and of supply chain diversification to circumvent

shutdowns of some manufacturing facilities. We create a supply chain hedging variable using

information from the Factset Revere relationship database on firms’ suppliers.19 It contains

a comprehensive relationship-level data between firms, starting from April 2003. An ob-

servation in this database is the relationship between two firms with information about

the identities of the related parties, the start and end date of the relationship, the type

of the relationship (e.g., competitor, supplier, customer, partner, etc.), and the firms’ geo-

graphic origins. We aggregate the relationship-level data to firm-quarter level and calculate

three measures of supply chain hedging for each firm in each quarter: (i.) ln(1+number of

suppliers); (ii.) ln(1+number of supplier regions), where supplier regions are country and

state/province combination; (iii.) ln(1+number of out-of-region suppliers), that is, suppliers

that are not from the firm’s region. We merge the supply-chain data with our main sample,

yielding a total of 151, 985 firm-quarter observations covering 6, 204 firms from mid-2003 to

the first quarter of 2020. The median firm has 4 suppliers from 3 regions in a given quarter,

out of which 3 suppliers are not from the firm’s region.

18A non-negligible number of firms report zero inventory in COMPUSTAT. Our model is irrelevant to
firms that routinely do not hold any inventories. Therefore, the empirical analyses involved with inventory
only include observations with strictly positive inventories. Our results are qualitatively the same when we
include firms with zero inventories.

19Factset Revere has much better coverage of supply chain information than the Compustat segment data
and used by some studies about supply chain (e.g., Ding et al., 2020).
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The supply chain hedging index, SCH, is the first principal component from the three

individual measures. This first principal component explains 97% of the sample variance.

The three measures (i)-(iii) have very similar weights being, respectively, 0.575, 0.580 and

0.578. A higher value of SCH indicates greater supply chain breadth and a more intensive

hedging along the supply chain.

Table 1 presents summary statistics of the variables in our study. All continuous variables

in our analysis are winsorized at the 1% and 99% tails.

[INSERT Table 1.]

5.2 Hedging operational risk through supply chain and inventory

Operational hedging in our model — indicated by i — can be interpreted as either building

up extra inventory (Section 2) or a more stable supply chain (Section 3.4). Greater i increases

production expenditures, but enabling firms to deliver on their contracts and to have higher

sales in times of a severe economic shock, depressing output. We thus examine the effect of

our measures of operational hedging — inventory holding and supply chain hedging — on

firms’ sales during periods of recessions, using the NBER designation.

For each recession period, we estimate a separate cross-sectional regression with the de-

pendent variable being ∆sales/assets, the change in the average level of firm sales (scaled

by total assets) between the recession periods and the eight-quarter period before the re-

cession. Because a recession may have warning signs which affect the firms’ operational

hedging before its onset we use the inventory and supply chain hedging data that ends four

quarters before the onset of each recession. The control variables include Tobin’s Q, the

natural logarithm of total assets, cash holdings, cash flow, and asset tangibility. All the

control variables are fixed as of the latest quarter before the onset of the recession. The

model includes Fama-French’s 48 industry fixed effects and we cluster the standard errors

at industry level.

[INSERT Table 2.]
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Table 2 presents the results. In Panel A, a higher level of inventory and supply chain

hedging before the recession mitigates the decline in sales during the recession compared with

the average sales during the eight pre-recession quarters. Naturally, sales declined during the

recessions,20 but less so for higher level of operational hedging: We find that the coefficients

of the pre-recessions Inventory/sales and SCH are positive and mostly significant. Five of

the six coefficients of Inventory/sales are significant at the 0.05 or lower levels, one coefficient

is significant at the 0.10 level and one (for the 1981Q2-1982Q2 recession) it is positive and

insignificant. For SCH we have data only for the recession of 2007Q4 to 2009Q2. In Panel

B we find that a higher level of pre-recession supply chain hedging significantly mitigates

the decline in sales during the recession. Overall, our results show that firms with more

intensive operational hedging suffer less severe disruptions in output deliveries, measured by

sales, when recession shocks hit.

We clarify the economic significance of our results by standardizing the coefficients of

Inventory/sales and of SCH so that they represent the units of standard deviation change

in ∆sales/assets as a result of one standard deviation change in the operational hedging

variable.21 We find that the six coefficients of Inventory/sales are, in the order of the six

recessions, 0.037, 0.016, 0.013, 0.016, 0.021 and 0.011. This means that an inventory-sales

ratio that is 0.1 higher mitigates the reductions in sales scaled by assets during recessions

by 0.002. And, a one unit higher SCH mitigates sale reductions during recessions by 0.002.

Our finding that the shock to sales due to a recession is mitigated for firms with opera-

tional hedging — firms with higher inventory and a greater extent of supply chain hedging

— is consistent with the implications of our model.

20The average sales-assets ratio is 0.011 lower during the recessions, compared with the previous eight-
quarter periods. The average decline in sales-assets ratio ranges from−0.019 to 0.007, across the six recessions
in our sample. Apart from the first recession (1973Q4 — 1975Q1), all recessions witness an average decline
in sales-assets ratio.

21Specifically, to obtain the standardized β we multiply the estimated β coefficient by the ratio of the
Standard deviation of the explanatory variable to that of ∆sales/assets, the dependent variable.
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5.3 Markup, CGS and operational hedging

To confirm that higher operational hedging raises production cost and lowers markup, we

estimate the following model:

Yj,t =
∑
k

βkOpHedgingj,t−1 +
∑
m

βmControl variablesj,t−1

+ firm FE + industry × year − quarter FE (5.1)

The dependent variable Yj,t is either Markupj,t or CGS/assetsj,t for firm j in quarter t,

and OpHedgingj,t−1 are the operational hedging variables that we focus on, Inventory/sales

and SCH, the supply chain hedging variable. The control variables are Tobin’s Q, log assets,

cash holdings, cash flow, asset tangibility, and two variables that measure market power,

which is known to affect markup. The model includes firm and Fama-French 48 Industry ×

year-quarter fixed effects; standard errors are clustered by firm and by year-quarter.

[INSERT Table 3.]

We find in Table 3 that Markup and CGS are both affected by the two variables that

indicate operational hedging. Higher values of inventory and supply chain hedging, which

raise the firm’s unit cost, significantly lower Markup and raise CGS. To illustrate the eco-

nomic significance of the estimated effect, by the estimation in column (1), one standard

deviation increase in SCH lowers markup by 0.01, and one standard deviation increase in

Inventory/sales lowers markup by 0.04. After controlling for firms’ market power variables

and industry-quarter fixed effects (Column (2)), the estimated effects of SCH is 0.007 while

that of Inventory/Sales remains the same. Columns (3) and (4) show that both measures of

operational hedging raise the production costs scaled by assets after controlling for the con-

temporaneous Sales/assets ratio, which is added to the explanatory variables. Specifically,

one standard deviation increase in SCH raises the CGS/assets ratio by 0.001 whether or not

we control for the firms’ market power and for the industry-quarter fixed effects, and one

standard deviation increase in Inventory/sales raises the CGS/assets ratio by 0.003, and such
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effect increases to 0.004 once we control for the firms’ market power and for the industry-

quarter fixed effects. Overall, the results suggest that Markup and CGS are significantly

affected by operational hedging activities.

5.4 Baseline results

We now test the main hypothesis of our model that firms closer to financial distress spend less

on operational hedging, resulting in a lower production cost, reflected in a higher operation

spread which we capture by Markup or a lower level of CGS/sales. We estimate Model (5.1)

where Yj,t is either Markupj,t or CGS/assetsj,t and the main explanatory variable is lagged

-(Z-score) which measures credit risk. By our hypothesis, -(Z-score) should have a positive

effect on Markup and a negative effect on CGS/assets. The model includes the control

variables used earlier as well as the firm and industry-quarter fixed effects, also clustering

standard errors by firm and by year-quarter.

[INSERT Table 4.]

Table 4 presents our baseline results. As predicted in Proposition 3.1, the operational

spread measured by Markup is positively affected by the firm’s -(Z-score). Faced with a

higher likelihood of financial default and a greater need for liquidity to hedge financial risk,

firms reduce expenses on operational hedging. Then unit cost declines and Markup increases.

The economic meaning of the estimated effects is seen in that by column (1), an increase

of one standard deviation in -(Z-score) raises the median firm’s markup by 6.4% or by

5.0% after controlling for market power and industry-quarter fixed effects. In columns (3)

and (4) we find that an increase of one standard deviation in -(Z-score) lowers the median

CGS/assets by 2%, with almost a similar effect after controlling for market power variables

and industry-quarter fixed effects. Together, the empirical results are consistent with our

key model prediction that the need to avoid financial default induces firms to shift funds

from operation hedging to financial hedging.
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5.5 The effect of market power

In our model, the firm is a price taker, and the industry × Year-quarter fixed effects control

for the effect of price changes on markup in the industry to which the firm belongs. Chevalier

and Scharfstein (1994) and Gilchrist et al. (2017) propose that firms with market power that

are subject to liquidity constraint may raise their price in order to increase short-term cash

flow while forgoing the benefit of increasing market share and long run profit. The benefit is

greater for firms with market power whose customer base is sticky. Thus the positive effect

of credit risk on markup can potentially be explained by market power.

We test the role of market power on the markup-credit risk relationship by augmenting

the model estimated in Table 4 with interaction terms between -(Z-score) and the two market

power variables. If firms with greater market power raise prices in response to greater credit

risk and liquidity needs as predicted by the aforementioned theories, the impact of -(Z-score)

on markup should be stronger for firms with higher market power, reflected in positive

coefficients for the interaction terms.

The results in the first two columns of Table IC.1 do not support this hypothesis. They

shows the opposite: Higher market power lowers the reaction of markup to -(Z-score), as

indicated by the negative and statistically significant coefficients on the interaction terms

between market power variables and -(Z-score). The coefficients of -(Z-score) continue to

be significantly positive, and the economic magnitudes are similar to those in the first two

columns of Table 4. Overall, the results do not support the explanation that the positive

effect of -(Z-score) on markup is due to market power. The effect of firms’ credit risk on

their markup strategies are at least partially through unit cost, as suggested by our model.

5.6 Effect of financial constraint

In this section we test our prediction that when there is a lower pledgeability of the firm’s

future cash flows, corresponding to a lower τ in our model, there is a stronger positive

relationship between markup and credit risk. Because financial constraints and the firm’s

27



performance are naturally related, we employ in our tests two plausibly exogenously imposed

shocks to financial constraints. By our model’s prediction, there should be a greater positive

relationship between markup and credit risk during these shocks because firms needed to

cut spending on operational hedging and shift liquidity to hedge against financial default.

5.6.1 Recession periods

During economic recessions market liquidity is scarce, making it harder for forms to raise

capital upon demand if they need to service their short-term financial obligations (e.g.,

Fernández-Villaverde and Guerrón-Quintana, 2020). We test the effect of recessions on

the markup-credit risk relationship by augmenting the baseline estimation in Table 4 with

interaction terms -(Z-score) × Recession where the dummy variable Recession equals one

during the NBER-designated recession quarters, zero otherwise. As before, because the

explanatory firm-specific variables are affected themselves by the business cycle we fix their

level during recession periods at their respective values as of the most recent quarter before

the starts of the recession.22

The results presented in Table 5 suggest that the firms with higher credit risk reduce their

operational hedging when market conditions make them more financially constrained. We

find that firms entering the recessions with higher -(Z-score) have a greater increase in their

markup (Panel A) and a greater cut in their CGS/assets ratio (Panel B). This is reflected

in the interaction terms -(Z-score) × Recession having positive and significant coefficients

in columns (1)-(2), and negative and significant coefficients in columns (3)-(4). Panel C

shows that during recessions firms with higher credit risk exhibit a greater reduction in their

spending on operational hedging, indicated by their Inventory/sales ratio. In Panel D we

find a greater reduction in supply chain hedging during the 2007-2009 recession, but this

analysis has a lower power since data are available only for one recession (the coefficient is

insignificant).

22See the recommendation, for instance, in Roberts and Whited (2013) on the issue of studying the effects
of shocks on the dependent variables.
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[INSERT Table 5.]

We attend again to the theory on the effect of market power on the markup-credit risk

relationship following Gilchrist et al. (2017) proposition that increased credit risk during

economic downturns induces firms with market power to raise prices and markups. We

augment our analysis of the model in table 5 with a triple interaction terms, market power

× -(Z-score) × recession. If it is market power that drives the positive effect of -(Z-score)

on markup during recessions then we expect the coefficient of market power × -(Z-score) ×

recession to be positive and significant. The results in the Appendix Table IC.1, Columns (3)

and (4), do not support this prediction. We find that the coefficients of market power × -(Z-

score) × Recession are statistically insignificant for both measures of market power, while the

coefficients of -(Z-score) × Recession continue to be significantly positive, and the economic

magnitudes are similar to those in the first two columns of Table 5. We conclude that there is

no support for the proposition that the positive markup-credit risk relationship in recession

periods is driven by market power; our proposition instead is that this relationship results

from the adjustment of production costs through operational hedging policies.

5.6.2 Shock to credit supply in 2008

Our second test of the effects of financing constraints on the markup-credit risk relationship

employs the shock due to the financial crisis of 2008. During this crisis, especially starting

in Fall of 2008, a number of banks could no longer extend credit to firms with which they

had lending relationship beforehand. We test whether for firms whose lenders were adversely

affected by the 2008 crisis — we call them “exposed firms”— there was stronger positive

effect -(Z-score) on markup and on CGS/assets. Following our model we propose that

exposed firms with higher credit risk allocated more resources to avoid financial default at

the expense of reduced spending on operational hedging. Consequently, a firm whose lender

is negatively shocked more aggressively reduces its operational hedging cost and consequently

its Markup increases by more for any given level of -(Z-score).

We use Chodorow-Reich (2014) measures of the adverse impact of the 2008 crisis on
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lenders’ abilities to extend credit.23 (i) %# Loans reduction, the proportional change in the

(weighted) number of loans that the lender extended to all firms (except the firm in question),

the difference between the loans in the nine-month period from October 2008 to June 2009

and the average of 18-month period containing October 2005 to June 2006 and October 2006

to June 2007. The weight is the lender’s share of each loan package commitment. (ii) Lehman

exposure, the exposure to Lehman Brothers through the fraction of a bank’s syndication

portfolio where Lehman Brothers had a lead role. (iii) ABX exposure, the extent of banks’

exposure to toxic mortgage-backed securities, calculated using the correlation between banks’

daily stock return and the return on the ABX AAA 2006-H1 index.

We find the relationship between our sample firms and bank lenders using data from the

LPC-Dealscan database. Then, for each firm and each of the three measures, we calculate

a weighted average of the measure over all members of the last pre-crisis loan syndicate of

the firm, where the weight the lender’s share in the firm’s last pre-crisis loan syndicate. The

detailed constructions of the three variables at the firm level are in Chodorow-Reich (2014).

We construct the three variables in a way so that a larger value implies greater exposure to

the financial crisis through the firm’s lenders. For this analysis, we restrict our sample firms

to the 2, 429 firms in Chodorow-Reich (2014).

We use the following regression specification:

Y j,k,t = α + β1 ×−(Z − score)j,2007 × Lender exposurej,t + β2 × Lender exposurej,t

+
∑
m

β3,m × Control variablem,j,t−1

+
∑
k

β4,m × Controls variablesm,j,t−1 × Lender exposurej,t + θj + ηk,t + ϵj,t ,

(5.2)

where Y denotes either Markup or CGS/assets, and j, k, t stands for a firm j in industry k in

quarter t. The values of Y before and after the crisis are for the two-year periods July 2006

to June 2008 and January 2009 to December 2010, respectively. Notably, −(Z − score)j,2007

is fixed before the crisis as of the end of 2007. The lenders’ exposure to the financial crisis

23We thank Chodorow-Reich for sharing his data with us.
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equals zero for the two-year period before the crisis, and equals its actual respective values

for the two-year period after the crisis. The control variables are the same as in the baseline

regression (Table 4), being fixed at the end of year 2007 for the post-crisis years. The

model includes firm fixed effects and Industry-quarter fixed effects and standard errors are

at firm levels. In these regressions which are confined to a short time period, the number of

observations is naturally small.

[INSERT Table 6.]

Table 6 presents the results. Consistent with our proposition, the coefficient β1 is positive

and significant for the Markup model (even-numbered columns) and negative and significant

for the CGS/assets model (odd-numbered columns). In other words, markup expanded for

firms with higher credit risk whose lenders were more adversely affected by the financial

crisis. These firms preferred to reduce spending on operational hedging, as seen in the

lowering of CGS/assets, and employ their resources to avoid financial default. To gauge

the economic significance of the joint impacts of the firm’s credit risk and its exposure to

financial crisis using Column (1) as an example, a one unit higher value of the firm’s -(Z-

score) and a reduction of the number of loans by its lender to other borrowers by 10% during

the financial crisis led to a wider Markup by 0.009. By Column (3), a one unit higher value

of the firm’s -(Z-score) and a 10% exposure of its lender to Lehman led to a wider Markup

by 0.016.

Again, we test whether our result of a positive markup-credit risk relationship during the

financial crisis are explained by firms’ market power that enables them to raise prices. We

add to the variables in Table 6 a triple interaction term market power × -(Z-score) × (lender)

exposure. If it is market power that drives the positive effect of -(Z-score) on markup during

the financial crisis, then we expect coefficient of the triple interaction term to be positive

and significant. The results in the Appendix Table IC.2 do not support this prediction. We

find that for both measures of market power, the coefficients of market power × -(Z-score) ×

(lender) exposure are statistically insignificant, while the coefficients of -(Z-score) × lender
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exposure continue to be significantly positive, and their economic magnitudes are similar to

those in Table 6. We conclude that there is no support for the proposition that it is market

power that drives the markup-credit risk relationship for firms more exposed to financial

crisis; our proposition is that this relationship results from the adjustment of production

costs through operational hedging policies which is stronger for firms that are more exposed

to the financial crisis.

Next, we study the dynamic effects of the interaction term β1 × −(Z − score)j,2007 ×

Lender exposurej,t before and after the crisis. We replace the Lender Exposure variable

in equation (5.2) with an interaction terms βn ×−(Z − score)j,2007 × (Lenderexposure,Dn)

where the dummy variable Dn equals one for the indicated quarter n and zero otherwise. The

indicated n equals −4, . . . ,−1, 1, . . . , 4, 5+. This numbering applies to the last four quarters

in the pre-crisis period, Q3-Q4 of 2007 and Q1-Q2 of 2008, then for the four post-crisis

periods, Q1-Q4 of 2009, lastly, D5+ = 1 for the quarters Q1-Q4 of 2010.

We expect the coefficients βn to be insignificant for n = −4, . . . ,−1, the pre-crisis period,

and to be significant for n = 1, . . . , 4, the post-crisis period.

Table 7 presents the results. In all columns, the coefficients βn are mostly significant after

the crisis starting from n = 2 while being insignificant before the crisis. At the bottom of

each column we present F-tests of the joint significance of all the coefficients βn, conducted

separately for the four quarters before the crisis and the four quarters after it. In all tests,

the F-value shows strong statistical significance of the coefficients βn for the post-crisis four

quarters while it shows insignificance of the coefficients for the pre-crisis four quarters. Fig-

ure 3 illustrates the point estimates, as well as the 95% confidence intervals of the coefficients

on the product of -(Z-score) and alternative measures of lender exposure for the periods of

four quarters before and after the financial crisis.

[INSERT Table 7.]

Overall, the results show that the tension between operational hedging spending and the

needs to avoid financial default is stronger when the firm is hit by a negative shock to its
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ability to raise capital. Then, it foregoes spending on operational hedging activities and

diverts cash to service its financial needs, causing its markup to rise.

5.7 Operational hedging and stock returns during Covid

Our model suggests that operational hedging does not affect the firm’s franchise value when

credit risk is high (Section 2.5). If credit risk is high enough, then avoiding financial default

becomes the priority for the firm because any shock that would cause operational default

triggers financial default first. In that case, variation in operational hedging does not affect

the firm’s value as shocks that can trigger operational default are dominated by shocks

affecting financial default.

We test this prediction using stock returns during the Covid era. We can think of the

Covid shock as a highly negative realization of the shock (u) in our theory, which creates

both financial and operational default risks. Then, the logic above suggests that pre-Covid

operational hedging choices should matter less for the value of firms that enter Covid with

pre-existing high credit risk. Specifically, we regress each firm’s stock return during 2020 and

2021 against our two measures of operational hedging, SCH and inventory-sales ratio, as of

the end of 2019. We control for the book-to-market and size factors. We also control for the

percentage changes in sales during 2019, to cater for the mechanical changes of inventory-

sales ratio due to sale changes. We split our sample to two halves according to sample median

-(Z-score) and run the regression separately.

Table 8 presents the results. Both SCH and inventory-sales ratio at the end of 2019 are

significantly and positively associated with stock performance during 2020 and 2021, only

for firms with -(Z-score) below the sample median -(Z-score). For firms relatively distant

from financial default, operational hedging practices such as hedging along supply chains

and stacking up inventories allow firms to better weather disruptions in their operations

due to Covid, thus preserving their equity values. The findings suggest that operational

hedging helps firms preserve their franchise values after a bad operational shock occurs, but

only if their credit risk is relatively low. These results are consistent with the intermediate
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predictions of our theory (Section 2.5).

[INSERT Table 8.]

6. Conclusion

In this paper, we study the corporate choice between financial efficiency and operational

resiliency. We build a model in which a competitive (pricing-taking) firm substitutes between

saving cash for financial hedging, which mitigates the risk of financial default, and spending

on operational hedging, which mitigates the risk of operational default such as a failure to

deliver on obligations to customers. This tradeoff is particularly strong for firms that face

difficulty raising external finance and results in a positive relationship between operational

spread (markup) and credit risk.

We present empirical evidence supporting our model predictions. First, we document

that markup is a reasonable summary of firms’ operational hedging activities, measured as

inventory holdings and supply chain hedging. Then we document a positive relationship

between the markup and a firm’s credit risk. This positive relationship is stronger when

firms have a greater motivation to hoard liquidity in order to avert financial default, and

it increases during recessions and in the aftermath of the subprime financial crisis for firms

whose lenders were more exposed to the financial crisis. Overall, our empirical findings

confirm that the tension between financial and operational hedging is more pronounced

when firms face greater difficulty raising external funds.

We conclude by pointing out fruitful areas for future research. On the theoretical end, one

can build a general equilibrium model that extends the current partial equilibrium framework

to a production network model in which product pricing, credit risk and operational hedging

decisions are determined as equilibrium outcomes of the entire system, with firm’s operational

hedging determining the operational hazard for its upstream and downstream firms in the

network. Such a model can be used to analyze production network externalities in operational

hedging such as underinvestment in operational resiliency arising from credit risk spillovers
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across firms. On the empirical end, a more detailed research on forms of operational hedging,

understanding their relative tradeoffs, and identifying their linkage to product prices with a

microscope, are needed; all of this requires gathering of richer data on operational hedging.
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Figure 1: Firm’s optimal hedging policy i∗∗ and debt level F

Optimal hedging policy i∗∗ given debt level F for τ = 0, τ = 0.4 and τ = 0.8, where τ is a measure
of the extent of the need for pledgeability, which proxies financial constraint.

Figure 2: Credit spread and operational spread

The credit spread and operational spread under the optimal hedging policy i∗∗ given debt level F
for τ = 0, τ = 0.4 and τ = 0.8.
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Figure 3A: Markup – Coefficient on -(Z-score) × LE:
% # Loans reduction

Figure 3D: CGS – Coefficient on -(Z-score) × LE: %
# Loans reduction

Figure 3B: Markup – Coefficient on -(Z-score) × LE:
Lehman exposure

Figure 3E: CGS – Coefficient on -(Z-score) × LE:
Lehman exposure

Figure 3C: Markup – Coefficient on -(Z-score) × LE:
ABX exposure

Figure 3F: CGS – Coefficient on -(Z-score) × LE: ABX
exposure

Figure 3: Markup, CGS and credit risk: Dynamic effects of exposure to the
financial crisis

This figure plots the the point estimates of the coefficients on -(Z-score) × LE in the markup and
CGS regressions, as of Table 7, and their 95% confidence intervals.
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Table 1: Summary statistics — Compustat 1973-2020

Summary statistics of the variables in our sample from 1971 to April 2020. The data are quar-
terly from Compustat; The variable names are in parentheses. Markup = (sales(SALEQ) −
cost of goods sold(COGSQ))/Sales. CGS/assets = CGS(COGSQ)/total assets(ATQ). Z-score is Altman
(2013)’s measure calculated from quarterly data. Tobin’s Q = (common shares outstanding(CHOQ) ×
stock price at the close of the fiscal quarter(PRCCQ) + preferred stock value(PSTKQ) +
dividends on preferred stock(DV PQ) + liabilities(LTQ))/total assets. Cash holdings (CHEQ), Cash
flow (= IBQ + DPQ) and Tangible assets (PPENTQ) are divided by Total assets. Market power is
measured by two variables, all employing Fama and French’s 48 industries: a dummy variable for the top
4 industry seller = 1 if the firm’s sales are among the top four sellers in the industry (0 otherwise); and
firm’s Sales/Industry sales. The operational hedging variables include Inventory (INV Q)/Sales, which
is restricted to be strictly positive, and Supply chain hedging index. The supply chain variables are
composed from three raw measures: (i) ln(1+number of suppliers), (ii) ln(1+number of supplier regions),
(iii) ln(1+number of suppliers not from the firm’s region). Data are quarterly (source: Factset), covering
6, 204 firms from mid-2003 to the first quarter of 2020. Supply chain hedging is the first principal component
score from a principal component analysis (PCA) that equals 0.5745 × (i) + 0.5796 × (ii) + 0.5779 × (iii)
where (i)-(iii) indicate the above three measures.

The sample requires that the lagged firm capitalization is at least $10 million and quarterly sales are at
least $1 million (inflation adjusted to the end of 2019). All continuous variables are winsorized at both the
1st and 99th percentiles.

VARIABLES N Mean S.D. P25 P50 P75

Markup: (sales-cogs)/sales 572,345 0.317 0.428 0.208 0.338 0.508

CGS/assets 569,049 0.209 0.188 0.079 0.162 0.277

-(Z-score) 573,041 -3.542 5.872 -3.995 -2.082 -1.081

Tobin’s Q 573,041 1.981 1.597 1.073 1.446 2.211

Cash holdings 573,041 0.164 0.197 0.024 0.082 0.232

Cash flow 573,041 0.010 0.056 0.005 0.021 0.035

Asset tangibility 573,041 0.303 0.243 0.104 0.235 0.448

Top 4 industry seller 573,041 0.039 0.193 0.000 0.000 0.000

Sales/industry sales 573,041 0.009 0.026 0.000 0.001 0.005

Total assets 573,041 2,738.859 8,390.609 79.178 299.321 1,338.695

Inventory/sales 485,267 0.595 0.533 0.222 0.487 0.794

Supply chain hedging (SCH) 116,430 -0.010 1.697 -1.334 -0.381 0.956

40



Table 2: The effect of operational hedging on changes in sales during NBER
recessions

Cross-sectional regressions of changes in the sales/assets ratio during recessions on the pre-
recession level of firms’ operational hedging. The dependent variable is ∆ sales/assets,
the difference between its average level of the recession quarters and its average over eight
quarters before the recession. The recession quarters are so designated by the NBER. The
main independent variables are the inventory/sales ratio or supply chain hedging measured
by the supply chain hedging PCA index, fixed at four quarters before the onset of recession
(or earlier). The control variables include Tobin’s Q, natural logarithm of total assets, cash
holdings, cash flow, and asset tangibility. All the control variables are fixed as of the latest
quarter before the onset of each recession. We include Fama-French 48 industry fixed effects
and cluster the standard errors at industry level. ∗, ∗∗, ∗ ∗ ∗ denote significance below 10%,
5%, and 1% levels, respectively.

VARIABLES ∆ sales/assets
(1) (2) (3) (4) (5) (6)

Panel A: Inventory-sales ratio
Recession period 1973Q4 1979Q2 1981Q2 1989Q4 2001Q1 2007Q4

— — — — — —
1975Q1 1980Q2 1982Q2 1991Q1 2001Q3 2009Q2

Inventory/sales 0.037** 0.016** 0.013* 0.016*** 0.021*** 0.011**
Standard error 0.015 0.008 0.007 0.004 0.004 0.005

Panel B: Supply chain hedging PCA, for the recession of 2007Q4 to 2009Q2
Supply chain hedging (SCH)

SCH 0.002**
Standard error 0.001

Control variables Yes
FF-48 industry fixed effects Yes
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Table 3: Markup, CGS and operational hedging

Estimation of the relationship between Markup (columns (1) and (2)), CGS (columns (3) and
(4)) and measures of operational hedging. The variables are defined in Table 1. The control
variables include Tobin’s Q, ln(Total assets), Cash holdings, Cash flow, and Tangible assets.
Additionally, we control for contemporaneous sales/assets in CGS regressions (columns (3)
and (4)). In even-numbered columns, we also control for market power variables: a dummy
variable for the top 4 industry seller and Sales/total sales. All explanatory variables are
lagged by one quarter. The regressions include firm and Fama-French 48 Industry × year-
quarter fixed effects. Standard errors are clustered at firm and year-quarter levels. ∗, ∗∗,
∗ ∗ ∗ denote significance below 10%, 5%, and 1% levels, respectively.

VARIABLES Markup CGS/assets
(1) (2) (3) (4)

SCH PCA -0.0076*** -0.0042** 0.00088*** 0.00063**
(0.0021) (0.0018) (0.00030) (0.00029)

Inventory/sales -0.076*** -0.076*** 0.0061*** 0.0067***
(0.014) (0.014) (0.0013) (0.0013)

Market power variables No Yes No Yes
Other Control variables Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes
Industry × Year-quarter fixed effects No Yes No Yes

Observations 93,853 92,762 93,772 92,681
R-squared 0.698 0.718 0.975 0.977
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Table 4: Markup, CGS and credit risk

Estimation of the relationship between Markup, CGS and -(Z-score). The dependent variable in the panel
regression is the quarterly Markup (columns (1) and (2)) and CGS (columns (3) and (4)). The control
variables include Tobin’s Q, Ln(total assets), Cash holdings, Cash flow, and Tangible assets. Additionally,
we control for contemporaneous sales/assets in CGS regressions (columns (3) and (4)). In even-numbered
columns, we also control for market power variables: a dummy variable for the top 4 industry seller, and
Sales/industry sales. All explanatory variables are lagged by one quarter. The regressions include firm
and Fama-French 48 Industry × year-quarter fixed effects. Standard errors are clustered at firm and
year-quarter levels. ∗, ∗∗, ∗ ∗ ∗ denote significance below 10%, 5%, and 1% levels, respectively.

VARIABLES Markup CGS/assets
(1) (2) (3) (4)

-(Z-score) 0.0037*** 0.0029*** -0.00058*** -0.00054***
(0.00057) (0.00053) (0.000080) (0.000079)

Market power variables No Yes No Yes
Other Control variables Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes
Industry × Year-quarter fixed effects No Yes No Yes

Observations 571,388 564,418 568,015 561,177
R-squared 0.614 0.634 0.949 0.951
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Table 5: Markup, CGS, operational hedging and credit risk: NBER recessions

Regressions of Markup, CGS, inventory and supply chain hedging on firms’ -(Z-score) that interacts
with Dummy variable for NBER recession periods. We exclude the Covid-related recession during
the first two quarters of 2020. Recession = 1 if the quarter is classified as NBER recession, and
= 0 otherwise. For each recession, the values of -(Z-score) and control variables during recession
periods are fixed as of the most recent quarter before the onset of the recession. The firm-level
control variables (including market power variables) are as in Table 4. Additionally, we control for
contemporaneous sales/assets in CGS regressions (columns (3) and (4)). Panel A examines markup.
Panel B examines CGS. Panel C examines inventory-sales ratio. Panels D examine Supply chain
hedging. The variable definitions are in Table 1. The regressions include firm and Fama-French
48 Industry × year-quarter fixed effects. Standard errors are clustered by firm and year-quarter
levels. ∗, ∗∗, ∗ ∗ ∗ denote significance below 10%, 5%, and 1% levels, respectively.

Panel A: Panel B: Panel C: Panel D:
VARIABLES Markup CGS/assets Inventory/sales SCH

(1) (2) (3) (4) (5) (6)
Recession periods: 1973Q4 – 1975Q1, 1979Q2 – 1980Q2, 1981Q2 – 1982Q2 2007Q4 – 2009Q2

1989Q4 – 1991Q1, 2001Q1 – 2001Q3, 2007Q4 – 2009Q2

-(Z-score) × Recession 0.0019** 0.0016*** -0.00023** -0.00025** -0.0016*** -0.00072
(0.00075) (0.00051) (0.00011) (0.00010) (0.00050) (0.0023)

-(Z-score) 0.0035*** 0.0028*** -0.00057*** -0.00053*** -0.0027*** 0.012***
(0.00056) (0.00052) (0.000077) (0.000077) (0.00047) (0.0020)

Market power variables No Yes No Yes Yes Yes
Other Control variables Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes
Industry × Year-quarter fixed effects No Yes No Yes Yes Yes

Observations 563,120 554,348 560,343 551,691 543,351 112,336
R-squared 0.616 0.636 0.948 0.950 0.730 0.862
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Table 6: Markup, CGS and credit risk: Exposure to the financial crisis

Regressions of Markup and CGS on firms’ -(Z-score) that interacts with the extent of exposures
to the 2008 financial crisis. The sample firms includes the 2, 429 firms in Chodorow-Reich (2014).
The two-year periods before and after the crisis are July 2006 to June 2008, and January 2009
to December 2010, respectively. The three measures for crisis exposure are % # Loans reduction,
Lehman exposure and ABX exposure, using Chodorow-Reich (2014)’s variables. The lenders’ expo-
sure to the financial crisis equals zero for the two-year period before the crisis, and equals its actual
respective values for the two-year period after the crisis. The values of -(Z-score) are as of the end
of 2007. The firm-level control variables (including market power variables), as in Table 4, are fixed
at the end of 2007 for the entire post-crisis periods. Additionally, we control for contemporaneous
sales/assets in CGS regressions (columns (2), (4) and (6)). The specification is as in the model

Y j,k,t = α+ β1 ×Xj,2007 × Lender exposurej,t + β2 × Lender exposurej,t

+
∑
m

β3,m × Control variablem,j,t−1

+
∑
k

β4,m × Controls variablesm,j,t−1 × Lender exposurej,t + θj + ηk,t + ϵj,t .

The variable definitions are in Table 1. The regressions include firm and Fama-French 48 Industry
× year-quarter fixed effects. Standard errors are clustered by firm. ∗, ∗∗, ∗ ∗ ∗ denote significance
below 10%, 5%, and 1% levels, respectively.

% # Loans reduction Lehman exposure ABX exposure
VARIABLES Markup CGS/assets Markup CGS/assets Markup CGS/assets

(1) (2) (3) (4) (5) (6)

-(Z-score) × lender exposure 0.086** -0.030*** 0.160** -0.058*** 0.084*** -0.027***
(0.034) (0.011) (0.072) (0.021) (0.027) (0.008)

Lender exposure -0.699 0.017 -0.969 -0.149 -0.902** 0.019
(0.455) (0.157) (0.689) (0.221) (0.410) (0.129)

Market power variables Yes
Market power variables × lender exposure Yes
Other Control variables Yes
Other Control variables × lender exposure Yes
Firm fixed effects Yes
Industry × Year-quarter fixed effects Yes

Observations 20,621 20,613 20,621 20,613 20,621 20,613
R-squared 0.905 0.987 0.905 0.987 0.906 0.987
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Table 7: Markup, CGS and credit risk:
Dynamic effects of exposure to the financial crisis

Regressions of Markup and CGS on firms’ -(Z-score) that interacts with the extent of lender exposures to
the 2008 financial crisis in each quarter Dn, n = −1,−2,−3,−4,+1,+2,+3,+4,+5 + (+5 — + 8) relative
to the financial crisis, from 8 quarters before it to 8 quarters after it. (The default category is from 5 to 8
quarters before the crisis.) The sample is the 2, 429 firms in Chodorow-Reich (2014). The two-year periods
before and after the crisis are July 2006 to June 2008, and January 2009 to December 2010, respectively.
The three measures for crisis exposure are % # Loans reduction, Lehman exposure and ABX exposure, using
Chodorow-Reich ’s variables in Chodorow-Reich (2014). The values of -(Z-score) are as of the end of 2007.
The firm-level control variables (including market power variables), as in Table 4, are fixed at the end of
2007 for the post-crisis quarters. The variable definitions are in Table 1. The last two rows show the results
from F-test for joint significance of the coefficients of the interaction terms between −(Z − score) and the
size of LE for quarters Dn. The regressions include firm and Fama-French 48 Industry × year-quarter fixed
effects. Standard errors are clustered by firm. ∗, ∗∗, ∗ ∗ ∗ denote significance below 10%, 5%, and 1% levels,
respectively.

% # Loans reduction Lehman exposure ABX exposure
VARIABLES Markup CGS/assets Markup CGS/assets Markup CGS/assets
−(Z − score)× LE, D−4 0.013 -0.003 0.068 -0.019 0.014 -0.004

(0.025) (0.013) (0.050) (0.031) (0.020) (0.011)
−(Z − score)× LE, D−3 -0.011 0.004 -0.006 -0.00041 -0.004 0.001

(0.027) (0.009) (0.065) (0.015) (0.022) (0.006)
−(Z − score)× LE, D−2 0.023 -0.008 0.078 -0.026 0.034* -0.012*

(0.026) (0.009) (0.051) (0.016) (0.021) (0.007)
−(Z − score)× LE, D−1 0.029 -0.005 0.101* -0.019 0.036 -0.010

(0.028) (0.012) (0.055) (0.020) (0.022) (0.009)
−(Z − score)× LE, D1 0.060 -0.032 0.132 -0.068 0.062* -0.030*

(0.045) (0.020) (0.091) (0.042) (0.037) (0.017)
−(Z − score)× LE, D2 0.123*** -0.045*** 0.244*** -0.082*** 0.117*** -0.039***

(0.042) (0.015) (0.080) (0.026) (0.032) (0.011)
−(Z − score)× LE, D3 0.135*** -0.052*** 0.272*** -0.107*** 0.128*** -0.045***

(0.041) (0.018) (0.081) (0.036) (0.032) (0.014)
−(Z − score)× LE, D4 0.086** -0.035* 0.180** -0.080** 0.093*** -0.033**

(0.042) (0.018) (0.082) (0.032) (0.032) (0.014)
−(Z − score)× LE, D+5+ 0.083* -0.021 0.170* -0.046* 0.087** -0.022**

(0.043) (0.014) (0.091) (0.025) (0.034) (0.010)

Lender exposure, Dn Yes
Control variables Yes
Control variables × Lender exposure Yes
Firm fixed effects Yes
Industry × year-quarter fixed effects Yes

Observations 19,914 19,906 19,914 19,906 19,914 19,906
R-squared 0.903 0.987 0.903 0.987 0.904 0.987
F-statistic for n = +1 to +4 3.83*** 2.88** 3.79*** 3.08** 4.62*** 3.57***
F-statistic for n = −1 to −4 0.63 0.74 1.29 1.00 1.21 1.57
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Table 8: Operational hedging and stock return during Covid period

Regressions of 2020 — 2021 stock return and on firms’ operational hedging measures at the end
of 2019. The two operational operational hedging measures are supply chain diversification index
and inventory-sales ratio, defined in Table 1. The control variables include natural logarithm of
Book-to-market ratio (Ln(B/M)), defined as the book value of equity over market value of equity,
natural logarithm of stock capitalization (Ln(size)), and % changes in sales in 2019. The regressions
include Fama-French 48 Industry fixed effects. High and low -(Z-score) are defined as -(Z-score) at
the end of 2019 above and below the sample median, respectively. Standard errors are clustered
by firm. ∗, ∗∗, ∗ ∗ ∗ denote significance below 10%, 5%, and 1% levels, respectively.

2020 — 2021 stock return
Full sample High -(Z-score) Low -(Z-score)

(1) (2) (3)

Ln(inventory/sales) 0.015 -0.020 0.051*
(0.030) (0.054) (0.029)

SCH PCA 0.064*** 0.021 0.049**
(0.023) (0.035) (0.022)

Ln(B/M) -0.227*** -0.161 -0.296***
(0.075) (0.184) (0.074)

Ln(size) -0.135*** -0.171*** -0.052*
(0.034) (0.057) (0.026)

% changes in sales, 2019 -0.190 -0.359 0.132
(0.218) (0.354) (0.254)

Industry fixed effects Yes

Observations 1,664 795 737
R-squared 0.070 0.096 0.161
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Internet Appendix

I.A. Complete table of Table 4

Table IA.1: Markup, CGS and credit risk — Complete table

This table reports the complete table of Table 4.

VARIABLES Markup CGS/assets
(1) (2) (3) (4)

-(Z-score) 0.0037*** 0.0029*** -0.00058*** -0.00054***
(0.00057) (0.00053) (0.000080) (0.000079)

Tobin’s Q 0.021*** 0.019*** -0.0048*** -0.0048***
(0.0020) (0.0019) (0.00036) (0.00035)

Ln assets 0.0073*** 0.0058** 0.0035*** 0.0036***
(0.0028) (0.0026) (0.00049) (0.00054)

Cash holdings -0.070*** -0.065*** 0.0010 0.0012
(0.015) (0.015) (0.0022) (0.0022)

Cash flow 0.91*** 0.85*** -0.19*** -0.18***
(0.044) (0.038) (0.0072) (0.0069)

Asset tangibility -0.035** -0.0061 -0.015*** -0.015***
(0.014) (0.014) (0.0029) (0.0029)

Top 4 industry seller -0.00019 0.00018
(0.0047) (0.0019)

Sales/industry sales -0.28*** 0.071***
(0.078) (0.021)

Sales/AT 0.75*** 0.75***
(0.0054) (0.0054)

Market power variables No Yes No Yes
Other Control variables Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes
Industry × Year-quarter fixed effects No Yes No Yes

Observations 571,388 564,418 568,015 561,177
R-squared 0.614 0.634 0.949 0.951

I.B. Omitted proofs in Section 2.3

IB.1 Detailed solutions of the benchmark case in which F = 0

Consider first a benchmark case when the debt level F = 0. In this case, financial default is

irrelevant: uF = 0. The firm will choose the hedging policy ī that maximizes the unlevered

date-0 equity value:

Ē =

∫ ∞

0

[
x0−K(I+ i)+ x̄1+u+p [(1− δ(u))I + i]+x2

]
g(u)du−

∫ uO

0

λx2g(u)du . (IB.1)
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The last term of Equation (IB.1) reflects the proportional loss of franchise value in case of

operational default. The first-order condition is

∂Ē

∂i
= p−K ′(I + i)− λx2

g(uO)

Iδ′(uO)
= 0

p−K ′(I + i) = λx2
g(uO)

Iδ′(uO)
, (IB.2)

where uO = δ−1
(
i
I

)
. Define ī being the solution for the first-order condition (IB.2). In

Appendix IB.1, we show that ī is also the unique optimal hedging level that maximizes the

equity value (IB.1), under some mild technical conditions.

The following assumption ensures that the firm has enough cash flow at date-0 to choose

the highest optimal operational hedging level ī, when F̄ is sufficiently small such that uF = 0:

Assumption IB.1.

K(I + ī) < x0 , (IB.3)

where ī is the solution of equation (IB.2).

Since D(i, F̄ ) is continuous in F̄ , uF is always smaller than uO for i ∈ [0, ī] when F̄ is

sufficiently small.

The second-order derivative of Ē with respect to i is:

∂2Ē

∂i2
= −K ′′(I + i)− λx2

I2

g′(uO)− g(uO)
δ′′(uO)
δ′(uO)

[δ′(uO)]2
< 0 (IB.4)

Since δ(u) is decreasing and convex in u, ∂2Ē
∂i2

is always negative if the production commitment

I is sufficiently high. In other words, the objective function Ē is concave in i. Thus, ī is the

unique optimal solution that maximizes the equity value (IB.1).

IB.2 Optimal hedging policy when uF ≥ uO

The total payoff to equity holders is the sum of cash flows from assets in place and the

payoff from the contractual fulfillment to customers, less the production cost, the operational

hedging cost and the debt repayment, provided that the firm does not default on its debt in

the interim. The market value of equity is therefore given as:

E =

∫ ∞

uF

[
u− uF + p [(1− δ(u))I + i] + x2

]
g(u)du , (IB.5)
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where uF is given in (2.3). (u − uF ) is the amount of cash left in the firm after debt F

is repaid, and p [(1− δ(u))I + i] + x2 is the firm’s period-2 cash flow and franchise value,

conditional on the firm not defaulting in the interim.

Equity holders choose the level of operational hedging i to maximize equity value E in

(IB.5), which yields the following first-order condition:

p−K ′(I + i) = V (uF , i)h(uF )K
′(I + i) , (IB.6)

where V (uF , i) ≡ p [(1− δ(uF ))I + i] + x2 is the firm’s date-2 cash flow and franchise value

at the financial default boundary. Define i∗ as the firm’s hedging policy that satisfies (IB.6).

On the one hand, a marginal increase in operational hedging yields a marginal profit equal to

its markup p−K ′(I+i). On the other hand, a marginal increases in operational hedging also

increases the expected cost of financial default, which is the product of three terms on the

right-hand side of Equation (IB.6): the first term is the loss of date-2 cash flow and franchise

value if financial default occurs; the second term is the hazard rate of a financial default;

and, the last term is the marginal effect of additional operational hedging on the financial

default boundary uF . The first-order condition says that the firm chooses the hedging policy

i∗ such that the markup is equal to the marginal increase of the expected financial default

cost.

Comparing the first-order conditions (IB.2) and (IB.6), it is straightforward that ī > i∗.24

Next we show that the first-order condition (IB.6) admits a unique and positive interior

solution i∗ that maximizes E subject to D(i, F̄ ) > 0 for i ∈ [0, ī] under some technical

condition.

The following assumption guarantees that a positive interior solution i∗ exists andD(i∗, F̄ ) >

0 for sufficiently large F̄ :

Assumption IB.2. p−K ′(I) > (pI + x2)αK
′(I) .

Lemma IB.1. If Assumption IB.2 holds and F̄ is sufficiently large, then the first-order

condition (IB.7) guarantees a unique and positive interior solution i∗ that maximizes E

subject to D(i, F̄ ) > 0.

Proof. Since u is exponentially distributed on [0,∞) with g(u) = αe−αu and h(u) = α, the

first-order condition (IB.6) simplifies to

p−K ′(I + i) = V (uF , i)αK
′(I + i) . (IB.7)

24We prove this claim formally in Appendix IB.3.
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Define i∗ is the firm’s optimal hedging policy that satisfies (IB.7).

First, we show that i∗ that satisfies the first-order condition (IB.6) is the unique opti-

mal solution for the maximization problem when uF > uO. Define S = p − K ′(I + i) −
V (uF , i)h(uF )K

′(I + i). Taking the derivative of S with respect to i:

∂S

∂i
= −

 K ′′(I + i) + ∂V (uF ,i)
∂i

h(uF )K
′(I + i)

+V (uF , i)
∂h(uF )
∂uF

∂uF

∂i
K ′(I + i) + V (uF , i)h(uF )

∂2uF

∂i2

 (IB.8)

∂V (uF , i)

∂i
= p[1− δ′(uF )IK

′(I + i)] > 0 (IB.9)

and
∂2uF

∂i2
= K ′′(I + i) > 0 (IB.10)

Using these quantities,

∂S

∂i
= −

 K ′′(I + i) + p[1− δ′(uF )IK
′(I + i)]h(uF )K

′(I + i)

+V (uF , i)
∂h(uF )
∂uF

[K ′(I + i)]2 + V (uF , i)h(uF )K
′′(I + i)

 (IB.11)

∂S
∂i

is smaller than zero. Thus, the second-order condition for maximization [1 − G(uF )]
∂S
∂i

at i = i∗ is smaller than zero. By the first-order condition (IB.6), S = 0 if i = i∗. Since
∂S
∂i

< 0, we have S > 0 if i < i∗ and S < 0 if i > i∗. Since ∂
∂i
E = [1−G(uF )]S, E increases

in i for i < i∗ and decreases in i for i > i∗. Therefore i∗ is the unique optimal solution to

the maximization problem.

Now we prove that Assumption IB.2 is sufficient condition that guarantees a positive

interior solution i∗ and D(i∗, F̄ ) > 0 when F̄ is sufficiently large. Denote i such that p −
K ′(I + i) = (p(I + i) + x2)αK

′(I + i). Notice that i must be strictly greater than zero.

This is because the left hand-side of the above equation decreases with i, the right hand-side

increases with i, and left hand-side is strictly greater than the right hand-side when i = 0

by Assumption IB.2, since K(I + i) is convex in i. For any F̄ > 0, the right hand-side

of the first-order condition (IB.7) when i = i is V (uF , i)αK
′(I + i), which is smaller than

(p(I + i) + x2)αK
′(I + i) = p − K ′(I + i). The left hand-side of the first-order condition

(IB.7) decreases with i. The right hand-side of the first-order condition (IB.7) increases with

i. This is because uF increases with i and δ(u) decreases with u. Consequently, (1− δ(uF ))

increases with i. K ′(I+ i) increases with i because the convexity of K in i. So the optimal i∗

that satisfies the first-order condition (IB.7) must be strict greater than i. Denote F̄M such
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that D(i, F̄M) = 0. Then for any F̄ ≥ F̄M , we must have D(i∗(F̄ ), F̄ ) > D(i, F̄ ) > 0. This is

because D(F̄ , i) increases in F̄ and i, and i∗(F̄ ) > i. Thus, we have proved that for F̄ > F̄M ,

the first-order condition (IB.7) admits a positive interior solution i∗ and the financial default

boundary uF is greater than the operational default boundary uO when the firm chooses the

optimal hedging policy i∗. Since we have proved that the first-order condition (IB.7) is also

the sufficient condition for the solution of the constrained maximization problem subject to

D(i, F̄ ) > 0, we have proved Lemma IB.1. Q.E.D.

Lemma IB.2 states that the optimal optimal operational hedging policy decreases in the

firm’s net debt level F̄ in this case:

Lemma IB.2. When F̄ is sufficiently high such that uF > uO for i ∈ [0, ī], the optimal

operational hedging policy i∗, if exists, decreases in the firm’s net debt level F̄ .

Proof. Notice that the optimal hedging policy i∗ and the associated financial default bound-

ary uF are all functions of F̄ . The firm’s optimal operational hedging policy i∗ decreases in

F̄ . Define M(i∗(F̄ ), F̄ ) ≡ E(i∗(F̄ ), F̄ ) the value function under optimal hedging policy i∗.

By the first-order condition, ∂M
∂i∗

= 0. Differentiating both sides with respect to F̄ :

∂2M

∂i∗2
∂i∗

∂F̄
+

∂M

∂i∂F̄
= 0 (IB.12)

From equation (IB.12) we get ∂i∗

∂F̄
= − ∂2M

∂i∗∂F̄
/∂2M
∂i∗2

. Since ∂2M
∂i∗2

< 0 by the second-order

condition, so the sign of ∂i∗

∂F̄
is the same as the sign of ∂M

∂i∗∂F̄
.

∂2M

∂i∗∂F̄
= [1−G(uF )]

[
pIδ′(uF )

∂uF

∂F̄
h(uF )K

′(I + i∗)− V (uF , i
∗)
∂h(uF )

∂uF

∂uF

∂F̄
K ′(I + i)

]
= [1−G(uF )]

[
pIδ′(uF )h(uF )K

′(I + i∗)− V (uF , i
∗)
∂h(uF )

∂uF

K ′(I + i)

]
(IB.13)

Since u follows a exponential distribution, ∂h(uF )
∂uF

= 0. Thus, Equation (IB.13) is smaller

than zero. Therefore, ∂i∗

∂F̄
< 0. Q.E.D.

IB.3 Optimal hedging policy when uF < uO

We begin this subsection by proving the following lemma:

Lemma IB.3. If the production commitment I is sufficiently high and K′(I+ī)
I

is sufficiently

low, then î∗ that satisfies (2.3) uniquely maximizes Ê.
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Proof. First, we show that î∗ that satisfies the first-order condition (2.3) is the unique optimal

solution for the maximization problem. Define Ŝ = p−K ′(I+i)−[V (uF , i)−λx2]h(uF )K
′(I+

i)− λx2g(uO)
1−G(uF )

∂uO

∂i
. Taking the derivative of Ŝ with respect to i:

∂Ŝ

∂i
= −

 K ′′(I + i) + ∂V (uF ,i)
∂i

h(uF )K
′(I + i) + [V (uF , i)− λx2]

∂h(uF )
∂uF

∂uF

∂i
K ′(I + i)

+[V (uF , i)− λx2]h(uF )
∂2uF

∂i2
+ λx2

∂
∂i

[
g(uO)

[1−G(uF )]Iδ′(uO)

]


(IB.14)
∂

∂i

[
g(uO)

[1−G(uF )]Iδ′(uO)

]
=

[
g′(uO)δ

′(uO)− g(uO)δ
′′(uO)

[1−G(uF )][δ′(uO)]2I
+

g(uF )K
′(I + i)g(uO)

[1−G(uF )]2

]
1

Iδ′(uO)
(IB.15)

The absolute value of (IB.15) is small if the production commitment I is sufficiently high and
K′(I+ī)

I
is sufficiently low. In the numerical analysis, we assume that K(I + i) is of quadratic

form, K(I + i) = κ(I + i)2, where κ > 0, which is standard in the investment literature.

Then K′(I+ī)
I

is sufficiently low if κ is sufficiently small. Using quantities (IB.9), (IB.10) and

(IB.15), ∂Ŝ
∂i

is

∂Ŝ

∂i
= −


K ′′(I + i) + p[1− δ′(uF )IK

′(I + i)]h(uF )K
′(I + i)

+[V (uF , i)− λx2]
∂h(uF )
∂uF

[K ′(I + i)]2 + [V (uF , i)− λx2]h(uF )K
′′(I + i)

+λx2

[
g′(uO)δ′(uO)−g(uO)δ′′(uO)

[1−G(uF )][δ′(uO)]2I
+ g(uF )K′(I+i)g(uO)

[1−G(uF )]2

]
1

Iδ′(uO)


(IB.16)

∂Ŝ
∂i

is always smaller than zero, thus, the second-order condition for maximization [1 −
G(uF )]

∂Ŝ
∂i

at i = î∗ is smaller than zero. By the first-order condition (2.3), Ŝ = 0 if i = î∗.

Since ∂Ŝ
∂i

< 0, we have Ŝ > 0 if i < î∗ and Ŝ < 0 if i > î∗. Since ∂
∂i
Ê = [1 − G(uF )]Ŝ, Ê

increases in i for i < î∗ and decreases in i for i > î∗. Therefore î∗ is the unique optimal

solution to the maximization problem. Q.E.D.

Intuitively, the condition that I is sufficiently high means that the supply contract value

is not trivial. The condition that K′(I+ī)
I

is sufficiently low means that the firm’s marginal

production cost does not increase too fast as the production quantity increases. This con-

dition makes sure that the firm has enough flexibility to do the operational hedging even if

the production quantity is high.
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Now we prove Lemma 2.1. i∗ satisfies the first-order condition (IB.6):

p−K ′(I + i∗) = V (uF , i
∗)h(uF )K

′(I + i∗)

> V (uF , i
∗)h(uF )K

′(I + i∗)− λx2h(uF )K
′(I + i∗) +

λx2g(uO)

[1−G(uF )]Iδ′(uO)
(IB.17)

The inequality holds because λx2h(uF )K
′(I + i∗) > 0 and λx2g(uO)

[1−G(uF )]Iδ′(uO)
< 0. Now taking

derivative of both sides of the first-order condition in uO > uF case, (2.3), with respect to

i. The derivative of the left-hand side is −K ′′(I + i) < 0. The derivative of the right-hand

side is

p[1− δ′(uF )IK
′(I + i)]h(uF )K

′(I + i) + [V (uF , i)− λx2]
∂h(uF )

∂uF

[K ′(I + i)]2

+ [V (uF , i)− λx2]h(uF )K
′′(I + i)

+ λx2

[
g′(uO)δ

′(uO)− g(uO)δ
′′(uO)

[1−G(uF )][δ′(uO)]2I
+

g(uF )K
′(I + i)g(uO)

[1−G(uF )]2

]
1

Iδ′(uO)
(IB.18)

The quantity (IB.18) is always greater than zero if the production commitment I is suffi-

ciently high and K′(I+ī)
I

is sufficiently low. Thus the left-hand side of Equation (2.3) decreases

in i and the right-hand side of Equation (2.3) increases in i. Since î∗ satisfies the first-order

condition in uO > uF case, (2.3). We must have î∗ > i∗. Meanwhile, ī satisfies the first-order

condition (IB.2):

p−K ′(I + i∗) = λx2
g(uO)

Iδ′(uO)

< V (uF , i
∗)h(uF )K

′(I + i∗)− λx2h(uF )K
′(I + i∗) +

λx2g(uO)

[1−G(uF )]Iδ′(uO)
(IB.19)

In a similar way, we can prove that ī > î∗.

In what follows, we prove Lemma 2.2: the firm’s optimal operational hedging policy î∗

decreases in F̄ . Define M̂ (̂i∗(F̄ ), F̄ ) ≡ E (̂i∗(F̄ ), F̄ ) the value function under optimal hedging

policy î∗. Similar to the uF > uO case, ∂î∗

∂F̄
= − ∂2M̂

∂î∗∂F̄
/∂2M̂

∂î∗2
. Since ∂2M̂

∂î∗2
< 0 by the second-order
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condition, so the sign of ∂î∗

∂F̄
is the same as the sign of ∂M̂

∂î∗∂F̄
.

∂2M̂

∂î∗∂F̄
= [1−G(uF )]

 pIδ′(uF )
∂uF

∂F̄
h(uF )K

′(I + î∗)− [V (uF , î
∗)− λx2]

∂h(uF )
∂uF

∂uF

∂F̄
K ′(I + i)

−λx2

I
g(uO)g(uF )

[1−G(uF )]2δ′(uO)
∂uF

∂F̄


= [1−G(uF )]

 pIδ′(uF )h(uF )K
′(I + i∗)− [V (uF , i

∗)− λx2]
∂h(uF )
∂uF

K ′(I + i)

−λx2

I
g(uO)g(uF )

[1−G(uF )]2δ′(uO)


(IB.20)

Since u follows an exponential distribution, ∂h(uF )
∂uF

= 0. Thus, Equation (IB.20) is always

smaller than zero if the production commitment I is sufficiently high. Therefore, ∂i∗

∂F̄
< 0 if

the production commitment I is sufficiently high.

IB.4 Optimal operational hedging policy and net debt F̄

We now formally characterize the correlation between the firm’s optimal operational hedging

policy and its inherited net debt level F̄ .

Let F̄fb is such that F̄fb + K(I + ī) = 0, i.e., F̄fb is the maximal net debt level such

that the firm is able to pay back the debt at date-1 when it chooses the maximal optimal

hedging policy ī that maximizes the unlevered firm value, as derived in Appendix IB.1.

When F̄ ≤ F̄fb, short-term debt is riskless and the firm chooses the optimal hedging policy

as if the short-term debt level is zero. Recall that D = uF − uO is defined in Equation

(2.1). We introduce D∗(F̄ ) ≡ D(i∗(F̄ ), F̄ ) and D̂∗(F̄ ) ≡ D(̂i∗(F̄ ), F̄ ), i.e., D∗ and D̂∗ are

the differences between financial default boundary uF and operational default boundary uO

when the firm chooses the operational hedging policy i∗ and î∗, respectively. Define F̄0 to

be such that D̂∗(F̄0) = 0 and F̄1 such that D∗(F̄1) = 0. This subsection shows that F̄0

and F̄1 exist and are unique with F̄0 < F̄1. D̂∗ < 0 if F̄ < F̄0 and D̂∗ > 0 if F̄ > F̄0.

Similarly, D∗ < 0 if F̄ < F̄1; and, D
∗ > 0 if F̄ > F̄1. The following proposition formalizes

this relationship between the firm’s optimal operational hedging policy and its net debt level

maturing at date-1:

Proposition IB.1. If Lemma IB.3 holds, then

I. If 0 ≤ F̄ ≤ F̄fb, the firm’s optimal operational hedging policy is ī.

II. If F̄fb < F̄ ≤ F̄0, the firm’s optimal operational hedging policy is î∗.

III. If F̄0 < F̄ < F̄1, the firm’s optimal operational hedging policy is ĩ such that uF = uO.
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IV. If F̄ ≥ F̄1, the firm’s optimal operational hedging policy is i∗.

First of all, ī in Appendix IB.1 is the optimal equity-maximizing hedging policy given

the inherited net short-term debt level F̄ is sufficiently low, i.e., F̄ ≤ F̄fb. F̄fb is such that

F̄fb +K(I + ī) = 0, i.e., F̄fb is the maximal net debt level such that the firm is able to pay

back the debt at date-1 it chooses the maximal optimal hedging policy ī that maximizes the

unlevered firm value. When F̄ > F̄fb, the firm has to choose the optimal hedging policy

i that balances the concerns over financial and operational default, which we elaborate on

below.

Notice that D(i, F̄ ) is continuously differentiable in both i and F̄ with partial derivatives:

∂D

∂i
= K ′(I + i)− 1

Iδ′(uO)
, (IB.21a)

∂D

∂F̄
= 1 . (IB.21b)

Notice that ∂D
∂ī

> 0 because K ′(I + i) > 0 and δ′(u) < 0 by assumption. The following

lemma is for technical purpose. It facilitates our proof that both D∗(F̄ ) = 0 and D̂∗(F̄ ) = 0

has unique solutions, which we denote as F̄0 and F̄1, respectively.

Lemma IB.4.

dD∗

dF̄
> 0 if uF (i

∗) ≥ uO(i
∗) (IB.22a)

dD̂∗

dF̄
> 0 if uF (̂i

∗) ≥ uO (̂i
∗) (IB.22b)

Proof. First we prove the following inequality:

dD∗

dF̄
=

∂D∗

∂F̄
+

∂D∗

∂i∗
∂i∗

∂F̄
> 0 (IB.23)

Using Equations (IB.21a) and (IB.21b) Inequality (IB.23) is equivalent to

[
K ′(I + i∗)− 1

Iδ′(uO)

](
−∂i∗

∂F̄

)
< 1 (IB.24)

From Appendix IB.2, ∂i∗

∂F̄
= − ∂2M

∂i∗∂F̄
/∂2M
∂i∗2

. ∂2M
∂i∗∂F̄

is given by Equation (IB.13). ∂2M
∂i∗2

is

given by [1 − G(uF )]
∂S
∂i∗

where ∂S
∂i∗

is given by Equation (IB.11) at i = i∗. Thus, Inequality
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(IB.24) is equivalent to

V (uF , i
∗)∂h(uF )

∂uF
K ′(I + i∗)− pIδ′(uF )h(uF )K

′(I + i∗) K ′′(I + i∗) + p[1− δ′(uF )IK
′(I + i∗)]h(uF )K

′(I + i∗)

+V (uF , i
∗)∂h(uF )

∂uF
[K ′(I + i∗)]2 + V (uF , i

∗)h(uF )K
′′(I + i∗)


1− Iδ′(uO)K

′(I + i∗)

−Iδ′(uO)
< 1

(IB.25)

Algebraic simplification shows that the above inequality is equivalent to

V (uF , i
∗)
∂h(uF )

∂uF

K ′(I + i∗) + pI [δ′(uO)− δ′(uF )]h(uF )K
′(I + i∗)

< [1 + V (uF , i
∗)h(uF )]K

′′(I + i∗) [−Iδ′(uO)] (IB.26)

Since u follows a exponential distribution, ∂h(u)
∂u

= 0 and the first term of the left-hand side of

Inequality (IB.26) is equal to zero. the second term on the left-hand side is (weakly) smaller

than zero if uF ≥ uO because δ(u) is convex in u. Therefore the left-hand side of Inequality

(IB.26) is (weakly) smaller than zero. The right-hand side of Inequality (IB.26) is strictly

greater than zero. Therefore, Inequality (IB.26) holds and dD∗

dF̄
> 0.

Now we prove the following inequality:

dD̂∗

dF̄
=

∂D̂∗

∂F̄
+

∂D̂∗

∂î∗
∂î∗

∂F̄
> 0 (IB.27)

Inequality (IB.23) is equivalent to

[
K ′(I + î∗)− 1

Iδ′(uO)

](
−∂î∗

∂F̄

)
< 1 (IB.28)

From Appendix IB.3, ∂î∗

∂F̄
= − ∂2M̂

∂î∗∂F̄
/∂2M̂

∂î∗2
. ∂2M̂

∂i∗∂F̄
is given by Equation (IB.20). ∂2M̂

∂î∗2
is

given by [1 − G(uF )]
∂Ŝ
∂î∗

where ∂Ŝ
∂î∗

is given by Equation (IB.16) at i = î∗. Thus, Inequality
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(IB.28) is equivalent to


[V (uF , î

∗)− λx2]
∂h(uF )
∂uF

K ′(I + î∗)

−pIδ′(uF )h(uF )K
′(I + î∗)

+λx2

I
g(uO)g(uF )

[1−G(uF )]2δ′(uO)




K ′′(I + î∗) + p[1− δ′(uF )IK
′(I + î∗)]h(uF )K

′(I + î∗)

+[V (uF , î
∗)− λx2]

∂h(uF )
∂uF

[K ′(I + î∗)]2

+[V (uF , î
∗)− λx2]h(uF )K

′′(I + î∗)

+λx2

[
g′(uO)δ′(uO)−g(uO)δ′′(uO)

[1−G(uF )][δ′(uO)]2I
+ g(uF )K′(I+î∗)g(uO)

[1−G(uF )]2

]
1

Iδ′(uO)



1− Iδ′(uO)K
′(I + î∗)

−Iδ′(uO)
< 1

(IB.29)

Algebraic simplification shows that the above inequality is equivalent to

[V (uF , î
∗)− λx2]

∂h(uF )

∂uF

K ′(I + î∗) + pI [δ′(uO)− δ′(uF )]h(uF )K
′(I + î∗) +

λx2

I

g(uO)g(uF )

[1−G(uF )]2δ′(uO)

<
[
1 + [V (uF , î

∗)− λx2]h(uF )
]
K ′′(I + î∗) [−Iδ′(uO)]− λx2

g′(uO)δ
′(uO)− g(uO)δ

′′(uO)

[1−G(uF )][δ′(uO)]2I
(IB.30)

Since u follows a exponential distribution, ∂h(u)
∂u

= 0 and the first term of the left-hand

side of Inequality (IB.30) is equal to zero. the second term on the left-hand side is (weakly)

smaller than zero if uF ≥ uO because δ(u) is convex in u. The first term of the right-hand

side of Inequality (IB.30) is strictly greater than zero. Therefore, to show that Inequality

(IB.30) holds, we need to show that:

λx2

I

g(uO)g(uF )

[1−G(uF )]2δ′(uO)
< −λx2

g′(uO)δ
′(uO)− g(uO)δ

′′(uO)

[1−G(uF )][δ′(uO)]2I
(IB.31)

Or, equivalently,

λx2

I

g(uO)g(uF )

[1−G(uF )]2δ′(uO)
+ λx2

g′(uO)δ
′(uO)− g(uO)δ

′′(uO)

[1−G(uF )][δ′(uO)]2I
< 0

⇔ λx2

I[1−G(uF )]δ′(uO)

[
g(uO)g(uF )

[1−G(uF )]
+

g′(uO)δ
′(uO)− g(uO)δ

′′(uO)

δ′(uO)

]
< 0

⇔ g(uO)g(uF )

[1−G(uF )]
+

g′(uO)δ
′(uO)− g(uO)δ

′′(uO)

δ′(uO)
> 0 (IB.32)

Since g(u) = α exp(−αu), αg(u) = −g′(u), and g(uF )
[1−G(uF )]

= α, the inequality (IB.32) is
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equivalent to
δ′′(uO)

δ′(uO)
< 0 (IB.33)

which always holds since δ(u) decreases and convex in u by assumption. Therefore, dD̂∗

dF̄
>

0. Q.E.D.

IB.4.1 Proof of Proposition IB.1

Now we prove Proposition IB.1. First, i∗ and î∗ are continuously differentiable in F̄ and

D(i, F̄ ) is continuously differentiable in both i and f . It follows that D∗(F̄ ) and D̂∗(F̄ ) are

continuously differentiable, thus continuous in F̄ .

Secondly, from Section 2.5 and Section 2.6, we know that uF is greater than uO, i.e.,

D∗, D̂∗ > 0 when F̄ is sufficiently high, i.e., F̄ ≥ F̄M . To see this, from Lemma IB.1,D∗ > 0

if F̄ ≥ F̄M . From Lemma 2.1, for a given F̄ , î∗ > i∗. Since D(i, F̄ ) increases in i, D̂∗ > 0

when F̄ ≥ F̄M . On the other hand, if F = 0, uF = 0, which is always lower than uO. Since

D∗(F̄ ) and D̂∗(F̄ ) are continuous in F̄ , D∗, D̂∗ < 0 for all F̄ that is sufficiently low. Again by

the continuity of D∗(F̄ ) and D̂∗(F̄ ) in F̄ , there must exist F̄0 and F̄1 such that D̂∗(F̄0) = 0

and D∗(F̄1) = 0. By Lemma IB.4, dD̂∗

dF̄
> 0 whenever D̂∗ ≥ 0 and dD∗

dF̄
> 0 whenever D∗ ≥ 0.

It follows that F̄0 and F̄1 are unique. Moreover, D̂∗ < 0 for all F̄ < F̄0 and D̂∗ > 0 for all

F̄ > F̄0. Similarly, D∗ < 0 for all F̄ < F̄1 and D∗ > 0 for all F̄ > F̄1.

From Lemma 2.1, î∗ > i∗ for any given F̄ . At F̄ = F̄1, D
∗(F̄1) = 0. Since ∂D

∂i
> 0, we

must have D̂∗(F̄1) = D(̂i∗(F̄1), F̄1) > 0. Thus, F̄1 > F̄0.

To conserve space, we omit the argument F̄ in i∗, ĩ and î∗. If F̄ ≤ F̄0, then D∗ < 0

and D̂∗ ≤ 0. Thus, maximizing the equity value subject to uF ≤ uO will yield the optimal

operational hedging policy î∗. Meanwhile, maximizing the equity value subject to uF ≥ uO

will yield a corner solution ĩ > i∗, in which ĩ is such that D(̃i, F̄ ) = 0. Indeed, for a given F̄

in this region, the feasible set of i for the maximization problem of the equity value subject

to uF ≥ uO, if not empty, is i ≥ ĩ > i∗. From Appendix IB.2, the equity value E decreases in

i for i > i∗. Since ĩ is also feasible for the maximization problem of the equity value subject

to uF ≤ uO and Ê = E when i = ĩ, ĩ must yield a lower expected payoff for the shareholders,

compared with î∗. Thus, the optimal operational hedging policy is î∗.

If F̄0 < F̄ < F̄1, then D∗ < 0 and D̂∗ > 0. Thus, maximizing the equity value subject

to uF ≤ uO or subject to uF ≥ uO will yield the same corner solution ĩ, in which ĩ is such

that D(̃i, F̄ ) = 0. This is because, for a given F̄ in this region, the feasible set of i for

the maximization problem of the equity value subject to uF ≥ uO is i ≥ ĩ > i∗, and from

Appendix IB.2, equity value E decreases in i for i > i∗. Meanwhile, the feasible set of i for
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the maximization problem of the equity value subject to uF ≤ uO is i ≤ ĩ < î∗ and from

Appendix IB.3, Ê increases in i for i < î∗. Thus, the optimal operational hedging policy is

ĩ.

If F̄ ≥ F̄1, then D∗ ≥ 0 and D̂∗ > 0. Thus, maximizing the equity value subject to

uF ≥ uO will yield the optimal operational hedging policy i∗. Meanwhile, maximizing the

equity value subject to uF < uO will yield a corner solution ĩ < î∗. Indeed, for a given F̄ in

this region, the feasible set of i for the maximization problem of the equity value subject to

uF ≤ uO, if not empty, is i ≤ ĩ < î∗ and from Appendix IB.3, Ê increases in i for i < î∗.

Since ĩ is also feasible for the maximization problem of the equity value subject to uF ≥ uO

and Ê = E when i = ĩ, ĩ must yield a lower expected payoff for the shareholders, compared

with i∗. Thus, the optimal operational hedging policy is i∗.

Now we prove Proposition 2.1. From Proposition IB.1 and Lemma IB.2, when F̄ > F̄1,

i∗∗ = i∗ and thus decreases in F̄ . Similarly, from Proposition IB.1 and Lemma 2.2, when

F̄ < F̄0, i
∗∗ = î∗ and thus decreases in F̄ . Moreover, ∂ĩ

∂F̄
= −∂D

∂F̄
/∂D

∂ĩ
. Since both partial

derivatives on the right-hand side are positive from Inequalities (IB.21a) and (IB.21b), ∂ĩ
∂F̄

<

0. When F̄0 < F̄ < F̄1, i
∗∗ = ĩ and thus decreases in F̄ . Lastly, at F̄ = F̄1, since D∗ = 0,

i∗ = ĩ, so i∗∗ = i∗ = ĩ at F̄ = F̄1 and thus is continuous in F̄ at F̄ = F̄1. Similarly, at

F̄ = F̄0, since D̂∗ = 0, î∗ = ĩ, so i∗∗ = î∗ = ĩ at F̄ = F̄0 and thus is continuous in F̄ at

F̄ = F̄0. Therefore, i
∗∗ decreases in F̄ .

IB.5 Partial pledgeability

The value of equity when uF,PP > uO can be written as

EPP =

∫ ∞

uF,PP

[
(u−uF,PP )−τp[(1−δ(uF,PP ))I+ i]+p[(1−δ(u))I+ i]+x2

]
g(u)du . (IB.34)

The value of equity when uF,PP < uO is EPP −
∫ uO

uF
λx2g(u)du.

The partial pledgeability case can be solved in an analogues manner as the zero pledge-

ability case. We define î∗PP as the optimal hedging policy that maximizes the equity value

when uF,PP < uO; ĩPP as the optimal hedging policy that equalizes the operational and

financial default boundaries uO (̃iPP ) = uF,PP (̃iPP , F̄ ); and, i∗PP as the optimal hedging pol-

icy that maximizes the equity value when uF,PP > uO. Specifically, i∗PP and î∗PP are given

respectively by the following first-order conditions:

p−K ′(I + i∗PP ) = V (uF,PP , i
∗
PP ) h(uF,PP )

[K ′(I + i∗PP )− τp]

[1− τpδ′(uF,PP )I]
, (IB.35)
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p−K ′(I + î∗PP ) =
[
V (uF,PP , î

∗
PP )− λx2

]
h(uF,PP )

[K ′(I + î∗PP )− τp]

[1− τpδ′(uF,PP )I]

+
λx2g(uO)

[1−G(uF,PP )]Iδ′(uO)
. (IB.36)

Define F̄fb,PP to be such that

F̄fb,PP +K(I + īPP ) = τ ∗ p ∗ īPP . (IB.37)

In other words, F̄fb,PP is the maximal net debt level such that the firm is able to pay back

the debt at date-1 even if the production shock u is severe enough to obliterate the entire

production capacity I. F̄0,PP and F̄1,PP are defined analogously to the respective thresholds

in Proposition IB.1: F̄0,PP is such that uF,PP (̂i
∗
PP , F̄0,PP ) = uO (̂i

∗
PP ); F̄1,PP is such that

uF,PP (i
∗
PP , F̄1,PP ) = uO(i

∗
PP ). The following proposition characterizes the firm’s optimal

hedging policy as a function of F̄ when the pledgeability is imperfect, i.e., τ < τ̄ < 1:25

Proposition IB.2. There exists τ̄ < 1 such that if τ < τ̄ , then

I. If 0 ≤ F̄ ≤ F̄fb,PP , the firm’s optimal operational hedging policy is ī.

II. If F̄fb,PP < F̄ ≤ F̄0,PP , the firm’s optimal operational hedging policy is î∗PP .

III. If F̄0,PP < F̄ < F̄1.PP , the firm’s optimal operational hedging policy is ĩPP such that

uF,PP = uO.

IV. If F̄ ≥ F̄1,PP , the firm’s optimal operational hedging policy is i∗PP .

25The proofs of Proposition IB.2 and Proposition 3.1 are similar to the base case although the algebra is
much more involved. The proofs are available upon request.
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I.C. Empirical results with interaction terms between credit risk and market power

In this appendix, we augment our baseline regressions , Table 4, Table 5 and Table 6 in the

main text with the interaction terms between market power variables — Dummy variable for

the top 4 industry seller, Sales/industry sales — and -(Z-score). All the variable definitions

are the same as of respective definitions in Table 1.

Table IC.1: Interactions between market power variables and -(Z-score): Baseline
and NBER recessions

Estimation of the relationship between Markup, -(Z-score), the market power — proxied by Dummy
variable for the top 4 industry seller, Sales/industry sales — and the interaction terms between
the market power and -(Z-score). In columns (3) and (4), we further include the interaction terms
between market power, -(Z-score) and the dummy variable Recession that equals one during the
NBER-designated recession quarters, zero otherwise. The regressions include firm and Fama-French
48 Industry × year-quarter fixed effects. Control variables are the same as Table 4. Standard errors
are clustered at firm and year-quarter levels. *, **, *** denote significance below 10%, 5%, and
1% levels, respectively.

VARIABLES Markup
(1) (2) (3) (4)

Top 4 industry seller × -(Z-score) × Recession -0.00034
(0.0017)

Sales/industry sales × -(Z-score) × Recession 0.00048
(0.021)

Top 4 industry seller × -(Z-score) -0.0029** -0.0027**
(0.0011) (0.0012)

Sales/industry sales × -(Z-score) -0.076*** -0.075***
(0.018) (0.020)

-(Z-score) × Recession 0.0016*** 0.0017***
(0.00051) (0.00053)

-(Z-score) 0.0029*** 0.0030*** 0.0028*** 0.0028***
(0.00053) (0.00053) (0.00052) (0.00052)

Market power variables Yes Yes Yes Yes
Market power variables × Recession No No Yes Yes
Other control variables Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes
Industry × Year-quarter fixed effects Yes Yes Yes Yes

Observations 564,418 564,418 554,348 554,348
R-squared 0.634 0.634 0.636 0.636
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Table IC.2: Interactions between market power variables and -(Z-score): Financial
crisis

Regressions of Markup on -(Z-score), exposure to the 2008 financial crisis, market power and in-
teraction terms among the three variables. We augmented the regression models in Table 6 with
market power × -(Z-score) × Exposure. The variable definitions are in Table 1. The regressions
include firm and Fama-French 48 Industry × year-quarter fixed effects. Standard errors are clus-
tered by firm. *, **, *** denote significance below 10%, 5%, and 1% levels, respectively.

VARIABLES Markup
% # Loans reduction Lehman exposure ABX exposure

(1) (2) (3) (4) (5) (6)

Top 4 industry seller × -(Z-score) × Exposure 0.078 0.109 0.042
(0.094) (0.161) (0.084)

Sales/industry sales × -(Z-score) × Exposure 0.511 0.578 0.193
(0.688) (1.118) (0.616)

-(Z-score) × lender exposure 0.086** 0.083** 0.159** 0.156** 0.084*** 0.083***
(0.034) (0.035) (0.072) (0.073) (0.027) (0.027)

Lender exposure -0.700 -0.710 -0.971 -0.976 -0.905** -0.904**
(0.455) (0.457) (0.689) (0.691) (0.410) (0.412)

Market power variables Yes
Market power variables × Exposure Yes
Market power variables × -(Z-score) Yes
Other control variables Yes
Other control variables × Exposure Yes
Firm fixed effects Yes
Industry × Year-quarter fixed effects Yes

Observations 20,621 20,621 20,621 20,621 20,621 20,621
R-squared 0.905 0.905 0.905 0.905 0.906 0.906
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