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Abstract

We investigate how firms manage financial default risk (on debt) and operational de-
fault risk (on delivery obligations). Financially constrained firms reduce operational
hedging through inventory and supply chain in favor of cash holdings. Our model pre-
dicts that firms’ markup increases with financial default risk as they cut operational
hedging costs. Empirical analysis confirms this prediction and shows that the markup-
credit risk relationship strengthens during adverse aggregate shocks, particularly for
firms exposed to lending disruptions. Market power alone cannot explain this relation-
ship, which reflects firms’ strategic adjustments in operational hedging practices.
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1. Introduction

This paper examines how firms manage the dual risks of financial and operational default.
Firms face contractual obligations on two fronts: financial debt contracts and operational
contracts to deliver goods and services to customers. When adverse economic shocks occur,
firms can face financial default on their debt obligations and operational default on their
delivery commitment to customers as was the case during the Covid-19 pandemic. Given
constraints on internal cash flows and limited access to the capital market, firms must op-
timize their resource allocation to mitigate these two distinct default risks. We develop a
theoretical framework that analyzes this fundamental tradeoff in resource allocation between
financial and operational hedging, and provide empirical evidence supporting our model’s
predictions. In particular, we find that greater financial risk predicts lower spending on
operational hedging, particularly when firms become financially constrained.

Our paper thus studies the tension between operational resiliency and financial efficiency,
viz., the tradeoff that the firm faces between allocating liquid resources to operational hedg-
ing and to the prevention of financial distress. The firm’s need to optimally balance these two
hedging demands—financial hedging and operational hedging—provides a novel explanation
for heterogeneity in operational resilience across firms. In particular, our analysis demon-
strates why highly leveraged, financially constrained firms may rationally choose lower levels
of operational hedging.

While financial default has been extensively studied, research on operational default re-
mains relatively limited. The Covid-19 pandemic and its aftermath have highlighted the
critical importance of corporate operational resilience to shocks that disrupt supply chains,
deplete inventory, and impair firms’ ability to meet their delivery obligations. Firms employ
various operational hedging strategies to mitigate such negative shocks, including main-
taining excess inventory, diversifying and geographically relocating supplier networks, and
developing backup production capacity. These operational hedging methods are, however,

financially costly. Firms are nevertheless willing to endure some higher production costs in



order to mitigate the risk of operational disruption and failure to deliver on their obligations
to customers. Such a failure not only impairs the firms’ immediate cash flow but they also
impose a penalty on their reputation and franchise value.

Evidence from a global survey by the Institute for Supply Management illustrates the
widespread impact of operational disruptions during the Covid-19 pandemic. By May 2020,
97% of the organizations reported actual or anticipated negative impacts from coronavirus-
induced supply chain disruptionsE] Consequently, U.S. manufacturing was operating at 74%
of normal capacity, with Europe at 64%. While North American firms reportedly maintained
sufficient inventory for current operations, confidence in inventory adequacy declined signif-
icantly: to 64% in the U.S., 49% in Mexico and 55% in Canada. Similar concerns emerged
in Asia, with firms in Japan and Korea expressing lack of confidence that they would have
sufficient inventory for Q4 of 2020; and almost half of the firms maintained above-normal
inventory levels. This operational stress prompted a strategic shift, with 29% of organiza-
tions initiating or planning to re-shore or near-shore some or most operationsE] However,
this trend toward increased operational resilience faced resistance by some firms. Several
corporate executives and investors contended that such operational hedging strategies com-
promised financial efficiencyf

Our theoretical framework models a competitive (price-taking) levered firm facing dual
risks. The first risk arises from a shock to cash flows generated by assets in place, which can
create liquidity shortfalls leading to financial default and elimination of equity value. The
second risk stems from a shock that disrupts the firm’s operation, which in turn reduces
output and income. The shocks are potentially correlated, for example, driven by common
macroeconomic factors. Both financial and operational defaults impose losses on firm value.

The firm must optimally allocate its cash inflows between two purposes: building a buffer

https://www.prnewswire.com/news-releases/covid- 19-survey-round-3-supply-chain-disr
uptions-continue-globally-301096403.html. See also “Businesses are proving quite resilient to the
pandemic”, The Economist, May 16** 2020, and “From ‘just in time’ to ‘just in case’”, Financial Times,
May 4, 2020.

2“Reshoring” and “nearshoring” are the processes of bringing the manufacturing operations to the firm’s
country or a country nearby, respectively.

3 “Will coronavirus pandemic finally kill off global supply chains?” Financial Times, May 27, 2020. https:
//www.ft.com/content/4ee0817a-809f-11ea-b0fb-13524ae1056b
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against the financial default risk, and developing operational resilience to ensure fulfillment
of its customer contracts.

Our model captures a key timing mismatch: while operational hedging increases future
cash flows by reducing the risk of operational disruption, which benefits the firm, the occur-
rence of financial default can terminate the firm’s operations before this benefit materializes.
That is, there is a potential maturity mismatch between operational and financial risk. In
principle, the firm can mitigate this maturity mismatch by borrowing against the enhanced
long-term cash flows that operational hedging provides. Doing so can potentially alleviate
the need of substituting between financial hedging and operational hedging. However, this
is feasible only if the firm can credibly pledge future cash flow to outside investors. This
intuition gives rise to our key prediction: when pledgeability is limited, financial and oper-
ating hedging become substitutes. In other words, a financially constrained and leveraged
firm must decide between using cash to mitigate the risk of financial default or to mitigate
the risk of operational default.

Our model generates a clear empirical prediction: for firms with significant credit risk and
limited access to external capital, operational hedging decreases as the firm’s credit spread
(which reflects financial default risk) increases. Since operational hedging raises the firm’s
production costs and lowers the profit margin, higher credit risk, which lowers operational
hedging, raises the profit margin or the “operational spread”. This results in a positive
relationship between credit spread and operational spreadﬁ

We empirically test our model’s main prediction: the operational spread, measured by
markup ((Sales — cost of goods sold)/sales), increases with the firm’s credit risk, which we
measure using Altman’s Z-score (Altman) 1968, [2013a). A higher negative Z-score indicates
greater credit risk, making it a suitable proxy for near-term financial default risk as captured
in our model. Our tests control for firm characteristics that include three measures of market

power, which is usually associated with markup.ﬂ The results support our hypothesis. The

4Notably, in our model, the effect of credit risk on operational hedging stems primarily from lack of funds
to spend on operational hedging, which is an investment in operational resiliency, rather than from debt
overhang, which reduces the incentives to invest, as in |Myers (1977)).

®We control for market power by (i) an indicator variable for the firm being among the top 4 sellers in



estimated effect of -(Z-score) on markup is positive and it is statistically and economically
significant: an increase of one standard deviation in the firm’s -(Z-score) raises the firm’s
markup by 7% relative to the sample average. Our analysis thus introduces a new determi-
nant of the firm’s markup, while the market power variables are not found to predict higher
markup. We also find that higher credit risk significantly lowers the cost of goods sold af-
ter controlling for the firm’s characteristics and sales, supporting the model’s prediction by
which credit risk affects markup through our proposed operational hedging mechanism.

An important prediction of our model is that financial constraints amplify the positive
relationship between markup and credit risk. We test this prediction by examining how the
positive markup-credit risk relationship changes during two types of financing shocks. First,
we study NBER-designated recessions, periods when external financing generally becomes
constrained. We find that the positive effect of credit risk on markup strengthens significantly
during recessions. Importantly, this result is driven by a parallel strengthening of the negative
effect of credit risk on cost of goods sold during recessions, suggesting that the markup-credit
risk relationship is driven at least partly by costs. Second, we employ shocks to firms’ credit
supply during the subprime crisis, following |Chodorow-Reich| (2014))’s study of the negative
impact on firms of the exogenous shocks to their relationship banks, following the collapse of
Lehman Brothers in September 2008, which increased financial constraints on firms. We find
that for firms that were more exposed to the exogenous credit-supply shocks, credit risk had
both a significantly more positive effect on markup and a significantly more negative effect
on cost of goods sold. This test helps alleviate concerns about the endogeneity of credit
risk as we study here the effect of the pre-crisis credit risk on the post-crisis outcomes for
financially-constrained firms [f]

We attend to an alternative explanation for the positive effect of the firm’s credit risk on
its markup that is based on market power. Chevalier and Scharfstein (1994)) and Gilchrist

et al.| (2017)) propose that liquidity-constrained firms with market power can raise their prod-

the industry, (ii) the share of the firm’s sales in the industry sales, and (iii) the Industry*time periods fixed
effects, which implicitly captures the industry’s concentration.

6Some other studies also examine the impact of the subprime mortgage crisis on firms’ other real decisions
(Giroud and Mueller} 2016)).



uct prices (or keep prices higher in downturns) in order to boost their short-run profitability
and meet immediate liquidity needs, even if it hurts their market share and long-term prof-
itability. Notably, all our regressions include control variables that proxy for the firm’s market
power as well as industry-year-quarter fixed effects which capture industry-wide changes in
product prices and in concentration ratios.

We test explicitly the market power explanation of the positive relationship between
markup and financial default risk. We estimate our models on the determinants of markup
separately for firms which are among the top 5% industry sellers and for the remaining firms.
By the market power hypothesis, the markup-credit risk relationship is positive only for firms
with higher market power, which enables them to set their prices. However, we find that this
is not the case. The positive markup-credit spread relationship is insignificant for the top 5%
industry sellers while it is positive and significant for the rest of the firms, which are more
competitive. This finding also holds in the contexts of NBER recessions and the 2008 shocks
to lending banks. Even in periods of acute liquidity shortages, the positive markup-credit
risk relationship is not associated with greater market power. Yet, the prevalence of this
relationship for competitive firms lends support to our model.

Finally, we test an ex-post prediction of our model: when credit risk is high enough,
avoiding financial default becomes the dominant consideration affecting firm value because
the firm is likely to default financially before any operational default occurs, making opera-
tional hedging irrelevant for protecting firm value. We test this prediction indirectly using
stock returns during the Covid era (2020-2021). By our model, pre-Covid operational hedg-
ing choices should matter less for firms that enter Covid with an already-high credit risk.
The results support the predictions of our theory: investing in operational hedging helps
firms preserve their franchise value following adverse operational shocks, but only if their
credit risk is relatively low.

In summary, our novelty is in proposing that firms need to hedge not only against de-
faults on their financial contracts (their debt obligations) but also against defaults on their

operational contracts (their commitments to deliver products to customers). Because both



forms of hedging impose demands on the firms’ limited resources, financially constrained

firms face a tradeoff allocating those resources to protect against these dual default risks.

1.1 Related literature

Our paper is related to studies of the real effects of financing frictions (see Stein (2003) for
a review) which show that financing frictions can affect investment decisions and employ-
ment (Lemmon and Roberts, |2010; Duchin, Ozbas, and Sensoy, 2010; |Almeida et al.l 2012;
Giroud and Mueller} 2016, among others). The literature also studies the effect of financial
constraints and financial distress on financial policies such as cash, credit lines, and risk
management (e.g., Almeida, Campello, and Weisbach| [2004; Sufi, [2009; Bolton, Chen, and
Wang, 2011} |Acharya, Davydenko, and Strebulaev, 2012]).

In particular, our paper relates closely to [Rampini and Viswanathan| (2010). They show
that more financially distressed firms may reduce risk management to save liquidity for
current investment. However, our paper differs from Rampini and Viswanathan| (2010) in
three important ways. First, in Rampini and Viswanathan|(2010), debt is fully collateralized
in all states, which makes debt riskless. Thus, their model is silent regarding the relationship
between a firm’s credit risk and risk management. In contrast, in our model debt is risky
because of uncertainty in cash flow and maturity mismatches between the firm’s cash flow
and debt obligations. Second, we introduce the notion of operational risk — default risk
on supplier contract — that rationalizes a firm’s incentive to engage in operational hedging.
This notion allows us to study the relationship between credit risk and a firm’s operational
hedging policy. Third, one key model implication in|Rampini and Viswanathan|(2010)) is that
a firm with lower net worth does not conserve any liquidity, because its return on investment
is so high that it exceeds the return on liquidity hoarding. In our paper, an incentive to
conserve liquidity arises for firms with lower net worth due to the presence of risky debt.
This latter pattern is documented in |Acharya, Davydenko, and Strebulaev| (2012)); however,
they do not analyze the interaction of credit and operational risk, which we study both

theoretically and empirically.



Our paper also relates to [Froot, Scharfstein, and Stein| (1993, who propose a theory
for the rationale for corporate hedging. In |Froot, Scharfstein, and Stein (1993), hedging
against cash shortfalls helps the firm mitigate the risk of not being able to finance valuable
investment opportunities. In a more recent paper, Gamba and Triantis (2014) study firms’
risk management policies through holding liquid assets (cash equivalent), purchasing financial
derivatives, and maintaining operational flexibility. They demonstrate that the strongest
motivation for hedging is to avoid financial distress. They show in the model that the three
risk management tools are more of complements than substitutes, and cash holding is the
most effective out of these three risk management mechanisms. We highlight instead that
avoidance of financial default can make financial hedging and operational hedging substitutes.
In our model, operational hedging is not a means to avoid financing shortfall, but it is rather
the other way around: Hedging against a shortfall of cash that presents a financial default risk
reduces the resources allocated to operational hedging for firms facing financial constraints or
having low pledgeability of cash ﬂows[] Recently, [Hu, Varas, and Ying| (2021)) theoretically
show that long-term debt has the benefit of risk management — long-term creditors share
the loss of the firm value during the economic downturn. Consistently, we show that a firm’s
overall credit risk imposes a higher pressure for the firm to give up more operational hedging,
in order to conserve more cash to withstand the imminent financial default risk.

Finally, our paper adds to the emerging literature of risk management in production
networks. Kulchania and Thomas (2017) find that firms hold more cash to mitigate the
consequences of supply chain disruption led by deregulation of trucking industry. Recently,
Grigoris, Hu, and Segal (2022) empirically and theoretically study the relationship between
trade credit extension to customers and risk premia. Specifically, firms that offer more
trade credit earn lower risk premia. Finally, Ersahin, Giannetti, and Huang (2024) exploit
the incidence of natural disasters to study how production networks adapt to idiosyncratic

shocks, finding that trade credit extension keeps supply chains stable except when suppliers

"See |Bianco and Gambal (2019) for a recent theoretical contribution focusing on the risk management
role of inventory. They focus on an all-equity firm so do not analyze the effect of credit risk on operational
hedging as we do.



are financially constrained. By offering more trade credit to customer firms, a supplier firm
hedges against its customer firms’ default risk, and therefore lowers the cost of searching for
new customers. Our novelty lies with the fact that we allow firms to default on both debt
contracts and contracts with their customers. This extension gives rise to the competition

between financial and operational hedging for the limited liquidity resources of the firm.

2. The model

2.1 Model setup

This section develops a model of a competitive (price-taking) levered firm’s optimal oper-
ational hedging policy when facing two types of costly default: financial default (on debt
service) and operational default (on customer contract). We build on the financial hedg-
ing framework of |Acharya, Davydenko, and Strebulaev| (2012)) by incorporating operational
hedging, where financial hedging takes the form of cash savings to prevent default on debt
that matures before customer contract settlement dates.

The model considers a single-levered firm with existing debt F' in a three-period economy
(t =0, 1, 2), where the debt matures at ¢ = 1. The firm owns assets that generate cash flow
r; at t = 0 and t = 1, with x5 representing the firm’s franchise value. The firm also has a
customer contract that requires delivery of I units of goods at unit price p at ¢ = 2, where
the firm acts as a price-taker.

The model incorporates a random shock u that simultaneously impacts both the firm’s
period 1 cash flow and its production capacity for customer contract fulfillment, making it
a systematic shock. The shock u is realized at ¢ = 1. Specifically, the firm’s cash flow at
t = 11is given by x; = Z1 + u, and its production capacity decreases from I to (1 — §(u))/,
where 0(u) is a decreasing and convex function in w with continuous and finite first- and
second-order derivatives.

The shock u follows a probability distribution with density function g(u) on support
g(v)

a

[0,00), cumulative distribution function G(u) and hazard function h(u) = #555. For
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analytical tractability, we assume that u follows an exponential distribution with parameter
a, such that g(u) = ae™*" and G(u) = 1 — e~**. This assumption yields a constant hazard
function h(u) = aff| The complete timeline of the model is illustrated in which we

further elaborate upon next.

2
p[(1 = 8(w))I + 4] + x2 is realized.

2

. If [1— 8(u))l +i < I,

0 operational default occurs.
Debt level F' is maturing in ¢ = 1. cash flow 1 = Z1 + u is realiz pl(1 = S(u))I +4] + (1 — Nz
A contract for output I is deliverable in ¢ = 2. Debt F' matures. is realized.
Cash flow zg is realized.
Operational hedging amount 4 is chosen. Ifeo+Z1+u< F+ K(I+1),
Cost K(I 4 %) is sunk. The remaining cash is saved. financial default occurs.

Figure 1: The timeline of the model

At date t = 0, the assets in place generate a positive cash flow xy > 0. The firm begins
production of I units of goods for delivery at ¢ = 2 and can choose to hedge operational
risk through a marginal investment ¢. This investment results in total deliverable goods
of (1 —d(w))I + i, where ¢ can also be interpreted as inventory, and/or spare production
capacityﬂ The combined cost of the production and operational hedging is represented
by an increasing and convex cost function K (I + i) with continuous and finite first- and
second-order derivatives.

Initially, we assume that market frictions prevent the firm from accessing external financ-
ing at t = 0 and ¢t = 1. Consequently, the firm’s date-0 disposable cash consists solely of
internal cash flow, resulting in cash reserve of ¢ = xg — K (I +4). The legacy debt F', payable

at t = 1, cannot be renegotiated due to high bargaining costs ( for example, when held by

8Exponential distribution is a special case of Gamma distribution, which has been widely used to model
the jump size distribution of uncertainty shocks in finance (e.g., |Johnson) 2021]).

9In our model the firm is operationally inflexible in the sense that its production amount is confined by
the size of the customer contract. We do so to focus on the firm’s operational hedging decisions, rather than
its investment/disinvestment decisions.



dispersed bondholders prone to coordination problems). This debt must be serviced from
internal funds, ¢+ x1, and failure to fully repay the debt at ¢ = 1 results in financial default
and liquidation. In this case, the firm loses both its future cash flow from contract delivery,
pl(1 — d(u))I + 7], and its franchise value, xo. Given that period-1 cash flow 2 is random,
full debt repayment cannot be guaranteed. Furthermore, even without financial default,
failing to deliver the contracted I units of goods constitutes operational default, resulting in
a partial loss A € (0,1) of the franchise value, xo—for instance, through reputation damage

when customers switch to alternative suppliers.

2.2 Discussion

The qualitative results of our model remain robust to variations in its exact specification,
provided four key assumptions are maintained: First, default must involve deadweight costs
to shareholders. While our model assumes complete loss of future cash flows upon default,
the results extend straightforwardly to cases of partial loss. Second, the debt must mature
before the customer contract settlement date. This timing creates a fundamental maturity
mismatch between debt obligations and customer contract fulfillment. Third, the firm cannot
raise significant external financing against future income from customer contract settlement
at date-2. If firms could pledge a large portion of settlement income as collateral, current
and future cash holdings would become substitutes, eliminating the need for precautionary
cash savings. This would remove the tension between financial and operational hedging.
While our base model completely prohibits external financing, we later extend it to allow
borrowing up to a fraction 7 of contract settlement cash flows at ¢ = 2. Our main results
persist as long as 7 remains sufficiently small, reflecting limited pledgeability—a condition
likely universal in practice. Fourth, the ¢ = 1 shock must affect both date-1 cash flow and
the firm’s ability to fulfill its customer contract. Though we model this through a single shock
affecting both assets in place and production capacity, the framework could accommodate

multiple correlated shocks.
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2.3 Optimal hedging policies

The firm’s optimal hedging policy depends on how the likelihood of financial default compares
to that of operational default, which requires us to analyze the shock levels that trigger each
type of default. We begin by deriving these threshold values.

At date 1 the firm’s available cash for debt service consists of its cash reserve (zo—K (I+1))
plus interim-period asset cash flow (x; = Z1 + u), totaling o — K (I 4+14) +x;. The “financial
default boundary” up represents the minimum shock level needed to avoid default by enabling
full repayment of F: up = F+ K(I +1i) — 29— 2, = F + K(I +1i), where F = F — zy — 7,
represents the net debt (debt minus predictable cash flows at date 0 and 1). This financial
default boundary up increases with both net debt (F) and operational hedging level (7).
When the realized shock u falls between 0 and up, the firm defaults on its debt and equity
holders receive nothing.

We also consider the possibility of default on the firm’s contract with its customer.
At date-2, the firm can deliver (1 — §(u))! + ¢ units of goods. The firm defaults on its
contract with the customer if this amount falls below the production commitment I. The
“operational default boundary” uo represents the minimum shock level that enables full
delivery of the contracted amount and avoids operational default: (1 — §(up))l +i =
I, or equivalently, up = 67" ().

Since the loss function ¢ decreases in u, its inverse 6! decreases in i. Consequently, the
operational default boundary uo decreases with the operational hedging level ¢ chosen at
date-0, meaning that operational hedging reduces the operational default risk. When the
realized shock u falls between 0 and uo, the firm defaults on its contract with the customer,
causing equity holders to lose a portion A of the franchise value x».

The operational default boundary up affects equity value function only when it exceeds

the financial default boundary upr. This creates a key challenge in solving the model since

both up and up are endogenously determined by the firm’s hedging policy. We solve for the

firm’s optimal operational hedging policy, with details provided in [Appendix I.B|.

10Tt is straightforward to consider hedging being undertaken by a manager who maximizes equity value
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Our main result, formalized in 7?7 below, captures the fundamental tradeoff the firm faces
between financial and operational hedging. As a firm’s interim financial leverage increases—
that is, as net debt F maturing at date-1 rises—the motive for financial hedging dominates
operational hedging concerns. The firm responds by reducing investment in operational
hedging to conserve cash, thereby better protecting against financial default risk. This leads

to lower optimal operational hedging levels, denoted generically as ** to encompass all cases.

Proposition 2.1. The firm’s optimal operational hedging policy i** decreases in net debt F.

(Proof is in |Appendix 1C.IV])

2.4 Operational spread (Markup) and credit spread

An important corollary is that a firm’s credit spread is typically positively related with its
operational spread or the markup. To see this, we define the credit spread as the ratio of
the face value (F') to the market value (L) of the debt minus 1, where the market value of

the debt is:
up
L=F— / (up —u) g(u)du . (2.1)
0

The integral term represents the expected loss in value in bankruptcy. The operational

spread is defined as the markup, p — K'(I +i). By [Proposition 2.1} when z, and z; are

held constant, the optimal operational hedging policy ¢** decreases with the debt level F'.
This implies a positive correlation between the credit spread and the operational spread,
provided that the market price of debt L/F decreases with F'. Intuitively, as the face value
of debt F' increases, credit spread widens through a direct effect: As face value F' increases,
the promised debt payment becomes larger, making default more likely and widening the
credit spread. However, there is an indirect effect of F' on credit spread through operational
hedging: As face value F increases, the firm reduces operational hedging to conserve liquidity

for debt payments, countervailing the direct effect on the credit spread. Suppose that K (I +

net of personal costs arising from firm’s bankruptcy (see, for example, |Gilson| (1989)).
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i) = kN (I + 1), where k > 0 and N(I + 1) is a differentiable function that is increasing and

convex in (I + 7), then we obtain that:

Proposition 2.2. For k sufficiently small, the credit spread and the operational spread are

positively correlated along the equilibrium path as F' varies.

(Proof is in [Appendix IC.V]) When & is small, the direct effect dominates, maintaining

the standard relationship where credit spreads increase with the face value of debtﬂ We

verify |Proposition 2.2| numerically in [Section 2.6|

2.5 Model extensions

2.5.1 The effect of partial pledgeability

Our base case model in assumes the firm has no access to external financing. We
extend the model to consider partial pledgeability (“PP”) of cash flow from the customer
contract settlement, using subscript PP to denote quantities in this extension. The results
remain qualitatively identical to the base case where the firm cannot pledge any date-2 cash
flows to creditors.

At t = 1 we allow the firm to use a fraction 7 of its proceeds from date-2 customer
contract settlement (7p[(1 — d(u))I + i) as collateral for new financing, where 0 < 7 < 1.
When 7 = 0 we recover the base case with extreme financing frictions, while 7 = 1 represents
frictionless access to external capital backed by future cash flows. In practice, 7 measures
the firm’s ease of access to cash flow financing.

The key difference from the base case lies in the determination of the financial default
boundary. At ¢t = 1, raising new financing is value-neutral conditional on survival. Without
loss of generality, we can assume that the firm raises an amount equal to the cash shortfall
at the financial default boundary, 7p[(1 — 6(ug,pp))I + i[] The total cash available for debt

service at date 1 becomes xg — K(I + i) + 21 +u+ 7p[(1 — 0(up,pp))I + i], comprising three

1Tn |[Appendix IC. V| we explicitly derive the upper bound of .

12This amount can always be raised for u € [ur pp, 00], since (u) decreases in u by assumption, making
the pledgeable income 7p[(1 — 0(u))I + 7] increasing in w.
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components: the cash reserve xy — K (I + 7), the random cash flow z; = Z; + u, and the
newly borrowed amount 7p[(1 — é(uppp))I + i].
The operational default boundary uo remains unchanged from the base case, while the

financial default boundary takes a new form:

uppp=F + K +1i)—7p[(1 — 6(uppp))l +1i] . (2.2)

For sufficiently low values of 7, the optimal hedging policy maintains the same structure
as in the baseline case. Specifically, the optimal operational hedging (%) decreases as the

inherited net debt level (F') increases.

Proposition 2.3. If 7 < 7, the firm’s optimal operational hedging policy i** decreases in F .

(Proof is outlined in [Appendix IC.VI). When 7 = 0, we recover the zero-pledgeability

case from our base model in Since all quantities vary continuous with 7, both

[Proposition IC.1| and [Proposition 2.3 hold when 7 is sufficiently low (7 € [0, 7]). Moreover,

as 7T increases, the F-region where debt levels do not influence the operational hedging policy

expands.

2.5.2 Hedging along the supply chain

We can extend our model to consider the firm that hedges operational default risk through
supplier diversification rather than excess inventory or spare production capacity. Let the
production function be K = K(I,n), where n > n represents the measure of suppliers
enlisted in the firm’s production process, and n is the minimal measure of suppliers needed
for productionE

We assume that a more diversified supply chain (larger n) increases costs, implying
positive first- and second-order partial derivatives of K with respect to n: K,(I,n) > 0

and K,,(I,n) > 0. We assume that the production loss function 6(u,n) now depends on

13We assume that n is the measure rather than a count of suppliers to maintain consistency with the
first-order conditions in our baseline model.
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both the production shock u and the measure of suppliers n. Consistent with our baseline
model, §(u,n) is decreasing and convex in both arguments with continuous and finite first-
and second-order derivatives, d,(u,n) < 0, d,(u,n) < 0, dyy(u,n) > 0 and d,,(u,n) > 0. In
addition, we also assume a negative cross-partial derivative d(u,n), du,(u,n) < 0.

In this framework, the operational default threshold uo satisfies §(up,n) = 0, implying

Ouo _ _ On(uon)

52 = —3 < 0. The second-order derivative of up with respect to n remains positive
n u(uOvn) !

as in the baseline case. Under these conditions, our previous results extend naturally: op-
erational hedging through supply chain diversification (n) decreases with the firm’s credit

risk.

2.6 Numerical illustration

In this section, we present comparative statics to illustrate two key relationships implied
by our model solutions: (1) the correlation between optimal hedging policy i** and debt F
maturing at date-1, and (2) the relationship between credit spread and operational spreadE

For our analysis, we examine the generalized model from that allows for
partial pledgeability (7 € [0,1]). We make the following parametric assumptions for numer-
ical illustration: cash flow shock (u) follows an exponential distribution with rate parameter
a = 0.05, giving a probability density function g(u) = 0.05¢7%%% The production loss
function is assumed to be §(u) = e *. We assume a quadratic production cost function
K(I+1i) = k(I +1i)? with x = 0.1]7]

presents the relationship between optimal operational hedging +** and debt
levels F' under three different pledgeability scenarios—low (7 = 0), intermediate (7 = 0.4)
and (7 = 0.8)—depicted by blue, red, and yellow lines, respectively. The results reveal

several systematic patterns in the optimal hedging behavior. First, when the debt level F

is sufficiently low, i** remains constant across all pledgeability scenarios, as the debt can

14While our model treats the debt level (F) as exogenous, one could extend it to solve for optimal capital
structure by incorporating tax benefits of debt, though this is beyond our current focus.

15 Additionally, we set the following parameter values: I (Contractual delivery amount) = 3, A (Propor-
tional cost of operational default) = 0.5, p (Unit price) = 1.2, zy (Cash flow at date-0) = 5, Z; (Certain cash
flow at date-1) = 5, and x5 (Franchise value at date-2) = 10.
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be repaid at date-1 with certainty regardless of production shock realizations. Second, as
F' increases beyond this region, ** demonstrates a negative correlation with the debt level
maturing at date-1. Third, this negative relationship exhibits a greater magnitude (steeper
slope) and persists over a broader range of debt levels F' when the pledgeability 7 is lower.
These findings indicate that the optimal operational hedging policy decreases monotonically
with the amount of interim-maturing debt, with this effect being particularly pronounced

when the firms faces constraints in accessing external funding (low pledgeability 7).

[INSERT [Figure 1)

examines the relationship between credit spread and operational spread (mea-
sured by markup p — K'(I 4+ 1)) in equilibrium.ﬁ The analysis reveals a positive correlation
between these spreads along the equilibrium path of optimal hedging policies across differ-
ent debt levels F'. This correlation becomes more pronounced as pledgeability 7 decreases.
These findings support a key prediction of our model: a firm with higher credit risk optimally
reduces operational hedging to a greater extent, thereby preserving cash at date-0 to hedge
against financial default risk. This reduction in operational hedging manifests as a higher
markup in equilibrium, establishing a systematic link between credit risk and operational

hedging decisions.

INSERT [Figure 3]

3. Empirical analysis

Our model produces two hypotheses on the link between operational hedging and credit
risk. First, greater credit risk or probability of default lowers operational hedging, indicated
by an increase in the price-to-unit cost difference, or the firm’s markup. Second, the pos-
itive relationship between markup and credit risk is stronger for firms that are financially

constrained, indicated in our model as having a lower pledgeability of future cash flows.

Note that in the partial pledgeability setting (r > 0), the market value of debt L = F —
fOUF [up —u—1p(0(up) — d(u))I] g(u)du.
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We measure operational hedging by Markup = (Sales —CGS)/Sales, where CGS is the
cost of goods sold. Increased spending on operational hedging lowers Markup. Operational
hedging is measured by a higher level of inventory. Hoarding inventory indicates the firm’s
propensity to engage in operational hedging, and by greater breadth of supply chains, which
includes expanding and diversifying the number of suppliers with whom the firm works["]

We begin with an example illustrating the interaction between the firm’s credit risk and
its operational hedging policies. Vail Resorts, Inc., a mountain resort company included in
our sample, was heavily indebted before the subprime mortgage crisis and the Great Reces-
sion. In its 2008 and 2009 annual reports, management expressed concerns regarding the
company’s highly levered capital structure. Item 1A, Risk Factors, says “Our indebtedness
could adversely affect our financial health and prevent us from fulfilling our obligations.” To
make things worse, its lenders (U.S. Bank and Wells Fargo) experienced a total of 2.7% drop
in loan provision during the financial crisis. Correspondingly, Vail held 5.6% less inventory
(on average, scaled by its sales) during the recession period compared with the periods before
that, and it also terminated the strategic alliance program with Ricoh Co., Ltd. a Japanese
company that was Vail’s office equipment supplier and stopped being a significant customer
with General Mills, a consumer food company (Source: FactSet Revere database). In the
meantime, its markup increased by 10.7%. In this case, a high credit risk in a period of
tight financing appears to have lowered Vale’s inventory and forced the company to reduce
its contracting with its suppliers, which led to lower per-unit costs.

Our empirical analysis is structured as follows. We begin by validating that our proposed
measures of operational hedging—inventory and supply chain breadth—are consistent with
our model mechanics. In the model, operational hedging mitigates the effects of shocks
to firms’ output, or sales for price taker firms. We test whether the decline in sales higher
inventory and greater supply chain breadth mitigate the sales decline during economic shocks
measured by the NBER-designated recessions. And, we test whether Markup, our measure

of the operational spread, declines with inventory and supply chain breadth.

17Operational hedging may encompass other measures; inventory and supply chain diversification may be
the most salient and easy to measure.

17



We then test the two major predictions of the model. First, we test whether Markup
increases in the firm’s credit risk measured by the negative value of Altman’s (1968) Z-score,
which indicates the likelihood of default and positively affects credit spreads. We also test if
and on CGS declines in credit risk. Second and most importantly, we use financing shocks
to test whether lower pledgeability or tighter financial constraints strengthen the positive
relationship between Markup and credit risk. The first test examines the relationship be-
tween Markup and —(Z — score) during NBER recession periods, when capital markets are
depressed and financing is scarce. The second test employs the shocks to lenders during
the subprime mortgage crisis of 2008, which curtailed their ability to provide credit to their
relationship borrowers, following |(Chodorow-Reich|(2014]). We test whether the Markup (and
CGYS) of exposed firms—those whose lenders were more strongly hit by the crises—exhibited
a stronger relationship with their —(Z — score) measured before the crisis. We conclude by
testing whether the effect of financing distress on Markups operates through market power,
which enables firms to raise prices. By our proposed mechanism, Markup rises in response

to financial distress because firms lower their operational hedging costs.

3.1 Data and empirical definitions

We employ quarterly data from 1971 to April 2020, a span of 197 quarters, from Compustat.
We exclude firms in the financial industries (SIC codes 6000-6999) and utility industries
(SIC codes 4900-4949), and firm-quarters involved in major mergers (Compustat footnote
code AB). We include firm-quarter observations with market capitalization greater than $10
million and quarterly sales more than $1 million at the beginning of the quarter, inflation
adjusted to the end of 2019. Our sample includes 18, 338 firms with an average asset value
of $2.7 billion dollars (inflation adjusted to the end of 2019). Altogether we have 573, 041

firm-quarters.
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3.1.1 Variable definitions

Operational spread is measured by Markup, defined as sales (SALE(®) minus cost of goods
sold (COGSQ) divided by sales. Markup, which is the price-unit cost spread, proxies for our
model’s spread between price and the marginal cost of production of the output quantity.
Our second dependent variable is CGS, defined as the cost of goods sold (COGSQ) scaled
by assets (AT'Q), which increases with operational hedging.

Our key explanatory variable proxies for the firm’s ability to pay off its debt liabilities,
viz., the negative of Altman’s (1968) Z—scoreF_g] The model includes variables that control for
the firm’s investment and its debt capacity: Total assets in logarithms, which account for the
firm’s size; Tobin’s (), which accounts for the firms growth opportunities, calculated as the
sum of common shares outstanding (C'HOQ) multiplied by the stock price at the close of the
fiscal quarter (PRCCQ), preferred stock value (PSTKQ) plus dividends on preferred stock
(DV PQ), and liabilities (LT'Q), scaled by total assets (e.g., (Covas and Den Haan, 2011);
and three variables that affect the debt capacity, (iii) cash holdings (CHEQ), (iv) cash flow
(IBQ + DPQ) and (v) tangible assets (PPENTQ), all scaled by total assets. In models
with CGS/Assets as the dependent variable we add to the control variables contemporaneous
sales-to-assets ratio because cost of goods sold is partly and mechanically related to sales. We
also control for market power, which affects the firm’s markup (Lerner, 1934)) and inventory
behavior (Amihud and Medenelson|,[1989)), using two variables: a dummy variable that equals
one if the firm ranks among the top four sellers in the industry in a given quarter and zero
otherwise, and the firm’s Sales/Industry sales. Throughout, we use Fama and French’s 48
industries.

Operational hedging is indicated by inventory and by supply chain breadth. Inventory
(INVTQ) scaled by sales proxies for the excess production indicated by i in the theoretical

model[”’] The supply chain hedging variable is created using information from the Factset

¥Das, Hanouna, and Sarin| (2009) finds that corporate bond yields spreads are decreasing in the Z-score.
Since EBIT is not available in Compustat quarterly data, we use OI BDP instead in our calculation of the
Z-score (Chen et al.| [2017).

19The 2020 Covid-19 pandemic highlighted the importance of inventory—which in many cases was impos-
sible to replenish at reasonable cost or in a timely manner—and of supply chain diversification to circumvent
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Revere relationship database on firms’ suppliers”Y] It contains a comprehensive relationship-
level data between firms, starting from April 2003. An observation in this database is the
relationship between two firms with information about the identities of the related parties,
the start and end date of the relationship, the type of the relationship (e.g., competitor,
supplier, customer, partner, etc.), and the firms’ geographic origins. We aggregate the
relationship-level data to firm-quarter level and calculate three measures of supply chain
hedging for each firm in each quarter: (i.) In(14+number of suppliers); (ii.) In(1-+number
of supplier regions), where supplier regions are country and state/province combination;
(iii.) In(14+number of out-of-region suppliers), that is, suppliers that are not from the firm’s
region. We merge the supply-chain data with our main sample, yielding a total of 151,985
firm-quarter observations covering 6,204 firms from mid-2003 to the first quarter of 2020.
The median firm has 4 suppliers from 3 regions in a given quarter, out of which 3 suppliers
are not from the firm’s region. The supply chain hedging index, SCH, is the first principal
component from the principal component analysis (PCA) of the three individual measures
over the whole panel. This first principal component explains 97% of the sample variance.
The three measures (i)-(iii) have very similar weights being, respectively, 0.575, 0.580 and
0.578. A higher value of SCH indicates greater supply chain breadth and a more intensive
hedging along the supply chain.

presents summary statistics of the variables in our study. All continuous variables

in our analysis are winsorized at the 1% and 99% tails.

INSERT [Table 1}]

3.2 Hedging operational risk through supply chain and inventory

Operational hedging in our model—indicated by i—can be interpreted as either building up

extra inventory (Section 2|) or a more stable supply chain (Section 2.5.2)). More generally,

shutdowns of some manufacturing facilities.
20Factset Revere has much better coverage of supply chain information than the Compustat segment data
and used by some studies about supply chain (e.g., [Ding et al., 2020).
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it reflects spending on slack and excess means that enable firms to produce the requisite
output in case of operational stress. Greater i increases production expenditures while
enabling firms to deliver on their contracts and to have higher sales in times of a negative
economic shocks that depress output. We thus examine first the effect of our measures of
operational hedging—inventory holding and supply chain hedging—on firms’ sales during
periods of recessions, using the NBER designation.

For each recession period, we estimate a separate cross-sectional regression with the
dependent variable being A(Sales/Assets), the change in the average level of firm sales
(scaled by total assets) between the recession quarters and the eight-quarter period before
the recession. Because a recession may have warning signs which affect the firms’ operational
hedging before its onset we use the inventory and supply chain hedging data that ends four
quarters before the onset of each recession. The control variables are fixed as of the latest
quarter before the onset of the recession. In these regressions, we exclude firm-quarters with
zero inventory. The model includes industry fixed effects and standard errors are clustered

at industry level.

[INSERT [Table 2|]

Table 2| presents the results. Higher levels of inventory and supply chain hedging before
the recession mitigates the decline in sales during the recession compared with the average
sales during the eight pre-recession quarters. Naturally, sales declined during the recessionsﬂ
but less so for firms with higher inventory and supply chain breadth before the recession. The
coefficients of the pre-recessions Inventory/Sales and SCH are all positive and significant,
averaging 0.02 across the six recessions. In , the mean Inventory/Sales ratio is 0.6.
Thus, a firm with 0.1 increase in this ratio had a 0.02 lower decline in its Sales/Asset during
recessions (the average Sales/Asset is 0.33). For SCH we have data only for the recession

of 2007Q4—2009Q2. There too, the coefficient is positive and significant. Overall, we find

21The average sales-assets ratio is 0.012 lower during the recessions, compared with the previous eight-
quarter periods. The average decline in sales-assets ratio ranges from —0.023 to 0.007, across the six recessions
in our sample. Apart from the first recession (1973Q4-—1975Q1), all recessions witness an average decline
in sales-assets ratio.
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that firms with higher levels of operational hedging suffer less severe disruptions in output

deliveries when recession shocks hit.

3.3 Markup, CGS and operational hedging

In our model, the operation spread declines when the firm increases spending on operational
hedging. We now test whether Markup, our empirical measure of the operational spread, de-
clines in inventory and supply chain breadth, our empirical measures of operational hedging.

We estimate the following model using quarterly data:

Markup,, = B >|<Inv/Salesj7t_1 + [o+xSCH, ;1 + Control variables;;_;

+ Firm FE + Industry* Year-Qtr FE (3.1)

By our model, we expect $; < 0 and [ < 0. We also estimate the model with the

dependent variable being C’G’S/Assetsjjt . Here we expect 51 > 0 and (5 > 0.

[INSERT [Table 3]

In we find that that Markup and CGS are both affected by the two variables
that indicate operational hedging. Higher values of inventory and supply chain hedging,
which raise the firm’s unit cost, significantly lower Markup and raise CGS. To illustrate
the economic significance of the estimated effect, the estimation in column (1) imply that
one standard deviation increase in SCH lowers markup by 0.01 and one standard deviation
increase in Inventory/sales lowers markup by 0.04. These values are sizable relative to
the mean Markup, which is 0.317. After controlling for firms’ market power variables and
industry-quarter fixed effects (Column (2)), the estimated effects of SCH is 0.007 while that
of Inventory/Sales remains the same. Notably, the coefficients of the two market power
variables included in Column (2), the top 4 industry seller dummy variable and the firm’s
Sales/total industry sales ratio, are 0.0056 and -0.57 with respective standard errors of 0.0040

and 0.13. Thus, there is no evidence that market power drives up the markup. Overall, the
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results suggest that Markup and CGS reflect in part the effects of the firm’s operational

hedging on its performance.

3.4 Baseline results

The main hypothesis of our model that firms closer to financial distress reduce spending on
operational hedging, resulting in a higher operation spread, which we proxy by Markup, and

in lower costs which we measure by CGS/assets. We estimate the following model:
Y;+ = p1*x—(Z-score) it Control variables; ;1 + Firm FE 4 Industry=Year-Qtr FE (3.2)

Yj is either Markup;, or CGS/Assets;, and -(Z-score), which is lagged, increases in the
firm’s credit risk, which implies a higher default spread. By our hypothesis, -(Z-score) has
a positive effect on Markup and a negative effect on CGS/Assets. The model includes the
control variables used earlier as well as the firm and industry-quarter fixed effects; standard

errors are clustered by firm and by year-quarter.

[INSERT [Table 4]]

presents our baseline results. As predicted in [Proposition 2.3] the operational

spread measured by Markup is positively affected by the firm’s -(Z-score). A higher likelihood
of financial default and a greater need for liquidity to hedge financial risk makes firms
reduce spending on operational hedging. Then unit cost declines and Markup increases. The
economic meaning of the estimated effects is seen in that by column (1), an increase of one
standard deviation in -(Z-score) raises the firm’s markup by 7% relative to its average markup
value, or by 5% relative to its average after controlling for market power and industry-quarter
fixed effects. In columns (3) and (4) we find that an increase of one standard deviation in
-(Z-score) lowers the CGS/Assets by 2% relative to its average CGS/Assets value, with
almost a similar effect after controlling for market power variables and industry-quarter

fixed effects. We note again that the market power variables do not have a positive effect on
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Markup?| Our findings are thus consistent with our key model prediction that the need to
avoid financial default induces firms to shift funds away from operation hedging in order to

support financial resilience.

3.5 Effect of financial constraint

Our model predicts that a lower pledgeability of the firm’s future cash flows—a lower 7
in our model—leads to a stronger positive markup-credit risk relationship. A firm facing
lower pledgeability is financially constrained. The research question is whether financial
constraint makes the markup-credit risk relationship stronger. Because financial constraints
is endogenously related to the firm’s performance we employ in our tests two exogenously
imposed shocks to financial constraints: economic recessions and the 2008 financial crisis. In
the first test we examine the effect of a systematic increase in financial constraint, while in
the second test we examine the effect of idiosyncratic increase in financial constraints on the
firm’s markup-credit risk relationship. By our model’s prediction, these shocks increase the
positive effect of credit risk on Markup and its negative effect on CGS because firms must

shift liquidity from operational hedging to hedge against financial default.

3.5.1 Recession periods

Market liquidity is scarce during economic recessions, making it harder for firms to raise
capital upon demand if they need to service their financial obligations. We test whether
during recessions there is a stronger effect of credit risk on markups, as our model predicts
would be the case when pledgeability is limited, meaning that forms are more financially
constrained. Our test augments the baseline estimation in of the effect of -(Z-score)
on Markup by adding an interaction term -(Z-score) x Recession, where Recession is a dummy
variable that equals one during the NBER-designated recession quarters and zero otherwise.

The values of -(Z-score) and of the firm control variables are fixed for the duration of the

22The coefficients of the two market power variables included in Column (2), the top 4 industry seller
dummy variable and the firm’s Sales/total industry sales ratio, are -0.0019 and -0.28 with standard errors of
0.0047 and 0.078, respectively.
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recession periods at their respective values as of the most recent quarter before the starts of
the recession because their values may themselves be affected by the recession.ﬁ

The results, presented in [Table 5 suggest that firms with higher credit risk—higher
-(Z-score)—before the onset of a recession reduce their operational hedging, reflected in
a greater increase in their Markup (Panel A) and a greater decline in their CGS (Panel
B). This results is reflected in the interaction terms -(Z-score)xRecession having positive
and significant coefficients in the Markup regressions, columns (1)-(2), and negative and
significant coefficients in the CGS regressions, columns (3)-(4). These results support our
model’s prediction that faced with financial constraint, firms are more aggressive in shifting
liquidity from operational hedging to financial hedging, thus lowering their unit cost and

raising their markup.

[INSERT [Table 5|]

3.5.2 Credit supply shocks in 2008

The second test of the effects of financing constraints on the markup-credit risk relationship
employs the firm-specific exposure of firms to the credit shock due to the 2008 financial
crisis. During this crisis, especially starting in the fall of 2008, a number of banks could no
longer extend credit to firms with which they had lending relationship beforehand. We test
whether for firms whose lenders were adversely affected by the 2008 crisis, called “exposed
firms”, there was a stronger effect -(Z-score)—a positive effect on Markup and a negative
effect on CGS/Assets. By our model, exposed firms with higher credit risk should have
allocated more resources when becoming financially constrained in order to avoid financial
default while reducing spending on operational hedging, thus lowering their cost and raising
their Markup.

We employ three measures of the adverse impact of the 2008 crisis on lenders’ ability to

provide credit, proposed by Chodorow-Reich (2014).@ (i) %Loans reduction, the number

23Gee the recommendation, for instance, in Roberts and Whited| (2013)) on the issue of studying the effects
of shocks on the dependent variables.
24We thank Chodorow-Reich for sharing his data with us.
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of loans that the lenders of a firm extended to all firms (excluding the firm in question), in
the nine-month period from October 2008 to June 2009, relative to the average of 18-month
period of October 2005 to June 2006 and October 2006 to June 2007. (ii) Lehman exposure,
the exposure to Lehman Brothers through the fraction of a bank’s syndication portfolio
where Lehman Brothers had a lead role. (iii) ABX exposure, the extent of banks’ exposure
to toxic mortgage-backed securities, calculated using the correlation between banks’ daily
stock return and the return on the ABX AAA 2006-H1 index.

The relationship between our sample firms and bank lenders is calculated using data from
the LPC-Dealscan database. For each firm and each of the three measures, we calculate a
weighted average of the measure over all members of the last pre-crisis loan syndicate of the
firm, where the weight is the lender’s share in the firm’s last pre-crisis loan syndicate. The
detailed construction of the three variables at the firm level is in (Chodorow-Reich| (2014]).
We construct the three variables such that a larger value implies greater exposure to the
financial crisis through the firm’s lenders. For this analysis, we restrict our sample firms to
the 2,429 firms in |(Chodorow-Reich| (2014) database.

We use the following regression specification:

Ykt =+ Bix—(Z — score),;a007* Lender exposure;, + Pox Lender exposure;

+ Z B3.m*Controls variable,, ;1

+ Z Bam*Controls variable,, ;1% Lender exposure;; + 0; + gy + €51, (3.3)

m

where Y, denotes either Markup or CGS/Assets for firm j in industry k in quarter t.
The values of Y before and after the crisis are over the pre-crisis and post-crisis two-year
periods, July 2006 to June 2008 and January 2009 to December 2010, respectively. Notably,
-(Z-score) ;2007 18 fixed before the crisis as of the end of 2007. Lender exposure equals zero
for the pre-crisis period and equals its actual respective values for the post-crisis period.
The control variables are the same as in the baseline regression , being fixed at

the end of year 2007 for the post-crisis period. The model includes firm fixed effects and
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Industry-quarter fixed effects and standard errors are clustered at firm levels.

[INSERT [Table 0]

presents the results. Consistent with our proposition, the coefficient 5, is positive
and significant for the Markup model (even-numbered columns) and negative and significant
for the CGS/Assets model (odd-numbered columns). These results are consistent for all
three Lender exposure variables. Markup increased for firms with higher credit risk whose
lenders were more adversely affected by the financial crisis. These firms reduced spending
on operational hedging, as evident from the lowering of CGS/Assets, shifting resources to
avoid financial default. Gauging the economic significance of the joint impacts of the firm’s
credit risk and its exposure to financial crisis using Column (1) as an example, we find that
a one unit higher value of the firm’s -(Z-score) and a reduction of the number of loans by its
lender to other borrowers by 10% during the financial crisis led to a wider Markup by 0.009.
This constitutes 2.5% of the average Markup in the pre-crisis period. By Column (3), one
unit higher value of -(Z-score) and a 10% exposure of lender to Lehman led to Markup to
widen by 0.016.

Next, we study the dynamic effects of the interaction term (- (Z-score) ].’2007*Lender exposure;
before and after the crisis. We replace the Lender Exposure variable in equation (3.3) with
an interaction terms f3, * -(Z-score), 5o, * (Lender exposure, D,,) where the dummy variable
D,, equals one for the indicated quarter n and zero otherwise. The indicated n equals
—4,...,—1,1,...,4,54. This numbering applies to the last four quarters in the pre-crisis
period, Q3-Q4 of 2007 and Q1-Q2 of 2008, then for the four post-crisis quarters, Q1-Q4 of
2009, with D5, = 1 for the quarters Q1-Q4 of 2010. We expect the coefficients 3, to be
insignificant in the pre-crisis period, n = —4, ..., —1, and to be significantly positive for the
post-crisis period, n =1,...,4.

[Table 7] presents the results. In all columns, the coefficients (3, are mostly significant after
the crisis starting from n = 2 while being insignificant before the crisis. At the bottom of

each column we present F-tests of the joint significance of all the coefficients (,,, conducted
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separately for the four pre-crisis quarters and the four post-crisis quarters. In all tests, the
F-value shows strong statistical significance of the coefficients 3, for the post-crisis four
quarters while it shows insignificance for the pre-crisis four quarters. illustrates the
point estimates, as well as the 95% confidence intervals of the coefficients on the product of
-(Z-score) and alternative measures of lender exposure for the periods of four quarters before
and after the financial crisis.

[Table 7| presents the results. In all columns, the coefficients (3, are mostly significant after
the crisis starting from n = 2 while being insignificant before the crisis. At the bottom of
each column we present F-tests of the joint significance of all the coefficients (,,, conducted
separately for the four quarters before the crisis and the four quarters after it. In all tests,
the F-value shows strong statistical significance of the coefficients ,, for the post-crisis four
quarters while it shows insignificance of the coefficients for the pre-crisis four quarters.
illustrates the point estimates, as well as the 95% confidence intervals of the coefficients
on the product of -(Z-score) and alternative measures of lender exposure for the periods of

four quarters before and after the financial crisis.

[INSERT [Table 7]

Overall, the results show that the tension between operational hedging spending and the
needs to avoid financial default is stronger when the firm is hit by a negative shock to its
ability to raise capital. Then, it foregoes spending on operational hedging activities and

diverts cash to service its financial needs, causing its markup to rise.

3.6 Market power and the markup-credit spread relationship

We now present and test an alternative hypothesis on the markup-credit risk behavior due
to Chevalier and Scharfstein| (1994) and Gilchrist et al. (2017)). In our model, firms are price
takers and change in markup reflect changes in marginal cost due to operational hedging. A
higher credit risk induces the firm to lower its cost, resulting in a wider markup. |Chevalier

and Scharfstein| (1994) and |Gilchrist et al. (2017)) propose that firms with market power that
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are subject to financial liquidity constraint and higher credit risk may raise their product
prices in order to increase short-term cash flow, which would alleviate their liquidity needs.
The cost of doing that is forgoing the benefits of higher market share and long run profit.
This behavior is more feasible if the customer base is sticky. By this analysis, the positive
effect of credit risk and financial constraint on markup is stronger for firms with market
power. Naturally, the two explanations for the positive markup-credit risk relationship
are not mutually exclusive. It can well be that both motives play a role: In response to
financial distress, firms with market power raise their markup by both raising prices and
reducing operation hedging and costs, and competitive price-taking firms raise their markup
by reducing operational hedging and costs. The question is whether firms without market
power also exhibit a positive markup-credit spread relationship, especially when becoming
financially constrained.

We test the effect of market power on the markup-credit risk relationship by re-estimating
our markup models separately for firms that rank among the top 5% of firms in their industry
in terms of sales scaled by industry sales and for the remaining firms. The top 5% firms are
viewed as having a greater market power than the remaining firms, which are more likely to
be price takers. We call these two groups HMP and LMP for high and low market power,
respectively. The models of Chevalier and Scharfstein (1994) and |Gilchrist et al.| (2017)
explain the positive markup-credit risk relationship only for the HMP firms but not for the
LMP firms.

We first replicate the markup test in on the effect of -(Z-score) on Markup. In
Table 8 Panel A, we find that for HMP firms the coefficient of -(Z-score) is practically zero
(t-statistic = 0.09) while this coefficient for LMP firms is positive and highly significant. It
follows that higher markup due to higher financial risk occurs among LMP firms while being
absent among HMP firms.

In Panel B of [Table 8§, where we replicate the markup tests of [Table 5] we find that
for HMP firms higher credit risk has a positive but insignificant effect on Markup during

economic recessions, while having practically a zero effect otherwise. For LMP firms, Markup
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rises in -(Z-score) and further rises during recessions, when firms are subject to financial
constraint, as predicted by our model.

In Panel C of [Table § we replicate the analysis of as it pertains to markup. We
test whether firms that were exposed to lenders that were shocked during the 2008 financial
crisis were more likely to raise Markup if their financial risk was higher. Specifically, we
test the reaction of Markup to the interaction variable -(Z-score) x Lender exposure, where
-(Z-score) is set at the pre-crisis level for the duration of the crisis. We find that LMP
firms that were exposed to shocked lenders significantly raised their Markup because this
exposure increased these firms’ financial constraints, inducing them to cut on on operational
hedging costs. For HMP firms we find that the coefficient of -(Z-score)xLender exposure
is insignificant for exposure measured by %loan reduction and by ABX exposure. For the
Lehman exposure measure, the coefficient of -(Z-score)x Lender exposure is positive and
marginally significant in the range of 5% and 10% significance levels (t-statistic = 1.95).

In conclusion, we find that higher financial risk and financial constraint raise markups
significantly for firms with low market power which are usually price takers which cannot
raise their markup by raising prices. By our model, they raise their markup by reducing
their unit cost through a reduction in operational hedging, which enables them to shift
liquid resources to hedge against financial risk. For firms with market power, we do not find
a significant relationship between credit risk and markup, although in times of economic

shocks they show a weakly positive markup-credit risk relationship.

3.7 Operational hedging and value change during Covid-19

Our model suggests that operational hedging does not affect the firm’s expected franchise

value when credit risk is high (Appendix IB.II)). This is because the lower probability that the

firm will survive the Period 1 shock, which may lead to default, lowers the probability of it
realizing the benefit from delivering the contracted output in Period 2 and its future franchise
value thereafter, denoted x,. With a sufficiently high credit risk, operational default risk is

dominated by financial default risk. Then, variations in operational hedging have little or
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no effect on the firm’s value.

We test this prediction indirectly using the firms value change during the Covid era as
the Covid shock can be viewed as a very low realization of the shock variable u in our
theory, which creates both financial and operational default risks. By our analysis, pre-
Covid operational hedging choices matter less for the value of firms that entered Covid with
pre-existing high credit risk. In our test, we estimate a cross-section regression of the firm
stock return during 2020—2021 on our two measures of operational hedging, SCH (supply
chain hedging) and Inventory/Sales ratio, both at the end of 2019. The control variables are
Book/Market ratio and Size (in logarithm), which are known to affect stock returns across
firms, using the end-of-2019 values. The model also includes the percent change in sales
during 2019 to control for mechanical changes of Inventory/Sales ratio in 2019 due to sale
changes. And we include industry fixed effects. Finally, we split our sample into two halves
by the sample median of -(Z-score) and estimate regressions separately for each group, which
enables to distinguish between results for high and low credit risk firms.

presents the results. Entering the Covid crisis with a higher SCH, which means
a better supply chain hedging due to diversified chain of suppliers, contributed significantly
to having a higher stock return during the crisis, while the effect of Inventory/Sales ratio
is insignificant. However, it is only for firms with low credit risk—those with below-median
-(Z-score)—that operational hedging significantly contributed to value. The coefficients of
both SCH and Inventory/sales are positive and significant. For firms with higher credit
risk—those with above-median -(Z-score)—there is an insignificant effect of both SCH and
Inventory/Sales on value. The results thus suggest that in times of supply chains disruptions
and depletion of inventories, having invested in operational hedging is value-increasing as

long as the firm is not threatened by imminent financial default. These results are consistent

with the intermediate predictions of our theory (Appendix IB.II)).

[INSERT [Table 9|]
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4. Conclusion

This paper examines how corporations balance financial efficiency and operational resiliency.
We develop a model of a competitive (pricing-taking) firm that must allocate liquidity re-
sources between two forms of hedging: financial hedging through cash reserves to reduce
the risk of financial default, and operational hedging through investment in inventory and
supply chain network that reduces the risk of operational default such as a failure to deliver
on obligations to customers. Our analysis shows that this tradeoff is especially pronounced
when the firm faces external financing constraints, leading to a positive relationship between
operational spread (markup) and credit risk.

We present empirical evidence supporting our model predictions. We first establish that
markup effectively captures a firm’s operational hedging activities, as measured by inven-
tory holdings and supply chain hedging. We then demonstrate a robust positive relationship
between the firm’s markup and its credit risk. This relationship strengthens when the firm
faces heightened incentives to preserve liquidity for averting financial default. Specifically,
the markup-credit risk relationship intensifies during economic recessions and became partic-
ularly pronounced following the subprime financial crisis, especially for firms whose lenders
experienced greater crisis exposure. Overall, our empirical findings strongly support our
key premise that the tension between financial and operational hedging becomes more acute
when the firm encounters greater external financing constraints.

We conclude by identifying promising directions for future research. From a theoretical
perspective, extending our partial equilibrium framework to a general equilibrium production
network model would offer valuable insights. In such a model, product pricing, credit risk and
operational hedging decisions would emerge as equilibrium outcomes of the interconnected
system, with each firm’s operational hedging choices influencing the operational risks faced
by its upstream and downstream network partners. This approach would enable analysis of
network externalities in operational hedging, particularly the potential underinvestment in

operational resiliency that may arise from credit risk spillovers across connected firms. From
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an empirical perspective, several important questions await investigation. These include de-
veloping a more granular understanding of various operational hedging strategies, evaluating
their comparative effectiveness, and precisely measuring their impact on product prices. Ad-
dressing these questions will require more comprehensive data on firms’ operational hedging

practices.
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Figure 1: Firm’s optimal hedging policy ** and debt level F

Optimal hedging policy ¢** given debt level F' for 7 = 0, 7 = 0.4 and 7 = 0.8, where 7 is a measure
of the extent of the need for pledgeability, which proxies financial constraint.
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Figure 2: Credit spread and operational spread

The credit spread and operational spread under the optimal hedging policy ¢** given debt level F’
fort=0,7=0.4 and 7 = 0.8.
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Figure 3A: Markup — Coefficient on -(Z-score) xLE: %
# Loans reduction
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Figure 3B: Markup — Coefficient on -(Z-score)xLE:
Lehman exposure
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Figure 3C: Markup — Coefficient on -(Z-score)xLE:
ABX exposure
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Figure 3: Markup, CGS and credit risk:

financial crisis

Figure 3D: CGS — Coefficient on -(Z-score) xLE: % #
Loans reduction
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Figure 3E: CGS — Coefficient on -(Z-score)xLE:
Lehman exposure
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Figure 3F: CGS — Coefficient on -(Z-score) xLE: ABX
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Dynamic effects of exposure to the

This figure plots the the point estimates of the coefficients on -(Z-score)*LE in the markup and
CGS regressions, as of [Table 7, and their 95% confidence intervals.
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Table 1: Summary statistics — Compustat 1973-2020

Summary statistics of the variables in our sample from 1971 to April 2020. The data are quar-
terly from Compustat; The variable names are in parentheses.  Markup = (Sales(SALEQ) —
cost of goods sold(COGSQ))/Sales. CGS/assets = CGS(COGSQ)/total assets(ATQ). Z-score, a mea-
sured credit risk, is calculated from quarterly data following |Altman| (1968). Tobin’s @ is the firm’s
market value (the sum of common shares outstanding(C HOQ) multiplied by stock price at the close of
the fiscal quarter(PRCCQ), preferred stock value(PSTKQ), dividends on preferred stock(DV PQ) and
liabilities(LT'Q)), divided by its total assets, following|Covas and Den Haan|(2011)). Cash holdings (CHEQ),
Cash flow (= IBQ 4+ DPQ) and Tangible assets (PPENTQ) are divided by total assets. Market power is
measured by two variables, all employing Fama and French’s 48 industries: a dummy variable for the top
4 industry seller, = 1 if the firm’s sales are among the top four sellers in the industry (0 otherwise); and
firm’s Sales/Industry sales. The operational hedging variables include Inventory-to-sales ratio (INVQ)/Sales
(limited to strictly positive values), and Supply chain hedging index, composed from a principal component
analysis (PCA) that employs three measures: (i) In(14number of suppliers), (ii) In(14+number of supplier
regions), (iil) In(1+number of suppliers not from the firm’s region). Data are quarterly (source: Factset),
covering 6,204 firms from mid-2003 to the first quarter of 2020. SCH (supply chain hedging) is the first
principal component score that equals 0.575 x (i) 4+ 0.580 x (ii) 4+ 0.578 x (iii), where (i)—(iii) indicate the
above three measures.

We require that the lagged firm capitalization is at least $10 million and quarterly sales are at least $1
million (inflation adjusted to the end of 2019). All continuous variables are winsorized at both the 1st and
99th percentiles.

VARIABLES N Mean S.D. P25 P50 P75
Markup: (sales-cogs)/sales 572,345 0.317 0.428 0.208 0.338 0.508
CGS/assets 569,049 0.209 0.188 0.079 0.162 0.277
_(Z-score) 573,041  -3.542 5872 -3.995  -2.082  -1.081
Tobin’s @ 573,041 1.981 1.597 1.073 1.446 2.211
Cash holdings 573,041 0.164 0.197 0.024 0.082 0.232
Cash flow 573,041 0.010 0.056 0.005 0.021 0.035
Asset tangibility 573,041 0.303 0.243 0.104 0.235 0.448
Top 4 industry seller 573,041 0.039 0.193 0.000 0.000 0.000
Sales/industry sales 573,041 0.009 0.026 0.000 0.001 0.005
Total assets 573,041  2,738.859  §8,390.609 79.178 299.321 1,338.695
Inventory /sales 465,600 0.592 0.520 0.224 0.489 0.793
Supply chain hedging (SCH) 116,430  -0.010 1.697  -1.334  -0.381 0.956
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Table 2: The effect of operational hedging on changes in sales during NBER
recessions

Cross-sectional regressions of changes in the Sales/Assets ratio during recessions com-
pared with the pre-recession on the level of firms’ operational hedging variables, Inven-
tory/Sales and SCH. The dependent variable is A(Sales/Assets), the difference between
average sales/assets during the recession quarters and average sales/assets over eight quar-
ters before the recession. The recession quarters are as designated by the NBER. The main
explanatory variables are Inventory /Sales ratio and SCH measured by the supply chain hedg-
ing PCA index, fixed at four quarters before the onset of recession (or earlier). All regressions
include control variables: Tobin’s (), natural logarithm of total assets, cash holdings, cash
flow, and asset tangibility. All the control variables are fixed as of the last quarter before
the onset of each recession. We include Fama-French 48 industry fixed effects and cluster
the standard errors at industry level. *, x*, x % * denote significance below 10%, 5%, and
1% levels, respectively.

VARIABLES A sales/assets
(1) (2) (3) (4) () (6)

Panel A: Inventory-sales ratio

Recession period 1973Q4 1979Q2 1981Q2 1989Q4  2001Q1 2007Q4
1975Q1 1980Q2 1982Q2 1991Q1  2001Q3 2009Q2

Inventory/sales 0.037*%* 0.016** 0.013* 0.016*** 0.021*** 0.011**

Standard error 0.015 0.008 0.007 0.004 0.004 0.005

Panel B: Supply chain hedging PCA, for the recession of 2007Q4 to 2009Q2
Supply chain hedging (SCH)

SCH 0.002**
Standard error 0.001
Control variables Yes
FF-48 industry fixed effects Yes
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Table 3: Markup, CGS and operational hedging

Estimation of the relationship between Markup (columns (1) and (2)), CGS/Assets (columns
(3) and (4)) and two measures of operational hedging: SCH (supply chain hedging), the first
principal component of three supply chain diversification measures, and Inventory/Sales ra-
tio. The control variables include Tobin’s @, In(Total assets), Cash holdings, Cash flow, and
Tangible assets. In CGS regressions (columns (3) and (4)) we also control for contemporane-
ous Sales/assets. The variables are defined in [Table 1] In even-numbered columns, we also
control for market power variables: a dummy variable for the top 4 industry seller and the
firm’s Sales/total industry sales. All explanatory variables are lagged by one quarter. The
regressions include firm and Fama-French 48 Industry X year-quarter fixed effects. Standard
errors are clustered at firm and year-quarter levels. x, *x, % % x denote significance below
10%, 5%, and 1% levels, respectively.

VARIABLES Markup CGS/assets
M @) © @)

SCH -0.0076*%**  -0.0042** 0.00088*** 0.00063**

(0.0021) (0.0018)  (0.00030)  (0.00029)
Inventory /sales -0.076%%%  -0.076***  0.0061***  0.0067***

(0.014) (0.014) (0.0013) (0.0013)
Market power variables No Yes No Yes
Other Control variables Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes
Industry x Year-quarter fixed effects No Yes No Yes
Observations 93,853 92,762 93,772 92,681
R-squared 0.698 0.718 0.975 0.977
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Table 4: Markup, CGS and credit risk

Regressions of Markup and CGS/Asset on credit risk, measured by Altman’s (1968) -(Z-score). The
dependent variables are the quarterly Markup (columns (1) and (2)) and CGS/Assets (columns (3) and
(4)). The control variables include Tobin’s @, Ln(total assets), Cash holdings, Cash flow, and Tangible
assets. In the CGS models we also control for contemporaneous Sales/Assets. In even-numbered columns,
we also control for market power variables: a dummy variable for the top 4 industry seller, and Sales/Total
industry sales. All explanatory variables are lagged by one quarter. The regressions include firm and

Fama-French 48 Industry xyear-quarter fixed effects.

Standard errors are clustered at firm and year-

quarter levels. *, xx, % * x denote significance below 10%, 5%, and 1% levels, respectively.

VARIABLES Markup CGS/assets
1 @) ) 1)

-(Z-score) 0.0037*%% 0.0029%**  -0.00058***  -0.00054***

(0.00057) (0.00053) (0.000080) (0.000079)
Market power variables No Yes No Yes
Other Control variables Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes
Industry x Year-quarter fixed effects No Yes No Yes
Observations 571,388 564,418 568,015 561,177
R-squared 0.614 0.634 0.949 0.951
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Table 5: Markup, CGS and credit risk: NBER recessions

Regressions of Markup or CGS/Assets on -(Z-score) that interacts with a Recession dummy variable

which equals one for the following quarters: 1973Q4-1975Q1, 1979Q2-1980Q2, 1981Q2-1982Q2,
1989Q4-1991Q1, 2001Q1-2001Q3 and 2007Q4-2009Q2. We exclude the Covid-related recession
during 2020Q1. For each recession, the values of -(Z-score) and the control variables during the
recession periods are fixed as of the last quarter before the onset of the recession. The control
variables are as in and we control for contemporaneous Sales/Assets in the CGS regres-
sions. The variable definitions are in The regressions include firm and Fama-French 48
Industry xyear-quarter fixed effects. Standard errors are clustered by firm and year-quarter levels.
%, *%, * % * denote significance below 10%, 5%, and 1% levels, respectively.

VARIABLES Markup CGS/assets
0 ) G) (4)

-(Z-score) x Recession 0.0019**  0.0016***  -0.00023**  -0.00025**

(0.00075)  (0.00051)  (0.00011) (0.00010)
-(Z-score) 0.0035%** 0.0028%** -0.00057*** -0.00053***

(0.00056)  (0.00052)  (0.000077)  (0.000077)
Market power variables No Yes No Yes
Other Control variables Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes
Industry x Year-quarter fixed effects No Yes No Yes
Observations 563,120 554,348 560,343 551,691
R-squared 0.616 0.636 0.948 0.950
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Table 6: Markup, CGS and credit risk: Exposure to the financial crisis

Regressions of Markup and CGS on firms’ -(Z-score) that interacts with the extent of exposures
to the 2008 financial crisis. The sample include the 2,429 firms in |Chodorow-Reich (2014).
The two-year periods before and after the crisis are July 2006 to June 2008, and January
2009 to December 2010, respectively. The three measures for crisis exposure are %Loans re-
duction, Lehman exposure and ABX exposure, using Chodorow-Reich’s (2014) variables. The
variable Lender exposure equals zero for the two-year period before the crisis, and equals its
actual respective value for the two-year period after the crisis. The values of -(Z-score) are
as of the end of 2007. The firm-level control variables (including market power variables) are
as in fixed at the end of 2007 for the entire post-crisis period. In CGS regressions
we also control for the contemporaneous Sales/Assets. The specification is as in the model
Ykt =a+ Pi1x—(Z — score)janor* Lender exposure;, + Pox Lender exposure;

+ Z B3,m*Control variable,, ;i1
m

+ Z Ba,m*Controls variablesy, ;—1+Lender exposurej; + 0; + ni+ + €

The variables are d?ﬁned in[Table I} The regressions include Market power variables, Market power
variables xlender exposure, other Control variables, other Control variablesxlender exposure, firm
and Fama-French 48 Industry xyear-quarter fixed effects. Standard errors are clustered by firm. *,
*x, * % *x denote significance below 10%, 5%, and 1% levels, respectively.

% # Loans reduction Lehman exposure ABX exposure
VARIABLES Markup  CGS/assets Markup CGS/assets  Markup — CGS/assets
M @) ® @ ® ©
-(Z-score) xlender exposure 0.086**  -0.030*%**  0.160**  -0.058***  0.084***  -0.027***
(0.034) (0.011) (0.072) (0.021) (0.027) (0.008)
Lender exposure -0.699 0.017 -0.969 -0.149 -0.902** 0.019
(0.455) (0.157) (0.689) (0.221) (0.410) (0.129)
Market power variables Yes
Market power variablesxlender exposure Yes
Other Control variables Yes
Other Control variablesxlender exposure Yes
Firm fixed effects Yes
Industry x Year-quarter fixed effects Yes
Observations 20,621 20,613 20,621 20,613 20,621 20,613
R-squared 0.905 0.987 0.905 0.987 0.906 0.987
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Table 7: Markup, CGS and credit risk:
Dynamic effects of exposure to the financial crisis

Regressions of Markup and CGS/Assets on firms’ -(Z-score) that interacts with the extent of lender exposures
to the 2008 Financial Crisis. The estimation is of model , replacing the Lender Exposure variable with an
interaction terms S, x —(Z — score); 2007 X (LE, Dy). LE is lender exposure, measured by three variables.
D,, is a dummy variable that equals one for the indicated quarter n and zero otherwise, where n equals
—1,-2,-3,—-4,+1,+2,+3, +4, +5+, +5+ capturing quarters +5 to + 8. This numbering applies to the last
four quarters in the pre-crisis period, Q3-Q4/2007 and Q1-Q2/2008, and for the four post-crisis quarters,
Q1-Q4/2009, with D5, = 1 for the quarters Q1-Q4,/2010. The lender exposure (LE) measures are due to
Chodorow-Reich| (2014)); see details in The values of -(Z-score) and the control variables are as of
the end of 2007. The last two rows show the results from F-test for joint significance of the coefficients of
the interaction terms between -(Z-score) and the size of LE for quarters D,,. The regressions include firm
and Fama-French 48 Industry x year-quarter fixed effects. Standard errors are clustered by firm. *, #%, * %
denote significance below 10%, 5%, and 1% levels, respectively.

% # Loans reduction Lehman exposure ABX exposure
VARIABLES Markup  CGS/assets Markup CGS/assets Markup CGS/assets
—(Z — score) x LE, D_,4 0.013 -0.003 0.068 -0.019 0.014 -0.004
(0.025) (0.013) (0.050) (0.031) (0.020) (0.011)
—(Z — score) x LE, D_3 -0.011 0.004 -0.006 -0.00041 -0.004 0.001
(0.027) (0.009) (0.065) (0.015) (0.022) (0.006)
—(Z — score) x LE, D_5 0.023 -0.008 0.078 -0.026 0.034* -0.012*
(0.026) (0.009) (0.051) (0.016) (0.021) (0.007)
—(Z — score) x LE, D_4 0.029 -0.005 0.101* -0.019 0.036 -0.010
(0.028) (0.012) (0.055) (0.020) (0.022) (0.009)
—(Z — score) x LE, Dy 0.060 -0.032 0.132 -0.068 0.062* -0.030%*
(0.045) (0.020) (0.091) (0.042) (0.037) (0.017)
—(Z — score) x LE, Dy 0.123%FF  _0.045%FF  0.244%**  _0.082***  (0.117***F  -0.039***
(0.042) (0.015) (0.080) (0.026) (0.032) (0.011)
—(Z — score) x LE, Ds 0.135%**  _0.052%FF  0.272%** 0. 107FFF  (.128%**  _(.045%F*
(0.041) (0.018) (0.081) (0.036) (0.032) (0.014)
—(Z — score) x LE, Dy 0.086** -0.035%* 0.180** -0.080** 0.093***  _0.033**
(0.042) (0.018) (0.082) (0.032) (0.032) (0.014)
—(Z — score) x LE, D5, 0.083* -0.021 0.170* -0.046* 0.087** -0.022%*
(0.043) (0.014) (0.091) (0.025) (0.034) (0.010)
Lender exposure, D, Yes
Control variables Yes
Control variablesx Lender exposure Yes
Firm fixed effects Yes
Industry x year-quarter fixed effects Yes
Observations 19,914 19,906 19,914 19,906 19,914 19,906
R-squared 0.903 0.987 0.903 0.987 0.904 0.987
F-statistic for n = +1 to +4 3.83%K* 2.88%* 3.79HH* 3.08%* 4,621 3.5k
F-statistic for n = —1 to —4 0.63 0.74 1.29 1.00 1.21 1.57
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Table 8: Markup and credit risk: Separate estimations by market power

Panel A is a replication of the Markup test of regressions of Markup on -(Z-score). Panel
B is a replication of the Markup test in regressions of Markup and CGS on -(Z-score) that
interacts with indicators of NBER recession periods. Panel C is a replication of the Markup tests in
regressions of Markup on -(Z-score) that interacts with the exposures to the 2008 Financial
Crisis. Firms are sorted in each quarter into two groups by their sales scaled by the total industry
sales: Those that rank among the top 5% of firms (HMP) in the industry and the remaining firms
(LMP). We then estimate our models separately for each group based on the sorting that is done
in the lagged quarter. The dependent variable is Markup. All models include control variables,

firm and Industry xyear-quarter fixed effects.

Panel A: Baseline

Panel B: NBER recessions

HMP-Top 5% LMP HMP-Top 5% LMP
VARIABLES Markup
M ) ©) @
-(Z-score) 0.00013 0.0029%** -0.00030 0.0028%**
(0.0015) (0.00053) (0.0015) (0.00052)
-(Z-score) x Recession 0.0024 0.0016%***
(0.0018) (0.00051)
Control variables Yes
Firm fixed effects Yes
Industry xyear-quarter fixed effects Yes
Observations 23,681 539,460 23,282 529,811
R-squared 0.903 0.633 0.901 0.635

Panel C: 2008 Financial Crisis

% # Loans reduction

Lehman exposure

ABX exposure

HMP-Top 5% LMP  HMP-Top 5% LMP  HMP-Top 5%  LMP
VARIABLES Markup
0 ) ©) @) ©) ©)

-(Z-score) xlender exposure 0.219 0.086** 0.723* 0.164** 0.316 0.085%**

(0.211) (0.034) (0.370) (0.072) (0.239) (0.028)
Lender exposure 2.394 -0.663 0.682 -1.015 1.495 -0.903**

(2.908) (0.505) (4.093) (0.774) (2.509) (0.449)
Control variables Yes
Firm fixed effects Yes
Industry x year-quarter fixed effects Yes
Observations 829 19,605 829 19,605 829 19,605
R-squared 0.982 0.903 0.982 0.903 0.982 0.903
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Table 9: Operational hedging and stock return during Covid period

Cross-section regressions of firms’ stock returns over the two-year period 2020-2021 on measures of
operational hedging at the end of 2019: SCH that measures the supply chain diversification, and
Inventory/Sales ratio, both defined in The control variables are Book/market ratio and
equity capitalization (both in logarithm), denoted In(B/M) and In(Size), and the % changes in sales
in 2019. The regressions include Fama-French 48 Industry fixed effects. High and low -(Z-score)
are defined as -(Z-score) being above and below the sample median, respectively. #, s, %% denote
significance below 10%, 5%, and 1% levels, respectively.

2020 — 2021 stock return
Full sample High -(Z-score) Low -(Z-score)

(1)

(2)

(3)

Ln(inventory /sales) 0.015 -0.020 0.051*
(0.030) (0.054) (0.029)
SCH 0.064%** 0.021 0.049**
(0.023) (0.035) (0.022)
Ln(B/M) -0.227%* -0.161 -0.296%**
(0.075) (0.184) (0.074)
Ln(size) -0.135%%* -0.17717%%* -0.052*
(0.034) (0.057) (0.026)
% changes in sales, 2019 -0.190 -0.359 0.132
(0.218) (0.354) (0.254)
Industry fixed effects Yes
Observations 1,664 795 737
R-squared 0.070 0.096 0.161
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Internet Appendix

I.A. Complete table of [Table 4

Table IA.1: Markup, CGS and credit risk — Complete table

This table reports the complete table of [Table 4

VARIABLES Markup CGS/assets
&) (2 (3) 4)
-(Z-score) 0.0037***  0.0029***  -0.00058***  -0.00054***
(0.00057) (0.00053) (0.000080) (0.000079)
Tobin’s Q 0.021%** 0.019%** -0.0048%** -0.0048%**
(0.0020) (0.0019) (0.00036) (0.00035)
Ln assets 0.0073%** 0.0058** 0.0035%** 0.0036***
(0.0028) (0.0026) (0.00049) (0.00054)
Cash holdings -0.070%**  -0.065%** 0.0010 0.0012
(0.015) (0.015) (0.0022) (0.0022)
Cash flow 0.91%** 0.85%** -0.19%%* -0.18%**
(0.044) (0.038) (0.0072) (0.0069)
Asset tangibility -0.035%* -0.0061 -0.015%** -0.015%**
(0.014) (0.014) (0.0029) (0.0029)
Top 4 industry seller -0.00019 0.00018
(0.0047) (0.0019)
Sales/industry sales -0.28%#* 0.071%**
(0.078) (0.021)
Sales/AT 0.75%** 0.75%**
(0.0054) (0.0054)
Market power variables No Yes No Yes
Other Control variables Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes
Industry x Year-quarter fixed effects No Yes No Yes
Observations 571,388 564,418 568,015 561,177
R-squared 0.614 0.634 0.949 0.951
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I.B. Model Solutions Under Different Default Risk Scenarios

We solve the model by considering three different scenarios based on the relative magnitudes
of financial default boundary (ur) and operational default boundary (up). First, we analyze
the benchmark case where net debt is zero (F = 0), then examine the case where financial
default risk dominates (up > up), and finally study the case where operational default risk
dominates (up < up). This systematic approach allows us to fully characterize the optimal

hedging policies under all possible scenarios.

IB.I Benchmark: Optimal hedging policy i when F =0

For net debt level F' close to zero, the financial default boundary remains below the oper-
ational default boundary when the firm chooses the first-best hedging level 7 that ignores

credit risk, provided the following technical assumption holds:E]

Assumption 1B.1.
K(I+1i) <, (IB.1)

where i is the solution of equation ([C.2)).

This assumption guarantees that the firm’s date-0 cash flow is sufficient to implement

the first-best operational hedging level 7 when only operational default risk is present.

We now analyze cases where both financial and operational defaults are possible. In these
scenarios, the firm faces a fundamental tradeoff between allocating resources to prevent
financial default and maintaining operational hedging. For our analysis, we maintain the

following technical assumption:

Assumption IB.2. The commitment to production I is sufficiently high and K,(++D 1S Ssuf-

ficiently low that the inequalities p — K'(I) > (pI 4+ x2)aK'(I) and ({[C.15)< 0 hold simulta-

neously.

This assumption ensures the existence of unique and positive interior optimal hedging
levels i* and ¢* in regions where up > up and up < uo, respectively.

The economic interpretation of these conditions is straightforward. The requirement
that I be sufficiently high means that the firm’s customer contract is substantial enough

to warrant operational hedging consideration. Following standard investment literature, we

25We provide a formal proof in [Appendix IC.I

49



specify the production cost function as quadratic: K(I + i) = (I + i)?, where k£ > 0.
The condition that w be sufficiently low is satisfied by choosing a sufficiently small
k, ensuring that production costs scale reasonably with quantity. This provides the firm

flexibility in operational hedging decisions even at high production levels.

IB.IT Optimal hedging policy i* when upr > up

When the firm’s inherited debt level is sufficiently high that the financial default boundary
exceeds the operational default boundary for all cahedging levels i € [0,1], then the firm
would have already declared financial default at date-1 for the shock values that would

trigger the operational default. Thus, operational default boundary does not enter the

equity value function in this case. In [Appendix [C.II we show that in this case, a unique

optimal operational hedging policy exists and the optimal hedging policy decreases with the
firm’s inherited debt level.

IB.III Optimal hedging policy i* when ur < uo

We now examine a more interesting case where the firm’s inherited debt level is sufficiently
low such that the financial default boundary remains below the operational default boundary
for i € [0,1]. In this case, the operational default boundary enters the equity value function.
The equity value E equals F (given in ([C.4))) minus the expected cost proportional to the

date-2 franchise value, Axs:
A uO
E=F-— / Azog(u)du , (IB.2)
up
When equity holders choose the optimal level of operational hedging ¢ to maximize E, it

yields the following first-order condition:

AT29(uo)
1 —G(up)]d(uo) ’

p— K'(I+14)=[V(up,i) — Axa]h(up)K'(I +1i) + (IB.3)
where V(up,i) = p[(1 — 0(up)) + i] + x5 is the firm’s date-2 cash flow and franchise value
at the financial default boundary.

Let ¢* denote the firm’s hedging policy that satisfies ([B.3). The left-hand side, p —
K'(I + i), represents the marginal profit or loss from additional operational hedging. Note
that this term can be negative if the optimal 7* is high enough that the marginal production

cost K'(I + i) exceeds the price p.
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A marginal increase in ¢ has opposing effects on expected losses from operational and
financial default. It increases the expected cost of financial default by raising the financial
default boundary u F,ﬁ while decreasing the expected cost of operational default by reducing
the operational default boundary ugp, as captured by the last term in ([B.3]). Thus, the first-
order condition ([B.3]) indicates that the firm chooses 7* to equate its “markup”’with the net
effect of these two forces—the marginal increase in expected financial default cost and the
marginal decrease in expected operational default cost. Furthermore, we prove that when
up < up for i € [0,1], higher inherited net debt leads to lower optimal operational hedging:

We prove in [Appendix IC.ITI| that the first-order condition yields a unique and
positive interior solution 7* that maximizes F subject to D(i, F) > 0 for i € [0,i] under

|[Assumption IB.2| By comparing the first-order conditions ([C.2)), (IC.5) and (IB.3)), we can
establish that 7 > 7* > i*. Intuitively, when the firm’s inherited net debt F is sufficiently

low, the operational default boundary up exceeds the financial default boundary upz. In this

case, operational default risk becomes the primary concern for equity holders, leading to

higher investment in operational hedging. The following lemma, proved in [Appendix IC.III]

formalizes the above relationship.

Lemma IB.1. i > i* > i* if|Assumption IB.4 holds.

Furthermore, we prove in [Appendix IC.III| that when up < wo for i € [0,1], higher

inherited net debt leads to lower optimal operational hedging when [ is sufficiently high:

Lemma IB.2. When F is such that 0 < up < up for i € [0,i], the optimal operational

hedging policy ©*, if exists, decreases in the firm’s net debt level F .

IB.IV Optimal operational hedging policy and net debt F

We now formally characterize the relationship between the firm’s optimal operational hedging
policy and its inherited net debt level F.

Define Fy, as the maximum net debt level that allows the firm to repay its debt at date-1
when choosing the optimal hedging policy ¢ that maximizes the unlevered firm value, as
derived in [Appendix IB.Il Mathematically, Fy, + K (I + i) = 0. When F < Fyy,, short-term
debt is riskless and the firm chooses the optimal hedging policy as if there were no debt.

Recall that D = up — up represents the difference between financial and operational

default boundaries. Let D*(F) = D(i*(F),F) and D*(F) = D(i*(F), F) denote these

differences when the firm chooses hedging policies i* and *, respectively. There exist unique

26Notice that the loss conditional on a financial default is reduced by Azs because the firm has already
lost Az due to operational default when it declares financial default.
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thresholds Fyy and F such that such that D*(F) = 0 and D*(Fy) = 0. When F < F, we
have D* < 0 and when F > Fy, we have D* > 0. Similarly, D* < 0 when F < Fj, and

D* > 0 when F > F,. [Proposition IB.1| summarizes this relationship between the firm’s

optimal operational hedging policy and its net debt level maturing at date-1:
Proposition IB.1. If[Lemma IC.3 holds, then
I If0<F< Fﬂ,, the firm’s optimal operational hedging policy is i.
II. If Fyy < F < Fy, the firm’s optimal operational hedging policy is .
III. If Fy < F < F, the firm’s optimal operational hedging policy is i such that up = uo.

IV. If F > Fy, the firm’s optimal operational hedging policy is i*.

I.C. Detailed proofs of |Appendix 1.B

IC.I Proofs of the benchmark case in which F =0

Consider first a benchmark case when the debt level F' = 0. In this case, financial default is
irrelevant: uy = 0. The firm will choose the hedging policy i that maximizes the unlevered

date-0 equity value:

E= /OOO [:IJO—K(I—i—i)—l—a_cl +utp[(1—6(u))l + i]+a:2]g(u)du—/0uo Arog(u)du . (IC.1)

The last term of Equation (IC.1)) reflects the proportional loss of franchise value in case of

operational default. The first-order condition is

OF g(uo)

O K'(I+i)— -
i p ( +Z) )\xzjdl(uo) 0
/ . g(uO)
— K'(I = IC.2
p ( +Z) >\$216,<uo) s ( C )

where uo = 67! (%). Define ¢ the solution for the first-order condition (IC.2). In what

follows, we show that 7 is also the unique optimal hedging level that maximizes the equity
value (IC.1]), under [Assumption IB.1]

Since D(i, F') is continuous in F, up is always smaller than uo for i € [0,4] when F is

sufficiently small.
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The second-order derivative of F with respect to i is:

_ 8" (u.
0*E ATo g’(uo) - g<u0) 5/((ug))

W _ _K//(]+i) — 72 [(5'(’&0)]2

<0 (IC.3)

Since d(u) is decreasing and convex in u, %275 is always negative if the production commitment
I is sufficiently high. In other words, the objective function E is concave in i. Thus, i is the

unique optimal solution that maximizes the equity value ([C.1)).

IC.IT Proofs of optimal hedging policy when ur > ugp

The total payoff to equity holders is the sum of cash flows from assets in place and the
payoff from the contractual fulfillment to customers, less the production cost, the operational
hedging cost and the debt repayment, provided that the firm does not default on its debt in

the interim. The market value of equity is therefore given as:

E= /00 [u —up+p[(1—0(u)l +i] + z2|g(u)du , (IC.4)

ufr

where up is given in (2.3). (u — up) is the amount of cash left in the firm after debt F
is repaid, and p[(1 — 0(u))l +i] + x5 is the firm’s period-2 cash flow and franchise value,
conditional on the firm not defaulting in the interim.

Equity holders choose the level of operational hedging ¢ to maximize equity value E in
(IC.4)), which yields the following first-order condition:

p—K'(I+1i) = V(up,i)h(up)K'(I +1) , (IC.5)

where V(up,i) = p[(1 — 0(up))l +i] + xo is the firm’s date-2 cash flow and franchise value
at the financial default boundary. Define i* as the firm’s hedging policy that satisfies .
On the one hand, a marginal increase in operational hedging yields a marginal profit equal to
its markup p— K’(/+1). On the other hand, a marginal increases in operational hedging also
increases the expected cost of financial default, which is the product of three terms on the
right-hand side of Equation : the first term is the loss of date-2 cash flow and franchise
value if financial default occurs; the second term is the hazard rate of a financial default;
and, the last term is the marginal effect of additional operational hedging on the financial
default boundary ug. The first-order condition says that the firm chooses the hedging policy

7* such that the markup is equal to the marginal increase of the expected financial default
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cost.

Comparing the first-order conditions (IC.2) and ([C.5), it is straightforward that i > i* 7"
Next, we show that the first-order condition (IC.5) admits a unique and positive interior
solution 7* that maximizes E subject to D(i, F') > 0 for i € [0,] under [Assumption IB.2]

Lemma IC.1. If [Assumption IB.4 holds and F is sufficiently large, then the first-order
condition (IC.6) guarantees a unique and positive interior solution i* that maximizes F
subject to D(i, F) > 0.

Proof. Since u is exponentially distributed on [0, 00) with g(u) = ae™*" and h(u) = «, the
first-order condition (IC.5)) simplifies to

p—K'(I+1i)=V(up,i)aK'(I+1). (IC.6)

Define ¢* is the firm’s optimal hedging policy that satisfies .

First, we show that i* that satisfies the first-order condition is the unique opti-
mal solution for the maximization problem when ur > up. Define S = p — K'(I +1i) —
V(up,i)h(up)K'(I + 1). Taking the derivative of S with respect to i:

oS K"(I+1)+ —8V((972F’i)h(uF)K/(I + 1) (IC.7)
O | (120 (1 1) () |
v .
and 92
a;LQF _ K”([ —i—i) >0 (10.9)
Using these quantities,
05 | K"(I+i)+p[l— & (up) IK'(I +i)]h(up)K'(I +i) (1C.10)
Oi +V (e, D) 2L K1+ )2 + V (up, i) h(up) K" (1 + 1)
% is smaller than zero. Thus, the second-order condition for maximization [1 — G(UF)]%

at ¢ = i* is smaller than zero. By the first-order condition (IC.5), S = 0 if ¢ = i*. Since

% < 0, we have S > 01if ¢ <i* and S < 0if ¢ > i*. Since %E =[1 — G(up)]S, E increases

2"We prove this claim formally in |Appendix IC.IHl
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in ¢ for ¢+ < ¢* and decreases in ¢ for ¢ > i*. Therefore ¢* is the unique optimal solution to

the maximization problem.

Now we prove that [Assumption IB.2| is sufficient condition that guarantees a positive

interior solution i* and D(i*, F') > 0 when F is sufficiently large. Denote i such that p —
K'(I +1i) = (p(I + i) + z2)aK'(I +i). Notice that ¢ must be strictly greater than zero.
This is because the left hand-side of the above equation decreases with ¢, the right hand-side

increases with 7, and left hand-side is strictly greater than the right hand-side when i = 0

by [Assumption IB.2| since K (I + i) is convex in i. For any F' > 0, the right hand-side
of the first-order condition when ¢ = i is V(up,i)aK’(I + i), which is smaller than
(p(I + 1) + x2)aK'(I +i) = p— K'(I +1i). The left hand-side of the first-order condition
decreases with 7. The right hand-side of the first-order condition (IC.6]) increases with

i. This is because up increases with ¢ and §(u) decreases with u. Consequently, (1 — d(ug))

increases with i. K’(I+1) increases with i because the convexity of K in i. So the optimal i*
that satisfies the first-order condition (IC.6)) must be strict greater than i. Denote Fj; such
that D(i, Fyy) = 0. Then for any F > Fyr, we must have D(i*(F), F) > D(i, F') > 0. This is
because D(F',4) increases in F and 4, and i*(F) > i. Thus, we have proved that for F' > F,
the first-order condition admits a positive interior solution ¢* and the financial default
boundary up is greater than the operational default boundary up when the firm chooses the
optimal hedging policy *. Since we have proved that the first-order condition is also

the sufficient condition for the solution of the constrained maximization problem subject to

D(i, F) > 0, we have proved [Lemma IC.1 Q.E.D.

states that the optimal optimal operational hedging policy decreases in the

firm’s net debt level F' in this case:

Lemma IC.2. When F is sufficiently high such that up > uo for i € [0,i], the optimal

operational hedging policy i*, if exists, decreases in the firm’s net debt level F .

Proof. Notice that the optimal hedging policy ¢* and the associated financial default bound-

ary up are all functions of F. The firm’s optimal operational hedging policy i* decreases in

F. Define M(i*(F), F) = E(i*(F), F) the value function under optimal hedging policy i*.

By the first-order condition, ?)Tj‘f = 0. Differentiating both sides with respect to F":
0?M 0i* oM
. _ =0 IC.11
0i*? OF * 0*OF ( )
From equation ([C.11) we get % = — 8‘23%5 / gj% . Since %21.% < 0 by the second-order
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faM

oy . 9i* - .
condition, the sign of &% is the same as the sign of 575=.

— =[1-G 1o h K'(I Vv " —K'(I
S = L Gl [p18 ) T Rur) K1 489 = Vi, i) T g1 4 )
! !/ %k « %k ah(UF) ! .
=[1 - G(up)] |pld"(up)h(up)K'(I +i*) — V(up,i*) Dy K'(I +1)
(IC.12)
Since u follows a exponential distribution, agg"; ) = 0. Thus, Equation ([C.12) is smaller
than zero. Therefore < 0. Q.E.D.

’8F

IC.III Proofs of optimal hedging policy when ur < ugp

We begin this subsection by proving the following lemma:

Lemma IC.3. [f|Assumpti0n ]B.Q holds, then i* that satisfies (IB.3)) uniquely maximizes
E.

Proof. First, we show that ¢* that satisfies the first-order condition (IB.3) is the unique
optimal solution for the maximization problem. Define § = p — K'(I + i) — [V (up,i) —
Aol h(up) K'(I + i) — 22290) Duo - aking the derivative of S with respect to i:

1-G(up) i
05 | K"+ i)+ EER(up) K/ (1 + ) + [V (up, 1) — Ao] 0 B0 K (1 + )
i +[V(up,i) — /\IQ]h(uF)ag%—i—)\xga %}
(IC.13)
9 g(uo) ]_ [g’(uow(Uo)—g(uo)é”(uO) L 9lur) KT+ 1)g(uo )} !
0i L[1 = Gur)d'(uo) [1 = Gup)][0"(uo) 1 - G(ur)® I?{éu%

The absolute Value of (IC.14)) is small if[Assumption 1B.2/holds. Using quantities (IC.8)),

[T and ([CT9). %

K'"(I+14)+p[l =0 (up)IK'(I+)]h(up)K'(I+1)
= | +[V(up,i) = Avo]h(up) K" (I + 1) (IC.15)

g (u0)d (uo)—g(up)8” (uo) | glup)K'(I+i)g(up) 1
AT [ [1-G(ur)|[8" (uvo)|?1 + [1-G(ur)|? } 18" (up)

a8
i

% is always smaller than zero, thus, the second-order condition for maximization [1 —

G(uﬂ]% at ¢ = i* is smaller than zero. By the first-order condition (IB.3), S=0ifi=

N

Since 2% < 0, we have § > 0 if i < ¢* and S < 0 if i > 7*, SlncegiE—[l—G( )]S
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increases in ¢ for ¢ < ¢* and decreases in i for ¢+ > i*. Therefore, i* is the unique optimal

solution to the maximization problem. Q.E.D.

Now we prove [Lemma IB.1| i* satisfies the first-order condition (IC.5]):

p— K'(I+) = V(up,i*)h(up)K'(I + )

Azag(uo)
1 — G(up)|Id'(up)
(IC.16)
The inequality holds because A\xoh(up)K'(I+i*) > 0 and % < 0. Now taking the
derivative of both sides of the first-order condition in the case up > up, , with respect
to i. The derivative of the left-hand side is —K”(I + ). The derivative of the right-hand

side is

> V(up, i )h(up)K'(I + 1) — Axoh(up)K'(I + %) +

0up

p[l — 8 (up)IK'(I +i)|h(up)K'(I +14) 4+ [V (up,i) — Az [K'(I +1)]?

+ [V(up, i) — Azo)h(up) K" (I + 1)

9'(u0)d'(uo) — g(uo)d"(uo) | g(ur)K'(I +i)g(uo)| 1

+ Axg [1— G(up)][ (wo)2I [1— G(up))? 10" (uo)

(1C.17)

The quantity ([C.17) is always greater than —K”(I + i) by [Assumption IB.2] Thus the
left-hand side of Equation (IB.3|) decreases in ¢ and the right-hand side of Equation (IB.3))
increases in 7. Since ¢* satisfies the first-order condition in uo > up case, ([B.3). We must

have ¢* > i*. Meanwhile, 7 satisfies the first-order condition (LC.2)):

p—K'(I+i*) =z, [%“(“L;O))
. , o , " Azag(uo)
< V(UF,Z )h(UF)K (I +1 ) )\th(uF)K (I +1 ) + [1 — G(UJF)]I&(UO)
(IC.18)

In a similar way, we can prove that i > i*.

In what follows, we prove Lemma IB.2} the firm’s optimal operational hedging policy

i* decreases in F. Define M (i*(F), F) = E(i*(F), F) the value function under the optimal

. PR o _ 92N 1 9°M  q: %M
hedging policy *. Similar to the case up > uo, 35 = _ai*aﬁ/ai*2' Since o2 < 0 by the
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second-order condition, the sign of g% is the same as the sign of

Ji*OF "
y u A’* /:* Oh(u u .
M ) IO (up) 2 hup) K (I + 1) — [V (up, i*) — Aao) 201 9 for(] 4 )
ai*aF Az g(uo)g(ur) our

I [1=G(ur)?6'(uo) OF

oup . AT g(uo)g(ur)
=1- — |pId h K'(I +4*) —
(1 Glur) G (P18 (e (1 477) = 22 20
(IC.19)
Since u follows an exponential distribution, %u;) = 0. Thus, Equation (IC.19) is always

smaller than zero if the production commitment [ is sufficiently high. Therefore, g—? < 0 if

the production commitment [ is sufficiently high.

IC.IV Proofs of [Proposition IB.1| and [Proposition 2.1

We now prove |Proposition 1B.1| and |Proposition 2.1} First, let us recall the key definitions
and thresholds:
The threshold Fy, represents maximum net debt level that allows the firm to repay its debt

at date-1 when choosing the optimal unlevered hedging policy 4, satisfying Fy,+ K (I +1) = 0.
The difference between financial and operational default boundaries is denoted by D =
up — uo. When the firm chooses hedging policies i* and 7*, these differences are given by
D*(F) = D(i*(F), F) and D*(F) = D(:*(F), F), respectively. The thresholds Fy and F} are
defined by D*(Fy) = 0 and D*(F}) = 0.

This subsection will show that these thresholds F, and F; exist uniquely and satisfy
Fy < Fy. Moreover, we will prove that D* < 0 when F < Fy and D* > 0 when F > F,.
Similarly, we will demonstrate that D* < 0 when F < Fy; and D* > 0 when F > F.

First, we note that when the inherited net short-term debt level is sufficiently low (F' <
Fyy), the optimal hedging policy ¢ maximizes equity value as if the firm were unlevered.
When F' > Fj,, the firm must choose an optimal hedging policy i that balances the tradeoff
between financial and operational default risks, which we elaborate on below.

Notice that D(i, F) is continuously differentiable in both i and F with partial derivatives:

oD
oD
o5 = | (IC.20b)

Notice that 92 > 0 because K'(I 4+4) > 0 and §'(u) < 0 by assumption. The following
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lemma is for technical purpose. It facilitates our proof that both D*(F) = 0 and ﬁ*(F )=0

have unique solutions, which we denote as F, and F}, respectively.

Lemma IC.4.
dD*
— > 0 if up(i*) > up(i*) (IC.21a)
dF
dD* R R
T >0 if up(i*) > up(i") (IC.21b)

Proof. First we prove the following inequality:

dD*  9D*  OD* 9i*
aF ~ oF "oiar " (16.22)

Using Equations ([C.20a]) and ([C.20b|) Inequality ([C.22)) is equivalent to

1 oi*
K(I+i)———|(-25]) <! 1C.23
d+7) Ié’(uo)}( aF) (10.23)
From [Appendix IC.II, 9% = — 0L /0M M g given by Equation ([C.12). 22 is

given by [1 — G (up)]gis* where % is given by Equation (IC.10) at ¢ = i*. Thus, Inequality

(IC.23) is equivalent to

V{ur, 1) LK 4 %) = pl9 (up)h(un) K0 +%) 1= 18(uo) K +7°)

8’U,F

<1
_TA/
K(I+ %) + p[1 — 8" (up) IK'(I + *)]h(up) K'(I + i) 19'(uo)
+V (up, ) OB (K (1 + )] + V (up, i*)h(up) K" (I + i)
(IC.24)
Algebraic simplification shows that the above inequality is equivalent to
 Oh " "
V(up,i*) 8SLuF>K/(I + %)+ pl [6'(uo) — 0" (up)] h(up)K'(I + i)
F

< [14+ V(up,i)h(up)] K" (I +i*) [—18 (uo)] (IC.25)
Since u follows a exponential distribution, BZ—(u“) = 0 and the first term of the left-hand side of

Inequality (IC.25)) is equal to zero. the second term on the left-hand side is (weakly) smaller

than zero if up > up because 0(u) is convex in u. Therefore the left-hand side of Inequality
(IC.25) is (weakly) smaller than zero. The right-hand side of Inequality (IC.25|) is strictly
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greater than zero. Therefore, Inequality ([C.25) m holds and - > 0.
Now we prove the following inequality:

dD* 0D* 0D* 0"
) _ oD 9oy 1C.26
iF  oF " groF (IC.26)

Inequality ([C.26)) is equivalent to

- 1 oi*
KI+1)———||—-—==]| <1 1C.27
1+~ T3] ( 8F> e
From Appendix IC.ITI}, §7 5—53@/2%- LAL is given by Equation (IC.19). ?;Aé[ is

given by [1 — G(uF)]8 > where ag is given by Equation (IC.15) at ¢ = ¢*. Thus, Inequality

(IC.27)) is equivalent to

Ao TG (1 + )

[ (uFa )
—pld'(u )(UF)K/(I+Z)

(u0)g(ur) .
7 G P (o) L= 1) KNI +7) _ |
[ g ao ] T
K"(I +1%) 4+ p[1 — & (up) IK'(I + 0*)|h(up) K'(I + %) 18" (uo)

+[V (up, 1 ) o) 2alur) WW [K'(I +*)]?

(u0)d' (uo0) —g(u0)d" (uo) | glup)K'(I+i*)g(uo) 1
+)\$2[ =Gl wol’l T F[I—G(HF)]2 ] 16'(uo) |

(IC.28)
Algebraic simplification shows that the above inequality is equivalent to

[V (up,i*) — Axﬂah(uF)

KT+ 4 p1 5 u0) = Cur)] Wup) K'(1 -+ 7) 4 27200
LV §9) = M) K71+ ) 16 o)) — Ay L 21 0) — g0 ) o)
(

(9uF

1C.29)
Since u follows a exponential distribution, 8}55;‘) = 0 and the first term of the left-hand

side of Inequality ([C.29)) is equal to zero. the second term on the left-hand side is (weakly)
smaller than zero if urp > up because d(u) is convex in u. The first term of the right-hand
side of Inequality ([C.29) is strictly greater than zero. Therefore, to show that Inequality
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(IC.29)) holds, we need to show that:

Azy  g(uo)g(ur) g'(u0)d'(uo) — g(uo)d"(uo)

T = Clur)Pou) ~ ™ 1 = Glup)(uo) P (10.30)
Or, equivalently,
Ay g(uo)g(urp) g (up)d' (uo) — g(uo)d" (uo)
T 1 Clur)i(mo) " L= Glun o)l "
A, 9(uo)g(ur) | ¢(u0)8 (o) — gluo)" (o)
b o B [ e e e 5 (uo) <!
g(uo)g(ur) = g'(uo)d (uo) — g(uo)d”" (uo)
& 1= Glup)) + 5 (o) >0 (IC.31)

Since g(u) = aexp(—au), ag(u) = —¢'(u), and m = «, the inequality (IC.31)) is
equivalent to

6//(uo)
<0 1C.32
(SI(UO) ( )
which always holds since 6(u) decreases and convex in v by assumption. Therefore, ¢ W >
0. Q.E.D.

We turn to the formal proof of [Proposition IB.1|and [Proposition 2.1} First, ¢* and ¢* are

continuously differentiable in F' and D(i, F') is continuously differentiable in both i and f.
It follows that D*(F) and D*(F) are continuously differentiable, thus continuous in F.

Secondly, from [Appendix [B.Illand [Appendix IB.III} we know that up is greater than uo,
i.e., D*, D* > 0 when F is sufficiently high, i.e., ' > Fy;. To see this, from|Lemma IC.1| D* >
0if F'> Fyy. Frorn for a given F, 7* > i*. Since D(i, F) increases in i, D* > 0
when F' > Fj;. On the other hand, if F =0, up = 0, which is always lower than uo. Since
D*(F) and D*(F) are continuous in F, D*, D* < 0 for all F' that is sufficiently low. Again by
the continuity of D*(F) and D*(F) in F, there must exist Fy and Fy such that D*(Fy) = 0
and D*(F}) = 0. By [Lemma I1C.4] dd% > 0 whenever D* > 0 and 42" > 0 whenever D* > 0.
It follows that Fy and F} are unique. Moreover, D* < 0 for all F < Fy and D* > 0 for all
F > Fy. Similarly, D* < 0 for all F' < F} and D* > 0 for all F > F}.

From | i* > i* for any given F. At F = Fy, D*(F}) = 0. Slnce D~ 0, we
must have D*(F}) = D( (Fy), F1) > 0. Thus, Fy > Fyp.

To conserve space, we omit the argument F in *, i and *. If F < F,, then D* < 0

and D* < 0. Thus, maximizing the equity value subject to up < up will yield the optimal

operational hedging policy ¢*. Meanwhile, maximizing the equity value subject to ur > uo
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will yield a corner solution ¢ > i*, in which 7 is such that D(;, F) = 0. Indeed, for a given F’

in this region, the feasible set of ¢ for the maximization problem of the equity value subject

to up > up, if not empty, is ¢ > 1 > *. From [Appendix IC.II, the equity value E decreases

in ¢ for i > 4*. Since i is also feasible for the maximization problem of the equity value
subject to up < up and E = E when i = i, 1 must yield a lower expected payoff for the
shareholders, compared with ¢*. Thus, the optimal operational hedging policy is i*.

If Fy < F < Fy, then D* < 0 and D* > 0. Thus, maximizing the equity value subject
to urp < up or subject to up > up will yield the same corner solution %, in which 7 is such
that D(i, F) = 0. This is because, for a given F in this region, the feasible set of i for

the maximization problem of the equity value subject to up > up is @ > 7 > i*, and from

[Appendix [C.II, equity value E decreases in ¢ for ¢ > ¢*. Meanwhile, the feasible set of ¢ for

the maximization problem of the equity value subject to up < ugp is 1 < i < 1* and from

|Appendix IC.IIIL E increases in i for i < i*. Thus, the optimal operational hedging policy is
i.

If £ > F,, then D* > 0 and D* > 0. Thus, maximizing the equity value subject to
up > up will yield the optimal operational hedging policy ¢*. Meanwhile, maximizing the
equity value subject to up < up will yield a corner solution ¢ < 7*. Indeed, for a given F in

this region, the feasible set of ¢ for the maximization problem of the equity value subject to

up < up, if not empty, is i < i < ¢* and from IAppendix IC.III, E increases in i for i < i*.

Since ¢ is also feasible for the maximization problem of the equity value subject to ug > uo
and E = F when i = i, 7 must yield a lower expected payoff for the shareholders, compared

with ¢*. Thus, the optimal operational hedging policy is 7*.

Now we prove [Proposition 2.1 From [Proposition IB.1| and [Lemma IC.2| when F > F,

i** = i* and thus decreases in F. Similarly, from [Proposition IB.1| and [Lemma IB.2| when
F < F,, ©* = 1* and thus decreases in F. Moreover, % = —g—g/%—?. Since both partial

derivatives on the right-hand side are positive from Inequalities (IC.20al) and (IC.20b)), % <
0. When Fy < F < I}, i** =7 and thus decreases in F. Lastly, at F' = F}, since D* = 0,

-k

=14,80 i = i* = at F = F, and thus is continuous in F at F' = F,. Similarly, at

~

~

= Fy, since D* =0, i* =1, so ™ =1

*

— i at F = F, and thus is continuous in F at

=TS

= Fy. Therefore, ** decreases in F'.

IC.V  Proof of [Proposition 2.2

Along the equilibrium path, operational spread increases in debt level F'. we prove that the
credit spread, defined in also increases in F' along the equilibrium path, thereby
establishing the positive operational spread-credit spread relationship. Note that the latter
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is equivalent to the elasticity of the market value of debt L with respect to the face value of
debt F' smaller than 1. The derivative of L with respect to F'is

dL , ey 01

To prove ([C.33) < %, we need to show that

ok

K1+

G(up) < /OuF ug(u)du = é [1 —(1+ uF)e*a“F}

OF
o1 upe Y
& —aK'(I +1i* <l— —— IC.34
a1+ G <1 = M (1C.34)
where we have used g(u) = ae™*" and G(up) =1 — e **F. Suppose K(I +1i) = kN(I + 1),
then inequality ([C.34) holds when x < _aN’(I+1**)3(;‘;* (1 — uFGe(;F)F )

IC.VI Proof of [Proposition 2.3

The value of equity when ugpp > up can be written as

Epp = /OO [(U—UF,PP)—TP[(l—5(UF,PP))I+Z']+p[(1—5(u))1+i]+1‘2 g(u)du . (IC.35)

UR, PP

The value of equity when uppp < up is Epp — fuupo Azog(u)du.

The partial pledgeability case can be solved in a comparable manner as the zero pledge-
ability case. We define %}P as the optimal hedging policy that maximizes the equity value
when uppp < uo; ipp as the optimal hedging policy that equalizes the operational and
financial default boundaries uo(ipp) = up, pp(ipp, F); and, i%p as the optimal hedging pol-
icy that maximizes the equity value when uppp > up. Specifically, ipp and i%p are given

respectively by the following first-order conditions:

[K'(I +ipp) — 7]

PO - 1C.36
P (I +ipp) (urpp,ipp) Murpp) (1 — 7pd'(uppp)l] ’ ( )
/ 4 2 [K/(I + 2?DP) — Tp]
— K'(I+15,) = bp) — A h
p (I +ipp) = |V(urpp,ipp) — Av2| h(urpp) (1 —7pd’(up,pp)l]
A
N z29(uo) (IC.37)

[1 — G(uF’pP)]](SI(Uo) '
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Define FbeDP to be such that
Fppp+ K(I+ipp) =T xp*ipp . (1C.38)
In other words, Ffb, pp is the maximal net debt level such that the firm is able to pay back

the debt at date-1 even if the production shock u is severe enough to obliterate the entire

production capacity I. Fy pp and F} pp are defined analogously to the respective thresholds

in |Pr0position IB.1|: Fy pp is such that UF’pP(’AL.;P,FO’PP> = uo(i}gp); Fy pp is such that

urpp(ibp, Fi.pp) = uo(ibp). The following proposition characterizes the firm’s optimal

hedging policy as a function of £ when the pledgeability is imperfect, i.e., 7 < 7 < 1@
Proposition IC.1. There exists T < 1 such that if T < T, then

L If0 < F < Fy, pp, the firm’s optimal operational hedging policy is i.

II. If Fyypp < F < Fy pp, the firm’s optimal operational hedging policy is z}P.

II. If Fopp < F < Fypp, the firm’s optimal operational hedging policy is ipp such that

Up,pp = UQO-

IV. If F > F\ pp, the firm’s optimal operational hedging policy is i’ p.

28The proofs of [Proposition 1C.1| and [Proposition 2.3|are similar to the base case although the algebra is
much more involved. The proofs are available upon request.
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