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Appendix A contains proofs of the propositions in Section 2 of the paper, and dis-
cusses further the output claim and alternative representations of the market portfolio.

Appendix B includes additional details on construction of the vaccine progress indi-
cator as described in Section 3.

Appendix C presents extensions of the model to include (i) endogenous investment
in a mitigation technology, (ii) endogenous pandemic severity via labor choice, and (iii)
agents who do not participate in the stock market.

Appendix D discusses the experiences of the stock market and consumption during
2020 as interpreted through the lens of the model.



A Proofs

A.1 Proof of Proposition 1

Proposition 1. Denote

g(s) ≡ (1 − γ)ρ

(1 − ψ−1)
− (1 − γ)

(
µ(s)− 1

2
γσ(s)2

)
− ζ(s)

(
[1 − χ(s)]1−γ − 1

)
(A.1)

Assume all state parameters are constant for 0 < s < S. Let H(s)’s denote the solution to the
following system of S recursive equations:

g0 ≡ g(0) =
(1 − γ)

(ψ − 1)
ρψ (H(0))−ψθ−1

+ η

[
H(1)
H(0)

− 1
]

(A.2)

g1 ≡ g(1) =
(1 − γ)

(ψ − 1)
ρψ (H(s))−ψθ−1

+ λd

[
H(s − 1)

H(s)
− 1
]
+ λu

[
H(s + 1)

H(s)
− 1
]

, (A.3)

for s ∈ {1, . . . ,S − 1}.

Assuming the solutions are positive, optimal consumption in state s is

C(s,q) = ρψ (H(s))−ψθ−1
q, (A.4)

and the value function of the representative agent is

JJJ(s,q) ≡ H(s)q1−γ

1 − γ
. (A.5)

Proof. From the evolution of capital stock for the representative agent (8), we obtain the
Hamilton-Jacobi-Bellman (HJB) equation as follows for each state s:

0 = max
C

[
f (C,JJJ)− ρJJJ(s,q) + JJJq(s,q)(qµ(s)− C)

+
1
2

JJJqq(s,q)q2σ(s)2 + ζ(s) [JJJ(s,q(1 − χ(s))− JJJ(s,q)]

+ λu(s) [JJJ(s + 1,q)− JJJ(s,q)] + λd(s) [JJJ(s − 1,q)− JJJ(s,q)]
]

(A.6)

where for s = 0, s = S we interpret χ(s) = 0,ζ(s) = 0 and λu(s) = η,λd(s) = 0.
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Taking the first-order condition with respect to C(s,q) in HJB equation (A.6), we ob-
tain

fc(C,JJJ(s,q))− JJJq(s,q) = 0. (A.7)

Using f (C,JJJ) from (10) and taking the derivative with respect to C, we obtain

fc =
ρC−ψ−1

[(1 − γ)JJJ]
1
θ −1

. (A.8)

Substituting the conjecture JJJ(s,q) in equation (A.5) yields

fc =
ρC−ψ−1

H(s)
γ−ψ−1

1−γ qγ−ψ−1
. (A.9)

Then, for state s ∈ {0, . . . ,S}, we obtain by substituting JJJq(s,q) = H(s)q−γ in (A.7), and
simplifying:

C(s,q) =
H(s)−θψ−1

q
ρ−ψ . (A.10)

To verify the conjectured form of the value function, we plug it in to the HJB equation
(A.6) and reduce it to the recursive system in the proposition via the following steps:

1. substitute the optimal policy C(s) into the HJB equation (A.6);

2. cancel the terms in q which have the same exponent; and

3. group terms not involving H(s) into g(0) for state s = 0 and g(s) for state s ∈
{1, . . . ,S − 1}

to reach equations (A.1) – (A.3). This system of recursive equations can be solved numer-
ically with the final condition H(S) = H(0), that states 0 and S are non-disaster states.
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A.2 Proof of Proposition 2

Proposition 2. The welfare gain to ending the disaster state s is determined by the ratio of
marginal propensity to consume (c ≡ dC/dq) in the disaster state s relative to that in the non-
disaster state, adjusted by the agent’s elasticity of intertemporal substitution (EIS):

V(s) = 1 −
(

c(s)
c(0)

)− 1
ψ−1

= 1 −
(

C(s)
C(0)

)− 1
ψ−1

(A.11)

Proof. The proposition just follows from substituting for C(s,q) from (A.4) into the defi-
nition of V(s).

A.3 Proof of Proposition 3

Proposition 3. The price of the output claim is P = p(s)q where the constants p(s) solve a
matrix system Y = Xp where X is an S + 1-by-S + 1 matrix and Y is an S + 1 vector both of
whose elements are given in the appendix.

Proof. To begin, we derive the pricing kernel and the risk-free rate. Under stochastic
differential utility, the kernel can be represented as

Λt = e
∫ t

0 fJJJdu fC (A.12)

where
f (C, J) = ρ

Cϱ

ϱ
((1 − γ)JJJ)1− 1

θ − ρθJJJ (A.13)

where ϱ = 1 − 1
ψ ,θ = 1−γ

ϱ . As established above, the value function and the consumption
flow rates are:

JJJ = q1−γH(s)/(1 − γ) and C = ρψH(s)e q (A.14)

where e = 1−ψ
1−γ . Together these imply

fC = ρCϱ−1 ((1 − γ)JJJ)1− 1
θ (A.15)

A.3



or

fC = ρ
(
ρψH(s)eq

)ϱ−1
(
(1 − γ)

(
q1−γH(s)/(1 − γ)

))1− 1
θ . (A.16)

Simplifying, we get:

fC = ρ1+ψ(ϱ−1)H(s)e(ϱ−1)+ θ−1
θ q(ϱ−1)+ (1−γ)(θ−1)

θ . (A.17)

The exponent of ρ is: 1 + ψ(ϱ − 1) = 1 + ψ(− 1
ψ ) = 0. The exponent of q is: (ϱ − 1) +

(1−γ)(θ−1)
θ . Substitute θ = 1−γ

ϱ to get: (ϱ − 1) + ϱ(1−γ
ϱ − 1) =−γ. The exponent of H(s) is

e(ϱ − 1) +
θ − 1

θ
⇒ 1 − ψ

1 − γ

(
− 1

ψ

)
+

1 − γψ

ψ(1 − γ)
= 1 (A.18)

Hence, fC = H(s)q−γ. Next, to evaluate fJJJ, note that

fJJJ = ρ
Cϱ

ϱ

(
1 − 1

θ

)
[(1 − γ)JJJ]−

1
θ (1 − γ)− ρθ (A.19)

Plugging in for C and JJJ we get:

fJJJ = ρ

(
ρψH(s)eq

)ϱ

ϱ

(
1 − 1

θ

)[
(1 − γ)

(
q1−γH(s)/(1 − γ)

)]− 1
θ
(1 − γ)− ρθ (A.20)

This can be expressed as

fJJJ =
1
ϱ

ρ1+ψϱH(s)eϱ− 1
θ qϱ+ γ−1

θ

(
θ − 1

θ

)
(1 − γ)− ρθ. (A.21)

Here the exponent of ρ is : 1+ ψϱ = ψ, and the exponent of H(s) is: eϱ − 1
θ = eϱ − ϱ

1−γ = e,

and the exponent of q is: ϱ + γ−1
θ = 0. Hence,

fJJJ =
1
ϱ

ρψH(s)e
(

θ − 1
θ

)
(1 − γ)− ρθ = ρψH(s)e(θ − 1)− ρθ = c(s)(θ − 1)− ρθ. (A.22)
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So, we conclude that

Λt = e
∫ t

0 fJJJdu fC = q−γH(s)e
∫ t

0 [c(s)(θ−1)−ρθ]du. (A.23)

The riskless interest rate, r(s) is minus the expected change of dΛ/Λ per unit time. Ap-
plying Itô’s lemma to the above expression yields drift (or dt terms)

c(s) (θ − 1)− ρθ − γ(µ(s)− c(s)) + γ(γ + 1)σ(s)2 (A.24)

Note that the term (µ − c) is the drift of dq/q. To these terms we add the expected change
from the jumps in the state s for s = 0:

η

(
H(1)
H(0)

− 1
)
≡ η̃ − η (A.25)

which serves to define the risk-neutral jump intenstity η̃. For s > 0 the expected jumps
include both up and down changes in s as well as jumps in q−γ:

λu

(
H(s + 1)

H(s)
− 1
)
+ λd

(
H(s − 1)

H(s)
− 1
)
+ ζ((1 − χ)−γ − 1) ≡ (λ̃u − λu) + (λ̃d − λd) + (ζ̃ − ζ)

(A.26)

where the risk neutral intensities λ̃u, λ̃d are defined as for η.1

The full expression for r(0) is then

−
{

c(0) (θ − 1)− ρθ − γ(µ − c(0)) + γ(γ + 1)σ2 + (η̃ − η)
}

. (A.27)

For s > 0 we have r(s) as

−
{

c(s)(θ − 1)− ρθ − γ(µ(s)− c(s)) +
1
2

γ(γ + 1)σ(s)2 + (λ̃u − λu) + (λ̃d − λd) + (ζ̃ − ζ))

}
.

(A.28)

1The notation suppresses the dependence of these quantities on the state s.
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A helpful simplification is to observe that, by the HJB equations derived above, the (η̃ − η)

terms in the first expression can be replaced by g0 − θ
ψ c(0). This causes all of the terms

involving c(0) to exactly cancel. Using the definition of g0 in (A.1), the remaining terms
also simplify, and we arrive at.

r(0) = µ(0)− γσ(0)2.

The same replacement works analogously for the second expression and yields

r(1) = µ(1)− γσ(1)2 − ζχ(1 − χ)−γ.

We return to these expressions below.

By the fundamental theorem of asset pricing, the instantaneous expected excess return to
the claim P(q, s) must equal minus covariance of the returns to P with the pricing kernel.
Deriving these two quantities and setting them equal yields the pricing system, to which
the proof will construct the solution.

The expected excess return to the claim P(q, s) is the sum of its expected capital gain and
its expected payout, minus rP. In the nondisaster state, this is

1
2

σ(0)2q2Pqq(q,0) + (µ(0)− c(0))qPq(q,0) + η(P(q,1)− P(q,0)) + µ(0)q − r(0)P(q,0)

(A.29)

whereas in the disaster states it is

1
2

σ(s)2q2Pqq(q, s) + (µ(s)− c(s))qPq(q, s)

+λu(P(q, s + 1)− P(q, s)) + λd(P(q, s − 1)− P(q, s)) + ζ(P((1 − χ)q, s)− P(q, s))

+µ(s)q − ζχq − r(s)P(q, s). (A.30)

Next, we need to derive the covariance of the returns to P with dΛ/Λ. In addition to
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the usual contribution of covariance from the capital gains dP/P, the covariance also
includes the contribution from the dividends themselves, which are risky in this model.
There are also contributions from both Brownian comovement and co-jumps in q and s.
The Brownian terms are

−γσ(s)2[qPq(q, s) + q]. (A.31)

The co-jump terms for s > 0 are

ζ[P((1 − χ)q, s)− P(q, s)− χq] [(1 − χ)−γ − 1]

+λu[P(q, s + 1)− P(q, s)]
[

H(s + 1)
H(s)

− 1
]
+ λd[P(q, s − 1)− P(q, s)]

[
H(s − 1)

H(s)
− 1
]

(A.32)

or

[P((1 − χ)q, s)− P(q, s)− χq] [ζ̃ − ζ]

+[P(q, s + 1)− P(q, s)][λ̃u − λu] + [P(q, s − 1)− P(q, s)][λ̃d − λd]. (A.33)

For s = 0 the corresponding expression is just

[P(q,1)− P(q,0)][η̃ − η]. (A.34)

We now equate the expected excess return to minus the above covariance to obtain the
difference/differential equation system that P must solve. Rather than repeating the gen-
eral expressions, we conjecture that the solutions are linear in q and deduce the resulting
system. Under linearity Pqq = 0 and Pq = p, a constant that depends on s.

Plugging in the conjectured form, and cancelling a q, in states s > 0 the pricing equa-
tion says

(µ(s)− c(s))p(s) + λu(p(s + 1)− p(s)) + λd(p(s − 1)− p(s)) (A.35)

− χζ p(s) + µ(s)− ζχ − r(s)p(s)− γσ(s)2[p(s) + 1] (A.36)

− χ[p(s) + 1] [ζ̃ − ζ] + [p(s + 1)− p(s)][λ̃u − λu] + [p(s − 1)− p(s)][λ̃d − λd]
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= 0. (A.37)

Leaving the constant terms on the left, the right side consists of

p(s+1) terms: − λu − [λ̃u − λu] = −λ̃u, (A.38)

p(s−1) terms: − λd − [λ̃d − λd] = −λ̃d, (A.39)

and p(s) terms:

−(µ(s)− c(s)) + λu + λd + χζ + r(s) + γσ(s)2 + χ[ζ̃ − ζ] + [λ̃u − λu] + [λ̃d − λd]

(A.40)

or
r(s) + c(s)− (µ(s)− γσ(s)2) + λ̃u + λ̃d + χζ̃ = c(s) + λ̃u + λ̃d (A.41)

where the last equality follows from our expression above for r(s).
The remaining constants on the left are

µ(s)− ζχ − γσ(2)2 − χ[ζ̃ − ζ]. (A.42)

or
(µ(s)− γσ(s)2)− χζ̃ = r(s). (A.43)

The above equations define a linear system for p(1) to p(S − 2). For p(S − 1) we have

[c(s) + λ̃u + λ̃d]p(S − 1)− λ̃d p(S − 2)− λ̃u p(0) = r(S − 1).

The pricing equation for s = 0 says

(µ − c(s))p(0) + η(p(1)− p(0)) + µ − r(0)p(0)− γσ2[p(0) + 1] + [p(1)− p(0)][η̃ − η] = 0,
(A.44)

or

µ − γσ2 = r(0) = p(0)[c(0) + η̃]− p(1) η̃ (A.45)
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Altogether the system may be written in matrix form,
c(0) + η̃ −η̃ 0 · · ·
−λ̃d c(1) + λ̃d + λ̃u −λ̃u 0

0
. . . . . . . . .

...
. . . . . . . . .

−λ̃u 0 · · ·

 p =



r(0)
r(1)

...

...

...

 .

Assuming consumption is positive, the right-hand matrix is of full rank. Hence the sys-
tem has a unique, finite solution.

A.4 Proof of Proposition 4

Proposition 4. Given a set of non-disaster parameters (e.g., those given in Table 1) and subject
to regularity conditions given in the proof, a particular fixed value of A ≡ ∆log P

∆E[T⋆]
restricts the

disaster parameters such that the quantity B ≡ V
E[T⋆]

must lie in a finite range [B, B]. For large, S,
the limits of the range are determined by the solution to a three-equation system given in the proof.

The proof of the proposition proceeds via a series of lemmas. For ease of notation, the
dependence of parameters on the state will be indicated via subscripts, e.g., c0, c1, cs in
place of c(0), c(1), c(s).

Lemma A.1. The HJB system of equations for the value functions H(s) depends only on the
disaster parameters via the scalar g1 (defined in Proposition 1). Given g1, the linear system of
equations for the price of the output claim, Xp = Y, (given in the proof of Proposition 3) only
depends on the disaster parameters via the constant scalar r1, which is elements 2...S of the right-
hand side vector, Y.

Proof. The statements can be verified directly from the proofs of the respective proposi-
tions. Note that the matrix X in the second system definitely does depend on the solution
to the first system, and hence on the disaster parameters. But the first statement ensures
that that dependence is entirely determined by g1. Note that Proposition 3 does use the
assumption that the disaster parameters do not vary with s during the disaster.
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Lemma A.2. Assume disasters are worse states in the sense that µ0 ≥ µ1 and σ0 ≤ σ1. Then, for
a fixed value of g1, values of r1 must lie in a finite range given as the argmin and argmax over the
disaster parameters (µ1,σ1,χ,ζ) subject to the above constraints. Hereafter, assume γ > 1. The
maximization problem has a solution at µ1 = 1

2 γσ2
0 + ( ρθ−g1

1−γ ),σ1 = σ0,χ = 0. The minimization

problem has a solution at µ1 = µ0,σ2
1 = 2

γ [µ0 − ( ρθ−g1
1−γ )],χ = 0. (In both cases ζ is unidentified).

Proof. Formally, the quantity we are varying is

r1 = µ1 − γσ2
1 − ζχ(1 − χ)−γ

subject to the nonlinear constraint

ρθ − (1 − γ)(µ1 − 1
2 γσ2

1 )− ζ((1 − χ)1−γ − 1) = g1

as well as the bounds on µ1 and σ1, and the physical constraints ζ ≥ 0,1 > χ ≥ 0.
First, consider the maximixation problem. We establish (i) starting at χ > 0, the objec-

tive can be increased along the constraint for a lower value of χ; then (ii) with χ = 0, the
objective can be increased along the constraint by increasing χ and decreasing σ1 unless
its lower bound is binding. Hence, once the σ1 constraint is hit, the objective can only
increase by decreasing χ to zero.

For (i), consider lowering the ζ term in the constraint by an amount δ > 0. The con-
straint then requires reducing µ1 − 1

2 γσ2
1 by δ

γ−1 > 0. The latter entails a change in the
objective of − δ

γ−1 − 1
2 γ∆σ2

1 . This (negative) change can be minimized by taking ∆σ2
1 = 0,

that is we put ∆µ1 =− δ
γ−1 and there is no downside limit on µ1. Then the overall change

in the objective is − δ
γ−1 plus the change in its ζ term. If we choose to keep ζ fixed, then

the change in the third term is

δ
∆(χ(1 − χ)−γ)

∆((1 − χ)1−γ − 1)
. (A.46)

It is straightforward to show that the ratio of first derivatives (a) is equal to 1
γ−1 at χ = 0

and (b) is itself increasing in χ. Hence at any χ > 0 this term exceeds δ
γ−1 . Hence the

objective has increased. This establishes (i).
For (ii), we are now considering increasing χ from zero by an amount such that the ζ
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term in the constraint increases by δ > 0. This allows us to increase µ1 − 1
2 γσ2

1 by δ
γ−1 > 0.

The latter changes the objective by δ
γ−1 − 1

2 γ∆σ2
1 , which we can maximize by taking ∆σ2

1 <

0 unless we are at the constrained lower bound. Meanwhile, the change in the third term
(substituting out ζ) is

−δ
χ(1 − χ)−γ

(1 − χ)1−γ − 1
. (A.47)

By l’Hôpital’s rule, the ratio has limit as χ ↓ 0 of 1
γ−1 . Hence this term lowers the objective

by less than the increase from the µ1 − γσ2
1 term, unless we are at the constrained lower

bound, in which case the objective cannot be increased.
The claim about the minimization solution is established by analogous steps: (i) in a

neighborhood of χ = 0, the objective can be decreased along the constraint by decreasing
χ; (ii) with χ = 0, the objective can be decreased along the constraint by increasing χ and
increasing µ1 until its upper bound is binding.

For (i), consider lowering the ζ term in the constraint by an amount δ > 0. The
constraint then requires reducing µ1 − 1

2 γσ2
1 by δ

γ−1 > 0. The latter entails a change in
the objective of − δ

γ−1 − 1
2 γ∆σ2

1 . This change is maximally negative when ∆µ1 = 0 and
1
2 γ∆σ2

1 = δ
γ−1 > 0 and there is no upside limit on σ1. Then the overall change in the ob-

jective is −2 δ
γ−1 plus the change in its ζ term. As above, this term changes by the ratio in

(A.46), which is less than 2 δ
γ−1 in a neighborhood of χ = 0.

For (ii), we are now considering increasing χ from zero by an amount such that the
ζ term in the constraint increases by δ > 0. This requires us to increase µ1 − 1

2 γσ2
1 by

δ
γ−1 > 0. The latter raises the objective by δ

γ−1 − 1
2 γ∆σ2

1 . We can thus lower the objective
by taking ∆σ2

1 > 0 which we can do as long as µ1 is not at its upper limit. Meanwhile,
the change in the third term is again given by (A.47), which cancels the increase of δ

γ−1

insuring that the objective function has increased.

Lemma A.3. Fixing the nondisaster parameters, define A(r1; g1) as lims→S
∆log P
∆E[T⋆]

. Assume λd =

0. Then, for large S,

A(r1) = c0

(
1 − r1(1 + η̃/λ0)

r0 + r1η̃/λ1

)
(A.48)
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where λ0,λ1 are defined in the proof. Assume the parameters satisfy r0 > c0 ≡
ψ−1
1−γ g0. Then A is

an increasing function of r1.
Define A(g1) = A(rmin

1 (g1)) and A(g1) = A(rmax
1 (g1)) where rmin

1 ,rmax
1 are the upper and

lower limits found in the previous lemma. For any fixed value A⋆ > 0, the solutions to

A(g1) = A⋆ (A.49)

A(g1) = A⋆ (A.50)

exist and are finite. Denote these solutions as gL and gU respectively.

Proof. The first part of the proof requires explicitly solving for the price vector p via Gaus-
sian elimination. To anticipate one step (and simplify notation), we note that, for large S,
the welfare ratio H(s + 1)/H(s) between successive steps converges to 1. Hence, the
quantity ˜λu,s = λuH(s + 1)/H(s) can be replaced by λu. With λd = 0, the system then is2

d0 −η̃ 0 · · ·
0 d1 −λu 0

0
. . . . . . . . .

...
. . . . . . . . .

−λu 0 · · · dS

 p =



r0

r1
...
...
...

 .

where d0 = c0 + η̃,ds = cs + λu. Interchanging the equations from rows 1 and S + 1, the
algorithm successively eliminates all of the nonzero elements in the bottom row until only
the (S + 1,S + 1) diagonal remains. None of the other rows is affected. Write the solved
system as 

−λu 0 · · · dS

0 d1 −λu 0

0
. . . . . . . . .

...
. . . . . . . . .

0 0 · · · x

 p =



r1
...
...
...
y

 .

We give expressions for x and y below. With them, the system immediately tells us pS =

y/x and pS−1 =
r1+λu pS

dS−1
. The quantity we are trying to compute is then the large-S limit

of λu(pS − pS−1)/pS.

2See the proof of Proposition 3.
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Straightforward algebra yields the diagonal element x as

d0
dS

λu
− η̃

S

∏
s=1

(
λu

ds

)
Replacing λu by λS, the first term converges to d0 = c0 + η̃. The product in the second
term becomes

S

∏
s=1

(
1

1 + cs/λ
S

)
which converges to e−c̄/λ where c̄ = lim 1

S ∑S
s cs. So we obtain the limit

x = c0

(
1 + η̃(1 − e−c̄/λ)/c0)

)
≡ c0 (1 + η̃/λ0)

where the last expression defines the quantity λ0.
The successive steps of Gaussian elimination render the right side element y as

r0 + r1

(
d0

λu
+

η̃

d1

(
1 +

S

∑
s=1

s

∏
k=1

λu

dk+1

))
.

The sum in the inner parentheses divided by d1 converges to lim 1
λS ∑S

s=1 e∑S
k=s ck/λS, which

we will denote 1/λ1. The term d0
λu

goes to zero, and we end up with

y = r0 + r1η̃/λ1.

Returning to A = λu(pS − pS−1)/pS, replacing λu by λS and using cS → c0, we find

A → c0 − r1
x
y
= c0

(
1 − 1 + η̃/λ0

r0
r1
+ η̃/λ1

)

which is the same as (A.48).
Differentiating the above expression with respect to r1 establishes that a sufficient

condition for A to be decreasing in r1 is that r0 > 0 which is guaranteed by the assumption
r0 > c0.
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The next part of the lemma concerns properties of A(g1) and A(g1). We have just seen
that A ≥ A. Also, if g0 = g1, the disaster state and the nondisaster state have the same
value functions and r0 = r1 = rmin

1 = rmax
1 . This implies that A(g0) = A(g0) = 0.

Given these properties, the conclusion of the lemma follows if we can show that A(g1)

and A(g1) are continuous and that A(g1) is unbounded as g1 decreases. These are suf-
ficient to ensure that (A.49) - (A.50) have solutions. The complicating factor in proving
these properties is that, as g1 varies, the solution to the HJB system changes, which means
that some quantities (e.g. the consumption propensities cs) that enter into the function A
also vary with g1 in manners that are not easy to characterize. Our approach is to identify
a third function C < A and show that it is unbounded as g1 declines.3

Now write
A = c0

(
1 − rmax

1
1 + η̃/λ0

r0 + rmax
1 η̃/λ1

)
We are considering the behavior as g1 declines (worse disasters) and rmax

1 is also declin-
ing. So assume g1 is sufficiently negative to insure rmax

1 < 0. In that case, making the
η̃ term in the numerator smaller (less positive) lowers the right side. Likewise, as long
as prices remain positive, the denominator is positive. Hence, making the η̃ term in the
denominator smaller (less negative) also lowers the right side. We can conclude that

A > c0

(
1 − rmax

1
1
r0

)
Also c0 = c0(g1). Using the next lemma below and assuming ψ > 1, it can be shown, that
c0(g1) ≥ c0(g0) ≥ ψ−1

1−γ g0 ≡ c. We conclude

C ≡ c
(

1 − rmax
1 (g1)

1
r0

)
is a lower bound on A. It is also a linear function in g1 with a negative coefficient
−1/(r0(γ − 1)). Hence it is positive and unbounded as g1 →−∞.

3We return to the continuity of the g1 dependence below.
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Lemma A.4. Assume ψ > 1. For large S, the welfare benefit of ending a disaster, V(g1), is a
continuous decreasing function and V(g0) = 0.

Proof. First we note that we are implicitly assuming the parameters are such that HJB
system in Proposition 1 has a positive solution. The proof of that proposition required
the conditions g1 ≤ g0 and that g1, g0, and θ ≡ 1−γ

1−1/ψ have the same sign. Here we are
imposing ψ > 1 and earlier we took γ > 1. Hence, below we have that all three of these
quantities are negative.

Define R = H(s = 1)/H(s = 0). Then V = 1 −R
1

1−γ is an increasing function of R.
We will establish that R is decreasing in g1.

For s ≥ 1, define τ = (S + 1− s)/(λS) and let R(τ) = H(s + 1)/H(s). For large S, the
HJB system becomes the two-equations

g0 = e0He1(0) + η(R− 1) (A.51)

and
g1 = e0He1(τ)− 1

H(τ)

dH
dτ

(A.52)

where e1 = −ψθ > 0, e0 = θρψ/ψ < 0. The latter ODE has solution that satisfies

H−e1(τ)− e0

g1
=

[
H−e1(0)− e0

g1

]
eg1e1τ.

Our definition of R equates to H(1/λ)/H(0). Evaluating the expression above at τ =

1/λ, multiplying by He1(0), using (A.51), and rearranging leads to the following algebraic
equation for R:

R−e1 + (1 − eg1e1/λ)
η

g1
(R− 1)−

(
eg1e1/λ +

g0

g1
(1 − eg1e1/λ)

)
= 0. (A.53)

It can be immediately verified that R = 1 at g1 = g0.
Since e1 > 0, g1 < 0, we have eg1e1/λ < 1. Then writing

R−e1 = −(1 − eg1e1/λ)
η

g1
(R− 1) +

(
eg1e1/λ +

g0

g1
(1 − eg1e1/λ)

)
.
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The left side is monotonically declining in R ≥ 1 from one to zero. The right side is an
increasing linear function of R. Its intercept is eg1e1/λ + g0

g1
(1− eg1e1/λ), and this is less than

one because g1 < g0 and g0
g1
(1 − eg1e1/λ) < (1 − eg1e1/λ). This guarantees a finite solution

for R for any g1 < g0. Continuity in g1 follows from existence of a solution and continuity
of coefficients in g1.4

Finally, implicitly differentiating with respect to g1, it is straightforward to verify that
the derivative is negative using 1 − eg1e1/λ < −g1e1/λ.

Proof of Proposition

Given the lemmas above, the bounds asserted in the proposition can be written

[λV(R(gU)) , λV(R(gL))]

where 1/λ =E[T⋆] and R is defined in (A.53) and gL, gU are the solutions to (A.49)-(A.50).
QED

Timing Parameters

The figure below plots the numerically computed bounds identified in Proposition
4 using the baseline parameters from Table 1 in Section 2. The proof of the proposition
relies on the large-S limit of the model. So the figure shows those limits relative to an
equivalent small-S case to verify that the differences are negligible. The bounds could
also depend on when during the disaster (measured by s/S) the stock market response to
duration news is measured. The figure also shows that measuring the market response
earlier (e.g., s = 1) is conservative in the sense that the implied welfare gains for a given
market response increase with s.

4Continuity of R also implies continuity of the consumption function in g1. This was used in the prior
lemma.
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Figure A.1: Welfare Gain Bounds as a Function of Timing parameters

The Figure shows the minimum and maximum allowable welfare gain to ending a disaster given
an observed stock market response to disaster duration news. The bounds are shown for three
choices of the timing parameters, as shown in the legend.

A.5 Output Claim

The model in Section 2 views the stock market as a claim to the economy’s future output
flow, defined as the change in the stock of wealth before consumption. This subsection
clarifies the reasons for this definition, offers a decentralization that supports it, and also
notes alternative claims that can achieve the same objectives.

First, our aim is to tractably depict a market that responds to news about disaster du-
ration, as captured by the state variable s. As is well known, in an economy where the
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capital stock can be costlessly converted to consumption goods, the unit price of the capi-
tal stock is constant and equal to 1.0. Or, in our notation, the value of q is q. Moreover, this
is also equal to the value of a claim to all future consumption. In many applications, this
is a reasonable depiction of the market portfolio. But it does not describe the dynamic that
we are interested in modeling.5 As noted in the text, it is standard in the macro-finance
literature to assume a process for dividends that is more volatile and more procyclical
than consumption in order to match asset pricing moments. Similarly, in our case, we
need a dividend process that is more “procyclical” in its exposure to disaster risk. The
output claim achieves this because its expected cash flow mirrors the impact on wealth of
the pandemic.

To see how the flow that we are valuing could constitute the payouts to owners of
corporate claims, consider the following decentralization.

1. Households own the capital stock and rent it to goods-producing firms.

2. Firms produce output µ(s) q dt + σ(s) q dWt per unit time.

3. Firms purchase insurance against pandemic shocks −χ q dJ from an insurance sec-
tor.

4. The market portfolio consists of a claim to the profits of both sectors plus the rental
contract for the capital stock.

Notice that in step 1, the rental is effectively a riskless bond in that the “face value” of q is
insured. Thus, in this economy households separate risky and safe claims.

Having equity holders effectively bear the risk of disaster shocks can be similarly
achieved by envisioning a labor contract that insures workers. Suppose aggregate wages
are W = ϕC + (1 − ϕ)i(s) where C is aggregate consumption and i(s) is the expected dis-
aster loss rate χζ q when s > 0. Then we can let equity represent a claim to the dividend
stream (C − W)dt. Figure A.2 shows the disaster sensitivity of this claim using our base-
line parameters. Since it behaves similarly to the output claim, the paper’s results are
robust to using this alternative claim.

5Recall that in our model changes in the state s do not directly alter q.
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Figure A.2: Disaster Sensitivity of Assets

The Figure shows the log of the price-capital ratio in disaster states relative to its value in the non-disaster
state for the claim to output and the claim to dividends, as described above. The parameters are those used
in Section 4 of the text.

B Vaccine Progress Indicator
This section includes additional details on construction of the vaccine progress indicator.
Each day’s forecast is computed via simulation as described in Section 3 of the paper. The
procedure is depicted graphically in the flow chart Figure A.3.

The simulation takes as input a timeline of COVID-19 vaccine candidates’ stage-by-
stage progress from the London School of Hygiene & Tropical Medicine.6 We observe the
start dates of each pre-clinical and clinical trial, along with their vaccine strategy. Table
A.1 breaks down the number of candidates at each state at the end of our sample. Table

6We use the timeline available on November 2, 2020.
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Figure A.3: Simulation Flow Chart

Note: Figure shows the simulation that estimates the expected time until vaccine deployment.

A.2 summarizes the main strategies along with the number of candidates following each.
We collect all clinical-trial news articles from FactSet StreetAccount during our sample

period. Table A.3 shows the number of articles by news type, while Table A.4 shows the
top ten candidates by news count.

Each candidate may simultaneously be run in seveal clinical trial sequences (e.g., with
different patient populations or delivery modalities). Following Wong et al. (2018), we
adopt each candidate’s most advanced branch. Since candidates share a common virus
target, and potentially common institutes or strategies, we define pairwise correlations in
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Table A.1: Vaccine States

State # Candidates Example Candidates

Preclinical 210
Amyris Inc

Baylor College of Medicine
Mount Sinai

Phase I
Safety Trials 20

Clover/GSK/Dynavax
CSL/University of Queensland

Imperial College London

Phase II
Expanded Trials 18

Arcturus/Duke
Osaka/AnGes/Takara Bio

Sanofi Pasteur/GSK

Phase III
Efficacy Trials 11

AstraZeneca/Oxford
BioNTech/Fosun/Pfizer

Moderna

Note: Table describes the number of vaccine candidates in each state, along with example insti-
tutes. Data are from the London School of Hygiene & Tropical Medicine’s COVID-19 Tracker. Data
are as of November 2, 2020.

an additive manner. For two candidates n ̸= n′:

ρ(n,n′) =


0.2 baseline

add 0.2 if shared institute

add 0.1 if shared strategy.

Table A.5 lists our parameter choices of durations and baseline probabilities of suc-
cess. Our baseline success probabilities are based upon estimates in Pronker et al. (2013),
and augmented by our own sample of historical outcomes of infectious disease vaccine
trials from pharmaceutical research firm BioMedTracker. Our baseline duration estimates
are based on projections from the pharmaceutical and financial press during 2020.

Table A.6 summarizes the distribution of time spent in each state in our simulation.
We track days spent in each state until the next state starts, only among candidates that
have successfully transitioned to the next state. The realized outcomes for durations are
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Table A.2: Vaccine Strategies

Type Description # Candidates

RNA
(genetic)

Consist of messenger RNA molecules which code for parts of
the target pathogen that are recognised by our immune system
(’antigens’). Inside our body’s cells, the RNA molecules are
converted into antigens, which are then detected by our immune cells.

33

DNA
(genetic)

Consist of DNA molecules which are converted into antigens
by our body’s cells (via RNA as an intermediate step). As with RNA
vaccines, the antigens are subsequently detected by our immune cells.

21

Viral
Vector

Consist of harmless viruses that have been modified to contain antigens
from the target pathogen. The modified viruses act as delivery systems
that display antigens to our immune cells. Replicating make extra copies
of themselves in our body’s cells. Non-replicating do not.

56

Protein Consist of key antigens from the target pathogen that are recognised
by our immune system. 78

Inactivated Consist of inactivated versions of the target pathogen. These are
detected by our immune cells but cannot cause illness. 16

Attenuated
Consist of living but non-virulent versions of the target pathogen.
These are still capable of infecting our body’s cells and inducing an
immune response, but have been modified to reduce the risk of severe illness.

4

Note: Table describes the number of vaccine candidates in each strategy. 51 candidates have other,
virus-like particle or unknown strategies. Data from the London School of Hygiene & Tropical
Medicine’s COVID-19 Tracker. Data as of November 2, 2020.

reasonably consistent with our choices of parameters, in particular for Phase I and Phase
II. The fact that the standard deviations of durations are less than the mean is consistent
with the Gaussian copula assumption of positively correlated outcomes.

We then augment πbase
s with 233 news articles from FactSet StreetAccount, split into

positive and negative news types. Table A.7 lists the news types along with their changes
in probabilities.
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Table A.3: Number of Articles by News Type

News Type Number of Articles

Release positive data 79
Announce next state 45
Positive regulatory action 30
Positive preclinical progress 22
Announce dosage start 21
Positive enrollment 17
State ahead of schedule 7
State resumed 5
State paused 4
State behind schedule 1
Negative regulatory action 1
Negative enrollment 1

Total 233

Note: Table shows the count of news articles by news type.

Table A.4: Number of Articles by Top 10 Candidates

Candidate Number of Articles

Moderna 37
BioNTech / Fosun Pharma / Pfizer 25
Oxford / AstraZeneca 23
Johnson & Johnson / Beth Israel Deaconess Medical Center 21
Inovio Pharmaceuticals 18
Novavax 14
Arcturus / Duke 10
Vaxart 9
Medicago / GSK / Dynavax 8
Takis / Applied DNA / Evvivax 8

Note: Table the number of news articles for the top ten candidates by article count.
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Table A.5: State Durations and Probabilities of Success

State τs (years) πbase
s (%)

Preclinical 0.6 5
Phase I 0.2 70
Phase II 0.2 44
Phase III 0.4 69
Application 0.1 88
Approval 0.5 95

Table A.6: Vaccine States

Days in State

Min Max Mean Median SD

Preclinical 1.0 233.0 94.6 90.5 59.2

Phase I 17.0 103.0 51.9 27.0 39.8

Phase II 6.0 152.0 86.8 89.0 54.5

Note: Table shows statistics on days spent in each state before transitioning, among candidates
that have successfully transitioned to the next state. Data are from the LSHTM and are as of
November 2, 2020.

Table A.7: News and Changes in Probabilities

Positive Negative
News type ∆π (%) News type ∆π (%)

Announce next state +5 Pause in state -25
State ahead of schedule +2 State behind schedule -15
Release positive data +5 Release negative data -60
Positive regulatory action +3 Negative regulatory action -50
Positive preclinical progress +1 Negative preclinical progress -2
Positive enrollment +1 Negative enrollment -5
Dose starts +1
State resumes after pause +5

Note: Table shows the positive and negative news types, along with their changes in probabilities.
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C Extensions
This appendix considers some generalizations of the model. We demonstrate that these
extensions are unlikely to alter the primary conclusions of the paper concerning the ex
ante welfare benefit of curtailing the COVID-19 pandemic.

C.1 Endogenous Vaccine Development

The model in Section 2 includes no actual vaccine development (or disaster mitigation)
technology. The reason for this is simply that parameterizing and calibrating a bio-
pharmaceutical R&D production function is beyond the scope of the study. However,
there could be a concern that we overstate the value of ending the pandemic by not giv-
ing the economy a real option to address it. We now show a tractable way to do this, and
we explain why our results are consistent with this extension. In a nutshell, optimal re-
search effort will impose a constraint on the parameters that does not affect our empirical
identification of the pandemic duration and severity.

Suppose that, when a pandemic arrives, the representative agent has the ability to
choose an expenditure rate ι that increases the arrival rate of vaccine progress. The most
parsimonious specification would just be linear:

λ(ι) = L0 + L1 ι.

(The discussion will treat the 2-state model. Generalization to S-states is straightforward.)
Given the rate, the dynamics of wealth, dq/q, picks up a new term −ι dt for the duration
of the pandemic. Without loss of generality, we can assert that whatever ι level the agent
chooses in the first pandemic is also optimal for all subsequent pandemics. For notational
simplicity below, define the adjusted drift during the pandemic as

µS(ι) = µ(1)− ι

where µ(1) is the benchmark growth rate without research effort. While this formulation
is too sparse to address issues of public versus private returns to research expenditure,
it does allow us to formulate and solve a model in which vaccine progress (and exiting
from pandemic) is an endogenous outcome.
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Notice that, given a choice of ι, the economy behaves exactly as in our reduced-form
case. Hence the solution for optimal consumption and the value function are unchanged.
In particular, we can write the value function within the pandemic as H(1;λ(ι),µS(ι)). To
choose the optimal policy, ι∗, the agent simply maximizes this function. This verifies that
the optimal rate is constant within a state and does not vary across pandemics. Of course,
a necessary condition for an interior optimum is

∂H
∂µS

= L1
∂H
∂λ

.

Optimality of the research effort does constrain admissible pairs of λ and µS via this
relation.

Clearly in an economy with powerful research technology (where L1 is a large num-
ber), agents can make the pandemic very brief (in expectation) at low cost. Hence, the
endogenous value of λ would be high, and agents would pay less to return to the non-
pandemic state than in an economy with inferior vaccine technology. However, recall
that our benchmark calibration above already conditioned on different values of λ. We
showed that the welfare gain depended strongly on the remaining expected duration of
the pandemic, which could be inferred in the data from our estimation of the expected
time to deployment of a vaccine during 2020.

Now, taking λ as fixed at an observed value λ̂ say, consider the ratio

f (µ̂S) =
∂H
∂µS

∣∣∣∣
λ̂,µ̂S

/
∂H
∂λ

∣∣∣∣
λ̂,µ̂S

.

Given any value of the technology parameter L1, the first order condition above requires
us to use the value of µ̂S satisfying f (µ̂S) = L1. Assuming a solution exists, this is the full
economic content of endogenizing vaccine investment in this setting.

Would imposing such a restriction on µS affect our estimated welfare results? To see
why it will not, recall from Section 2.6 that the stock market response to news about the
state (i.e., vaccine progress) effectively identifies the welfare gradient directly. The precise
choice of individual model parameters is, to a first approximation, irrelevent, conditional
on matching this moment. Requiring that µS satisfies the above first order condition
would take away one degree of freedom in the calibration. But choosing the remaining

A.26



disaster parameters (e.g. χ) to yield the same stock market response would restore the
same empirical conclusions.

To be clear, the conclusion is not that including a vaccine development technology
does not affect the welfare costs of the pandemic. Rather, we are pointing out that our
empirical work has already pinned down the key inputs to that value. Taking those quan-
tities at face value, adding assumptions about the development technology and imposing
the restriction of optimal investment do not perturb the calculation.

C.2 Endogenous Pandemic Severity via Labor Choice

Another concern with our reduced-form model is that it omits mechanisms by which
agents’ choices may affect the severity of the disaster. In this appendix, we develop a ver-
sion of the model in which the household (or a social planner) trades off economic growth
for exposure to the disaster. Again with COVID-19 in mind, the trade-off is between sup-
plying labor (and increasing the individual’s risk of infection) and lock-down.

In this version of the model, wealth accumulates according the stochastic process

dq = ℓαqµdt − Cdt + σℓα/2qdBt (A.54)

in the non-pandemic state, and

dq = ℓαqµdt − Cdt + σℓα/2qdBt − [ℓε + k + KL]qdJt. (A.55)

in the pandemic state. As before, C is the endogenous consumption rate, and now ℓ is the
household’s labor supply, and α ∈ (0,1) is the elasticity of expected output with respect
to labor. The results below all go through with constant returns to scale in the drift term.
Both individual and aggregate labor are assumed to affect the agent’s exposure to the
health shock via the jump size. Let

χ(ℓ, L) ≡ [ℓε + k + KL], (A.56)

where ε is exposure to the pandemic via private labor, k is exposure to the pandemic un-
related to labor, L is aggregate labor supply, and K is exposure via aggregate labor. These
parameters can capture losses of wealth due to health-induced disruptions to work, the
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need to work from home with attendant productivity impact and loss of human capital,
deadweight losses from bankruptcy, and frictions from labor reallocation. We will assume
parametric restrictions on ε, k and K to be such that (1 − χ) ∈ (0,1). The agent takes the
aggregate supply of labor L as given in her optimization problem.

Agents’ preferences are as in the text. We assume no disutility to labor supply and no
frictions in adjusting ℓ. We assume ℓ ∈ [0,ℓ], where the upper bound ℓ is the agents’ total
available work capacity.

The agent’s problem is now to choose in each state s optimal consumption C(s, L∗(s))
and labor ℓ(s, L∗(s)) that maximizes the objective function. We impose that agents have
rational expectations about L∗(s), the aggregate labor in equilibrium. In other words,
individual agents’ decisions in the aggregate imply a wealth (consumption) dynamic that
is confirmed in equilibrium. Hence, the wealth dynamic in the pandemic regime must be:

dq(s) = [ℓ(s, L∗(s))]αqµdt − C(s, L∗(s))dt + σ[ℓ(s, L∗(s))]α/2qdB − χ(ℓ(s, L∗(s)), L∗(s))qdJt

(A.57)

Since L∗(s) is a constant for each s, the above dynamics are identical to those assumed
by the agent. Substituting for the equilibrium fixed point that L∗(s) = ℓ(s, L∗(s)), we can
then obtain the equilibrium outcomes.

Proposition 1. Equilibrium labor in the non-pandemic state is given by

L(0) = L(S) = ℓ (A.58)

Equilibrium labor in pandemic states L∗(s) ∀s ∈ {1, . . . ,S − 1} solves7

χ (L(s), L(s)) = k + (ε + K)L(s) =
[
1 − (L(s))

1−α
γ ν
]

(A.59)

where

ν ≡

α
(

µ − 1
2 γσ2

)
ζε

− 1
γ

. (A.60)

7It can be shown that given α ∈ (0,1), the second order condition for a maximum is satisfied whenever
µ − 1

2 γσ2 > 0, which also implies ν > 0.
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Proof. The HJB equation for each state s ∈ {1, . . . ,S − 1} is now

0 = max
C,ℓ

[
f (C,JJJ(s,q))− ρJJJ(s,q) + JJJq(s,q)(ℓαqµ − C) +

1
2

JJJqq(s,q)ℓαq2σ2 + ζ [JJJ(s,q(1 − χ))− JJJ(s,q)]

+ λu(s) [JJJ(s + 1,q)− JJJ(s,q)] + λd(s) [JJJ(s − 1,q)− JJJ(s,q)]
]

(A.61)

Using the conjecture for the objective function in the text for JJJ(s), calculating the deriva-
tives with respect to q, JJJq = H(s)q−γ and JJJqq = −γH(s)q−γ−1, and differentiating with
respect to labor ℓ, we obtain the first-order condition as

JJJq(q)αℓ
α−1µq +

1
2

JJJqq(q)αℓα−1σ2q2 − JJJq (q(1 − χ)) ζεq = 0 (A.62)

where we have suppressed state s in the notation. This in turn simplifies toα
(

µ − 1
2 γσ2

)
ζε

 ℓα−1 − [1 − χ]−γ = 0 (A.63)

where χ(ℓ, L) = k+ εℓ+KL. In rational expectations equilibrium L(s) = ℓ(s), which gives
us that optimal labor in pandemic state L⋆(s) ∀s ∈ {1, . . . ,S − 1} satisfies (A.59):

χ (L(s), L(s)) = k + (ε + K)L(s) =
[
1 − (L(s))

1−α
γ ν
]

(A.64)

where

ν ≡

α
(

µ − 1
2 γσ2

)
ζε

−1/γ

. (A.65)

For the non-pandemic state s = 0 or s = S, the third term in first-order condition (A.62)
is absent; therefore, we obtain that labor is at the highest possible level L(0) = L(S) = ℓ,
whenever α

(
µ − 1

2 γσ2
)
> 0.

In the non-pandemic state, the agent faces no cost to supplying labor and exerts ef-
fort fully. However, in the pandemic states, the agent increases exposure to health risk
by supplying labor, which creates a tradeoff between augmenting the capital stock and
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reducing the loss of human capital that arises from health shocks.8

Given the optimal labor and consumption policies, the model solutions in Section 2
can be directly applied. As before, the pandemic parameters only enter the system of
equations via the constants g0 and g1, which we can write compactly as

g(x,y) ≡ (1 − γ)ρ

(1 − ψ−1)
− xα(1 − γ)

(
µ − 1

2
γσ2

)
− y

(
[1 − χ(x, x)]1−γ − 1

)
(A.68)

with g0 = g(ℓ,0) and g1 = g(ℓ(s),ζ).
As in the previous section, estimating the key parameters in this extension of the

model – those determining the elasticity of health risk to labor supply and the degree of
the health externality – is beyond the scope of the paper. However, again, we can affirma-
tively demonstrate that the endogenous determination of the pandemic severity has no
effect on our primary finding that the stock market reaction to pandemic duration news
effectively identifies the welfare benefit of ending the pandemic. Figure A.4 reproduces
the computation of Figure 4 using the baseline parameters from Table 1 in the text and
varying the new parameters k,K, and ε over wide ranges, given in the figure caption.9

The figure verifies that differing parameter values lead to different endogenous levels
of disaster severity, as measured by the welfare cost. However, just as in Section 4, the
computation affirms that this variation in welfare costs also leads to variation in the stock
market response to pandemic news, and that the latter pins down the former.

8Note the externality in our set up via the KL term in the size of the helath shock that is not internalized by
each agent. A central planner would factor this in the socially efficient choice of labor. This is tantamount
to replacing ε by (ε + K) in ν above to obtain νCP:

νCP ≡

α
(

µ − 1
2 γσ2

)
ζ(ε + K)

−
1
γ

(A.66)

Socially efficient labor choice LCP(s) in the pandemic states is then given by

χ (L(s), L(s)) = k + (ε + K)L(s) =
[
1 − (L(s))

1−α
γ νCP

]
(A.67)

It is then straightforward to show that νCP > ν for K > 0 and γ > 0, and hence LCP(s) < L(s), i.e., the
socially efficient choice of labor in pandemic states is smaller than the privately optimal one.

9The exercise fixes the labor-share parameter to be α = 0.7 and the intensity of the health shocks to be ζ = 1.
Including variation in these values does not affect the level or range of the curve plotted in the figure.
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Figure A.4: Stock Market Sensitivity and Welfare Loss Rate

The Figure shows the welfare cost per unit (expected) time, V/E[T⋆] as a function of the stock market
sensitivity to changes in the expected time −∆log P/∆E[T⋆] as the current state s increases by 1. Each point
corresponds to a different set of labor parameters. The ranges of these parameters are k ∈ [0.001,0.006],K ∈
[0.02,0.10], ε ∈ [0.012,0.024]. We fix α = 0.7 and ζ = 1. The remaining parameters are those given in Table 1.

C.3 Limited Participation

Our analysis has been conducted from the point of view of a representative household/investor
who both experiences the negative shocks of the pandemic and prices financial claims.
It is reasonable to ask how our results should be interpreted in a world where a large
segment of the population does not participate in asset markets. What, if anything, can
we say about the ex ante welfare cost of the pandemic for nonparticipants? The answer
depends upon the similarity of the pandemic experience for nonparticipants and partici-
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pants, and also upon the interaction between the two groups.
Under autarky, where nonparticipants do not affect financial markets at all, we can

still view them as having a value of human capital q̃ equal to the present value of their
lifetime consumption. If we assume that shocks to dq̃ are affected by the pandemic in a
stochastically similar manner to what we have estimated for participants (i.e. to dq), then
the welfare cost, or welfare benefit of ending the pandemic for nonparticipants can be
estimated from our results, conditional on their preferences. Several important studies in
the literature on nonparticipation, including Gomes and Michaelides (2008) and Guvenen
(2009), suggest that nonparticipants have a significantly lower elasticity of intertemporal
substitution than participants. Both studies employ a value of 0.1. Using our baseline
parameter estimates under which the welfare cost at the beginning of the pandemic is
4.80% percent of wealth per year of expected duration for participants with an EIS of 1.5,
the cost to an agent with an EIS of ψ = 0.1 is 4.72%. There is less consensus on nonpar-
ticipants’ rate of time preferences, but it is reasonable to suppose that they may be more
impatient than participants. Redoing the welfare calculation for an agent with ρ = 0.04
and ψ = 0.1 yields a welfare cost of 4.70% of her wealth per year.10 In other words, the
paper’s primary finding on the welfare cost of the pandemic - or the willingness to pay
to curtail it – apply very closely to nonparticipants as well as participants.

Of course, this conclusion may not go through if the two groups face different expo-
sure to the pandemic. On the one hand, nonparticipants may face more danger to their
(human) wealth due to worse access to healthcare or less ability to work at home, for ex-
ample. In this case, the willingness of nonparticipants to pay to end the pandemic would
be higher than those that we have estimated.

On the other hand, in models such as Danthine and Donaldson (2002) and Guvenen
(2009) participants provide a degree of insurance to nonparticipants (via wage contracts
or the bond market or government transfers). In this class of models, the two groups do
interact nontrivially, and financial market properties depend on the details of the con-
tracting. However, if the net result is that participants shield nonparticipants from some
of the dangers of the pandemic, the latter group would have a lower willingness to pay
to end the pandemic.

10Since it is generally not possible to empirically identify nonparticipants’ risk aversion in the data, the
calculation assumes γ = 4, as in the baseline case.
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D Interpreting the COVID-19 stock market experience
For tractability, our model omits many factors that played important roles in 2020. We
have not included fiscal or monetary policy, for example. (Recall, though, that our em-
pirical work excluded large market-moving events attributable to non-vaccine news as
classified in Baker et al. (2020)). We now describe in more detail its implications for the
response of the stock market and of consumption to a pandemic. Comparing these impli-
cations to the actual experience of 2020, we argue that a coherent interpretation is possible
when viewed through the lens of the model. Hence, while there are inevitably descriptive
limitations, these need not detract from the paper’s objectives.

Consider first the stock market. From December 31, 2019 to March 23, 2020 the CRSP
value-weighted experienced a return of approximately -36%, continuously compounded.
The market then rebounded fully by early autumn. The cumulative return for the year
was approximately +5% at end of October (where our clinical trial sample stops).

The calibration in the paper implies a somewhat smaller drop, of -25% for the output
claim at the onset of a pandemic, based on our initial VPI forecast of an expected duration
of four years. Thus, relative to this data point, our estimation of the potential damage of
the pandemic is conservative compared to the market’s assessment.

Subsequently, the model implies a partial market recovery due to the observed suc-
cess of vaccine trials. From March 23 through October 30, our forecast of the pandemic’s
duration dropped by 2.5 years, of which 0.6 years was expected. The implied market
response to this progress – calibrated to match the response estimated in our empirical
work – is approximately 16%.

Thus, without conditioning on any other shocks, the basic dynamics of our model can
account for approximately 70% of the observed market decline and about one-third of the
recovery through our sample period. To shed light on factors the model may be missing,
it is useful to decompose the initial market decline into components due to cash flow
news, real interest rate news, changes in the equity risk premium. One way to identify
these return components, rCF, rRF,and rRP within the model is as follows.

1. Assume that, on a switch to a pandemic, the parameters of the process dq change
as described in Section 2. Solve the asset pricing system given in Proposition 3,
but without any risk-adjustments (i.e., under the physical measure) and fixing the
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riskless rate in the pandemic, r(1), to be its non-pandemic value, r(0), as computed
under the original benchmark calibration.

• Call the resulting price-dividend ratio p̃(s).

• Define the percent change in this on entering the pandemic rCF = log( p̃(1)/ p̃(0))
to be the return due to cash flow news.

2. Solve the same pricing system, still under the physical measure, but now allowing
r(1) to be its pandemic value in the calibrated model.

• Call the new price-dividend ratio p̂.

• Call rRF = log( p̂(1)/ p̂(0))− rCF the return due to real interest rate news.

3. As in the text, let p(s) denote the price-dividend ratio under the full model.

• Call the residual rRP = log(p(1)/p(0))− rRF − rCF the return due to risk pre-
mium news.

With the baseline calibration the results are:

rCF = −0.328, rRF = 0.284, rRP = −0.206.

Recently, Knox and Vissing-Jorgensen (2022) report empirical estimates of the same
decomposition during 2020 using information in options markets, inflation swaps, and
S&P 500 dividend futures. Consistent with their work, we find substantial and nearly
offsetting positive and negative components of discount rate news, that is rRF + rRP is
small.

The risk premium component in our model is due to the threat of Poisson shocks. As
is well-known from the long-run risk literature, investors with Epstein-Zin preferences
and γ > 1/ψ are averse to uncertainty and growth-rate risk. Also, in the model, real
rates decline on entering the pandemic with the riskless rate turning mildly negative,
consistent with the data.

Our model attributes large effects to cash flow news. In fact, expected cash flows
did decline steeply in early 2020: December 2020 S&P 500 dividend futures declined
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more in percentage terms than did the overall stock market,11 However, as Knox and
Vissing-Jorgensen (2022) show, near-term dividends makes up a small component of mar-
ket value. So declines in the discounted sum (e.g., for 10 years ahead) cannot account
for a large component of the market drop. As a result, and combined with the small
net discount rate effects, the authors attributing most of the market decline to residual
unidentified long-term effects.

In our model, there are both short-term cash-flow effects from lower output, as well
long-term effects from the loss of part of the capital stock. Evidently the market was
anticipating less short-run impact, but greater long-term impact, perhaps due to scarring
type effects that are absent from the model. Recall that, while we assume permanent
effects of the pandemic on the level, q, we assume purely transitory effects on the growth
rate of dq once the pandemic ends. The market may have not been so sure.

Turning to the implication for our conclusions, it is clear that adding negative long
run effects in order to match the observed market decline (while holding other return
components fixed) will imply larger welfare gains to mitigating the pandemic. It is im-
portant to recognize that, while the model’s return decomposition can be altered (e.g.,
with different preference parameters), this will not necessarily lead to large welfare ef-
fects if we still impose that the calibration matches the magnitude of the market response
to vaccine progress. As described in the text, the latter condition effectively pins down
the severity of the pandemic.

Next consider the path of consumption. An extremely prominent feature of the 2020
experience was the rapid plunge in consumption in March and April followed by a com-
plete rebound by early 2021. In the context of the model, consumption is driven primarily
by the wealth process, dq. (The effect of changes in the marginal propensity to consume is
second order.) A large decline in observed consumption is consistent with the occurrence
of one or more down jumps in q in the early part of the year. These Poisson events are
the way in which the pandemic is realized within the model. In fact, the early occurrence
of such a shock – which was not considered above – can also bring the model’s implied
stock market decline directly into line with the observed fall.

11The December contract, quoted in units of the S&P 500 index, dropped from 62.5 at the end of 2019 to
39 on 3/23/20, a decline of 47%. Using this contract as a denominator, the price-dividend ratio on the
market actually went up over this period.
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However, as just discussed, the model has no mechanism for the reversal of these
shocks after the pandemic ends, still less while the pandemic remains in progress. How,
then, can the model explain the consumption rebound?

In our view, the most coherent interpretation of the consumption experience is that a
large component of the recovery must be regarded as having been unexpected. Indeed,
from the analysis above, it would be seemingly impossible to build a model in which a
strong rebound in consumption is expected ex ante within a pandemic and in which the
stock market drops nearly 40% due to the arrival of the pandemic. Moreover, the strong
rebound in stock prices after March is also consistent with the interpretation of substan-
tial unexpected good news about fundamentals, further helping to reconcile the model’s
implications of a rally only partially explained by vaccine progress. Moreover, evidence
in Hong et al. (2021) and Gormsen and Koijen (2020), respectively, supports strong posi-
tive revision in corporate cash flows during the pandemic, by examining expectations of
stocks’ earnings and implied dividend yields.

In the context of the model, unexpected consumption changes are described by the
Gaussian component of wealth shocks, which can be viewed as encompassing mecha-
nisms like (unanticipated) policy interventions that are outside the model. Invoking large
positive shocks is not implausible if the scale of these shocks, governed by σ(s), s > 1, is
large. Our calibration uses σ(s) = 0.075 (or 3.75% per quarter) for the pandemic states.
With this value, the 8% increase in consumption in the third quarter of 2020 is approx-
imately a two standard deviation event (depending on the assumed conditional mean),
unlikely but not impossible.

To summarize, fully accounting for the behavior of the financial markets and the real
economy during 2020 is beyond the scope of our baseline stylized model. Nor is it the
main objective of the paper. Nevertheless, the primary contours of the data can be reason-
ably described as an outcome within the model, given certain realizations of the stochastic
shocks, as described above.
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