
Online Appendix
Disasters with Unobservable Duration and Frequency:
Intensified Responses and Diminished Preparedness

A Proofs and Derivations

A.1 Full Information

To prove Proposition 1, we first treat the case of full-information in which the only state
variables are s ∈ {0,1} and q. For ease of notation, define the following combination of
preference parameters:

e0 ≡
θ

ψ
ρψ and e1 ≡ −ψ

θ
. (A.1)

Also define λ(0) = η,λ(1) = λ.

Lemma Denote

g(s) ≡ θ ρ − (1 − γ)

(
µ(s)− 1

2
γσ(s)2

)
− ζ(s)

(
[1 − χ(s)]1−γ − 1

)
(A.2)

for s ∈ {0,1}. Let H(s)’s denote the solution to the following system of recursive equations:

g0 ≡ g(0) = e0 (H(0))e1 + η

[
H(1)
H(0)

− 1
]

(A.3)

g1 ≡ g(1) = e0 (H(1))e1 + λ

[
H(0)
H(1)

− 1
]

(A.4)

Assuming the solutions are positive, optimal consumption in state s is

C(s) = ρψ (H(s))e1 q, (A.5)

and the value function of the representative agent is

JJJ(s) ≡ H(s)q1−γ

1 − γ
. (A.6)

Proof. Using the evolution of capital stock for the representative agent (1) the Hamilton-
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Jacobi-Bellman (HJB) equation for each state s can be written:

0 = max
C

[
f (C,JJJ(s)) + JJJq(s)(qµ(s)− C)

+
1
2

JJJqq(s)q2σ(s)2 + ζ(s) [JJJ(s,q(1 − χ(s)))− JJJ(s,q)]

+ λ(s)
[
JJJ(s′)− JJJ(s)

]
]
]

(A.7)

for s = {0,1} and s′ = {1,0}.
Taking the first-order condition with respect to C(s) in (A.7), we obtain

fc(C,JJJ(s))− JJJq(s) = 0. (A.8)

Using f (C,JJJ) from (4) and taking the derivative with respect to C, we obtain

fc =
ρC−ψ−1

[(1 − γ)JJJ(s)]
1
θ −1

. (A.9)

Substituting the conjecture JJJ(s) in equation (7) yields

fc =
ρC−ψ−1

H(s)
γ−ψ−1

1−γ qγ−ψ−1
. (A.10)

Then, for state s, we obtain by substituting JJJq(s) = H(s)q−γ in (A.8), and simplifying:

C(s) =
H(s)−ψ/θq

ρ−ψ (A.11)

which agrees with (6) using the definitions of the constants in (A.1).
To verify the conjectured form of the value function, we plug it in to the HJB equation

(A.7) and reduce it to the recursive system in the proposition via the following steps:

1. substitute the optimal policy C(s) into the HJB equation (A.7);

2. cancel the terms in q which have the same exponent; and

3. group constant terms not involving Hs and define them to be g(0) for state 0 and
g(1) for state 1.

The third step yields the system of recursive equations A.3, A.4.
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Regularity Conditions
The functions H(s) are necessarily bounded by the limiting solutions in which the econ-
omy is never in a disaster, Hmin

0 , or is always in a disaster, Hmax
1 . It is straightforward to

show that these constants are given by

Hmin
0 =

(
g0

e0

)1/e1

and Hmax
1 =

(
g1

e0

)1/e1

.

These quantities are real and positive if g0, g1, and e0 all have the same sign. Given this, it
can be shown that a necessary and sufficient condition for existence of a unique solution
is that g1 < g0.

A.2 Proposition 1: HJB System with Parameter Uncertainty

Proof. As noted in the text, the model can be parameterized in terms of the state variables
M, η̂, λ̂, and q, where M = Mt is an integer counter that increases on a state switch such
that M0 = 0 and even numbered states are the non-disaster epochs and odd numbered
states are the disasters. Also, in the non-disaster states, λ̂ is constant, while η̂ is constant in
disasters. As a consequence, compared with the derivation above for the full-information
case, there is now only one additional source of variability in each regime. The dynamics
of η̂ are given in (5) with an analogous expression for and λ̂. And note that, under the
agents’ information set, the dynamics of the wealth variable q are identical to the full
information dynamics.

As a result, the HBJ equations under partial information are the same as (A.7) above
(with state 0 and state 1 being replaced by M and M + 1) with the addition of a single
term on the right side:

− (η̂)2

aη

∂JJJ(0)
∂η̂

(A.12)

for s = 0, and

− (λ̂)2

aλ

∂JJJ(1)
∂λ̂

(A.13)

for s = 1. Since, under the agent’s information set, the state switches are a point-process
with instantaneous intensities η̂ and λ̂, these quantities also replace their full information
counterparts, η and λ, in multiplying the jump terms in the respective equations.
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The next steps in the derivation involving the first order condition for optimal con-
sumption are unchanged from the full-information case. This follows because consump-
tion does not enter into any of the new terms involving the information variables. Re-
place JJJ by the conjecture q1−γ

1−γ H(η̂, λ̂, M), then a common power of q term is cancelled,
and the whole equation is divided by H. These manipulations lead to the above two
terms showing up on the right hand side, in a system that is otherwise identical to the
full-information system (A.3) and (A.4).

g0 = e0He1
M + η̂

(
HM+1

HM
− 1

)
− (η̂)2

aη HM

∂HM

∂η̂
(A.14)

g1 = e0He1
M+1 + λ̂

(
HM+2

HM+1
− 1

)
− (λ̂)2

aλHM+1

∂HM+1

∂λ̂
(A.15)

where the constants g0 and g1 are as defined in Lemma 1 above.

A.2.1 Solution Algorithm

In the full information case, solution of the algebraic system over a grid in the (η̂, λ̂) plane
is straightforward. The unknown constants H(s) are bounded by the limiting solutions
in which the economy is never in a disaster, Hmin

0 , or is always in a disaster, Hmax
1 . The

former corresponds to η = 0 and the latter to λ = 0.
For the general case, we pick a large even integer Mmax and assume that the economy

has converged to the full information solution with s = 0 at Mmax and s = 1 at Mmax − 1.
Given these solutions, the HBJ system for M = Mmax − 2 is just a first order ODE, since
the jump terms in (A.14)-(A.15) can be explicitly evaluated. For even values of M, the
boundary condition at η̂ = 0 is again the full-information solution because the posterior
standard deviation

√
aη η̂ is also zero. (Note that the value of λ̂ is immaterial if disasters

cannot arise.) Likewise, for odd values of M, the boundary condition at λ̂ = 0 is given
by the full-information solution. Hence, the first-order ODEs can be explicitly solved in
alternating directions. The procedure is then repeated for all lower values of M.

A.3 Pricing Kernel, Riskless Rate and Proposition 2

This section first derives the pricing kernel and riskless rate under partial information.
The results are then used to prove Proposition 2 Section 3.2 which describes the pricing
equation of insurance against a disaster.
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Under stochastic differential utility, the kernel can be represented as

Λt = e
∫ t

0 fJJJdu fC (A.16)

where the aggregator function is given in (4). With the form of the value function and the
optimal consumption rule from Proposition 1, evaluating the partial derivatives yields
(after some rearrangement)

Λt = q−γ H(η̂, λ̂, M) e
∫ t

0 [cu (θ−1)−ρθ]du (A.17)

where c = c(η̂, λ̂, M) ≡ C/q is the marginal propensity to consume.
The riskless rate is minus the expected rate of change of dΛt/Λt under the agents’

information set. Applying Itô’s lemma, for even values of M, the expected change is

c (θ − 1)− ρθ − γ(µ − c) +
1
2

γ(γ + 1)σ2

− (η̂)2

aη

1
H

∂H
∂η̂

+ η̂

(
H(M + 1)

H(M)
− 1

)
.

A key simplification is to observe that, by the HJB equation derived above (see (A.14)), the
latter two terms in this expression can be replaced by g0 − θ

ψ c. This causes all of the terms
involving c to exactly cancel. Using the definition of g0 in (A.2), the remaining terms are
just −µ + γσ2. Hence we have shown

r0 = µ − γσ2.

Repeating the above steps for odd values of M and applying the same trick yields

r1 = µ − γσ2 − ζχ(1 − χ)−γ.

Turning to the insurance claim, the asset is assumed to make a terminal payout of 1.0 upon
the occurrence of the next disaster. Proposition 3 characterizes its price in normal-times
prior to that disaster.

Proof. We conjecture that the price, P, of the insurance is not a function of wealth, q.
Moreover, when s = 0, the state variables aη, aλ, and λ̂ are all fixed, and η̂ evolves deter-
ministically according to (5).
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By the definition of the pricing kernel, for any claim in the economy, its instantaneous
payout per unit time (in this case, zero) times Λ must equal minus the expected change
of the product process PΛ, or

L(Λ(qt, st, η̂t) P(st, η̂t))/Λt = 0, (A.18)

where L(X) is the drift operator E[dX]/dt under the agents’ information set.
Using Itô’s lemma for jumping processes to expand the expected change,

− (η̂)2

aη

∂P
∂η̂

+ µΛ P + η̂

(
H(M + 1)

H(M)
− P

)
= 0

where we have written µΛ for the deterministic terms in dΛt/Λt and used the fact that
P(M + 1) = 1.

Next, add and subtract η̂(H(M+1)
H(M)

− 1)P and use the fact that the expected growth rate
of the pricing kernel is minus the riskless rate:

r0 = −µΛ − η̂

(
H(M + 1)

H(M)
− 1

)
to get (8):

− (η̂)2

aη

∂P
∂η̂

− r0P + η̂
H(M + 1)

H(M)
(1 − P) = 0.

A.4 Real Options

A.4.1 Mitigation

The text in Section 3 describes endowing the model economy with a one-time real option
to invest in a mitigation technology to alter a structural parameter, χ, via χ = g(i) where
I is a lump-sum investment and i = I/q. Since the option is a one-shot decision, the
post-investment economy is identical to the original model (without the technology) and
hence its value function is as derived in the main propositions.

Then, the assertion is that, for two otherwise equal economies E1 and E2, if the sen-
sitivity of the value function, H, to χ is weaker in E1 than in E2, then, if a solution to
the real-options problem exists in E2, a solution also exists in E1 with smaller optimal
investment.
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To see this, view H as a function of χ, and the problem is to choose i to maximize
the H(g(i))(1 − i)1−γ/(1 − γ) with first order condition −g′(i) ∂ log H(g(i))/∂χ = (γ −
1)/(1 − i). Assume γ > 1. Then the right side (the marginal cost) is an unbounded in-
creasing function of i on [0,1) which is the same for both economies. Call it RHS(i). On
the left side (the marginal benefit), the first term is the same for both economies. The
hypothesis is that ∂ log H(χ)/∂χ is smaller in E1 than in E2 for all χ implying that the
second term is smaller. Hence LHS1(i) < LHS2(i) for all i. Assume LHS2 is continu-
ous and declining. Then, if an interior solution, i∗2 , exists, it follows that on [i∗2 ,1) we
have LHS1 < LHS2 < RHS, meaning that there cannot be a solution for E1 in this region.
Hence, either there is a solution i∗1 < i∗2 or no interior optimum exists and i∗1 = 0 in E1.

A.4.2 Information Production

The top panel of the table below presents the optimal information investment as a fraction
of wealth when the economy contains a technology allowing agents to purchase a realiza-
tion of N transitions of the disaster process, e.g., in a laboratory. The realization increases
aλ by N but also alters the mean λ̂ depending on the (random) time-length of the real-
ization.1 The table assumes that the information production function is N = 200 i, where
i = I/q is the lump-sum investment. The option to make this investment is a one-time
occurrence at the on-set of a disaster.

The lower panel reports the welfare gain, in units of wealth, of the investment. The
difference between the respective panels can be interpreted as the value-added of the
technology.

1The time-length is a virtual output. The experiment is assumed to be atemporal. Agents receive the results
immediately.
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Table A.1: Information Production

(A) Optimal Investment

Benchmark ψ = 0.20

λ̂ λ̂
0.2 0.5 1.0 0.2 0.5 1.0

η̂
0.01 0.015 0.015 0.015

η̂
0.01 0.030 0.035 0.040

0.05 0.015 0.015 0.015 0.05 0.035 0.030 0.030

γ = 2 ρ = 0.02

λ̂ λ̂
0.2 0.5 1.0 0.2 0.5 1.0

η̂
0.01 0.015 0.015 0.010

η̂
0.01 0.030 0.035 0.035

0.05 0.010 0.015 0.015 0.05 0.025 0.030 0.03015

(B) Welfare Gain

Benchmark ψ = 0.20

λ̂ λ̂
0.2 0.5 1.0 0.2 0.5 1.0

η̂
0.01 0.038 0.046 0.047

η̂
0.01 0.314 0.346 0.343

0.05 0.032 0.042 0.042 0.05 0.284 0.320 0.343

γ = 2 ρ = 0.02

λ̂ λ̂
0.2 0.5 1.0 0.2 0.5 1.0

η̂
0.01 0.031 0.032 0.020

η̂
0.01 0.114 0.164 0.188

0.05 0.021 0.030 0.026 0.05 0.085 0.130 0.143
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