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Abstract

We study the problem of an investor that buys an equity stake in an entrepreneurial
venture, under the assumption that the former cannot monitor the latter’s op-
erations. The dynamics implied by the optimal incentive scheme is rich and
quite different from that induced by other models of repeated moral hazard. In
particular, our framework generates a rationale for firm decline. As young firms
accumulate capital, the claims of both investor (outside equity) and entrepreneur
(inside equity) increase. At some juncture, however, even as the latter continues
to grow, invested capital and firm value start declining and so does the value of
outside equity. The reason is that incentive provision is costlier the wealthier
the entrepreneur (the greater is inside equity). In turn, this leads to a decline in
the constrained–efficient level of effort and therefore to a drop in the return to
investment.
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1 Introduction

Think of an investor who provides seed financing to an entrepreneurial firm. The

success of her investment will depend crucially on the effort that the entrepreneur

puts in. Yet, the incentives of the two individuals are not perfectly aligned, as the

entrepreneur bears the whole cost of such effort while sharing the pecuniary returns

with the investor. Since monitoring the entrepreneur’s conduct is prohibitively ex-

pensive, the investor will find it optimal to implement an incentive scheme that links

rewards to observables. We are interested in characterizing the implications of such

scheme for the dynamics of firm size and value, as well as the latter’ split between

the two agents.

The problem just described can be conveniently cast as a model of repeated bilat-

eral exchange with hidden action along the lines of Spear and Srivastava (1987) and

Wang (1997). The only caveat is that in their models there is no notion of important

features of firm dynamics such as production and capital accumulation. The purpose

of this paper is to explicitly model both of these. We do so by assuming that the

entrepreneur is equipped with a production function that exhibits decreasing returns

and is hit by multiplicative shocks whose probability distribution depends in a natural

way on managerial effort.

The incentive scheme chosen by the investor belongs to the set of constrained–

efficient allocations, which in turn consist of sequences of effort provision, payouts,

and investment, that maximize the value of the investor’s claim (outside equity) for

given rewards to the entrepreneur.

The main insight generated by our analysis is a rationale for firm decline, which

follows from the negative relation between the marginal value of investment and

the entrepreneur’s continuation utility. Since the entrepreneur’s payoff function is

additively separable in consumption and effort and displays constant relative risk

aversion to consumption bets, incentive provision is costlier, the greater the value

assigned to the entrepreneur by the constrained–efficient contract.1 Everything else

equal, this means that the higher the entrepreneur’s continuation value, the lower the

constrained–efficient level of effort provision. By reducing the likelihood of a high

productivity shock, this results in a lower marginal value of investment.

A lending contract assigns to the entrepreneur a level of capital and a claim to

1This is a well–known property, exploited by Spear and Wang (2005) and Wang (2006) to model
the optimal termination of employment contracts and by Newman (2007) to study the relationship
between wealth and occupational choice.
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future cash flows. For consistency with the empirical evidence on the relative size of

entrant firms, assume that the initial capital is small (in a sense to be made precise

later). Then, the typical firm dynamics predicted by our model is as follows. Given

decreasing returns, early on the marginal product of capital is high. Since further

infusions of capital from the investor are ruled out by assumption, firm size gradually

increases over time, thanks to the investment of retained earnings. Optimal incentive

provision dictates that on average the entrepreneur’s continuation value and her claim

to future cash flows (inside equity) increase as well. These forces have countervailing

effects on the marginal value of managerial effort, positive for capital and negative

for continuation value. Eventually, the latter dominates. Capital and effort start

declining, and so does firm value.

When the elasticity of intertemporal substitution is greater than one and agents

discount future utility at the same rate, in the limit all cash flows accrue to the

entrepreneur. Firm size, effort, and inside equity converge to a constant. When the

entrepreneur is either relatively more impatient or her EIS is smaller than 1, the

model allows for non–degenerate stationary distributions of firm size, firm value, and

its split between the two agents.

We find that the qualitative features of firm dynamics we have just described

survive the generalization to the scenario in which productivity shocks are persistent.

This paper contributes to a fast–growing literature that explores the implica-

tions of moral hazard for firm dynamics. Albuquerque and Hopenhayn (2004) and

Cooley, Marimon, and Quadrini (2004) consider scenarios where the entrepreneur has

limited commitment, while Clementi and Hopenhayn (2006), Brusco and Ropero (2007),

Quadrini (2003) and DeMarzo, Fishman, He, and Wang (2008) study the case of hid-

den information. All of these models, as well as other theories of firm dynamics such

as Jovanovic (1982) and Hopenhayn (1992), are able to rationalize the negative cor-

relation between age and the exit hazard rate that was documented for relatively

young firms. None of them, however, is consistent with the evidence, provided by

Aggarwal and Gort (1996, 2002), that for older firms the exit hazard rate increases

with age, irrespective of the industry life–cycle phase.

This caveat does not apply to our theory. For every cohort of firms whose dynamics

are described by our contract, there is a point in time after which average firm size

and value decline with age. Assuming a constant outside value for firms’ assets, this

would result in a positive association between age and exit hazard rate.

Our paper also belongs to a large literature, started by Holmstrom (1979), that an-
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alyzes constrained–efficient allocations in principal–agent models with hidden action.

Our work is part of the more recent tradition, begun by Rogerson (1985b), that ex-

plicitly considers multi–period relationships. A number of papers in this line of work,

among which Wang (1997) and Clementi, Cooley, and Wang (2006), have interpreted

the principal–agent relationship as one between shareholders and executives. This

alternative interpretation is also valid for our model.

Finally, our framework also has close ties to equilibrium models that allow for

capital accumulation in environments where market incompleteness is caused by

moral hazard. Among these, the closest work is by Bohacek (2005), who provides

conditions under which an economy à la Atkeson and Lucas (1995) admits a sta-

tionary and ergodic distribution of consumption. Other papers in this class include

Marcet and Marimon (1992), Khan and Ravikumar (2001), and Espino (2005).

The remainder of the paper is organized as follows. The model is introduced in

Section 2. In Section 3 we characterize the constrained–efficient allocations that arise

in two special cases of our environment, namely one with no dynamics and one with

dynamics but no capital accumulation. That analysis helps building intuition for the

results illustrated in Section 4, where the general model is considered. In Section 5 we

discuss the empirical relevance of our theory. Section 6 is dedicated to comparative

statics exercises. Section 7 considers the scenario in which shocks are autocorrelated.

Section 8 concludes.

2 Model

Time is discrete and is indexed by t = 1, 2, ... There are two agents, who we will refer to

as investor and entrepreneur, respectively. The latter is endowed with a technology,

that produces a homogeneous good with capital as the only input. Output (yt) is

given by

yt = θtf(kt),

where f is continuous, strictly increasing, and strictly concave, kt ∈ [k, k] ⊂ ℜ+ is

capital, and θt ∈ Θ ⊂ ℜ+ is a random variable distributed according to the time–

invariant distribution function G(θt|at). The variable at ∈ A ≡ [a, a] ∈ ℜ+ denotes

managerial effort. We assume that G has a density denoted by g, which is twice con-

tinuously differentiable with respect to a, and that Θ is compact. Capital depreciates

at the rate δ ∈ (0, 1).2

2Decreasing returns and depreciation ensure that the efficient choice of capital will be bounded.
In our applications, k will always be higher than such bound.
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While the output of the production process is public knowledge, the effort exerted

by the entrepreneur is her private information.

At the outset, the investor provides the entrepreneur with capital k1. We do not

model the bargaining process by which the two agents agree on such level of capital

and on a particular split of the surplus. We also assume that any further investment

must be financed with resources produced internally. It follows that, at all t,

ct + xt ≤ θtf(kt), (1)

where ct ≥ 0 is the entrepreneur’s consumption and xt denotes investment. Since

condition (1) requires that payoffs to the investor be non–negative, we will refer to it

as the limited liability constraint. The law of motion for capital is the usual one:

kt+1 = (1− δ)kt + xt.

The last two conditions imply the following resource constraint:

ct ≤ θtf(kt) + (1− δ)kt − kt+1.

We assume that the investor is risk–neutral, while the entrepreneur is risk–averse.

The latter’s static preferences are represented by the utility function u(ct) − a. We

posit that u(·) belongs to the CRRA class, i.e. u(c) = c1−χ

1−χ , χ 6= 1.

For χ > 1, the function u(c) is unbounded below. As it will be clear below,

this means that in such a scenario the set of utilities that a feasible and incentive

compatible contract can award to the entrepreneur is also unbounded. Since our

techniques require boundedness, we will assume that χ < 1 unless otherwise noted.

We posit that agents discount future utility streams at the common rate 1
β − 1,

where β ∈ (0, 1). This restriction will be relaxed in Section 6, where we will consider

the case in which the entrepreneur is relatively more impatient.

We allow for history–dependent pure strategies. If we let h0 denote the empty his-

tory, then the history at time t ≥ 1 is given by the sequence ht = h0 ∪ {(θs, ks)}
t
s=1.

The investor’s task is to offer the entrepreneur an incentive scheme (contract) σ =

{at(h
t−1, kt), ct(h

t), kt+1(h
t−1, kt)}

∞
t=1. This notation reflects the assumption that in-

vestment is chosen at the beginning of every period, before the realization of the

shock.3 The timing is summarized in Figure 1.

Given ht and kt+1, the continuation profile of a contract σ from date t + 1 on-

wards is denoted as σ|ht, kt+1. Conditional on the entrepreneur taking the actions

3In Section 4 we comment briefly on how the constrained–efficient allocation would change, if we
assumed that investment was chosen after the realization of the shock.
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t−1, kt)− ct(h

t)
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r
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kt+1 = kt(1− δ) + xt(h

t−1, kt)

6

r

Figure 1: Timing in period t.

recommended by such profile, her and the investor’s continuation values are denoted

by ω(σ|ht, kt+1) and v(σ|h
t, kt+1), respectively.

A contract σ is said to be feasible if, at all times and after any history, effort

recommendations belong to the set A and the resource constraint is satisfied.

Definition 1 A contract σ is feasible if, for all t ≥ 1,

at(h
t−1, kt) ∈ A, ∀ ht−1, kt, (2)

and

0 ≤ ct(h
t) ≤ θtf(kt) + (1− δ)kt − kt+1(h

t−1, kt), ∀ ht. (3)

The temporary incentive compatibility constraint rules out one–shot deviations at

all dates and after all histories. It can be formally stated as follows:

Definition 2 A contract σ is temporary incentive compatible if, ∀t ≥ 1 and ∀ ht−1, kt,

at(h
t−1, kt) ∈ argmax

a

∫

θ

{

u(ct(h
t))− a+ βω(σ|ht, kt+1)

}

g(θt|a)dθt. (4)

Given our assumptions, the unimprovability principle guarantees that condition (4)

also rules out any arbitrary sequence of deviations from the investor’s effort recom-

mendation plan.4

4See Green (1987).
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The fact that the set A is a connected subset of ℜ+ suggests that rewriting (4) as a

first–order condition may be handy. In the literature, this is known as the first–order

approach, which is not universally valid. To ensure its validity, we follow Rogerson

(1985a) and Spear and Srivastava (1987) in assuming that the Monotone Likelihood

Ratio Property and the Convexity of the Conditional Distribution Condition hold.

Let Ω be the set of pairs (k, ω) such that there exists a feasible and incentive

compatible contract that delivers ω, given k. That is, for ∆ ∈ ℜ2 non–empty and

compact, let

Ω ≡
{

(k, ω) ∈ ∆ | ∃ σ s.t. (2), (3), (4), k1 = k, and ω(σ|h0) = ω
}

.

For every (k, ω) ∈ Ω, define Φ(k, ω) as the set of the investor’s expected dis-

counted utilities that can be generated by feasible and incentive compatible contracts

delivering ω to the entrepreneur for given k. That is,

Φ(k, ω) =
{

v(σ|h0) | ∃ σ s.t. (2), (3), (4), k1 = k, and ω(σ|h0) = ω
}

.

Proposition 1 Φ(k,w) is compact ∀(k, ω) ∈ Ω.5

For given (k, ω), the investor’s problem is to choose a feasible and incentive com-

patible contract σ that attains the maximum element in Φ(k, ω). Denote such element

as v∗(k, ω).

Proposition 2 shows that v∗(k, ω) is a fixed point of the operator T , which maps

the space of bounded and continuous functions v : Ω → ℜ into itself, with the sup

norm, and is given by

T (v)(k, ω) ≡ max
a∗,k′,c(θ),ω′(θ)

∫

Θ

{

θf(k)− c(θ)− k′ + (1− δ)k + βv(k′, ω′(θ))
}

g(θ|a∗)dθ

s.t.

∫

Θ

{

u(c(θ)) − a+ βω′(θ)
}

g(θ|a∗)dθ = ω, (5)

a∗ ∈ argmax
a∈A

∫

Θ

{

u(c(θ))− a+ βω′(θ)
}

g(θ|a)dθ, (6)

0 ≤ c(θ) ≤ θf(k)− k′ + k(1− δ) ∀θ ∈ Θ, (7)

(k′, ω′(θ)) ∈ Ω ∀θ ∈ Θ. (8)

Proposition 2 v∗(k, ω) = T (v∗)(k, ω) for all (k, ω) ∈ Ω.

5All the results and the proofs not included in the main text can be found in Appendix A.
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Since T satisfies Blackwell’s sufficient conditions for a contraction, the contraction

mapping theorem ensures that the fixed point is unique. Solving for it also yields

policy functions for recommended effort a(k, ω), capital k′(k, ω), entrepreneur’s cash

flows c(k, ω, θ), and continuation utility ω′(k, ω, θ), all of which can be used to recover

the constrained–efficient contract in a straightforward manner.6

By adapting results from Abreu, Pierce, and Stacchetti (1990) to our environ-

ment, Proposition 3 shows that Ω is the fixed point of the set operator B, defined as

follows.

Definition 3 For any arbitrary Σ ∈ ℜ2, let

B(Σ) = {(k,w) | ∃
{

a, k′, c(θ), ω′(θ)
}

s.t. (5), (6),(7), and (k′, ω′(θ)) ∈ Σ,∀θ}.

Proposition 3 (a) Ω = B(Ω). (b) Take any closed and bounded set X0 such that

Ω ⊆ X0. Let Xn+1 = B(Xn), for n = 0, 1, 2, ... Then, lim
n→∞

Xn = Ω.

Proposition 3 also shows that the sequence constructed by iterating on B starting

with a compact superset of Ω converges to the set Ω itself. This result will be useful

in the numerical approximation of the constrained Pareto–optimal allocation.

In the next section, we make assumptions about functional forms and parameters

that we will maintain for the remainder of the paper. The algorithms that were

designed to approximate the set Ω and the function v(k, ω) are described in Appendix

B.

2.1 Numerical Implementation

We assume that the production function is f(k) = kα, α ∈ (0, 1). Furthermore,

we posit that A = [0, ā] and Θ = {θl, θh}, with θh > θl > 0 and G(θl|a) = e−a.7

While this choice of conditional distribution is mostly dictated by tractability, it has

appealing features. The probability of a good outcome is zero if no effort is exerted,

and goes to 1 as effort grows unboundedly large. Furthermore, the marginal effect

of effort on the probability of success is decreasing in the effort itself. From now on,

all variables that are contingent on the shock realization will be denoted with the

subscripts l or h.

6Since the investor is risk–neutral, her return function is not bounded. The claims just made about
the operator T still hold true, as capital is bounded by assumption and consumption is bounded as
a result of constraint (7).

7The upper bound ā will be chosen so as to ensure it never binds.
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Under the assumptions listed above, the Bellman equation is

v(k, ω) = max
a∗,k′,{ci,ωi}i=h,l

(1− e−a
∗

)[θhk
α − ch + βv(k′, ωh)] + e−a

∗

[θlk
α − cl + βv(k′, ωl)]

+ k(1 − δ)− k′ (P1)

s.t. (1− e−a
∗

) [u(ch) + βωh] + e−a
∗

[u(cl) + βωl]− a∗ = ω, (9)

a∗ ∈ argmax
a∈A

(1− e−a) [u(ch) + βωh] + e−a [u(cl) + βωl]− a, (10)

0 ≤ ci ≤ θik
α − k′ + (1− δ)k ∀ i = h, l, (11)

(

k′, ωi
)

∈ Ω ∀ i = h, l. (12)

For all (k, ω) ∈ Ω, v(k, ω) yields the expected discounted value of the cash flows

that will accrue to the investor, conditional on capital and promised utility being

equal to k and ω, respectively. For this reason, it can be thought of as outside equity.

We denote as C(k, ω) the expected discounted cost to the investor of delivering ω to

the entrepreneur, when the current capital stock is k. The function C(k, ω) solves the

following functional equation:

C(k, ω) = (1− e−a
∗

)[c∗h + βC(k′∗, ω∗
h)] + e−a

∗

[c∗l + βC(k′∗, ω∗
l )],

where the asterisks designate the optimal choices generated by problem (P1). Since

C(k, ω) is also the expected discounted value of the cash flows that will accrue to the

entrepreneur, we will often refer to it as the value of inside equity.

Unless stated otherwise, the parameter values used to compute the examples in the

remainder of the paper are those reported in Table 1. Even though we set β, χ, α, and

δ to values that are standard in the macroeconomics literature, we wish to emphasize

that by no means should this be considered a calibration exercise.

k k̄ β χ α δ θh θl
0 3.5 0.95 0.5 0.3 0.1 1.5 0.4

Table 1: Parameter Values.

3 The Optimal Contract Without Capital Accumulation

The purpose of this section is to illustrate the properties of the optimal incentive

schemes that obtain in two special cases of the environment described above. The

intuition gained here will be helpful in Section 4, where we will tackle the general

case.
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3.1 The Static Case

We start by considering the scenario where the relationship between investor and

entrepreneur lasts only one period. Since boundedness is not an issue, we will char-

acterize the optimal contract for all χ 6= 1.

We find it convenient to reformulate the problem to let the investor choose utilities

rather than consumption allocations. To this end, denote the cost of delivering a

utility level u as c(u) = [(1 − χ)u]1/(1−χ). Obviously, c(u) is strictly increasing and

strictly convex.8

With some abuse of notation, denote as ui ≡ u(ci) the utility the entrepreneur

derives from consuming ci, for i = h, l, and let ūi = u(θik
α − δk). Finally, denote as

ω̄(k) and ω(k) the supremum and infimum elements of the set of utilities that can be

awarded to the entrepreneur by a feasible and incentive compatible contract, when

the installed capital is k. The two bounds are characterized by Lemma 3.

When capital in place is k, the value to the investor of delivering utility ω to the

entrepreneur, ω(k) ≤ ω ≤ ω̄(k), is

max
uh,ul

(1− e−a
∗

) [θhk
α − c(uh)] + e−a

∗

[θlk
α − c(ul)]− δk,

s.t. (1− e−a
∗

)uh + e−a
∗

ul − a∗ = ω, (13)

a∗ = argmax
a∈A

(1− e−a)uh + e−aul − a,

u ≤ ui ≤ u(θik
α − δk), ∀ i = h, l,

where u = 0 if χ < 1 and u = −∞ otherwise. The constrained–efficient allocations

are characterized formally in Proposition 4. Here we describe their main features with

the help of Figure 2.

From the incentive compatibility constraint it follows immediately that the recom-

mended effort is a∗ = log(uh−ul). A higher effort is implementable only by increasing

s ≡ uh − ul, the gap between contingent rewards.

Combining (13) with the expression for the effort recommendation, the optimiza-

tion problem reduces to

max
s≥1

(

1−
1

s

)

[θhk
α − c(uh)] +

1

s
[θlk

α − c(ul)]− δk,

s.t. uh = 1 + ω + log(s),

ul = 1 + ω + log(s)− s,

u ≤ ui ≤ u(θik
α − δk) ∀ i = h, l.

8Notice that for χ < 1, c : ℜ+ → ℜ+. For χ > 1, c : ℜ− → ℜ+.
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Figure 2: Static Model. Policies for χ = 1/2 (left) and χ = 2 (right).

Necessary and sufficient condition for an interior solution is

1

s2
[θh − θl]k

α =
1

s2
[c(uh)− c(ul)] +

s− 1

s2
[

c′(uh)− c′(ul)
]

. (14)

Notice that the term 1/s2 is the increase in the probability of success induced by a

marginal increase in s. The left–hand side of (14) is the expected marginal revenue

gain resulting from the rise in s. The right–hand side is the marginal increase in

the cost of compensating the entrepreneur. The first term reflects the increased

probability of awarding uh rather than ul. The second term reflects the marginal

impact on the expected cost arising from an increase in the risk imposed on the

entrepreneur. By strict concavity of the utility function, this term is positive as well.

When the solution is interior (i.e. u < ul < ūl), Figure 2 shows that the rec-

ommended level of effort decreases with ω. As promised utility increases, incentive

provision becomes costlier. In turn, this implies that it is constrained–efficient to

require the entrepreneur to exert less effort. Proposition 4 establishes that χ ≥ 1/2

is a sufficient condition (although not necessary) for this property to hold.

Figure 2 also indicates that ul is constant for relatively high ω, signaling that the

limited liability constraint binds in the low state. Proposition 4 shows that when

ūh − ūl > 1, as it is the case in our example, effort grows with ω over this range.

When ūh − ūl ≤ 1, effort is identically zero in the same region.

Finally, notice that, since utility is bounded below for χ < 1, efficient effort

provision must be increasing with ω for low expected utility. In other words, since

the constraint ul ≥ 0 binds in this region, larger values of ω can only be implemented

by increasing uh and therefore the effort recommendation.
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3.2 The Dynamic Case

We now consider the case in which the time horizon is infinite, but there is no capital

accumulation. This scenario is very close to those analyzed by Spear and Srivastava

(1987) and Wang (1997). It differs from the former in that we impose limited liability,

i.e. the entrepreneur’s cash–flow must be non–negative. It differs from the latter, since

Wang assumes that the effort choice is binary and u(c) belongs to the CARA class.

With slight abuse of notation, let v(ω) denote the value accruing to the investor

when delivering utility ω to the entrepreneur and let s ≡ uh + βωh − (ul + βωl).

To begin, let χ < 1 and assume away the limited liability constraint. With no

upper bound on entrepreneur’s consumption, all levels of promised utility ω ≥ 0 could

be implemented by a feasible and incentive compatible contract. It would suffice to

require zero effort and award consumption c[ω(1 − β)] at all future dates. Since the

function c(·) is unbounded above, this seriously impairs our ability to characterize the

solution.9 To make some progress, we assume an arbitrary upper bound ω̄ > 0.

From the incentive compatibility constraint, it follows that recommended effort is

a∗ = log(s), for s ≥ 1. Then, for all ω such that 0 ≤ ω ≤ ω̄, the value of outside

equity v(ω) is the fixed point of the following operator:

v(ω) = max
s≥1,ωh,ωl

(

1−
1

s

)

[θhk
α − c(uh) + βv(ωh)] +

(

1

s

)

[θlk
α − c(ul) + βv(ωl)]− δk,

(P2)

s.t. uh = ω + 1 + log(s)− βωh, (15)

ul = ω + 1 + log(s)− s− βωl, (16)

ui ≥ 0 ∀ i = h, l,

0 ≤ ωi ≤ ω̄ ∀ i = h, l.

Proposition 5 Assume there is no limited liability constraint, χ < 1, and promised

utility is bounded above by ω̄ > 0. Then, the value function v(ω) is strictly concave.

Furthermore, for all ω such that the optimal choices ωl and ωh are interior:

(a) ωl < ω < ωh;

(b) payments to the entrepreneur follow a sub–martingale.

Along with (15)–(16), the following conditions are necessary and sufficient for an

9In particular, we cannot prove that the Bellman operator maps bounded functions into bounded
functions. As a consequence, the conditions of the Contraction Mapping Theorem are not satisfied
and we cannot use standard arguments to show strict concavity of the value function.
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interior solution to Problem (P2):

c′(ui) = −v′(ωi), i = h, l (17)

and

[θh − θl]k
α + β[v(ωh)− v(ωl)] = [c(uh)− c(ul)] + (s− 1)

[

c′(uh)− c′(ul)
]

. (18)

Condition (17) requires that the investor distributes contingent utility awards

efficiently over time. Equation (18) is the analogue of condition (14). It indicates

that the forces that shape the optimal spread of utilities across states are essentially

the same as in the static case. The only difference is that the marginal benefit

of increasing effort also depends on the difference between the investor’s contingent

continuation values.

When the solution is interior, the envelope condition is

v′(ω) = −

(

1−
1

si

)

c′(uh)−

(

1

si

)

c′(ul). (19)

The latter, along with (17), implies that

v′(ω) =

(

1−
1

s

)

v′(ωh) +

(

1

s

)

v′(ωl). (20)

In turn, strict concavity of the value function implies that ωl < ω < ωh.

Combining (19) and (17) yields a further condition, which is common to many

repeated hidden action models and was first illustrated by Rogerson (1985b). Letting

si, uih, and uil denote next period’s choices contingent on the current state of nature

being i, we have that

c′(ui) =

(

1−
1

si

)

c′(uih) +

(

1

si

)

c′(uil), i = h, l. (21)

By proposition 3 of Rogerson (1985b), claim (b) in Proposition 5 follows immediately

from (21).

An analytical characterization of the dynamics of effort is not possible. However,

all of our numerical examples indicate that effort is not monotone in the state ω. It

is increasing for low values and eventually becomes decreasing.

The extreme point ω = 0 is an absorbing state. For that level of promised utility,

a∗ = 0 and ul = uh = 0 at all times. For low but strictly positive values of ω, the

probability of ending up in such inefficient state is relatively high. In order to lower

such probability, utility should be delivered by lowering current consumption at the

12



benefit of future payoffs. Unfortunately such strategy is compromised by the lower

bound on utility.

For ul = 0, the promise–keeping constraint reads ω = uh+βωh−1−log[uh+β(ωh−

ωl)]. A marginal increase in recommended effort raises the probability of success and

allows for higher utility in the high state, but also lowers ωl. A bad shock will bring

promised utility closer to 0. This is why effort is low when promised utility is low. As

ω grows, the ability to provide incentives improves. For ω large enough, the choice

of ul becomes unconstrained. When this is the case, our numerical examples always

indicate that effort decreases with promised utility.

We now turn to the effects of introducing the limited liability constraint. Lemma

1 establishes that limited liability implies an upper bound for promised utility and

that such upper bound is an absorbing state of the dynamical system.

Lemma 1 For ūh − ūl > 1, the maximal element of the set Ω is ω̄ = 1
1−β [ūh − 1 −

log(ūh−ūl)]. The constrained–efficient contract is such that ui(ω̄) = ūi and ωi(ω̄) = ω̄

for i = h, l. For ūh − ūl ≤ 1, ω̄ = ūl
1−β , with a

∗(ω̄) = 0, ul(ω̄) = ūl and ωl(ω̄) = ω̄. In

either case, v(ω̄) = 0.

Proof. We only prove the case of ūh − ūl > 1. The scenario for ūh − ūl ≤ 1 is

straighforward. The maximal element ω̄ is the fixed point of the APS operator B(ω):

B(ω) ≡ max
a∈A,{ui,ωi}i=h,l

(

1− e−a
)

[uh + βωh] + e−a[ul + βωl]− a

s.t. 0 ≤ ui ≤ u(θik
α − δk), ∀ i = h, l,

0 ≤ ωi ≤ ω ∀ i = h, l.

In turn, this means that as long as effort is strictly positive, ω̄ satisfies

ω̄ = max
s≥1,uh,ωh

uh + βωh − 1− log(s),

s.t. 0 ≤ ui ≤ u(θik
α − δk), ∀ i = h, l,

0 ≤ ωi ≤ ω̄ ∀ i = h, l.

The solution of the optimization problem requires that current and continuation util-

ities are set equal to their upper bounds. That is, ωi(ω̄) = ω̄ and ui(ω̄) = ūi for

i = h, l. Furthermore, ω̄ = 1
1−β [ūh − 1− log(ūh − ūl)] and v(ω̄) = 0.

Unfortunately, standard sufficient conditions for concavity of the value function

do not hold in this scenario, as the feasible set is not convex. However, in all our

13
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Figure 3: Value and Policy Functions for χ = 1/2 and ūh − ūl > 1.

numerical examples the value function turned out to be strictly concave. Figure 3

refers to one such example.

Consistent with the above discussion, the policy for effort is increasing for low

ω. This is why the value function is also increasing in that range, implying that the

contract is not renegotiation–proof. Once ω is such that ul > 0, recommended effort

and the spread between current utility awards decline with ω. Finally, for relatively

high levels of the state variable, the limited liability constraint binds in the bad state

of nature. Given the upper bound on continuation utility ω, implementing higher ω

necessarily requires increasing the spread between current utilities.

The dynamical system has two absorbing points, for ω = 0 and ω = ω̄. All of

our simulations indicate that the latter is the only attractor. For all strictly positive

initial conditions, the sequence {ωt} converges to ω̄ almost surely. On average, the

entrepreneur’s consumption increases over time, converging to its rest point from
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below. Effort increases on average when the promised utility is relatively close to 0

and decreases for higher values.

Higher effort is elicited at the cost of lower insurance. The shape of the utility

function is such that the pecuniary cost of compensating the entrepreneur for risk is

increasing in ω. Given the relatively high intertemporal elasticity of substitution, this

cost is minimized by letting the entrepreneur’s consumption grow over time. It follows

that, over the renegotiation–proof region, consumption and leisure are complementary

ways of delivering utility to the entrepreneur: high effort and low consumption early

on, followed by (relatively) low effort and high consumption later on.

For χ > 1, the function u is unbounded below, meaning that all values ω such that

ω ≤ ω̄ < 0 are implementable. When the solution is interior, condition (21) implies

that payments to the entrepreneur follow a super–martingale, and therefore decrease

on average. Other analytical results are not forthcoming.

In order to compute an approximation of the constrained–efficient allocation, we

had to impose an arbitrary lower bound on promised utility ω, making sure that ω <

ω̄. As expected, in all of our examples effort is strictly decreasing in the state variable

ω. Because of the lower bound on promised utility, a strictly positive probability of

success implies that, in a non–degenerate interval to the right of ω, (1− 1
s )ωh+

1
sωl > ω.

Furthermore, (21) does not necessarily hold in the same interval.

Our simulations shows that the dynamical system admits a non–degenerate sta-

tionary distribution for all variables. Expected consumption growth is positive in an

interval to the right of ω.

4 The Full–fledged Model with Capital Accumulation

We now turn to the general case with capital accumulation. Once again, let χ < 1.

We limit our attention to renegotiation–proof contracts. To this end, we assume that

promised utility is bounded below by ω > 0. This bound is chosen so that the value

of the investor is decreasing in ω, for all k.

The left panel of Figure 4 depicts Ω, the set of promised utilities that can be

delivered by a feasible and incentive–compatible contract, for ω = 10.5. The upper
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contour ω̄(k) is the fixed point of the APS operator B, defined as

B(ω)(k) ≡ max
a∈A,k′,{ui,ωi}i=h,l

(

1− e−a
)

[uh + βωh] + e−a[ul + βωl]− a (P3)

s.t. 0 ≤ ui ≤ u[θik
α + (1− δ)k − k′], ∀ i = h, l,

ω ≤ ωi ≤ ω(k′) ∀ i = h, l.
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Figure 4: Set Ω and Value Function.

As expected, ω̄(k) is increasing in k. An increase in capital stock widens the

set of promised utilities that is feasible and incentive compatible to deliver to the

entrepreneur.

The solution to (P3) implies that, for every pair (k, ω) such that ω = ω̄(k),

constrained efficiency dictates ui(k, ω) = u[θik
α + (1− δ)k − k′], ωi(k, ω) = ω̄(k′) for

i = h, l, and v(k, ω) = 0.

The right panel shows that the value function is strictly increasing in the level of

capital and strictly decreasing in the entrepreneur’s promised utility ω. In all of our

numerical examples, v(k, ω) is also globally strictly concave. However, since standard

sufficient conditions for concavity are not satisfied, we cannot assert this as a general

property.

Figure 5 depicts the policy functions for current and promised utility. In the left

panel, we have plotted ui(k, ω), i = h, l. In the right panel, we have pictured the

contingent variation in promised utility ωi(k, ω)− ω, i = h, l.

For given capital stock, the entrepreneur’s contingent compensation schedules dis-

play the same qualitative features as in the case with no accumulation. The spread

between continuation utilities appears to be decreasing in ω, while the spread between
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current utilities is decreasing in ω for low values and increasing for high values. Once

again, this is due to the fact that, for ω high enough, the limited liability constraint

binds in the bad state of nature.
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The necessary condition for optimality of the effort choice is the analogue of equa-

tions (18). Refer to the left panel of Figure 6. Consistent with the intuition developed

in Section 3, recommended effort is increasing in the capital stock and decreasing in

the level of promised utility ω.
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The novelty with respect to the simpler models analyzed above is capital accu-

mulation. The policy function for net investment is rendered in the right panel of

Figure 6, where we plotted max[0, k′(k, ω) − k].10 The most interesting feature is

10In order the make the picture more informative, we have inverted one of the axes.
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that, for given capital, net investment is declining in ω. The optimality conditions

tell us why this is the case.

Consider first the scenario in which the limited liability constraint is slack. When

the value function is differentiable, the first–order condition for the capital choice is

(

1−
1

s

)

∂v(k′, ωh)

∂k′
+

1

s

∂v(k′, ωl)

∂k′
=

1

β
. (22)

From the envelope theorem, it follows that

∂v(k, ω)

∂k
=

[(

1−
1

s

)

θh +
1

s
θl

]

αkα−1 + (1− δ).

Differentiating the latter with respect to ω yields

∂2v(k, ω)

∂k∂ω
=

1

s2
(θh − θl)αk

α−1 ∂s

∂ω
. (23)

As long as ∂s/∂ω < 0, (23) says that the marginal benefit deriving to the investor

from an increase in capital is decreasing in ω. The higher ω, the lower the optimal

utility spread s and the probability of success. In turn, this leads to a lower marginal

value of investment.

Now fix k and consider the effect of increasing ω on the optimal choice of k′.

As long as the value function is concave, such effect will have the same sign as

that of the derivative of (22) with respect to ω. The first term of such deriva-

tive, 1
s2

[

∂v(k′,ωh)
∂k′ − ∂v(k′,ωl)

∂k′

]

∂s
∂ω , is positive. A higher value of ω today leads to a

lower utility spread s, which in turn increases the probability of a bad outcome.

Since ωh > ωl, this means that the effect on the marginal gain is positive. On

the other hand, as long as ωh and ωl are strictly increasing in ω, the second term
(

1− 1
s

) ∂2v(k′,ωh)
∂k′∂ωh

∂ωh

∂ω
+ 1

s
∂2v(k′,ωl)
∂k′∂ωl

∂ωl

∂ω
is negative. In our simulations, the latter effect

dominates. Investment decreases with ω.

When the limited liability constraint binds in the bad state of nature, the opti-

mality condition for capital reads as follows:

(

1−
1

s

)[

β
∂v(k′, ωh)

∂k′
− 1

]

+
1

s

[

β
∂v(k′, ωl)

∂k′
+

(

c′(ul) +
∂v(k′, ωl)

∂ωl

)

u′(cl)

]

= 0.

with cl = θlk
α+(1−δ)k−k′ and ul = u(cl). The term c′(ul)+

∂v(k′,ωl)
∂ωl

is the marginal

effect due to the impact of increasing investment on ωl. Since the limited liability

constraint binds, it must be negative. An increase in k′ distorts compensation in

the bad state of nature, leading to a drop in ul to the advantage of ωl. In other

words, an increase in k′ lowers the investor’s payoff by reducing the insurance the

18



contract provides to the entrepreneur. Unfortunately the comparative statics of k′ is

now considerably more involved. The role of the limited liability constraint in shaping

firm dynamics will be re–examined in Section 4.1.

Figure 7 illustrates one simulation of the system, starting from arbitrary initial

conditions. The state space is partitioned in four subsets. The policy for capital is
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Figure 7: Sample Path.

such that k′(k, ω) > k in regions A and B, and k′(k, ω) < k otherwise. The dynamics of

promised utility is such that in regions B and C, ωh(k, ω) > ω > ωl(k, ω). Irrespective

of the realization of the shock, promised utility increases in region A and decreases in

region D, respectively. In light of the above discussion, it is not surprising that the

locus separating regions B and C, along which net investment is identically zero, is

downward sloping for most values of k.

The scatter plot illustrates the dynamics of the state variables. The paths followed

by the other relevant variables are shown in Figure 8. When k and ω are relatively

low, the marginal product of capital is high and providing incentives is relatively

inexpensive. Therefore the returns to investment are high. Capital grows in both

states of nature. During the transition towards the locus separating the partitions B

an C, all other variables also increase on average. However, increases in both ω and

k lead to a progressive reduction in the marginal gain from capital accumulation.

Once reached the locus, incentive provision becomes so expensive to discourage

investment. From that moment onwards, a positive shocks leads to contemporaneous

increases in current and future payouts to the entrepreneur, and to a decrease in the
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continuation value of the investor’s claim. The following period, the capital and effort

choice will be lower. Conditional on negative shocks, the opposite will be true.11

On average, ω increases over time. This calls for lower effort, lower capital, and

lower outside equity. Eventually the system converges to a steady state where outside

equity is zero and the entrepreneur’s promised utility lies on the upper contour of

the set Ω. The constrained–efficient arrangement prescribes that in the limit the

entrepreneur controls all cash–flow rights.

Notice further that, even at the steady state, the contract does not yield full in-

surance and requires strictly positive effort. This result does not hold with generality.

When the difference between θh and θl is small enough, in the limit the entrepreneur

will end up receiving full insurance and exerting no effort.

Figure 9 confirms what we have learned so far. We have initialized the system by

assigning to the state variables the same initial conditions used to construct Figures 7

and 8. Then we have conducted a large number of 80–period long simulations and

plotted their simple averages. Early on all variables tend to increase. Eventually,

however, effort, capital, and the value of the investor’s claim decline towards their

11Modifying the timing to allow capital to be chosen after the realization of the shock would
definitely enhance efficiency, but it would change the dynamics in any meaningful way. The main
difference would be that capital reacts to shock realizations with one period delay, rather than two
periods as is the case under our assumptions.
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rest points.

We have assumed throughout that no other agent is able to operate the technology.

Or, alternatively, that the investor is fully committed to the contract. It would be

interesting to understand under what conditions the investor would be better off

by rescinding the contract, honor his promises by means of a constant sequence of

consumption, and hire someone else to manage the project. Spear and Wang (2005)

and Wang (2006) address this issue in simpler environments, without production or

capital accumulation.

4.1 The Role of the Limited Liability Constraint

In this section we discuss the allocation that obtains when we assume away the limited

liability constraint.

Without upper bounds to entrepreneur’s consumption, the problem is not bounded.

To make some progress in the analysis, we impose an exogenous upper bound for

promised utility.12

A first and somewhat obvious finding is that, given ω and no matter the initial

12The simulation of which in Figure 10 was obtained by imposing ωi(k, ω) ≤ 50 for i = h, l and
for all (k, ω). However, the qualitative features illustrated below are the same, no matter the upper
bound.
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capital k1, it is optimal for the investor to invest (or disinvest) instantaneously until

the firm lies on the locus separating the partitions B and C of the state space (see

Figure 7).
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Figure 10: Stationary Distribution – Without Limited Liability.

Our numerical experiments also show that, as it was the case in our benchmark

scenario, positive shocks are followed by an increase in promised utility in the same

period and by lower capital and lower effort in the following period. However, the

limiting behavior is different. The dynamical system admits stationary distributions

for all relevant variables, illustrated in Figure 10.13

As long as ventures start out with a relatively low level of inside equity (i.e. low

ω), firm value, outside equity, size, and effort will decrease over time. Inside equity

will increase.

The fact that firm value and size are maximal at the beginning of the life–cycle is

at odds with the empirical evidence. By requiring that investment be financed by re-

tained earnings, the limited liability constraint avoids this unappealing feature. The

reader that feels uncomfortable with such assumption should consider that convex

capital adjustment costs of the type commonly assumed in the macroeconomic liter-

ature would lead to a dynamics which is qualitatively the same as in our benchmark

13The figure was obtained initializing the system with arbitrary levels of the state variables and
letting the system run for 50,000 period. We deleted the first 500 realizations and reported the
frequency distributions.
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case. In particular, for a low enough initial capital stock, net investment would be

positive early on and would decrease (on average) later on.

4.2 The case of χ > 1

The main insight of this Section also applies to the case of χ > 1: positive shocks are

associated to an increase in promised utility in the same period and to lower capital

and lower effort in the following period. However, differently from the case of χ < 1,

the dynamical system admits stationary non–degenerate limiting distributions for all

relevant variables. Figure 11 illustrates such distributions when χ = 2 and the lower

bound on promised utility is ω = −100.
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Figure 11: Stationary Distribution for χ = 2.

Our simulations also show that, when the system is initialized with relatively low

levels for capital and promised utilities, average dynamics is qualitatively similar to

that implied by our benchmark. In particular, capital, outside equity, and firm value

increase early on, and then decrease.

This is consistent with our brief discussion of the scenario with no capital accu-

mulation and χ > 1 (see Section 3.2). In particular, there will exist a region to the

right of ω such that continuation utility will increase on average whenever the system

lies in that interval.

When the solution is unconstrained, i.e. when the limited liability constraint
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does not bind and ωl > ω, Rogerson’s condition (21) also holds true in the scenario

under consideration. Notice however, that this has no implications for the dynamics

of continuation utility. That is, consumption falling over time does not imply that

promised utility must also fall, as the latter is delivered via both consumption and

leisure.

5 Empirical Relevance

Much of the empirical literature on firm dynamics has focused on growth and sur-

vival of relatively young firms.14 Among its most robust findings are that both exit

hazard rates and survivors’ growth rates decline with age, both unconditionally and

conditional on size. Models based on learning or financing constraints have proven

successful in rationalizing both phenomena.15

As put by Caves (1998), however, “organizational geriatrics has received little

attention.” That is, little attention has been devoted to the dynamics of relatively

older firms. Notable exceptions are the studies conducted by Aggarwal and Gort

(1996, 2002) (AG hereafter) and Loderer, Neusser, and Waelchli (2009). Consistent

with most of the literature, they find that hazard rates decrease with age early in life.

However, they also find that firms eventually reach a senility point, after which exit

hazard rates increase with age. In this section we argue that, differently from other

theories of firm dynamics, our own is able to rationalize this evidence.

AG documented firm survival in five different phases of the industry life–cycle.16

Aggarwal and Gort (1996) shows that the senility point exists no matter the phase in

which firms are born. Aggarwal and Gort (2002) argues that it exists no matter the

phase in which firms live. This evidence leads us to conclude that for every cohort

there exists a time after which, conditional on industry–wide factors, the value of the

average survivor declines with age.

In fact, none of the models of firm dynamics we referred to above are consistent

with this behavior. All of them predict that survivors’ size and value converge from

below to a stationary distribution. Exit hazard rates are monotonically decreasing

and converge to a constant.

14See Caves (1998) for a survey.
15See Jovanovic (1982) in the case of learning and Albuquerque and Hopenhayn (2004),

Clementi and Hopenhayn (2006), Cooley and Quadrini (2001) and Quadrini (2003) in the case of
financing constraints.

16The five phases are supposed to track an industry in its path from infancy to maturity. AG
identify them operationally by means of Bahk and Gort (1993)’s criterion, based on the rate of net
entry.
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AG posit that the observed firm dynamics depends in part on the evolution of

firms’ “initial endowments,” among which Aggarwal and Gort (1996) include “ob-

served variables, such as an initial organization with a record of successful operation

in a related industry,” and “unobserved variables such as managerial talent.” In every

cohort, the average endowment level changes over time because of attrition of low en-

dowment firms and because of survivors’ net investment. As firms age, obsolescence

rises with respect to new investment. Eventually, net investment will turn negative

and lead firms to decline. According to AG, this is the mechanism responsible for the

fact that for relatively old firms, hazard rates increase with age.

AG’s argument has the flavor of the simple technological theory of industry dy-

namics presented in Hopenhayn (1992). In that paper, a firm’s endowment is a

stationary and serially correlated random variable determining productivity. The av-

erage entrant has a lower endowment than the average incumbent, and is therefore

closer to the exit threshold. This assumption is responsible for the selection effect

that drives the negative correlation between age and hazard rate. Because of the

stationarity of productivity, every cohort’s size distribution converges to an ergodic

distribution (also stationary, when re–scaled by its mass), characterized by a constant

exit rate. In turn, this means that the hazard exit rate also converges to a constant

from above.

In our model, the role of AG’s endowment is played by the entrepreneur’s con-

tinuation utility. When continuation utility is low, it is relatively cheap to induce

managerial effort. Constrained–efficiency dictates high effort and, as a result, the pro-

ductivity of capital is high. When the continuation utility is high, eliciting managerial

effort is more expensive. It is efficient to require less effort and thus the productivity

of capital is low. In this sense, the endowment is high when the continuation utility

is low, and viceversa.

The analysis conducted in Section 4 suggests that almost surely there exists a

point in time after which the endowment is expected to decline. Think of a cohort

of firms whose dynamics are generated by our contract. Optimal incentive provision

prescribes that, on average, promised utility increases over time. In turn, this calls

for lower effort and lower capital, which imply lower firm value. While we do not

explicitly model exit, it is clear that assuming a constant outside value for the assets

would yield a positive relation between age and exit hazard rate.

We conclude this section by speculating on our framework’s predictions for the

cross–sectional relationship between personal wealth and entrepreneurship. Newman
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(2007) shows that a static version of our model has a patently counterfactual impli-

cation. When individuals in a population are given the choice between working for a

wage (at zero risk) and becoming entrepreneurs, relatively rich people turn out to be

workers, and poor people become entrepreneurs. As long as the value assigned to the

agent by the contract is monotone in the agent’s wealth, it is easy to see why this is

the case. Everything else equal, the poorer the entrepreneur the cheaper is incentive

provision, and the larger is the payoff to investors. Our analysis shows that in general

Newman (2007)’s conclusion is not warranted in a dynamic setting. While it is still

true that poorer people are more likely to try entrepreneurship, it is also true that

those among them that succeed become progressively wealthier.

6 Comparative Statics

In this section, we document how the optimal contract and the implied dynamics

change when we select alternative values for either the entrepreneur’s discount factor

or the support of the conditional distribution Θ.

6.1 An Impatient Entrepreneur

Throughout Sections 3 and 4 it was assumed that the two agents discount future

utility flows at the same rate. Here we consider the case in which the entrepreneur

discounts future utility at the rate 1
ρ − 1, with ρ < β.

Figure 12 compares the policy functions that obtain for ρ = 0.495 with those of

the benchmark case. Given the entrepreneur’s preference for early consumption, the

optimal contract calls for a change in the time profile of her cash flows in favor of the

current period. The right panel on the bottom row shows that, everything else equal,

the entrepreneur receives higher payments in both states of nature.

When the limited liability constraint binds, i.e. when ul = u[θlk
α + (1 − δ)k −

k′], a higher payment to the entrepreneur necessarily translates into fewer resources

available for investment. This is why, as illustrated on the right panel on the top

row, net investment is lower than in the benchmark. The left panel on the bottom

row shows that recommended effort drops. This is consistent with our discussions

in Sections 3 and 4: a rise in current utility awards also raises the marginal cost of

eliciting effort.

Our simulations show that, as in the case of χ > 1, capital, promised utility, as well

as the other relevant variables converge to non–degenerate stationary distributions.
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Figure 12: Policy Functions. Solid: benchmark. Dashed: ρ = 0.945

6.2 A Narrower Gap between θh and θl.

Since the probability of a good outcome is endogenous in our model, so is the distri-

bution of cash–flows. This means that we cannot analyze the role of cash–flow risk.

However, we can consider the impact of reducing the gap between the two realizations

of the productivity shock.

Figure 13 plots the policy functions that obtain by simultaneously lowering θh

from 1.5 to 1.45 and raising θl from 0.4 to 0.45. Everything else equal, a lower gap

reduces the marginal benefit of effort. This is why the latter drops. In turn, lower

effort means more insurance for the entrepreneur.

The right panel on the top row shows that investment is higher. Most likely, this

result depends on the fact that a higher θl relaxes the limited liability constraint in

the bad state of nature. As usual, investment is chosen to equate the marginal effect

on future revenues to the opportunity cost. In Section 4 we have argued that when

the constraint binds, this cost also depends on the intertemporal distortion that is

caused by lower consumption in the low state. This is why efficiency dictates that

the larger revenues in the low state are allocated in part to increase compensation, as

argued above, and in part to increase investment.
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Figure 13: Policy Functions. Solid: benchmark. Dashed: θh = 1.45, θl = 0.45.

7 Auto–Correlated Shocks

So far we have assumed that a successful performance of the entrepreneur only affects

the probability distribution of the variable θ in the same period. Although it is

shared by most of the literature on dynamic hidden action models,17 one may find

this assumption to be particularly removed from reality. In this section we address

this concern by assuming that a successful outcome alters the probability distribution

in the future.

We posit that next period’s distribution conditional on success in the current pe-

riod stochastically dominates the distribution conditional on failure, i.e. G(θ′|a′, θh) <

G(θ′|a′, θl), for all a
′ ∈ A. In the numerical implementation, we assume that prob(θ′ =

θh|θ = θi) = 1 − e−ψia, with ψh > ψl > 0. The realization of θ in the previous pe-

riod is now a state variable, as it pins down the only parameter of the probability

distribution.

Notice that our modeling choice is different from that of Fernandes and Phelan

(2000). In their case, next period’s distribution depends on current effort (which is

private information), rather than on the current realization (public information).

Figure 14 illustrates value and policy functions along the ω dimension, for given

17For example, see Spear and Srivastava (1987) and Wang (1997).
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capital stock. Solid lines refer to ψh = 1.4, while dashed lines refer to ψl = 0.8.

All the other parameters are as described in Table 1. For ψ = ψh, a given level of

effort leads to a higher probability of success. With respect to the case of ψ = ψl,

the promised utility ω is delivered by requiring more effort and awarding greater

average consumption and expected continuation utility. Given the higher probability

of a good outcome, this plan can be implemented by lowering the state–contingent

payoffs to the entrepreneur, both in the present and in the future. This is why

ci(k, ω, ψl) > ci(k, ω, ψh) and ωi(k, ω, ψl) > ωi(k, ω, ψh) for all ω and for i = h, l.

Net investment is also higher for ψ = ψh, in spite of a greater average continu-

ation utility. The main mechanism of the baseline model is still at work. That is,

everything else equal higher continuation utility makes incentive provision costlier

and calls for less investment. However, a good realization in the previous period

raises the probability of a good outcome in the future. Ceteris paribus, this leads to a

greater expected marginal value of investment. The strength of this new mechanism

will depend on the difference between θh and θl.
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Figure 14: Policy Functions. Solid: ψ = ψh. Dashed: ψ = ψl.

Figure 15 illustrates the effects of persistence on the dynamics of all relevant vari-

ables. A good shock is associated with higher consumption and higher continuation

utility. However, differently from the benchmark scenario, firm value as well as next
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period’s investment and recommended effort are also higher following a good shock.

Why is this the case?

For simplicity, consider the case of a good realization when the probability dis-

tribution is parameterized by ψl. That is, when the realization of the shock in the

previous period was low. On the one hand, the rise in continuation utility triggered

by the positive outcome still calls for lower effort in the future and therefore implies a

lower marginal value of investment. On the other hand, the improvement in the prob-

ability distribution calls for greater effort and raises the marginal value of investment.

For our parameter values, the latter effect dominates.

The baseline model described in Section 4 predicts a negative correlation between

cash–flows and investment for relatively old firms. Simply allowing for persistence in

the shock can overturn this result, generating a positive correlation.

Similarly to the benchmark scenario, the value of outside equity converges to zero

and the entrepreneur ends up controlling all cash–flow rights. However, the ergodic

set for the state variables is now a non–degenerate subset of Ω’s upper contour. As

the investor’s payoff settles down to its long–run value, the other variables are time–

varying.
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8 Conclusion

In this paper we have characterized the firm dynamics implied by constrained–efficient

contracts between a risk–neutral investor and a risk–averse entrepreneur under the

assumption that the latter’s effort is not publicly observable.

A robust feature of the model is that the marginal gain from investing declines

with the level of promised utility. This happens because the cost of incentive provision

is increasing in ω. In turn, this means that the higher ω, the lower recommended

effort and the probability of success are, and therefore the lower the return to capital

accumulation is.

When the entrepreneur’s relative risk aversion coefficient is less than 1 and the two

agents are equally impatient, ω and the value of inside equity follow sub–martingale

processes. Firms that, consistent with the empirical evidence, start out small, have a

relatively high marginal product of capital, and therefore grow over time. The grad-

ualness of the growth process depends on the limited liability assumption, which can

be interpreted as a financing constraint or an extreme form of investment adjustment

costs. Making effort extraction costlier, the rise in the value of promised utility im-

plies a drop in the return to investment, which eventually leads to a decline in the

capital stock. In this sense, our theory provides a rationale for firm decline. This

feature distinguishes our model from other theories of firm dynamics. According to

those, average firm size and value increase monotonically over time.

Interestingly, the constrained–efficient contract prescribes that in the long run the

entrepreneur becomes the only claimant to the firm’s cash flows.

When the RRA coefficient is larger than 1 or the entrepreneur is relatively more

impatient, the dynamics of observables has the same qualitative features, as long

as the initial values of capital and promised utility are relatively low. What distin-

guishes these scenarios from our benchmark is that the model admits non–degenerate

stationary distributions for firm size and the other relevant variables.

A key mechanism in our theory is that providing incentives to exert effort becomes

costlier as the manager increases her stake in the firm. We believe that it would be

interesting to extend our framework by allowing for the possibility of termination.

In other words, by empowering the investor to liquidate the entrepreneur and hire

someone else to run operations. The insights provided by Spear and Wang (2005)

and Wang (2006) may prove useful in carrying out this task.

We believe that it would also be of interest to study the dynamics implied by our
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model under different assumptions on preferences. The results by Rampini (2004)

hint that under certain conditions the results could be quite different. In his study of

the relationship between entrepreneurial activity and the business cycle, he finds that

when preferences are of the type u(c−a), risk tolerance is increasing with wealth and

therefore incentive provision is cheaper. This is exactly the contrary of what happens

in this paper.
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A Proofs and Lemmas

Proof of Proposition 1.

Fix the pair (k, ω). We already know that Φ(k,w) is bounded. It is left to prove that

it is also closed. Let {Vn} ⊆ Φ(k,w), where Vn → V∞ when n→ ∞. We need to show

that V∞ ∈ Φ(k,w). In words, we need to demonstrate that there exists a contract σ∞

that satisfies (2), (3), (4), ω(σ∞|h0) = w, and v(σ∞|h0) = V∞. Now we will construct

such an optimal contract σ∞. By the definition of Φ(k,w), there exists a sequence of

contracts {σn} = {ant (h
t−1), cnt (h

t)} and capital {knt+1(h
t−1)}, where the constraints

(2), (3), and (4), ω(σn|h
0) = w are satisfied for every n. Therefore

V∞ = lim
n→∞

∞
∑

t=1

βt−1

∫

[θtf(kt)− cnt (h
t)− knt+1(h

t−1) + (1− δ)kt]g(θt|a
n
t (h

t−1))dht

For t = 1, notice that {an1 (h
0), cn1 (h

1)} and {kn2 (h
0)} are finite collections of bounded

sequences. Therefore, there exist collections of subsequences {a
nq

1 (h0), c
nq

1 (h1)} and

{k
nq

2 (h0)} such that

lim
nq→∞

a
nq

1 (h0) = a∞1 (h0), lim
nq→∞

c
nq

1 (h1) = c∞1 (h1), and lim
nq→∞

k
nq

2 (h0) = k∞2 (h0).

We now consider t = 2. Notice that {an2 (h
1), cn2 (h

2)} and {kn3 (h
1)} are finite col-

lections of bounded sequences, and we can define {a∞2 (h1), c∞2 (h2)} and {k∞3 (h1}

similarly as we did for t = 1. If we iterate this procedure for t = 3, 4, ..., and let

σ∞ = {a∞t (ht−1), c∞t (ht)} along with k = {k∞t+1(h
t−1)}, then it is easy to verify that

the constructed contract σ∞ is what we desired for.

Proof of Proposition 2.

Fix ω, the lifetime discounted utility ensured by the optimal contract to the agent, and

k, the optimal capital level of the firm. First, we show that T (v∗)(k, ω) ≤ v∗(k, ω).

This inequality is true if there exists a feasible and incentive compatible contract

σ such that ω(σ|h0) = ω and v(σ|h0) = T (v∗)(k, ω). The desired contract σ can

be constructed in the following way. Let a(k, ω), c(θ, k, ω), k′(k, ω), and ω′(θ, k, ω)

denote the solution of the maximization problem associated with the definition of

T (v∗)(k, ω). Now, let a1(h
0) = a(k, ω), c1(h

1) = c(θ1, k, ω), and k2(h
0) = k′(k, ω),

∀h1 for k = k1 given. For the realization of θ in t = 1, denoted θ1 for the purpose of this

proof, there exists a feasible and incentive compatible contract σθ1 that ensures a level

of expected discounted utility ω′(θ1, k, ω) to the agent, and v∗(k′(k, ω), ω′(θ1, k, ω))

to the principal. Thus, we can say that σ|h1 = σθ1 , ∀h1. It is obvious that the

constructed contract σ is what is desired.
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We now need to show that v∗(k, ω) ≤ T (v∗)(k, ω). Let σ∗ be an optimal contract

that ensures a level of expected discounted utility of ω to the agent, given k. In

consequence, we can say that

v∗(k, ω) = v(σ∗|h0),

or

v∗(k, ω) =

∫

Θ

{

θ1f(k1)− c∗1(θ1)− k∗2(h
0) + (1− δ)k1 + βv∗(k∗2(h

0), σ∗|h1)
}

g(θ|a∗1(h
0))dθ,

or, finally,

v∗(k, ω) ≤ T (v∗)(k, ω),

where the last inequality is obtained by letting a(k, ω) = a∗(h0, k1), c(θ, k, ω) =

c∗1(θ1, k1), ω
′(θ, k, ω) = ω′(σ∗|h0) along with k′(k, ω) = k∗2(h

0, k1), for given k = k1.

This solution satisfies the constraints (5), (6), (7), and (8).

Notice that the operator B is monotone, i.e. Σ1 ⊆ Σ2 implies that B(Σ1) ⊆ B(Σ2).

Following Abreu, Pierce, and Stacchetti (1990), we say that Σ is self–generating if

Σ ⊆ B(Σ).

Lemma 2 (a) Ω is self–generating. (b) If Σ is self–generating, then B(Σ) ⊆ Ω.

Proof. To prove (a), let (k, ω) ∈ Ω. There exists a contract σ = {at(h
t−1), ct(h

t)} and

a sequence {kt+1(h
t−1)} which satisfy the constraints (2), (3), (4), and ω(σ|h0) = ω.

We now say that

a(k, ω) = a1(h
0); k′(k, ω) = k2(h

0); c(θ, k, ω) = c1({θ}), ∀θ; ω
′(θ, k, ω) = ω2(σ|{θ}), ∀θ.

It is obvious that {a(k, ω), c(θ, k, ω), k′(k, ω), ω′(θ, k, ω)}, defined above, satisfies

the constraints (5), (6),(7), and (8). Therefore, (k, ω) ∈ B(Ω), which demonstrates

that (a).

To prove (b), let Σ be self–generating, and let (k, ω)h0 ∈ B(Σ). We have to

construct a contract σ = {at(h
t−1), ct(h

t)} and a sequence kt+1(h
t−1) = kh0 that

satisfy the constraints (2), (3), (4), and ω(σ|h0) = ωh0 . We construct such a contract

recursively. First, there exist {a(kh0 , ωh0), c(θ, kh0 , ωh0), k
′(kh0 , ω h0), ω′(θ, kh0 , ωh0)}

that satisfies (6), (8), and

∫

Θ

{

u(c(θ, kh0 , ωh0),m(a(kh0 , ωh0))l(k)) + βω′(θ, kh0 , ωh0)
}

g(θ|a(kh0 , wωh0))dθ = ωh0 ,

0 ≤ c(θ, kh0 , ωh0) ≤ θf(k)− kh0 + (1− δ)k.
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For t = 1, let a1(h
0) = a(kh0 , ωh0) and c1(h1) = c(θ1, kh0 , ωh0), ∀h

1. Also, let

k′h0 = kh1 = k′(kh0 , ωh0) and ωh1 = ω′(θ, kh0 , ωh0), ∀h
1. Notice that (kh1 , ωh1) ∈ Σ ∈

B(Σ) implies the existence of {a(kh1 , ωh1), c(θ, kh1 , ωh1), k
′(kh1 , ωh1), ω

′(θ, kh1 , ωh1)}

that satisfies (6), (8), and
∫

Θ

{

u(c(θ, kh1 , ωh1),m(a(kh1 , ωh1))l(k)) + βω′(θ, kh1 , ωh1)
}

g(θ|a(kh1 , ωh1))dθ = ωh1 ,

0 ≤ c(θ, kh1 , ωh1) ≤ θf(k)− kh1 + (1− δ)k.

We can iterate for t = 2, 3, 4, ... to construct the complete profile σ. We can then

observe that, by construction, for any arbitrary t ≥ 0 and ht,

ω(σ|ht)− ωht =

∫

Θ
β[ω(σ|ht∗1)− ωht∗1 ]g(θ|a(kht , ωht))dθt∗1

Since 0 < β < 1 and the utilities are bounded, the above equation implies that

ω(σ|ht) = ωht ∀ t ≥ 0 and ∀ ht.

Hence, the contract that we have constructed is what is desired.

Proof of Proposition 3.

Part (a) is obvious. To show part (b), we will first show that the sequence {Xn} is

convergent. Clearly, B(X0) ⊆ X0. Next, we operate B on both sides of this expression

and obtainXn+1 = B(Xn) ⊆ Xn, ∀n, becauseB is monotone increasing. Hence, {Xn}

is a bounded and monotone decreasing set sequence with X∞ = lim
n→∞

Xn =
∞
∩
n=0

Xn.

Now, we show that Ω ⊆ X∞. Given that Ω ⊆ X0, the monotonicity property of B

ensures that B(Ω) ⊆ B(X0). However, it must be true that Ω = B(Ω), by part (a),

and B(X0) = X1, by construction. Then, Ω ⊆ X1. By iteration we obtain Ω ⊆ Xn,

∀n ≥ 0, and consequently, Ω ⊆ X∞. Now, we demonstrate that X∞ ⊆ Ω. Given

the properties of the sequence {Xn}, we have that B(X∞) = X∞. Hence, X∞ is

self–generating, and X∞ = B(X∞) ⊆ Ω.

Lemma 3 Let k ≥ (θl/δ)
1/(1−α). If ūh− ūl < 1, then ω̄(k) = ūl. If ūh− ūl > 1, then

ω̄(k) = ūh − 1− log(ūh − ūl). For χ < 1, ω(k) = 0. For χ > 1, ω(k) = −∞.

Proof. The value ω̄(k) is given by

ω̄(k) = max
uh,ul

(1− e−a
∗

)uh + e−a
∗

ul − a∗,

s.t. a∗ = argmax
a

(1− e−a)uh + e−aul − a,

u ≤ ui ≤ ūi i = h, l.
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Conditional on the optimal level of effort being zero, the solution calls for ul = ūl.

When effort is strictly positive, then problem rewrites as

ω̄(k) = max
uh,ul

uh − 1− log(uh − ul)

and the solution calls for ui = ūi, i = h, l. Since uh−ul > 1 implies uh− 1− log(uh−

ul) > ul it follows that ω̄(k) = ūl for ūh − ūl < 1 and ω̄(k) = ūh − 1 − log(ūh − ūl)

otherwise.

Now turn to ω(k). For χ > 1, any level of utility ω < ūl can be awarded by setting

a∗ = 0 and cl = c(ω). Such allocation is feasible and incentive compatible. For χ < 1,

any ω such that 0 ≤ ω ≤ ūl can be delivered in exactly the same way. Therefore,

ω(k) ≤ 0. By contradiction, assume that ω(k) < 0. Obviously, this must happen for

a∗ > 0. However, in this case promised utility is ul + ea
∗
− 1 − a∗, which is always

non negative for a∗ > 0.

For any k > 0, let ωb(k) be equal to the infimum of the set of values ω such

that the constraint ui ≥ u does not bind. It is easy to see that such set is always

non–empty.

Proposition 4 When recommended effort is positive, a∗ = log(uh − ul). Further-

more:

(a) if χ ≥ 1/2, a∗ is strictly decreasing in ω and uh and ul are strictly increasing in

ω for all ω such that the solution is interior;

(b) assume ul ≤ ūl binds; if ūh − ūl < 1, then a∗ = 0, otherwise a∗ = log(u∗h − ūl),

where u∗h satisfies u∗h − 1− log(u∗h − ūl)− ω;

(c) let χ < 1; if [θh − θl]k
α > c(1), there exists ωr > 0 such that ul = 0 and

uh − 1− log(uh) = ω for all ω ∈ [0, ωr]. If [θh − θl]k
α ≤ c(1), then a∗ = 0 and ul = ω

for all ω.

Proof. To prove (a), consider the necessary condition for an interior solution:

[θh − θl]k
α − [c(uh)− c(ul)]− (s − 1)

[

c′(uh)− c′(ul)
]

= 0. (24)

This condition is also sufficient if

−

[

c′(uh)
1

s
− c′(ul)

(

1

s
− 1

)]

−
[

c′(uh)− c′(ul)
]

−(s−1)

[

c′′(uh)
1

s
− c′′(ul)

(

1

s
− 1

)]

< 0.

When c′(·) is convex, sufficiency follows from the convexity of the cost function. This

happens for χ ≥ 1/2. When c′(·) is concave (χ < 1/2), it follows from the fact that
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c′′(u) = χ
1−χ

c′(u)
u . Applying the implicit function theorem to (24) reveals that χ ≥ 1/2

is sufficient, although not necessary condition for ds
dω < 0. In turn, this directly implies

dul
dω > 0. To see that duh

dω > 0 must hold, start from a pair (k, ω) and consider an

infinitesimal increase in ω. The left–hand side of (24) does not change. Since ds
dω < 0

and dul
dω > 0, for the right–hand side to remain unchanged it must be that duh

dω > 0.

When ūh − ūl < 1 and ω is such that ul = ūl, a positive effort recommendation

is not incentive compatible. This is not the case when ūh − ūl > 1. In such scenario,

any increase in ω must be accommodated by raising uh. This shows (b).

Now let χ < 1. For ω = 0, it is obvious that a∗ = 0 and uh = ul = 0. In fact,

if it were the case that a∗ > 0, (24) would have to hold for s > 1, which in turn

would imply ul < 0. Now consider an infinitesimal increase in ω. The constraint

s − log(s) ≤ 1 + ω relaxes. By continuity, however, it will still be the case that the

left–hand side of (24) is still strictly positive over the admissible range of s. Since

the left–hand side of (24) is decreasing in ω, when [θh − θl]k
α > c(1) there will be a

positive value of ω such that (24) holds true for s such that s − log(s) ≤ 1 + ω. On

the other hand, if [θh − θl]k
α ≤ c(1), this will never be the case.

Proof of Proposition 5. Claims (a) and (b) are proven in the main body of the

paper. Strict concavity follows from Theorem 4.8 in Stokey and Lucas (1989). To

see why this is the case, rewrite the optimization program in (P2) as the operator

T , which maps the set of bounded and continuous functions defined over [0, ω̄] into

itself:

(T v)(ω) ≡ max
s≥1,ωh,ωl

(

1−
1

s

)

[θhk
α − c(ω + 1 + log(s)− βωh) + βv(ωh)]+

+

(

1

s

)

[θlk
α − c(ω + 1 + log(s)− s− βωl) + βv(ωl)]− δk,

s.t. ω + 1 + log(s)− βωh ≥ 0,

ω + 1 + log(s)− s− βωl ≥ 0,

0 ≤ ωi ≤ ω̄ ∀ i = h, l.

First, notice that since a∗ = max[0, log(s)] a ∈ [0, ā], s is bounded. This implies that

the choices of uh and ul are also bounded. Furthermore, the constraint set is convex,

in the following sense. Let Γ(ω) denote the set of feasible triplets κ = (s, ωh, ωl) when

the state is ω. For all pairs ωa, ωb ∈ [0, ω̄] and all {κa, κb} such that κa ∈ Γ(ωa) and

κb ∈ Γ(ωb), ηκa + (1− η)κb ∈ Γ[ηωa + (1− η)ωb] for all η ∈ [0, 1].

Finally, strict convexity of the function c guarantees that for all concave, bounded
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and continuous functions v defined over [0, ω̄], (T )(v)(ηωa+(1−η)ωb) > η(T )(v)(ωa)+

(1− η)(T )(v)(ωb), for all ωa, ωb ∈ [0, ω̄] and all η ∈ [0, 1].

B Algorithm

In this section we provide a brief description of the algorithm that was used to compute

a numerical approximation to the value function v(k, ω). Given that the set Ω is not

square, it is not efficient to approximate the value function by means of bi–dimensional

splines. For this reason, we will restrict the choice of capital to a finite number of

levels and approximate the value function on the ω dimension by means of cubic

splines.

We start by defining a fine grid for the capital stock. Denote it as K ≡ {kj}
nk

j=1

and let the related set of indexes be J ≡ {j}nk

j=1. The upper bound of K must be

chosen in such a way that the corresponding net investment will be negative for all ω.

For this to be the case, it is sufficient to set it equal to the efficient capital stock when

θ = θh with probability 1 in all periods. That is, we let knk
=

(

αθh
δ

)
1

1−α
. The next

task consists in approximating the equilibrium value set of the transformed problem.

B.1 Approximation of the Set Ω

From the analysis conducted in Section 2, it follows that for every j ∈ J , the set

of feasible and incentive compatible values will be given by an interval [ω, ω̄j] ∈ ℜ+.

This means that our task reduces to approximate the mapping Ω : K → ℜ+ which is

given by the sequence {ω̄j}j∈J . The mapping Ω can be shown to be increasing and

strictly concave.

Following Abreu, Pierce, and Stacchetti (1990), we start by defining an initial

guess Ω0 = {ω̄0j}j∈J . We impose that Ω0 is weakly increasing, weakly concave,

and such that ω̄0j ≥ ω̄j for all j. These requirements are satisfied by letting ω̄0j =
u(θhk

α
nk

−δknk
)

1−β . Then, for every j, q ∈ J such that θlk
α
j +kj(1−δ)−kq ≥ 0, we compute

bjq ≡ max
a,{ui,ωi}i=h,l

(

1− e−a
)

[uh + βωh] + e−a[ul + βωl]− a (25)

s.t. 0 ≤ ui ≤ u(θik
α
j + kj(1− δ) − kq),

ω ≤ ωi ≤ ω̄nq

and

ω̄n+1,j ≡ max
j

{bjq} . (26)
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The operator defined by (25)–(26) generates a sequence {Ωn} that converges to Ω .

Our approximation will be Ωm such that ||Ωm − Ωm−1||∞ < 10.0−8.

Notice that, conditional on effort being zero, the above optimization problem

simplifies to

max
ul,ωl

ul + βωl

s.t. 0 ≤ ul ≤ u(θlk
α + k(1− δ)− kj),

ω ≤ ωl ≤ ω̄nj.

Obviously the solution calls for ul = u(θlk
α
j + kj(1− δ)− kq) and ωl = ω̄nq. Alterna-

tively, when effort is strictly positive, a = log(s), where s ≡ (uh + βωh − ul − βωl).

The optimization problem then becomes

max
s,uh,ωh

uh + βωh − 1− log(s)

s.t. 0 ≤ ui ≤ u(θik
α
j + kj(1− δ)− kq),

ω ≤ ωi ≤ ω̄nq.

In this case the solution calls for ui = u(θik
α
j + kj(1− δ)− kq) and ωi = ω̄nq.

B.2 Approximation of the Value Function

For every j ∈ J , we define a coarse grid Zj = {ωjz}
nω

z=1 over the interval [ω, ω̄j ].

We also define an initial guess for the value function: v0j : Zj → ℜ+. For all other

ω ∈ [ω, ω̄j ], the guess is approximated by a cubic spline which we denote as v0j(ω).

We impose that v0j(ω) is decreasing and concave in ω for all j ∈ J and that the

function is increasing and concave in capital. Then, for all z and every j, q ∈ J such

that θlk
α
j + kj(1− δ)− kq ≥ 0, we compute

djzq ≡ max
a∗,{ui,ωi,}i=h,l

(1− e−a
∗

)[θhk
α − c(uh) + βvnq(ωh)] + e−a

∗

[θlk
α − c(ul) + βvnq(ωl)]

+ kj(1− δ) − kq, (27)

s.t. (1− e−a
∗

)[uh + βωh] + e−a
∗

[ul + βωl]− a∗ = ωjz,

a∗ = argmax (1− e−a)[uh + βωh] + e−a[ul + βωl]− a,

0 ≤ ui ≤ u(θik
α
j + kj(1− δ) − kq) ∀ i = h, l,

a∗ ≥ 0,

ω ≤ ωi ≤ ω̄q ∀ i = h, l,
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and

vn+1,jz ≡ max
q

{djzq} . (28)

The operator defined by (27)–(28) generates a sequence Vn ≡ {vnj}j∈J . Our

approximation of the value function on the grid will be Vm such that ||Vm−Vm−1||∞ <

10.0−8. Notice that when recommended effort is positive, the above optimization

problem simplifies to

max
s,{ui}i=h,l

(

1−
1

s

)

[θhk
α − c(uh) + βvnq(ωh)] +

1

s
[θlk

α − c(ul) + βvnq(ωl)]

+ kj(1− δ)− kq,

s.t. ωh = [ωjz + 1 + log(s)− uh]/β,

ωl = [ωjz + 1 + log(s)− s− ul]/β,

0 ≤ ui ≤ u(θik
α
j + kj(1− δ) − kq) ∀ i = h, l,

ω ≤ ωi ≤ ω̄q ∀ i = h, l.
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