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TESTS OF AN ADAPTIVE REGRESSION MODEL
Thomas F. Cooley and Edward C. Prescott *

Introduction

NY econometric equation representing a
complex behavioral or technical relation-
ship is, of necessity, an approximation of real-
ity. As such, it is subject to errors in specifi-
cation and structural change over time. This
problem is well recognized by econometricians.
Duesenberry and Klein (1965) point out that
« .. as technology, institutional arrange-
ments, tastes and managerial techniques change
over time, the relationships represented by our
equations inevitably change.” Furthermore,
when statistical tests are applied to econometric
relationships, the hypothesis of structural sta-
bility is frequently rejected.! Some methods
for dealing with structural change have evolved.
Quandt (1957) has developed a maximum
likelihood technique for estimating a point of
‘structural change within a sample.” Klein and
Evans (1967) adjust the intercepts of the
Wharton Model to account for structural
change.® The purpose of this paper is to test
the robustness of Adaptive Regression (1973)
to specification errors causing structural change
over time, relative to ordinary least squares
analysis with and without the autoregressive
correction.*

Received for publication February 10, 1972. Revision

accepted for publication November 30, 1972.
) * The authors acknowledge helpful comments of Pro-
fessors F. G. Adams, R. Roll and R. Summers and the
participants of the NBER conference on Bayesian Statistical
Inference in Economics. Computations were executed on
the University of Pennsylvania computer.

L Examples of such tests include Brown (1966), Gold-
field (1969) and Howrey (1970). One of the most exten-
sive studies was done by Duffy (1969).

2The Quandt technique is limited by the fact that it is
mainly useful for finding stable subsamples. If structural
change occurs often, it is not very useful. Rosenberg (1968)
has used stepwise composition to develop the computa-
tionally efficient Aitken estimates of a model subject to
structural change over time. His procedure, however,
requires that the true covariance matrix of the disturbances
be known up to a constant scale factor.

3 Adjusting the intercepts is an ad hoc method for keep-
ing the model on track for ex ante forecasting. The inter-
cepts are not assumed to change over the sample period
which is always much longer than the forecasting period.

+The autoregressive correction assumes the error is sub-
ject to a first or second order autoregressive scheme. See
Dhrymes (1969) for the maximum likelihood approach and

Zellner and Tiao (1965) for the Bayesian development.
The latter .approach is used in this paper.
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Since econometricians are inevitably faced
with structural change and errors in specifica-
tion, they should use a technique which is
robust relative to such problems. The device
most commonly used is to assume that the
disturbances are subject to an autoregressive
process. The autoregressive correction may
frequently ameliorate the effects of misspecifi-
cation and structural change, but it is doubtful
whether such processes, except in rare in-
stances, describe the true distribution of the
disturbances. The economics literature seldom
gives any justification for this scheme except
that omitted variables may be subject to an
autoregressive process or the structure of the
model may be changing.® We suspect the
reasons for the widespread use of the auto-
regressive correction are that it is a simple
hypothesis, explains serial correlation in the
disturbances, and can be dealt with efficiently.
The adaptive regression model considered in
this paper is equally simple but more general,
explains serial correlation, and can also be
dealt with efficiently.®

In the next section the adaptive regression
model is presented and the Bayesian estimators
are developed. In section II the results of a
Monte Carlo Study are presented. Two models
are considered for which data are generated
by eleven different schemes. The estimation
and forecasting efficiency of adaptive regres-
sion, and ordinary least squares with and with-
out the autoregressive correction are com-
pared. Section III contains an analysis of the
role of time trends in econometric relationships.
In section IV the relative forecasting ability
of the three estimation techniques is tested on
real data. The three models suggested by

STn fact, if omitted variables are subject to an auto-
regressive process, the disturbances will, in general, be sub-
ject to a more complicated process.

6 A test with sufficient power to differentiate between
these two models (or others which result in serial correla-
tion) using sample sizes generally available to econometri-
cians does not appear to exist. Further, if one did, its
usefulness would be limited as neither structure is likely
to be an exact representation of reality. That one structure
is more likely on the basis of the data does not imply that
it will forecast better if, in fact, a third structure is gener-
ating the data.
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Friedman and Meiselman (1963) are consid-
ered. Section V summarizes the findings.

I An Adaptive Regression Model

The adaptive regression model considered
here explicitly assumes that the equation may
be subject to permanent structural change over
time. The assumed structure is

Yt = Bot + Brxse + ... 4 Buxrs + u:

t=1.2,...,T, (1)
where y, is the dependent variable for period ¢,
Bo: is the intercept value in period ¢, B; the
unknown slope coefficients, x;; the ¢ observa-
tion of the i** explanatory variable, and #, the
additive transitory disturbance.

The intercept is subject to random sequen-
tial changes over time:

Bo,t+1 = Bot + v: t=12,...,T. (2)
The #, and v, are assumed to be independent
normal variates with mean O and variances

var(u#;) = (1—y)o® and var(v;) = yo? 3)
where 0 = y = 1. The unknown parameter y
measures the relative importance of permanent
and transitory changes. If y = 0, all disturb-
ances are transitory and the model reduces
to the conventional linear regression model.

Since the process generating the intercepts
is nonstationary, it is possible by specifying the
value of the intercept at any arbitrary point,
to prescribe the joint distribution of any finite
set of the other values. As economists are
typically interested in forecasting, it is assumed
that the objective is to draw inference about
the current value of the random intercept.

Thus, we set 8, = By r,1 and from (2)
T

Bot = Bo — E Vi, (4)
imt
so equation (1) becomes
k T
Y = BO+E,8ixit+ut—2‘vi- (5)
i=1 i=t

The current value of the random intercept B,
is now treated as a parameter. It is clear that
this specification bears some similarity to the
conventional autoregressive model in which the
disturbances are also correlated through time

3 ©
Ye = Bo + 2 BiXi + 2 pes—i
i=1 i=0
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where ¢, is assumed to be a normal variate with
mean zero and variance o®. This latter struc-
ture, however, is less general than the adaptive
regression structure because it implies that the
effect of omitted factors or disturbances to the
process all decay exponentially with time and
at the same rate. It is quite conceivable that
there may be changes in omitted factors (such
as tastes or technology) which will persist into
the future without decay. The adaptive regres-
sion specification can better capture these ef-
fects.

Let y be the T' component column vector of
the y;, B8 the £ + 1 component vector

B, = [:807 B, .-, :Bk] (6)
and X the T by % 4+ 1 matrix of explanatory

variables with x;;, = 1, ¢ = 1,...,T. The TxT
matrices R and Q, are defined by

ry=min[T — i+ 1, T — j4 1] (7)
and

Oy = (1—y)I + yR. (8)
With this notation it is easily verified that

y ~ N[XB,0*Qy]. 9)

The maximum likelihood estimators of the
adaptive regression model and their large sam-
ple properties were developed in (Cooley and
Prescott, 1973). In this paper we present the
results of Bayesian estimation of the model.
We assume the prior knowledge about the pa-
rameters B3, o and y can be represented by
locally uniform and independent distributions: ?

p(y) = dy 0=y=1 (10)
P(B) « k
p(0) « 1/odo
Let B, be the Aitken estimator of B
By = (X'Qy1X) 71X7Q, 1y, (11)

and S, be the generalized sum of squared re-
siduals

Sy = (y — XB,)'Q, *(y — XB,). (12)
Following the analysis of Zellner and Tiao
(1965), the parameters 8 have the posterior
density

p(B;¥,y,0) ~ N[By, o>(X'Qy~1X) 1],
and the marginal posterior for y is

(13)

"We are aware of the admissibility problem when dif-
fuse priors are assumed. Nevertheless, this is the assumption
commonly used by econometricians. Alternatively, we could
have assumed priors which are proper but sufficiently diffuse
that the sample information dominated the prior.
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p(.y’y) o |Qv|_1/2|(X'Q7_1X)_1|1/2 S—(T—k)/2.
(14)
Conditional on v then, the first moment of B8
is simply the Aitken estimator B,.* With ex-
pression (14) numerical integration is used to
obtain the first moment of the posterior for 8

E(B;y) = JByp(y;y)dy. (15)
Other moments of the posterior distribution
can be obtained by numerical integration using
the result of Zellner and Tiao (1957, p. 773)
that

p(ﬁl)’:y)
{1 1B=PAX QK8 B Y 1

Sy
(16)
This is a form of the multivariate student ¢
distribution.

Because the random parameter B, is gen-
erated by a nonstationary process, it cannot
be estimated consistently. It has been shown,
however, that the estimates of y and o” are
consistent and that the estimates of the random
intercept and the slopes are asymptotically effi-
cient. The concern of the present paper is to
examine the performance of these estimators
in small and moderate sized samples under
realistic conditions. As Malinvaud (1966, p.
71) has pointed out, in the evaluation of esti-
mators it is essential to study the sensitivity
of their properties to changes in the assump-
tions of the model to which they are applied.

=const

II Monte Carlo Tests

The objective of the Monte Carlo analysis
was to test the overall accuracy and robustness
of the adaptive regression technique (ADR).
Since the adaptive regression model considered
here assumes a more general form of serial
correlation in the residuals it is of primary
interest to examine whether applying the adap-
tive regression technique yields significant im-
provements over the more commonly used au-
toregressive correction. It is also of interest

+ 8Tt should be noted that repeated inversion of Q, is
not necessary. In Cooley and Prescott (1973) a transfor-
mation P is developed which does not depend upon the
unknown parameters such that Py is normal with mean
PXp and diagonal covariance matrix. This was important
for without this transformation computation costs of adap-
tive regression would be excessive given current computer
technology.

THE REVIEW OF ECONOMICS AND STATISTICS

to see how adaptive regression performs in the
face of specification errors. Three estimation
techniques were used on each sample of test
data. The accuracy and predictive efficiency
of the ADR estimates were compared to es-
timates generated by ordinary least square
(OLS) and to generalized least squares esti-
mates generated under the assumption that the
error terms were subject to a first order auto-
regressive process (AUTO); that is

Uy ~ N(put_l,az).

In order to provide a broad test for robustness,
several different structures were used to gen-
erate the test data.

The first set of schemes used the adaptive
regression model to generate the data. Differ-
ent values for y were utilized; this varied the
relative importance of permanent and transi-
tory changes. In some situations this structure
may be a close approximation of reality, but
they are possibly few in number. Specification
errors will not always result in intercept
changes which are identically and independent-
ly distributed normal variates with mean O as
the ADR model assumes. For this reason two
other schemes with very different probability
laws governing the intercept change were in-
cluded to determine whether the results are
sensitive to the assumptions concerning the
intercept changes. One scheme had a small
probability of a large change in the intercept
in each period while the other had a constant
change in the intercept every period. The lat-
ter situation would arise if a variable with a
time trend had been omitted from the analysis.
Specification errors, which necessarily arise be-
cause of the need to approximate, may cause
shifts in the slope coefficients as well as the
intercept. To determine whether this affects
the results, a scheme with randomly changing
slope parameters was included.

The final set of data generation schemes had
no parameter change. In one, all the assump-
tions of conventional regression theory were
satisfied. This model is a special case of the
adaptive structure, obtained when y = 0. This
permits us to analyze what is lost by making
the more general assumption that there may be
permanent as well as transitory disturbances.
The remaining schemes had disturbances which
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TABLE 1. — STRUCTURES UTILIZED IN THE ANALYSIS *

Intercepts

Slopes Disturbances

Intercept Change

Adaptive v = .25
Y = .50 ﬂo,nl ~ N[ﬁo,t, 16(1—"/)] B = 0.4, ﬂz = 0.6 Ut ~ N(O, 16’)’)
vy =.75 Bo,o = 10
v = 1.00
Constant change Bo,t+1 = PBo,t + 0.4 B1 =04, B2=0.6 u: ~ N(0, 16)
Bo,0o = 10
Few large changes Pr[Bo, 141 = Bo,:] = 0.9
Pr[Bo,t41 = Bo,t + 201 = 0.05 B =04, B2 =06 u: ~ N(0,16)
Pr[Bo,t41 = Bo,+ — 20] = 0.05
No Intercept Change
Independent disturbances Bo = 10 B1 =04, B2=0.6 us ~ N (O, 16)
First order autoregressive =03
disturbances ¢ z =0.7 Bo =10 Pr =04, p2=06 ur ~ N(pttr-3,16)
Second order autoregressive
disturbanses Bo = 10 Bi =04, =06 st~ N(12Uts — Sths_z, 16)

Slope Change Bo,t41 ~ N (Bo,1,8)

Bo,o = 10

Bt~ N(B1,t,.004)
Bz,t41 ~ N(B2,1,.004)
B0 = 04, B20=0.6

Ut ~N(0,8)

* The u: are independent of each other and of any randomly changing parameter. Changes in parameters are also temporarily independent

and independent of each other.

were generated by first and second order auto-
regressive processes.’

The equations which generated the data had
two explanatory variables

Yt = Bot + Bi¥1e + Baxer + ue.
The x,, were subject to both permanent and
transitory changes. These changes were in-
dependent normal variates with mean O and
variances 16 and 4 for the permanent and
transitory component respectively. The initial
value of x, , was 30. For equation A in table 2
the x,; were identically and independently dis-
tributed normal variates with mean O and vari-
ance 25. Since many economic series are highly
correlated with time, we thought it of interest
to determine how results varied with such a
variable present. This was accomplished by
changing the distribution of x,, to obtain equa-
tion B. Instead of being identically and inde-
pendently distributed, x,; was normal with
mean ¢ and variance 5. For both equations A
and B, 100 samples of 35 observations were

® The parameters of the second order process were sug-
gested to us by M. McCarthy and T. Sargent as typical of
those obtained in economics when second order autoregres-
sive processes are estimates. The adaptive and autoregressive
structures are equivalent when either or both p and v equal

0, the case of independent disturbances, or when both
equal 1.

generated by each of the eleven schemes pre-
sented in table 1. Each of the three estimation
techniques were used to estimate the equations
and to forecast the value of the dependent vari-
able in the period subsequent to the sample
data.’® Both Bayesian and maximum likelihood
estimators were used. The results were nearly
the same so only the Bayesian results are re-
ported.

Although samples of thirty-five observations
are in the range frequently encountered by
econometricians, many times only a small num-
ber of observations are available to estimate
the relationship. To determine if results are
sensitive to sample size, the experiments with
equation A were repeated using samples of only
20 observations. The results of this extensive

*The optimal forecast when loss is proportional to the
mean squared forecast error is the mean of the predictive
probability density function (P.P.D.F.). Letting prime
symbols denote means of the posterior, the forecast for-
mulae were

Y'ri1 = o + Ba%1, 11 + Bla%e,ria
for OLS,

Y'ri1 = Blo,re1 + B'1%1, 141 + Bo%e,ria
for ADR, and

y’m = ﬁ'o -+ /3'1x1,1+1 + ﬁ'2x2,r+1

+ 0’ (yr — B'o — B'1x1 — (')

for AUTO. These are the means of the P.P.D.F. for yra
for ADR and OLS and approximately the mean for AUTO.
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TABLE 2. — SUMMARY ? OF FORECASTING RESULTS: MEAN SQUARE ERRORS

Equation A (35 obs.)

Equation A (20 obs.) Equation B (35 obs.)

Error Generation Scheme OLS AUTO ADR OLS AUTO ADR OLS AUTO ADR
Intercept Change
Adaptive vy = .25 b 38.5 19.1 10.5 33.9 17.1 14.1 229 16.1 10.9
vy =.0° 69.3 269 12.2 31.8 22.2 17.4 39.3 274 18.1
y=.75° 135.8 47.0 16.4 83.7 36.2 22.8 56.8 231 171
v =1.00" 115.1 39.5 20.8 106.2 40.5 203 79.6 313 21.0
Constant change °© 29.1 16.1 5.8 80.3 48.5 38.8 4.3 4.7 4.7
Few large changes © 213.8 116.6 27.5 358.4 165.3 66.6 181.6 71.5 30.7
No Intercept Change
Independent disturbances 2.6 31 4.4 2.6 3.2 5.1 2.9 34 4.5
First order autoregressive
disturbances
p =03 b 10.1 4.4 4.0 105.8 36.7 28.2 7.7 3.6 3.6
p=0.7 b 19.4 8.7 5.8 122.4 12.7 143 16.4 5.7 4.2
Second order autoregressive
disturbances ® 63.3 293 313 120.1 55.8 54.1 53.9 284 334
Slope Change © 149.7 55.7 23.4 76.5 47.0 32.4 71.6 39.0 24.7

a The samples consisted of 100 trials.

b Indicates fraction of times ADR was better than OLS is significant at the 5 per cent level.
¢ Indicates fraction of times ADR was better than OLS and AUTO is significant at the 5 per cent level.

TABLE 3. — SUMMARY OF ESTIMATION RESULTs: MEAN SQUARE ERRORS

Equation A (35 observations)

Equation B (35 observations)

Coefficient 1

Coefficient Bz

Coefficient f1

Coefficient B2

Error Generation Scheme OLS AUTO ADR OLS AUTO ADR OLS AUTO ADR OLS AUTO ADR
Intercept Change
Adaptive v = .25 120 .064 .034 025 .020 .017 .095 060 .047 110 .074 047
vy = .50 270 .088 .036 086 .030 .022 .058 .031 .019 290 .180  .066
v =.75 370 120 .030 .046 .017 .014 078 .042 .028 300 170  .066
v = 1.00 340 140 .040 130 .029 019 190  .062 .033 470 230 .077
Constant change .010 .051 .019 021 .019 .018 130 150 150 120 110 .067
Few large changes 700 330  .100 320 .080 .063 330 200 .100 1.300 .610 .240
No Intercept Change
Independent disturbances .011 .013  .014 017 .018 .017 009 .011 .014 .007 .010 024
First order autoregressive
disturbances
p=03 .018 .023 .029 016 .015 .014 .022 .025  .030 .011 .012 .029
p =07 071 .053  .046 037 .023 .020 066 .050 .049 .050 .037 .042
Second order autoregressive
disturbances 064 043 .050 079 .030 .032 160 .064 .059 081 .041 .054
Slope Change 290 170 .083 130 .095  .089 230 130 .090 350 250 120

battery of tests are summarized in tables 2 and
3. To conserve space only the mean squared
errors are presented for both the forecasts and
the estimates.!! The mean squared forecasting
error (MSFE) is computed as the squared dif-
ference between the forecast, y’;, 1, and the op-
timal forecast with the true values of the pa-

 Using the conventional mean squared error loss func-

tion, the Bayesian estimates and forecasts are just the means
of the posterior and predictive probability density functions.

rameters known.'? This reduces the variability
of the results and increases the power of the
tests. Nonparametric sign tests were performed
to test the significance of the differences in

2 With the intercept change schemes, the optimal fore-
casts, given the true parameters, is Bo,r41 - Ba¥i,ra +
Bztz,7+1. When the slope parameters were subject to change,
the values of B: and Bz in period T + 1 were used. When
there is no intercept change, and the disturbances are inde-
pendent, the optimal forecast is Bo + Bi%1,7+1 + Be¥e,ria. TO
this pu:» must be added for the first order autoregressive
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forecast errors.!®* Entries in table 2 marked

with a ® indicates that the differences in fore-
casting efficiency between OLS and ADR were
statistically significant; © indicates that the dif-
ferences between AUTO and ADR were also
significant.

Significant Findings

1) When intercept change is present, the
mean squared forecasting error (MSFE) is
dramatically lower for ADR. The MSFE was
as low as one-fifth that of OLS and one-half
that of AUTO. Similar improvements are
made in estimation efficiency. The mean
squared estimation errors (MSEE) are gen-
erally significantly lower for ADR.

2) It appears that the ADR results are not
sensitive to errors in specifying the probability
laws governing this intercept change. With the
exception of the constant change in equation
B, ADR yields substantially lower MSFE and
MSEE than OLS or AUTO when this form of
misspecification exists. The reason for the ex-
ception is noted in 7) below.

3) When there is no intercept change, and
disturbances are independent, the loss involved
in using ADR is quite small. This is a reflec-
tion of the fact that the ADR technique is quite
accurate at estimating the true value of 1.

4) Somewhat surprisingly, ADR performed
as well or better than AUTO in terms of mean
squared forecasting error when the disturbances
were generated by a first order autoregressive
process. These differences were not statisti-
cally significant, however, and ADR performed
somewhat worse in terms of estimation effi-

scheme and pi#¢-1 + pets:-» for the second order autoregres-
sive scheme. The mean square errors of forecast differ from
the mean square error about the conditional expectation by
a constant; thus, drawing inference about MSFE about the
conditional expectations rather than the actual realization
is a valid procedure.

8 Correlated sampling was used in this study to obtain
the maximum information for a given sample size. We tested
whether the difference in square errors between ADR and
each of the other techniques was greater or equal to zero
using the sign tests. T tests were tried but because of the
extreme observations the test was not appropriate even for
100 replications. Since the extreme observations were always
in favor of ADR, namely large negative values, the median
exceeds the mean making our test conservative. Summers
(1965) uses such procedures.

Computer time constraints prevented us from increasing
the sample size sufficiently so that a symptotic theory could
be invoked and ¢ tests used.
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ciency. The converse, however, was not true.
AUTO did not always perform as well as ADR
when the adaptive scheme generated the data,
and in two of the tests the differences were
significant.

5) When the disturbances were generated
by a second order autoregressive process, the
results were slightly mixed. AUTO did mar-
ginally better than ADR for the larger samples
and marginally worse for the smaller ones.
Again, the differences were not significant.
This, together with finding 4, indicates that
ADR is a robust technique.

6) When the slope coefficients were subject
to sequential change, ADR again performed
remarkably well when the error was evaluated
about the true value of the slope coefficients
in period T -+ 1. Both the MSFE and MSEE
are substantially smaller, indicating that ADR
is robust in this situation as well.

7) A comparison of the estimation and fore-
casting results for equations A and B indicates
that forecasting performance improves for both
OLS and AUTO when an explanatory variable
has a time trend. This is offset by an increase
in the mean squared estimation error of B,
the coefficient of that variable. Apparently, the
time trend variable serves as a proxy for
the intercept change.'* When the intercept is
subject to a constant change every period, the
structure is equivalent to a constant intercept
model with an omitted time trend. Thus, it is
not surprising that OLS and AUTO forecast
well in this situation since x, is highly corre-
lated with time. This explains the exception
noted in 2) above.

8) A comparison of the results for equation
A with 35 and 20 observations indicates that
sample size had a decided impact on perfor-
mance. The ADR estimates had lower MSFE
and MSEE, both absolutely and relative to
OLS and AUTO when more observations were
available. When intercept change was present,
however, OLS performed significantly better
on the small sample than on the large one,
despite the fact that the MSEE for 8, and B,
were sometimes significantly higher and sel-

“The detailed results revealed that the OLS estimates
of B: had ¢ statistics that were two to five times those of
the ADR estimates. The referee pointed out this result

could have been anticipated given Theil’s theorem on impact
of omitted variable (1957).
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dom significantly lower for the smaller sample.
When there is no intercept change, the esti-
mators show comparable improvements as the
number of observations is increased.

9) The mean squared errors were principally
the result of variance and not bias except for
equation B with the constant change scheme.
This is not surprising as, in all other cases,
OLS provides unbiased forecasts and slope es-
timates. The nonlinear techniques AUTO and
ADR had equally small bias, save for that one
exception.

III Time Trend Analysis

Frequently in econometric analysis equations
are estimated with a time variable included.
Sometimes it is argued that a trend variable
is necessary to delineate growth effects from
the permanent relationship being measured. It
is also argued that time variables may arise
naturally when the equation being studied is
the solution to a dynamic system. Usually,
however, the only apparent justification for
the inclusion of a time trend is that its ¢ sta-
tistic is large in absolute value and there is
some phenomenon in the system that is not
accounted for by the other variables. We hy-
pothesize that a significant time trend may
be absorbing some of the effects of structural
change. The purpose of the analysis reported
here is to test the validity of this conjecture.
The following two structures were used:

Time Trend Present

Ve = Bo+ Bix1t + B2t +u, for t=12,...
where B, = 10, B; = 2, B, = 0.4 and the #,
were identically and independently distributed
normal variates with mean O and variance 16.

Adaptive Model
Bo.o = 10.0, Bo.t41 ~ N(Bo,+,8), B1 = 2, and
u, ~ N(0,8).

In both cases the x,, were identically and in-
dependently distributed normal variates with
mean 1 and variance 25. The time trend struc-
ture has a time trend and a constant intercept
while the adaptive model has a random inter-
cept change but no time trend. Both models
were estimated under the assumption that a
time trend was present and, alternatively, was

THE REVIEW OF ECONOMICS AND STATISTICS

absent by each of the three estimation pro-
cedures.

When the data were generated with a time
trend included, the ¢ statistics of the time trend
for OLS always exceeded 2. When the data
were generated by the Adaptive Model, the
t statistic of the time trend for OLS exceeded
2 in 21 out of 25 trials and exceeded 5 in 14
out of 21 trials. OLS was clearly unable to
differentiate between the two models. The
AUTO and ADR techniques are more success-
ful in differentiating between the two models.
With ADR, however, the value of the ¢ statis-
tics were far smaller and do not give the re-
searcher a false sense of confidence in his
estimates. The AUTO method falls somewhere
between ADR and OLS.

In terms of estimating and forecasting effi-
ciency, correct specification is crucial with OLS
but not very important with ADR. Table 4
reveals that the MSFE increased only from
7.3 to 9.3 for the ADR estimates when time
was incorrectly excluded while, with OLS, the
MSFE increased from 4.4 to 56.9. When the
adaptive model generated the data, the incor-
rect inclusion of time increased the MSFE
from 12.9 to 17.8 for ADR and reduced it
from 94.0 to 57.3 for OLS. Entries marked ®
indicate that the forecasting difference between
ADR and both OLS and AUTO are statis-
tically significant. Thus, when intercept vari-
ation is present, the performance of OLS is
substantially improved if a time variable is
arbitrarily included in the equation and, the
time variable will most likely appear signif-
icant.

TABLE 4. — SUMMARY 2 oF TiME TREND ANALYSIS

Mear. Square
Forecasting Errors

Mean Square
Estimation Errors: Si

Estimation Time Trend Time Trend

Procedures Present Adaptive Present Adaptive

Time Included

OLS 4.4 57.3 .030 .042

AUTO 5.3 28.5 .028 .024

ADR 7.3 17.8° 028 022
Time Excluded

OLS 56.9 94.0 .037 130

AUTO 27.0 32.0 .021 .038

ADR 9.3" 12.9" .017 022

a The samples consisted of 100 trials. i
b Indicates fraction of times ADR was better than OLS is sig-
nificant at the 5 per cent level.
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IV Tests Using Friedman-Meiselman Models

The controlled experiments reported in the
previous section indicate that adaptive regres-
sion is a robust and accurate technique. It is
always of interest, however, to examine how
an estimation technique performs on real data.
In this section the adaptive regression tech-
nique is applied to the Friedman-Meiselman
models. Friedman and Meiselman (1963) es-
timated the following model

Ct = Bo + B14: + B2M,;
where C,; is consumption, 4, autonomous ex-
penditures and M, the money supply. The pur-
pose of their analysis was to test the relative
stability of money velocity and the multiplier.
The purpose of our analysis is not to attempt
to answer this question but to test whether
ADR forecasts better than OLS and AUTO.
This particular model was selected because
data were readily available for a long period
of time, namely 1897-1958, and the structure
involved no simultaneity.’® Further, such a
simple structure will surely be subject to struc-
tural change over time. Two additional ver-
sions of this model were estimated by Fried-
man and Meiselman. One, called the Keynes-
ian model, constrained f3,, the effect of money,
to be zero while the other called the quantity
theory model, constrained B,, the multiplier,
to be zero.

In our tests we first took the data from
1897-1916 and estimated each of the versions
of the model by OLS, AUTO and ADR. One
and two-period forecasts were generated. The
sample was then successively revised, new esti-
mates obtained, and new forecasts generated
for each of the years from 1917 to 1941, and
1947 to 1958. The sample was revised by
- adding one observation and deleting the ear-
liest, so the sample size was always 20. This
was done because we felt the assumptions of
constant slope coefficients was not valid for
longer periods. The results are summarized in
table 5. Again, the performance of the ADR
technique is dramatically superior to that of
OLS and AUTO. For the years 1917-1937,
OLS had slightly smaller MSFE than either

** Friedman and Meiselman’s definitions were used.
Whether they are the appropriate or best definitions, we
have no comment.
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ADR or AUTO with the combined model. In
all other instances both OLS and AUTO did
significantly worse than ADR for both one-
and two-period forecasts.

TABLE 5. — SUMMARY OF RESULTS ForR F-M MODELS

Forecast Years
1917-1937

OLS AUTO ADR

Forecast Years
1938-1958

OLS AUTO ADR

Combined Model
One-Period Forecast

MFE —1 —1 —1 9 4 4

MSFE 10 25 11 190 82 51
Two-Period Forecast

MFE —2 —1 —1 13 8 8

MSFE 14 20 17 342 164 143

Keynesian M odel
One-Period Forecast

MFE 16 —42 2 31 —4 14
MSFE 374 2079 27 1642 1321 614
Two-Period Forecast
MFE 19 -39 4 40 9 25
MSFE 489 1989 83 2432 1603 1301
Quantity M odel
One-Period Forecast
MFE -3 -1 -1 7 3 2
MSFE 25 30 12 199 265 106
Two-Period Forecast
MFE —4 —1 —2 10 5 4
MSFE 30 41 19 365 332 239

V Summary and Conclusions

Problems of structural change and misspec-
ification, common in empirical research, are
difficult, if not impossible, to deal with directly.
The adaptive regression model, which assumes
explicitly that the equation may be subject to
permanent structural change over time, ap-
pears to be a valuable technique for dealing
with such problems. Monte Carlo tests indi-
cate that in terms of both forecasting and
estimation efficiency adaptive regression is
superior to ordinary least squares (with and
without the autoregressive correction) when
equations are subject to change over time.
Adaptive regression is also remarkably robust
when disturbances are generated by an auto-
regressive process. When the possibility of
structural change over time is acknowledged,
the significance of time trends in economic
relations is questionable. Adaptive regression
performs well even when time trends are incor-
rectly omitted. In summary, the tests reported
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in this paper indicate that because of its more
general specification and robustness adaptive
regression is a desirable alternative to conven-
tional techniques.
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