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Abstract

Consider a seller who is endowed with a fixed number of units of a product that she can sell to a

price-sensitive and stochastically arriving stream of consumers during a finite time horizon. The

seller has incomplete demand information, that is, there are some characteristics of the demand

process (e.g., the arrival rate or the price elasticity) that she does not know with certainty. The

seller’s problem is to dynamically adjust the product’s price to maximize the expected revenues

she can collect if no replenishment is possible during the selling season.

Keywords: Revenue management, dynamic pricing, Bayesian learning, parametric and non-

parametric learning, approximations, Poisson intensity control.

Consider a seller who is endowed with a fixed number of units of a product that she can sell to a

price-sensitive and stochastically arriving stream of consumers during a given selling season. The

seller’s problem is to dynamically adjust the product’s price to maximize the revenues she can

collect if no replenishment is possible during the sales horizon. This setting is quite typical of

many industries including among others, airlines (selling seats on a specific flight), hotels (booking

rooms on a particular night) and retailers (selling seasonal merchandize). Often, these problems are

labeled as revenue management problems since operational decisions are driven solely by revenues;

inventory and capacity costs are sunk and incurred independently of changes in prices and/or

number of units sold. The assumption of a fixed capacity is by no means critical if we consider that

in most of these industries capacity is flexible only in the long run. Moreover, capacity decisions

and price decisions take place on different time scales. Issues regarding the type of airplanes to

schedule on a particular route, or the number of rooms to build in a given hotel, or the amount

of seasonal merchandise to purchase from an overseas supplier are decided long before demand is

realized and price policies are implemented.

In this paper, we discuss specifically the revenue management problem alluded to in the previous

paragraph using a stylized mathematical formulation. We focus on the research that considers the

case in which the seller has incomplete demand information. That is, there are some characteristics

of the demand process (e.g., the arrival rate or the price elasticity) that the seller does not know

with certainty. Through this discussion we aim at summarizing some of the fundamental theoretical

results of the existing literature. The model is simplistic but, we believe that the methods used

and the insights drawn are quite representative of more general models and various other settings

related to revenue management and, more broadly, to inventory management. Our exposition is



by no means exhaustive and we refer the reader to [11] and [29] for a comprehensive review of

the literature on dynamic pricing and revenue management and to [14] for a detailed exposition

on point processes and their optimal intensity control. We start reviewing the basic mathematical

model under complete demand information.

1 Dynamic Pricing with Complete Demand Information

Consider a stream of potential customers arriving according to a time-homogeneous and price-

independent Poisson process with rate Λ. We refer to Λ as the market size. Upon arrival a

consumer buys the product with probability F̄ (p), where p is the price of the product listed at this

time. We can interpret F̄ (p) as follows. We associate to each consumer a reservation price (that

is, a maximum willingness to pay) which is distributed according to F (·) among the population of

consumers (see [12] for more details), so that F̄ (p) = 1 − F (p). We will assume that F admits a

density f . The effective demand process or the sales process that results from the above description

is a non-homogeneous Poisson process with rate λ : R+ → [0,Λ], a continuous, bounded and

decreasing function such that at each time t, λt = λ(pt) = ΛF̄ (pt), where pt is the price charged at

time t. We will refer to λ(·) as the demand function. Let A be the set of admissible price processes

p = (pt : t ≥ 0), that is, processes for which the value of pt depends exclusively on the history of

sales and prices up to time t (but not on future unobserved events). We will denote by Ft this

history up to time t.

Let N = (Nt : t ≥ 0) be a standard (rate 1) Poisson process. For any p ∈ A and demand function λ,

we define the cumulative demand process Np
λ(t) := N (

∫ t
0 λ(ps) ds) and its corresponding cumulative

revenue

R(p;x0;λ) :=

∫ T

0
pt 11(N

p
λ(t) < x0) dN

p
λ(t),

where T is the length of the sales horizon, x0 is the seller’s initial inventory and 11(E) is the indicator

function of the event E. The seller’s dynamic pricing problem is given by the following (intensity

control) problem

(P) sup
p∈A

E [R(p;x0;λ)] .

For p ∈ A, Problem (P) can be rewritten as follows (see chapter II in [14] for details).

sup
p∈A

E
[∫ T

0
r(pt) dt

]
subject to Np

λ(T ) ≤ x0 (a.s.),

where r(p) := p λ(p) = pΛ F̄ (p) is the instantaneous revenue rate. Let us define p∗ := argmax{r(p)},
λ∗ := λ(p∗) and r∗ := r(p∗). It is worth noticing that despite the fact that p∗ maximizes the instan-

taneous revenue rate r(p) choosing pt = p∗ for all t is in general suboptimal. The reason is that this

choice could deplete the available inventory too fast (before T ) and the seller would be better off

charging a higher price without necessarily sacrificing sales. On the other hand, if x0 = ∞ then the

seller can never deplete her inventory in finite time and pt = p∗ for all t ≤ T is indeed an optimal

policy.

2



A standard way to solve Problem (P) is by using dynamic programming. For this, let J∗(x, t) be

the seller’s optimal revenue-to-go if the remaining sales horizon is t > 0 and the current available

stock is x units. It follows that J∗(x, t) satisfies the Hamilton-Jacobi-Bellman equation (see chapter

VII in [14] for details)

∂

∂t
J∗(x, t) = max

p≥0

[
r(p)− λ(p) [J∗(x, t)− J∗(x− 1, t)]

]
,

with boundary conditions J∗(x, 0) = J∗(0, t) for all x, t ≥ 0. One can show that there exists a

nondecreasing function ζ such that the optimal price satisfies p∗(x, t) = ζ(J∗(x, t) − J∗(x − 1, t)).

Similarly, we define a nonnegative and decreasing function Ψ such that the right-hand side of the

HJB is equal to Ψ(J∗(x, t)− J∗(x− 1, t)). From the first-order optimality condition for p∗(x, t) we

get that the HJB leads to the following set of identities.

∂

∂t
J∗(x, t) = Ψ(J∗(x, t)− J∗(x− 1, t)) = Λ

F̄ (p∗(x, t))

h(p∗(x, t))
, (1)

where h(p) := f(p)/F̄ (p) is the hazard function of F (p). It is worth noticing that the first equality
defines an algorithm to solve the seller’s optimization problem.

Algorithm:

- Step 0: Initialization. Set J∗(0, t) = 0 for all t ∈ [0, T ] and n=1.

- Step 1: Iteration. Given J∗(n− 1, t) for all t ∈ [0, T ] compute J∗(n, t) as the solution
of the first-order ordinary differential equation.

∂

∂t
J∗(n, t) = Ψ(J∗(n, t)− J∗(n− 1, t)) with border condition J∗(n, 0) = 0.

- Step 2: If n = x then stop. Otherwise, set n = n+ 1 and go to Step 1.

Closed-form solutions for J∗(x, t) are not generally available. A notable exception is the case in

which the reservation price is exponentially distributed, F̄ (p) = exp(−p/θ). In this case, it can be

shown that J∗(x, t) = θ ln(
∑x

n=0(λ
∗t)n/k!). For the general case, [19] obtain structural results for

problem (P) using the HJB optimality condition.

Theorem 1 ([19]) Suppose that r(p) is a concave function. The revenue-to-go, J∗(x, T ), is strictly

increasing and strictly concave in both T and x. Furthermore, there exists an optimal price

p∗(x, T ) ≥ p∗ that is strictly decreasing in x and strictly increasing in T .

It follows that inventory and time (the seller’s primary resources) have diminishing marginal returns.

The following result establishes the equivalence between the market size Λ and the sales horizon T

and will be useful in our discussion on how to handle uncertainty on the market size.

Theorem 2 Let J∗
Λ(x, t) be the seller’s revenue-to-go given a market size Λ. Then, J∗

Λ(x, T ) =

J∗
1 (x,ΛT ) for all x ≥ 0 and T ≥ 0. It follows that, under the assumptions of Theorem 1, J∗

Λ(x, T )

is an increasing and concave function of Λ.
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Proof: For any admissible pricing policy p = (pt : 0 ≤ t ≤ T ), we define p̃ = (p̃t : 0 ≤ t ≤ ΛT )

such that p̃t = pt/Λ. The result follows by noticing that
∫ τ
0 Λ (1 − F (pt)) dt =

∫ Λτ
0 (1 − F (p̃t)) dt for

all τ ∈ [0, T ]. Hence, the pricing policy pt in [0, τ ] generates (pathwise) the same revenue and depletes

the same amount of inventory than the pricing policy p̃t in [0,Λτ ]. �
Another key contribution in [19] is the observation that a fixed price policy can be asymptoti-

cally optimal as the scale of business (inventory and demand) increases. Denote by pD(x0, T ) :=

max{p∗, p0}, where λ(p0) := x0/T . One can show that pt = pD for all t ≤ T , is an optimal policy

for the deterministic version of Problem (P) (i.e., one that replaces the stochastic increments dNp
t

by its deterministic counterpart λ(pt) dt). We let JFP(x, t) be the seller’s expected payoff if she

selects the price pD(x, t) for the remaining sale horizon t.

Theorem 3 ([19]) Suppose that r(p) is a concave function. Then,

1− 1

2
√

min{x, λ∗ T}
≤ JFP(x, T )

J∗(x, T )
≤ 1.

It follows that when x and λ∗ T are both large a fixed price policy is sufficient to achieve an almost

optimal revenue. This is a very useful result that limits the seller’s needs for a possibly complex

dynamic pricing policy.

An important limitation of the previous result is the assumption that the seller knows the specific

demand function p 7→ λ(p). In practice, it is rarely the case that the seller can determine correctly

this function. In some cases, some incomplete information is available based on historical data. In

others cases, this demand function is completely unknown (i.e., for new products or new markets).

Furthermore, with incomplete demand information it is no longer true that structural properties

of an optimal solution to Problem (P) will still hold. For example, with incomplete demand

information there is no guarantee that a simple fixed price policy will produce asymptotically

optimal results (i.e., Theorem 3 is not guaranteed to hold). Indeed, as the following stylized

example reveals an optimal fixed-price policy can perform very poorly if the seller does not know

the true demand function.

Example: Consider Problem (P) and suppose that at the beginning of the selling season
the seller is uncertain about the true demand function λ(p). She only knows that there
is a 50% chance that λ(p) = λi(p), where λi(p) = Λ11(p ≤ pi), i = 1, 2 for two fixed
prices p1 and p2 such that 0 < p1 < p2 = 2p1. With full information, the seller knows
the value of i and chooses an optimal pricing policy pt = pi for all t with expected payoff
J∗
i (x, T ) = pi (ΛT−E[(N(ΛT )−x0)

+]. Hence, it follows that with incomplete information
the seller’s payoff V (x, t) is bounded by

V (x, t) ≤ 1

2
J∗
1 (x, T ) +

1

2
J∗
2 (x, T ) =

3

4
p2 (ΛT − E[(N(ΛT )− x0)

+].

One can show that an optimal fixed-price policy (one that maximizes the seller’s ex-ante
expected revenue) is to set pt = p2 for all t ≤ T . The corresponding expected payoff is
given by

V OFP(x0, T ) =
p2
2
(ΛT − E[(N(ΛT )− x0)

+].
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Under this optimal fixed-price policy there is 50% chance that the seller would sell no unit
during the entire selling season (i.e., when λ(p) = λ1(p)). Hence, the uncertainty on the
true demand function and the lack of flexibility of a fixed-price policy to adjust prices over
time make this fixed-price policy a risky and suboptimal strategy. To assess the degree of
suboptimality, consider the following simple adaptive pricing policy designed to learn the
true demand function from early sales. For a fixed α ∈ (0, 1), let pt = p2 for all t ≤ αT . If
at least one sale occurs in [0, α T ] then set pt = p2 for all t ∈ [αT, T ], otherwise set pt = p1
for all t ∈ [αT, T ]. The expected payoff of this pricing policy if given by

V (x0, T, α) =
(1 + e−ΛαT )

2
V OFP(x0, (1−α)T )+

(1− e−ΛαT )

2
(p2+2Eτ [V

OFP(x0−1, T−τ)],

where τ ∈ [0, α T ] is a random time with distribution Fτ (s) = (1− e−Λ s)/(1− e−ΛαT ).
It follows that

lim
x0→∞

V (x0, T, α)

V OFP(x0, T )
= 1 +

(1− α)

2
(1− e−ΛαT )

T ↑ ∞−→ 1 +
(1− α)

2
.

According to Theorem 3, under full information a fixed-price policy is asymptotically optimal
as x0 and T grow large. However, in this case with incomplete information, the optimal
fixed-price policy can deviate from an optimal strategy by as much as 50% (letting α ↓ 0)
as x0 and T grow large. At the same time, from the bound on V (x0, T ) and the value of
V (x0, T, α) above, it follows that V (x0, T, α)/V (x0, T ) converges to 1 as x0 and T grow
large and α ↓ 0. This result suggests that under incomplete demand information there
could be a version of Theorem 3 stating that an almost everywhere fixed priced policy is
asymptotically optimal, that is, a policy in which the seller needs to spend a small amount
of time learning and then implementing a fixed price policy. We will see in Section 4.2 that
such a Theorem does indeed exist under rather general conditions. �

The previous example reveals the risks that a seller could take if she does not fully incorporate the

effects of incomplete demand information when selecting optimal pricing strategies. The simple

adaptive policy in this example also highlights the new informational role that pricing policies

must play when there is uncertainty about the true demand function. With incomplete demand

information the seller faces an exploration-exploitation trade-off, where the pricing decision the

seller implements incorporates a learning component as part of the revenue maximization problem.

In the following section, we summarize a set of theoretical frameworks that have been proposed

to incorporate this incomplete demand information in the context of revenue management and

dynamic pricing.

2 Dynamic Pricing with Incomplete Demand Information

In most (if not all) practical situations, the seller has only partial information about the true value

of the demand function λ(p). As a result, the dynamic pricing problem (P) needs to be modified

to incorporate this additional ambiguity in the model formulation. Alternative solutions have been

proposed to tackle this problem, which differ in two main characteristics: (i) the representation of

the unknown function λ and (ii) the criteria that is used to resolve this model ambiguity.
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Regarding the issue of how to model λ, two distinctive approaches have been studied: parametric

and non-parametric models. As suggested by their names, the choice between these two alternatives

largely depends on the capacity that the seller has to represent the demand function in terms of

a finite number of parameters. To be concrete, suppose that the seller knows that λ ∈ H, where

H is a given family of real-valued functions. If H is the family of polynomials of degree K (for

some fixed K) then λ(p) = β0 + β1 p + · · · + βK pK and the seller’s learning problem reduces

to estimate the “best” set of parameters {βk}. On the other hand, if H = C+[0,∞), the set of

nonnegative continuous functions in [0,∞), then selecting the “best” λ involves searching in this

infinite-dimensional space; a problem that does not admit a parametric representation.

Independently of whether the seller uses a parametric or a nonparametric model to represent λ, the

question of how to select an optimal pricing strategy needs to be addressed. This problem entails

choosing a particular criteria to model how the seller’s ambiguity about the true value of λ should

impact her choice of prices.

The Bayesian approach is probably the most popular alternative used to model sequential demand

learning for the case in which λ has a parametric description. Under this approach, model ambiguity

on the demand function λ(p) is captured by a set of unknown random parameters that characterize

this function and for which a prior (at time 0) probability distribution is postulated. As time goes

by and the evolution of the demand process is observed, this prior distribution is updated based on

the new incoming information using Bayes rule. To be more specific, let θ be a random vector of

parameters taking values in a set Θ and let F (x) be the seller’s prior probability distribution of θ.

For each θ ∈ Θ there is a corresponding demand function λθ ∈ H and the seller’s optimal dynamic

pricing problem (P) takes now the following form

sup
p∈A

∫
θ∈Θ

E [R(p;x0;λθ)] dF (θ).

From a modeling perspective, the Bayesian method relies heavily on the good judgment and exper-

tise of the decision maker to select (i) the “right” functional form for the demand function and (ii)

the “right” prior distribution for the unknown parameters. There are positive and negative sides

to this approach. On the negative side, the parametric nature of the Bayesian model confines the

demand learning within the boundaries specified by the proposed functional form and prior distri-

bution and so any misspecification on these quantities will persist throughout the entire learning

process. On the positive side, the Bayesian approach benefits from any prior knowledge that the

decision maker may have about the demand process. This knowledge is particularly beneficial in

those cases where the planning horizon is relatively short and there is limited time to learn through

experimentation. Finally, Bayesian models can be mathematically tractable (with computationally

efficient solution methods) for some specific family of distributions of the prior (those families of

distributions for which their conjugate is tractable). In section 3.1, we review some representative

papers that use this Bayesian method.

As we mentioned above, one valid criticism to the Bayesian approach is its strong dependence

on the existence of a prior probability distribution for θ. Rather than modeling these unknown

parameters as random variables, an alternative approach is to use a point estimate θ̂ ∈ Θ, where
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the value of θ̂ is determined by optimizing a particular criteria that depends on θ and all available

information. For example, at time t = 0, the Maximum Likelihood estimation of θ̂ solves

θ̂ := argmax
θ∈Θ

L(θ,F0),

where L(θ,F0) measures the likelihood of observing a history F0 for a given value of θ ∈ Θ. In

other words, the seller’s model ambiguity is resolved by mean of an optimization problem in terms

of a likelihood objective function. Alternative estimation criteria have been proposed, essentially

by replacing L by other objective functions such as Least Square estimation (or more generally

∥ · ∥q-norm estimation), or Minimum Entropy estimation. As opposed to the Bayesian approach in

which the exploration and exploitation stages are conducted simultaneously, in these models both

steps are often decoupled. That is, given an estimate θ̂, the seller determines an optimal pricing

strategy by maximizing expected revenue, E
[
R(p;x0;λθ̂)

]
. On the other hand, demand learning

is achieved by periodically recomputing the value of θ̂ as new information is gathered, that is,

replacing F0 by Ft as time goes by. In section 3.2, we described a particular example that uses a

Least Square estimation approach.

Another popular approach that has also been used extensively to handle model ambiguity is the class

of robust formulations. The distinguishing feature of this approach is that it makes no probabilistic

assumptions about which function λ ∈ H is more or less likely to be the true demand function.

This uncertainty set H (as it is usually called in this context) captures all the knowledge that sellers

has about this demand. A robust pricing strategy is one that guarantees the best possible level

of performance (e.g., in a maximin, competitive ratio, or minimax regret criteria, among others)

uniformly over all possible values of λ ∈ H. For example, in the maximin version of problem (P),

the seller chooses a dynamic pricing policy that solves for

sup
p∈A

inf
λ∈H

E[R(p;x0;λ)];

that is, a pricing policy that maximizes the worst-case performance with respect to all demand

functions in the uncertainty setH. The popularity of this approach lies on the fact that it captures in

a parsimonious way the seller’s model ambiguity. In addition, and depending on the characteristics

of H (e.g., polyhedral or ellipsoidal uncertainty sets), the maximin formulation can be solved

efficiently. Among the disadvantages, the maximin criteria generally produces solutions that are

too conservative, specially if H is “big”. For instance, suppose that H contains a function λϵ such

that λϵ(p) = 0 for all p ≥ ϵ for some ϵ > 0 small. Then, an optimal maximin pricing policy satisfies

p∗t < ϵ for all t. It follows from this example that one needs to take special care in selecting the set H
under a maximin objective in order to avoid trivial or non-realistic solutions. To address this issue

of conservatism, other robust criteria have been proposed. For example, under an absolute minimax

regret approach the seller selects a pricing policy that minimizes the difference in performance with

respect to the full-information case

inf
p∈A

sup
λ∈H

{
sup
p̃∈A

E[R(p̃;x0;λ)]− E[R(p;x0;λ)]
}
.

Note that in this case, it is not generally true that an optimal pricing policy is conditioned by the

presence of λϵ in H.
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Another disadvantage of the robust approach –one that is particularly relevant in our present

discussion– is that it does not explicitly incorporate the possibility of demand learning. In sec-

tion 4.2, however, we review some recent results that show that in certain cases a simple policy

that learns for a relatively small period of time and then myopically sets prices is asymptotically

optimal in a robust sense.

In the following sections, we discuss some concrete models and examples within the class of para-

metric and nonparametric models for different demand learning criteria.

3 Parametric Models

Parametric models are based on some fundamental knowledge that the seller has about the true

demand function. For example, the seller might know that λ(p) belongs to a specific family of

functions which is characterized by a finite set of parameters (e.g., the family of linear functions as

in [7]). The seller parametric sequential learning problem is to identify the “best” value of those

parameters using realized market information (prices and sales). As we mentioned above, there

are different ways that one can use to identify the best set of parameters that we review in what

follows.

3.1 Dynamic Pricing with Bayesian Learning

In the context of revenue management and dynamic pricing, there is a growing literature that uses

Bayesian models to characterize optimal pricing policies when there is ambiguity about the true

demand function. One particular type of uncertainty that has received significant attention is mar-

ket size uncertainty. This model is well suited for those instances of the problem in which the seller

knows relatively well consumers’ reservation price distribution F̄ (p) but has limited information

about the actual size of the population of potential buyers, Λ. Some representative papers that have

studied this model are [3], [18] and [2] (see also [4] and [23]). In the context of Bayesian learning, [3]

considers the special case in which Λ has a Gamma prior distribution and F̄ (p) = exp(−αp) (i.e.,

exponentially distributed reservation price). The advantage of using a Gamma distribution for Λ

is that it is a conjugate distribution for the Poisson demand process which simplifies enormously

the use of Bayes rule. In an infinite horizon setting, [18] generalizes the demand model in [3] to the

family of finite mixture of Gamma distributions and propose a special heuristic (decay balancing)

that shows a good numerical performance compared to other heuristics proposed in the literature.

In the context of a retail operations, [2] considers an infinite horizon model for an arbitrary F̄ (p)

and where Λ has a finite support. A distinguishing feature in this model is that the seller has the

option to optimally stop selling the product at any given time to switch to a different assortment.

This is a particularly valuable option in the context of demand learning since the seller is initially

uncertain about how profitable the product really is. For example, if the true value of Λ is small

then the seller is better off removing the product.

In what follows we review the main results of the research discussed in the previous paragraph.

The underlying assumption that we make in the reminder of this section is that Λ is the seller’s

sole source of uncertainty. Having this in mind, we rewrite Problem (P). We denote by G0(Λ) the
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seller’s (prior) cumulative probability distribution of Λ at time 0 and by P0 (E0) the conditional

probability measure (expectation operator) given G0. We define similarly Gt, Pt and Et conditional

on Ft, the available information at time t. Using a slight abuse of notation, let r(p) = p F̄ (p). The

seller’s problem is given by

(B) sup
p∈A

E0

[∫ T

0
Λ r(pt) dt

]
subject to and

∫ T

0
dNp

t ≤ x0 (a.s.).

Similarly to Problem (P), we can solve Problem (B) using dynamic programming but with an

enlarged state space (x, t,Gt). The parametric description of Gt comes in handy at this point to

ensure the tractability of the resulting DP algorithm.

The stochastic evolution of the new state variable Gt is derived from Bayes rule. For the sake

of concreteness, let us suppose that Λ has a finite support {Λk}Kk=1 (where {Λk} is an increasing

sequence) so that Gt is piecewise constant. Let gt(k) = Gt(Λk) − Gt(Λk−1) with Λ0 = 0. Then,

Bayes rule implies that (see Proposition 3 and Section 6.1 in [2] for details)

gt(k) = P0(Λ = Λk|Ft) =
g0(k) · (Λk I

p
t )

Nt exp(−Λk I
p
t )∑

j g0(j) · (Λj I
p
t )

Nt exp(−Λj I
p
t )

.

It follows from its definition that {gt,Ft} is a martingale. Application of Itô’s lemma in the previous

equation leads to the following SDE

dgt(k) = ηk(gt) (λt Λ̄(gt) dt− dNt) 1 ≤ k ≤ K,

where Λ̄(g) :=
∑
k

g(k) Λk and ηk(g) := g(k)

(
Λ̄(g)− Λk

Λ̄(g)

)
.

The resulting Hamilton-Jacobi-Bellman (HJB) optimality condition for Problem (B) is given by

∂

∂t
V (x, t, g) = max

p

[
Λ̄(g) F̄ (p)

[
V
(
x−1, t, g−η(g)

)
−V (x, t, g)+η(g)·∇gV (x, t, g)

]
+Λ̄(g) r(p)

]
, (2)

where ∇gV (x, t, g) is the gradient of V (x, t, g) with respect to g. The boundary conditions are

V (0, t, g) = V (x, 0, g) = 0 and V (x, t, ek) = J∗
1 (x,Λk t) where ek is the distribution that gives

probability one to the event {Λ = Λk} and J∗
1 (x, t) is the full information value function for problem

(P) when the market size is normalized to one . Note that the latter border condition follows from

Theorem 2. Solving equation (2) is usually a very difficult task because of the singularities at

the boundary points g = ek and the jumps in x and g that make the HJB a delayed difference-

differential equation. Despite the fact that an analytical solution is not immediately available, this

optimality condition provides enough information to derive some useful properties that we can use

to approximate the value function and the corresponding pricing strategy.

Theorem 4 The value function V (x, t, g) satisfies the following properties:

i) It is increasing in x and t. It is also convex in g.

ii) It is bounded by: J∗(x,Λ1 t) ≤ V (x, t, g) ≤
∑

k g(k)J
∗(x,Λk t) ≤ J∗(x, Λ̄(g) t).
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iii) It satisfies limx→∞ V (x, t, g) = Λ̄(g) r(p∗) t = limx→∞
∑

k g(k)J
∗(x,Λk t). The optimal price

satisfies limx→∞ p∗(x, t) = p∗.

iv) A fixed price policy is asymptotically optimal in the following sense. Let V FP (x, t, g) be the

seller’s expected revenue using an optimal fixed price for the entire sale horizon. Then,

1− 1

2
√

min{x, Λ̄(g) F̄ (p∗) t}
≤ V FP (x, t, g)

V (x, t, g)
≤ 1.

Proof: Part (i). The monotonicity of V (x, t, g) on t and x follows trivially from its definition. The
convexity on g follows from

V (x, t, g) = sup
p

E

[∑
k

g(k)

∫ T

0
pt dN

p
t (k)

]
, where Np

t (k) := N
(
Λk

∫ t

0
F̄ (ps) ds

)
.

Part (ii). The first inequality (lower bound) follows from implementing on the incomplete information
case the optimal pricing policy for the case of full information with Λ = Λ1. The second inequality
follows from interchanging the sup and the summation in the equation above. The third inequality
follows from Theorem 2. Part (iii) follows from noticing that for x = ∞, the optimal pricing strategy
is pt = p∗ which maximizes the instantaneous revenue rate (see the discussion in Section 1 after the
definition of Problem (P)) independently of the value of Λ. Finally, Part (iv) follows from combining
the upper bound on Part (ii) and the result in Theorem 3. �
Note that E[J∗(x,Λ t)] =

∑
k g(k)J

∗(x,Λk t) and so point (ii) asserts that an upper bound for
the value function is given by the expected value (over the unknown market size Λ) of the full
information value function. Point (iv) extends [19] result in Theorem 3 to the case with uncertain
market size. This result suggests that the lack of asymptotic optimality of a fixed-price policy that
we identified in Example 1 is mainly due to the seller’s uncertainty about the buyers reservation
price distribution rather than the actual market size.

3.1.1 Approximations and Heuristics

One approach that has been used to approximate the optimal pricing policy is to first get an approx-
imation of the value function and then plug it in the HJB equation (2) to derive an approximating
pricing policy. For any approximation V aprx(x, t, g) of the value function, the corresponding pricing
policy is given by

paprx(x, t, g) = ζ
(
V aprx

(
x− 1, t, g − η(g)

)
− V aprx(x, t, g) + η(g) · ∇gV

aprx(x, t, g)
)
, (3)

the function ζ was defined in Section 1. (It should be clear that the pair (V aprx, paprx) does not solve
equation (2).) This approach was used in [2] to derive an asymptotic approximation. This policy
is based on the observation that points (ii) and (iii) in Theorem 4 suggest the use of the following
approximation for the value function Ṽ (x, t, g) =

∑K
k=1 g(k)J

∗(x,Λk t) which is asymptotically
optimal as x grows large. Let us denote by p̃(x, t, g) the pricing policy that results from using
Ṽ (x, t, g) in (3).

An alternative approach to approximate an optimal pricing policy is to solve a modified version
of the HJB. A popular example is the so-called näıve policy. This approximation assumes that at
every state (x, t, g) the seller solves the full information HJB in equation (1) replacing the unknown
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Λ by its expected value Λ̄(g) (see [3] for details). Another example is the decay balancing heuristic
proposed by [18]. Although this policy was derived in an infinite horizon setting, the main idea
can be directly extrapolated to the finite horizon case. The decay balance policy combines the
asymptotic policy Ṽ (x, t, g) and the HJB equation (2) (see also equation (1)) to propose a pricing
policy pBD(x, t, g) solution to

∂

∂t
V (x, t, g) = Λ̄(g)

F̄ (pBD(x, t, g))

h(pBD(x, t, g))
.

Under the additional assumption that the reservation price distribution, F (p), has increasing failure
rate the solution pBD(x, t, g) is unique. A set of numerical experiments comparing the asymptotic
approximation, the näıve policy and the decay balancing heuristic is reported in [18].

3.2 Dynamic Pricing for Linear Demand with Unknown Coefficients

The Bayesian method, as discussed in the previous section, relies heavily on the seller’s prior
distribution of the unknown parameters. In those cases, when no prior exists, the seller must
rely on an alternative statistical estimation method, such as the least square estimator (LSE), the
maximum likelihood estimator (MLE), the minimum entropy estimator (MEE) and others. Some
representative examples are [7] (which model is discussed more in details below), [24] which considers
also a linear price demand function and obtains approximate solutions using convex programming
methods, and [16]. [16] considers a binomial demand which is relevant in the internet environment
representing those that visited a website and ended up buying the item. Under, such demand
model some parameters are unknown and a Monte Carlo simulation is used to quantify the trade-
off between learning and revenue maximization. This simulation allows to measure the performance
of few suggested heuristics among others, the one-step-look-ahead policy. Because of the numerical
flavor, the method could apply to various estimation techniques in particular maximum likelihood
and Bayes.

[7] considers a discrete variant of problem (P) in which the demand in every period n is given by

dn = β0 + β1 pn + ϵn,

where the ϵn’s are iid (0, σ2) normal random variables. The parameters β0, β1 and σ are unknown.
The estimates at period n of these parameters are computed using the LSE method

(β̂0
n, β̂

1
n) = arg min

r∈R2

n−1∑
s=1

(ds − x′
sr)

2 and σ̂2
n =

n−1∑
τ=1

(dτ − β̂0
n − β̂1

npτ )
2

n− 3
n = 4, ..., T,

where, x′
s = [1, ps]. At the beginning of period n, the decision variable pn is selected to maximize

the total expected revenue-to-go. To compute this revenue-to-go, the seller needs to estimate the
distribution of the demand in period s ≥ n (denoted by d̂s,n) conditional on the current estimates

(β̂0
n, β̂

1
n, σ̂n). It follows that d̂s,n = β̂0

s,n+ β̂1
s,nps+ ϵ̂s,n, where, ϵ̂s,n is a normally distributed random

variable with mean 0 and standard deviation σ̂sn; we use the notation ŷs,n to denote the current
period n estimate of a parameter y for a future period s, s = n, ..., T. The most critical step in this
approach (similar to the Bayesian case) is to obtain an iterative process that, given a state space,
computes future estimates. It can be shown that the evolution of these estimates is given by

β̂i
s+1,n = β̂i

s,n + ϵ̂s,n · hi
(
ps,

s−1∑
τ=1

pτ ,

s−1∑
τ=1

p2τ
)
,
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for i ∈ {0, 1}, and

σ̂2
s+1,n = H

(
ps, β̂

0
s,n, β̂

1
s,n,

s−1∑
τ=1

p2τ ,

s−1∑
τ=1

pτ ,

s−1∑
τ=1

pτdτ ,

s−1∑
τ=1

dτ , σ̂
2
s,n

)
,

for some real functions hi and H (see [7] for details). These estimates are used in a DP formulation
where the state space is given by the vector

Xs =
(
xs, β̂

0
s,n, β̂

1
s,n,

s−1∑
τ=1

p2τ ,
s−1∑
τ=1

pτ ,
s−1∑
τ=1

pτdτ ,
s−1∑
τ=1

dτ , σ̂
2
s,n

)
,

where xn is the inventory available in period n. At each period n, one solves the following DP with

JT
(
cT , β̂

0
T,n, β̂

1
T,n, σ̂

2
T,n

)
= max

pT
EϵT,npT min

{(
β0
T,n + β1

T,npT + ϵT,n
)
, cT

}
,

and for s = n, ..., T − 1,

Js(Xs) = max
ps

Eϵ̂n

[
psmin{β̂0

s,n + β̂1
s,nps + ϵ̂s,n, cs}+ Js+1(Xs+1)

]
, (4)

where the components of Xn+1 get updated based on the selected value of ps, the corresponding
demand estimate and the iterative processes described above (e.g. cs+1 = cs −min{β̂0

s,n + β̂1
s,nps +

ϵ̂s,n, cs}).
A few observations are in order. First, we note that for a fixed n, the sequence (β̂i

s,n : s = n, .., T )
made of the estimates at time n for future values of the parameter is a stochastic process and
in particular a martingale. This is an expected fact as it measures the learning process. A valid
question at this point is how to possibly quantify the learning. It will be hard to obtain a tractable
formulation of the gap between the optimal values and those obtained through the estimation
process, but a Monte Carlo simulation can help in this regard. Similarly to [16], one can solve for
the optimal pricing policy under known parameters β0, β1 and σ and then implement the previous
pricing policy obtained through the learning process.
The main characteristic of this problem is the concurrent parameter estimation and the pricing
optimization (active learning). If we decouple these two actions (move to passive learning), whereby
the pricing decision made at time n is assumed not to affect the parameters estimates at time n+1,
then the state space of the DP can be reduced to one dimension, that of the available capacity.
The setting of [7] is similar to the initial problem (P). The difference, beyond the fact that time
is discrete, is the choice itself of a linear demand rate with a normally distributed error term
independent of the price. From a practical standpoint, this model fits well with the popular
approach of forecasting demand using linear regressions. Another advantage of this model compared
to those discussed in the Section 3.1 is that the learning process includes the price elasticity (i.e., an
unknown reservation price distribution) as well as the market size. From a modeling perspective, the
choice of a normally distributed demand could potentially lead to estimation errors if the probability
of a negative demand is not negligible (e.g., low moving items). One possible way to take care of this
problem without loosing tractability is to consider a log-normal where dn = a exp(β0 + β1pn + ϵn)
so that by taking logarithm we recover a linear model (see [28] for a discussion of related demand
model in the context of retail operations).
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4 Non-Parametric Models: MaxiMin and MiniMax Methods

Non-parametric models are concerned with settings where the form of the demand function is
not known. We distinguish two classes of non-parametric models. A first one is known as the
maximin approach. Such criterion induces the optimizer, to maximize the worst case profit. It is
a very conservative approach. This conservatism can be reduced by introducing a carefully chosen
“budget” of uncertainty which limits the set of possible distributions or demand functions (e.g.
[6] and [8]). Many papers have applied this method in operations management contexts (see for
example [9]), while [22] applied it specifically to the setting discussed in this paper. The other
class of non-parametric models is known as the minimax approach whereby a regret function is
introduced that measures the performance of a policy relative to the performance of the optimal
policy under a fully known demand function. This approach is less conservative than the maximin
and has also been applied to various settings including recently to revenue management. We refer
the reader to [5], [20], [26] and references therein. The first two papers consider a single resource
allocation problem and the latter analyzes a network revenue management. In the last section of
this paper, we discuss in some detail some of these approaches.

Learning is a dimension that is often missing in robust models. Indeed, most of the papers cited
above, disregard learning and study an optimization problem that constrains the unknown demand
function to some static, pre-specified, (non-parametrized) set. Having said that, there exists non-
parametric models that do rely on exploiting demand realizations in order to learn the demand
function and shape the solution of the optimization problem. Understandably, this approach hap-
pens to have more of an algorithmic flavor; see for instance [25], [17] and (more relevant to our
setting) [21] and [10]. We discuss in more details the model of [10] that consider specifically problem
(P), relies on learning while using a minimax formulation. The approach used in [22] will also be
discussed below as an application of the maximin criteria applied to problem (P).

Consider again the general formulation (P) of the model. As mentioned in the introduction, the
expected value is taken with respect to the probability measure defined on the Poisson process
filtration. In both the Bayesian and the demand estimation approaches, the unknown parameters
were replaced by their estimate and the probability measure was adjusted accordingly (e.g. in the
Bayesian case, P is replaced by Pg while in the demand estimate case, E is replaced by Eϵ̂). Consider
now the case where the demand belongs to a non parametric class of functions. The fact that the
demand intensity is unknown makes the seller’s maximization problem (P) ill-defined. In order
to overcome this first challenge, a maximin or a minimax formulation has been proposed which
transform the problem into a stochastic game. The seller still has to choose a pricing policy and in
response, nature (or a clairvoyant adversarial agent) picks the “worse” possible demand function
given the seller’s choice. The (real) demand function that is unknown is replaced by the solution of
an optimization problem. In other words, the seller selects the pricing policy to guaranty somehow
the best worst-case performance.

In mathematical terms, the seller’s maximin formulation of problem (P) is given by

(M) sup
p∈A

inf
λ∈H

E
[∫ T

0
pt λ(pt) dt

]
subject to Np

λ(T ) ≤ x0 (a.s.),

where H is the (possibly infinite dimensional) set of functions that contains the true demand
function.
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4.1 MaxiMin and the Relative Entropy Formulation

A maximin approach as presented in Section 2, induces the seller to select the price that will
maximize the worst case expected total revenues: a worst case with respect to the demand functions
and the pricing policy adopted. Reducing the conservatism of this approach entails reducing the
uncertainty set or the set of possible demand functions. We follow here the approach in [22], to
suggest a robust formulation of Problem (P).

In the setting of problem (P), there is a one-to-one relationship between the demand function λ(·)
of the Poisson process and the probability measure P governing the system. Hence, the set of
demand functions can be replaced by a set of probability measures and it is in the interest of the
seller to pick carefully this set as it will dictate how conservative the solution will be.

Often it is the case that the seller has collected information (through historical data) on the “real”
demand function she is or will be facing. This information is represented as a demand function,
β(·), that is not necessarily the real (and still unknown) demand function λ(·). However, with
some confidence one can assume that both demand rates are not too “far” apart. We denote by P
(respectively Q) the probability measure induced by a demand rate λ(·) (respectively β(·)). The
set of probability measures P close to Q, from which a clairvoyant will draw the worst possible
measure, is defined as follows:

• P is absolutely continuous with respect to Q, denoted by P ≪ Q.

• P satisfies E(P |Q) ≤ γ, where E(P |Q) := EP ln η(T ) and η(T ) is the Radon-Nikodym deriva-
tive of P with respect to Q (see [14]). The function E is known as the relative entropy of
P with respect to Q and γ is some positive constant (sometimes refer to as the budget of
uncertainty) that captures the seller’s confidence level about how close the true probability
measure is to the nominal measure Q (in a relative entropy sense).

These two conditions define an uncertainty set of probability measures. Note that for γ ≡ 0, this
set reduces to {P ≡ Q}.
We consider the following transformation of problem (P) and a variant of problem (M) under a
maximin criterion

J(x, T ) = sup
p

inf
P≪Q

EP

∫ T

0
p(t) dN(t) subject to E(P |Q) ≤ γ,

Using Girsanov’s Theorem applied to point processes (see [14]), one can prove that there is a
stronger correspondence between probability measures in the uncertainty set defined above and
their intensities. In particular, the Poisson process with rate (λ(pt) : t ≥ 0) under the (unknown)
probability measure P is a Poisson process under the nominal probability measure Q but with an
intensity (β(pt)κ(t) : t ≥ 0) where κ(·) is some (unknown) non-negative process. Hence, instead of
picking P, it is enough for nature to pick κ under Q. With this alternative formulation, one can
solve the seller’s problem using dynamic programming. The corresponding HJB equation is given
by

∂

∂t
J(x, t) = max

p
min
κ

{
λ(p)

[
pκ+ θ(κ log κ+ 1− κ)

]
+ λ(p)κ[J(x− 1, t)− J(x, t)]

}
,

with border conditions J(x, 0) = J(0, t) = 0 and where the constant θ is fully characterized given
γ (see [22] for details). One interesting feature of this equation is the interchangeability of min
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and max under strong concavity of the nominal revenue rate. Moreover, as in [19] a closed-form
solution can be obtained for an exponential demand function (see [22] for details).

4.2 MiniMax and the Regret Function

The recent work of [10] studies a minimax variant of problem (M). In particular, it considers
a rather general non-parametric uncertainty set H, which is the set of uniformly bounded and
Lipschitz continuous functions with bounded support. A relative regret function, M, is defined as
one minus the ratio between the value function, Jp(x, t;λ) (generated by any pricing policy p) and
the value function in the deterministic case, JD(x, t|λ) (conditioned on knowing the true demand
function λ),

Mp(x, t;λ) := 1− Jp(x, t;λ)

JD(x, t|λ)
.

This regret function is inspired by two results in [19] (see Theorem 3) that establish that (i) the value
function under a deterministic demand upper bounds the value function under a Poisson demand
and (ii) a fixed price policy, solution of the deterministic problem, is asymptotically optimal.
Hence, the regret function is non-negative and bounded by 1 (independently of λ), and measures
the performance of a pricing policy p for a specific demand function λ. The smaller the regret is,
the better the pricing policy is, taking the value zero only when the pricing policy is able to achieve
the value of the deterministic setting. At this point, it remains to transform the initial problem
formulation into a stochastic game, where the seller chooses the “optimal” pricing policy taking
into consideration that nature will then pick the worst possible demand curve (i.e. by maximizing
the regret). The minimax relative regret formulation is written as follows

inf
p∈P

sup
λ∈H

Mp(x, t;λ).

For any pricing policy p the inner maximization problem is (at least in theory) well defined. Solving
the previous problem is in general not possible. One approach would be to construct a pricing policy
that performs well. As we recalled in Theorem 3, when the demand function is known, say λ̃, a
fixed price policy pt = pD(λ̃) is asymptotically optimal in the context of [19]. In the case where the
demand curve is unknown, [10] proposes a policy that aims at estimating first the demand function
λ and then fix the price to be equal to pD(λ). Specifically, they explore first how demand reacts to a
set of selected prices (passive learning phase) and then exploit this learning to get approximations
of both the run-out price, p0 and the maximizer of the demand function, p∗. (See the discussion
that precedes Theorem 3 for the definitions of p0 and p∗). In the second phase, they adopt a fixed
price policy which is the minimum of the two approximated prices. The longer the learning phase
is, the more accurate the price approximations are; but the higher the opportunity cost is (due
to the non-optimal pricing during the learning phase). Algorithm 1 is sensitive to the length of
the learning period τ and to a granularity parameter κ and follows the following steps. 1. In the
initialization step κ prices are picked equidistantly from the interval of possible prices [ p , p ]. The
interval [0, τ ] is divided in κ equal time intervals, ∆ = τ/κ. 2. In the learning/experimentation
step, each of the κ pre-selected prices is applied on one of the κ intervals of time of length ∆.
Demand gets realized accordingly and at the end of this phase, the total demand realized in each of
these intervals is computed; each demand value is divided by ∆ thus representing an approximation
of the demand rate function d̂(pi) at the price selected for that interval. The approximated demand
rate is in turns multiplied by the price and the result, d̂(pi) · pi, is an approximation of the revenue
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rate at that price. At the end of these two steps, κ points approximating the demand and the
revenue rate functions have been gathered. 3. The optimization step identifies two specific prices

p̂u = arg max
1≤i≤κ

{d̂(pi) · pi}, and p̂c = arg min
1≤i≤κ

|d̂(pi)− x/T |.

4. In the last pricing step, the price p̂ = p̂u ∧ p̂c is applied on the interval (τ, T ]. We denote by
p(τ, κ) the output of Algorithm 1. In terms of performance, this policy is shown to be asymptotically
optimal in the following sense.

Proposition 1 Set τx = x−1/4, κx = x1/4 and let px := p(τx, κx) be given by Algorithm 1. Then
the sequence {px} is asymptotically optimal, and for all x ≥ 1

C ′

x1/2
≤ sup

λ∈H
Mp

x(x;λ) ≤
C(log x)1/2

x1/4
,

for some positive positive constant C and C ′.

The lower bound (in fact obtained under slightly stronger assumptions) measures the decreasing
gap between Algorithm 1 and the optimal solution.

Clearly, this approach can also be applied to the case where the demand function belongs to a
parameterized set (λ(·; η) ∈ Hη), as it was the case in both the Bayesian and the demand estimate
methods. It is easily shown that the pricing policy generated by Algorithm 1 remains asymptoti-
cally optimal. The example of Section 1 is a good illustration of such a setting and how effective
is a pricing policy driven by a short learning period followed by a fixed price policy. Moreover and
as expected, Algorithm 1’s performance improves in the parameterized case. The corresponding
upper bound of Proposition 1 is tighter and the number of pricing test points during the learning
phase is set equal to the number of unknown parameters (i.e. bounded and generally small). Such
an interesting result requires that the parameterized demand function satisfies additional regularity
assumptions. It needs to be “identifiable” based on a set of observations, which in particular means
that for any vector d = (d1, ..., dk), the system of equations {λ(pi; η) = di, i = 1, ..., k} has a unique
solution in η.

Non parametric approaches relying on robust controls, as we saw above, do not follow so much
a general framework or methodology as much as their parametric counterparts do (e.g. Bayesian
or statistical estimation methods). Non parametric approaches are stemmed essentially from the
specific model under study. In order to have a broader sense of the different techniques that could
be used, we discuss in the next section another revenue management setting that has recently been
analyzed in the context of robust controls. Again, the main drawback of these approaches is the
lack of learning. They do induce robust decisions, however the realizations of demand are not being
incorporated in any way to reduce the uncertainty set.

4.3 Robust Single-Leg Revenue Management Model

The so-called single-leg model is to revenue management what the newsboy model is to inventory
management. (A broad literature is available on this subject and is very well summarized in [29].)
The setting in this single-leg revenue management model is almost identical to the dynamic pricing
model that we have discussed so far with one notable difference; items can be sold at different prices
at the same time. The canonical example corresponds to seats in an airplane that, depending on the
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different restrictions that the airline imposes on the products (e.g., refundable vs. non-refundable
tickets), are sold at different fares. These fare classes are typically announced at time 0 and remain
fixed throughout the entire selling season. In this setting, the seller, rather than controlling a single
price over time, selects dynamically which fare classes to open and which ones to close as a function
of the available inventory and remaining sale horizon. Non parametric methods have been used
recently in the literature to formulate and solve this “cousin” version of Problem (P).

As before, let x0 be the seller’s initial inventory and let f1 > f2 > · · · > fm be the fares associated
to the m different products offered by the seller. We assume that every product consumes one unit
of inventory. (In the general setting of network revenue management, the seller is endowed with
a collections of different resources and different products consume a combination of resources in
different quantities.) The seller’s objective is to select an admission control policy π that specifies
which fare classes to accept (open) and which one to reject (close) based on the state of the
system at every point in time. A renowned strategy is the standard nesting policy which works as
follows. The seller selects booking limits (θ1, θ2, ..., θm) associated to the m fare classes, such that
θ1 ≥ θ2 ≥ · · · ≥ θm. A class-j request is accepted (i.e., to whom one unit of resource is sold at fj)
only if the number of customers of classes j to m (i.e., corresponding to fare fj or lower) already
accepted is less than or equal to θj .

[5] analyzes this problem in an environment where demand information is incomplete using critical
ratio ideas, which are popular in the context of competitive analysis for online algorithms (see [1]
for a survey on the subject). We denote by Rπ(I) the revenues generated by applying some policy
π to a stream of arrivals, I. We call this an “online algorithm”. We let R∗(I) be the revenues
obtained by applying the best possible policy for that particular stream of arrivals I. This is the
“offline algorithm” revenues that can be achieved if the seller selects the policy after she sees the
entire stream of arrivals. An online algorithm can be deterministic (i.e., for a specific stream of
demand the output is deterministic) or randomized (i.e., for a specific stream of arrivals, the output
depends on the outcome of some random variable). We refer the reader to [20] for a brief discussion
of randomized policies.

We let Ωπ be the set of all possible demand streams I that a policy π can faced and define the
competitive ratio as

Υ(π) := inf
I∈Ωπ

ERπ(I)

R∗(I)
.

We denote by c∗ the supremum of Υ on all possible (deterministic or randomized) policies π. It
is not hard to see that by maximizing the competitive ratio we are minimizing the worst case
relative regret sup[1− ERπ(I)/R∗(I)]. We should also note that computing c∗ requires a pathwise
deterministic optimization as the expected value is only with respect to the possibly randomized
algorithm π. This relative regret formulation is different from the one defined in [10]. In the latter
the denominator of the regret function was the value function under a deterministic demand. In a
competitive ratio setting, the denominator is a function of the specific stream of arrivals. These two
denominators are asymptotically the same in the case of Problem (P) when the demand function
is known.

The competitive ratio of a particular policy π, measures its performance which is to be compared
to c∗. In particular, a policy that achieves c∗ is optimal. [5] uses this method to evaluate c∗ for a
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multi-fare single leg problem and shows that

c∗ = (m−
m∑
j=2

fj
fj − 1

)−1.

It is also shown that standard nesting policies achieve c∗ (and hence are optimal under a competitive
ratio criterion) when the (nested) booking limits, θj ’s are given by

θj = x0 −
x0
c∗

(
j −

j∑
i=1

fi+1

fi

)
.

The approach adopted to prove such result is as follows. One first recognizes the optimal policy,
(e.g. the standard nesting) and calculates its optimal competitive ratio (e.g. find the best possible
booking limits). It remains then to show that this competitive ratio is the best achievable among
all other (deterministic or randomized) policies. The first step is proven by dissecting all possible
arrival streams with respect to the candidate policy. The most critical step is the second one that
often relies on a powerful result, the Neuman/Yao principle, which states that

c∗ ≥ sup
πd

EQ
Rπd(IQ)

R∗(IQ)
,

where IQ is a random stream of arrivals chosen according to any probability distribution Q, and
πd is any deterministic online algorithm. Basically, it shifts the search for the optimum from a
pathwise search under both randomized and deterministic algorithms to a probability distribution
on the stream of arrivals under deterministic algorithms. (See [27] that provides a framework to
prove bounds using the aforementioned principle). [20] builds on the competitive ratio approach of
[5] to solve, among other things, for the case where the demand for each fare has known bounds.

Instead of using a competitive ratio criterion (equivalently a minimax relative regret) one can use
other criteria such as the absolute minimax regret or the maximin criteria as defined in the previous
section. As a matter of fact, for the multi-fare single leg problem [20] proves under an absolute
minimax regret criterion that nested policies are again optimal. They propose a unified framework
for the competitive ratio and the minimax absolute regret and prove that the absolute regret booking
limits are more aggressive than those obtained through the competitive ratio criterion. Finally, [26]
applies both a maximin and the absolute minimax criteria to a network revenue management
problem where demand belongs to a polyhedral uncertainty set (generalizing the single-leg model
in [20]). In this more complex setting they restrict their attention to a set of control policies that
include the nested booking limits and develop robust formulations.

5 Summary

In this paper, we have reviewed a representative model of revenue management and discussed
different methods to deal with incomplete demand information. Each method depends on the
specific context and the level of information available. Parametric models open the way for active
learning approaches in which demand realizations are used to update estimates of the unknown
parameters over time. These estimates are generally embedded within a dynamic programming
formulation. The solution of the DP characterizes the pricing policy to adopt. Non-parametric
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models are less tractable. A first method that we discussed is based on the idea of replacing
the demand uncertainty by a stochastic game using a maximin approach. In order to reduce the
conservatism of this formulation, robust optimization is used limiting the feasible set. Eventually,
the pricing policy is obtained by solving a complex ODE. An alternative non-parametric model uses
passive learning during a specified interval of time followed by a fixed price policy for the remaining
of the horizon. The pricing solution is simple to implement and asymptotically optimal. We finally
discussed the competitive ratio criteria applied to the setting of a capacity allocation revenue
management problem and compared that to the other robust criteria available in the literature.
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