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Abstract

A retailer is endowed with a finite inventory of a non-perishable product. Demand for this
product is driven by a price-sensitive Poisson process that depends on an unknown parameter
which is a proxy for the market size. The retailer has a prior belief on the value of this parameter
which he updates as time and available information (prices and sales) evolves. The retailer’s
objective is to maximize the discounted long-term average profits of his operation using dynamic
pricing policies. We consider two cases. In the first case, the retailer is constrained to sell the
entire initial stock of the non-perishable product before a different assortment is considered. In
the second case, the retailer is able to stop selling the non-perishable product at any time and
switch to a different menu of products. For both cases, we formulate the retailer’s problem as a
(Poisson) intensity control problem and derive structural properties of an optimal solution and
suggest a simple and efficient approximated solution. We use numerical computations, together

with asymptotic analysis, to evaluate the performance of our proposed policy.

Keywords: Dynamic pricing, Bayesian demand learning, approximations, intensity control, non-

homogeneous Poisson process, optimal stopping.

1 Introduction

This paper is concerned with dynamic pricing policies for non-perishable products in the context of a
retail operation with uncertain demand. In particular, we investigate the interplay between demand

learning and pricing decisions and their impact on the long-term performance of the business.

Effective retail management is about managing a limited available capacity to procure and sell the
right assortment of products while considering present and future market developments. This point
of view is captured by one of the most popular measures in the retail industry, namely, average
sales per square foot per unit time. Indeed, this measure highlights two fundamental aspects of a
retail operation. First, it emphasizes the fact that capacity, measured by store or shelf space, is
one of the retailer’s key assets and thus must be managed as such; the challenge resides in choosing
the best possible menu of products; failure to do so results in opportunity costs which would cut

directly into the profit margins. Second, it highlights the time value of money when assessing the
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business performance. For instance, a retailer might prefer to sell a product with a 5% margin over
another one with a 10% margin if the former sells much faster than the latter. Thus, in optimizing
this measure, retailers must balance the short-term benefits obtained by selling a given menu of
products and the long-term opportunity costs incurred by allocating their resources (shelf space,

time, capital, etc.) to these products instead of a different assortment.

In addition to such critical trade-offs, retailers cannot overlook the market conditions in which they
compete. Customers’ preferences, competitors’ actions, new product introduction, regulations, and
so on, are often unknown to the retailer and need to be factored into the business strategy. As a
result, learning about these market factors, induced for instance through the sales process, should
be constantly performed. Such learning would shed more light on future demand and hint on the
current strategy to adopt. The same product that sells well today might get stocked on the shelves
tomorrow wasting valuable space that could be used to sell a more profitable alternative. To prevent
such a highly undesirable situation, a retailer must continuously monitor the products sales in order
to infer customers’ preferences, identify early on the selling pattern of each product and adopt the
appropriate strategy. Low selling items must be removed either by shipping them to a secondary
market (e.g., an outlet) or by liquidating their inventory through active price markdowns. It is
precisely this relationships between demand learning, pricing policies and inventory turns that we

study in this paper using a stylized retail operation.

In our model, which is described in detail in Section 2, a retailer is endowed with a finite stock of
a non-perishable product that he sells to a population of price sensitive customers with unknown
demand characteristics. The retailer controls dynamically the price of the product and uses all
available information (i.e., price and sales history) to learn demand attributes over time. The
problem faced by this retailer is based on the so-called exploration versus exploitation trade-off.
On the one hand, pricing policies affect immediate revenues (exploitation). On the other hand, the
selling pattern they induce impacts the retailer’s ability to learn demand (exploration); a knowledge
that can be used to increase future profits. We tackle this problem using a sequence of models with
increasing degree of complexity. First, in Section 3, we study the perfect information case in which
the retailer knows all demand parameters with certainty. In this setting, we derive an optimal
pricing policy and characterize the retailer’s long-term profit as a function of the inventory level.
From a practical standpoint, we view this full information case as a good approximation for an
experienced retailer that sells in a mature market. In Section 4, we relax the perfect information
assumption and consider the case in which the demand intensity depends on an unknown parameter,
0; a proxy for the size of the market. The retailer has a prior belief with regard to the value of 6
that he dynamically updates over time. We also assume that the retailer must deplete the entire
stock of the product before a different assortment can be sold. This condition is satisfied in many
practical situations in which the retailer has no secondary market where to ship unpopular items or
the cost of this shipment is excessive. Section 5 discusses a more general case in which the retailer
has imperfect information about the value of # while having the option to stop selling the product
at any time and switch to a more profitable alternative. In Section 6, we present some extensions

of the model and concluding remarks are discussed Section 7.



We believe our model contributes to the existing literature in a number of directions. First of all,
we propose a parsimonious continuous time formulation to model the problem of a retailer selling
nonperishable products with uncertain demand characteristics. We use dynamic programming
methods to formulate the problem and propose a set of simple algorithms to efficiently solve it. A
distinguishing feature of our formulation is that it includes explicitly a terminal reward that captures
the opportunity cost of the seller’s operations. This opportunity cost can induce the retailer to stop
selling the product at any time discarding unsold units; a feature that is not captured by traditional
revenue management models. We also derive simple managerial guidelines that reflect the essential
characteristics of an optimal policy (pricing and stopping) and use numerical experiments and

asymptotic analysis to evaluate their performance.

In summary, some of the main managerial insights that we draw from this paper are the following.
The optimal pricing policies in the context of non-perishable products are not necessarily decreasing
functions of the level of inventory (as it is the case in the traditional revenue management setting).
Indeed, whether prices are decreasing or increasing with inventory depends on the size of the market,
that is, on the value of §. We show that if § (or the belief that 6 is large) is large (respectively,
small), then prices do decrease (increase) with inventory. Furthermore, we show that for a given
inventory level, the optimal price is monotonically increasing with #; but, despite this monotonicity,
we show that the resulting selling rate is also increasing with 6. In other words, under an optimal
pricing policy, popular products have both higher prices and higher inventory turns compared to
less popular products. Moreover, we show that optimal prices are lower when the retailer has the
option to stop selling a product and switch to a different assortment than when he does not have
such stopping option. This result is consistent with the intuition that learning is more valuable
when the option to stop is available and therefore the retailer is willing to sacrifice immediate
revenues —by setting lower prices— and induce demand learning. On the procurement side, our
analysis reveals that for any given level of uncertainty about # the retailer prefers larger batches to
smaller batches. In general, large batches give the retailer more time to learn about the true value
of 6. Hence, this result suggests that the upside reward of learning good news (i.e., that 6 is high)
dominates the downside cost of learning bad news (i.e., that 6 is low) when the inventory position

is large.

We conclude this Introduction by attempting to position our paper within the vast literature on
dynamic pricing and demand learning in operations management. Our pricing formulation is closely
related to the continuous-time (Poisson) intensity control problem studied by Gallego and van Ryzin
(1994) (see also Bitran and Caldentey (2003), Elmaghraby and Keskinocak (2003), Talluri and van
Ryzin (2004) for related references) but with some noticeable differences. First, we depart from the
revenue management setting by considering a non-perishable product. Unlike the airline industry
where flight departure dates are hard constraints, our modeling suits better a retail operation in
which the seller has the flexibility to adjust the duration of the selling season based on market
contingencies. As a consequence, we look at the retailer’s infinite horizon operations and use a

discounted long-term average profit objective function.

As we mentioned before, a distinguishing feature of our demand model is that it depends on an



unknown parameter. Practically, we apply dynamic pricing to maximize revenues which creates
an incentive for (Bayesian) learning. The underlying process is then a nonhomogeneous Poisson
process parameterized by the unknown parameter #. From a mathematical point of view, the
learning side of our paper resembles the sequential testing hypotheses problem studied broadly in
Statistics; see for instance Shiryayev (1978) or more recently Peskir and Shiryaev (2000). The latter
study the problem of observing the output of a homogeneous Poisson process with unknown rate

(either high or low) up to a time that needs to be optimally chosen based on cost considerations.

The Economics literature borrows some of these ideas. Indeed, learning and experimentation
through Bayesian updates in an infinite horizon setting has been extensively studied. Some of the
most fundamental questions that these types of studies try to answer relate to the value of learning
and whether for instance optimal strategies eventually converge to the true state of the system
or not (see Bolton and Harris (1999), Keller and Rady (1999) and references therein). Often in
such stream of research the only connection between periods occur through the belief process; as
opposed to operations in general, and our paper in particular, where other state variables such as

manufacturing capacity or inventory levels are included.

Bayesian learning in the scope of a periodic inventory control problem, has been pioneered by
Scarf (1958); see also Azoury (1985), Lovejoy (1990), Eppen and Iyer (1997), Lariviere and Porteus
(1999), and references therein. This literature is mainly concerned with determining optimal inven-
tory decisions under various modes of procurement such as periodic replenishment or newsvendor
type models. The problem of optimal assortment in a multiproduct setting has also received some
attention. For example, Caro and Gallien (2005) study a discrete time finite horizon problem using
a multiarmed bandit formulation and Bayesian learning. At each time period, the seller must decide
the subset of products to offer based on historical sales data. The authors propose a simple index
policy based on a relaxation of the dynamic program. In most of this inventory related research,

however, pricing policies and their impact on revenues and demand learning are not investigated.

More recently, there has been an increased interest in demand learning models in the context of
dynamic pricing. Most of this literature focuses on the finite horizon setting. Petruzzi and Dada
(2002) analyze the problem of learning while controlling inventory and prices in a discrete time
setting. Demand in every period is a deterministic function of price perturbed by an unknown
parameter and its probability distribution is updated using successive censored sale data. In this
setting, the authors characterize the structure of an optimal policy. Recently, Carvalho and Put-
erman (2004) study dynamic pricing of an uncapacitated system under an exponential demand
function (perturbed by a Gaussian noise) with unknown parameters, estimated through a Kalman
filter. Similarly, Lobo and Boyd (2003) consider a linear price demand function and obtain approx-

imate solutions using convex programming methods.

In the context of revenue management, Aviv and Pazgal (2002) introduce Bayesian learning within
the dynamic pricing model of Gallego and van Ryzin (1994) but with unknown demand intensity.
The prior distribution of this intensity is assumed to be Gamma which is a conjugate distribution

for the Poisson demand process. In a similar setting, Aviv and Pazgal (2005) propose a partially



observed Markov decision process framework to compute an upper bound on the seller’s revenue and
derive some heuristics to approximate the optimal pricing policy. Similar to our infinite horizon
model, Farias and Van Roy (2007) propose a special heuristic (decay balancing) that shows a
good numerical performance for the case in which the unknown demand intensity has a Gamma
distribution (as in Aviv and Pazgal 2002). Xu and Hopp (2005) propose a piecewise linear demand
model with unknown parameters and use Bayes updating to investigate some martingale properties
of the optimal price process. Bertsimas and Perakis (2005) consider a discrete time model in which
demand is a linear function of the price with unknown coefficients and perturbed by a white noise.
Both the monopolistic and oligopolistic cases are studied. Instead of Bayesian learning, the authors
use a least square estimation embedded in a dynamic program with incomplete state information.

Some approximations and heuristics are proposed to reduce the dimensionality of the problem.

Finally, there is a growing stream of literature that discusses Revenue Management policies under
unknown demand characteristics using a nonparametric approach. A few representative examples
of this stream are Cope (2004), Lim and Shanthikumar (2006), Ball and Queyranne (2005), Besbes
and Zeevi (2007) and Eren and Maglaras (2006). In most of these papers, demand uncertainty, or
more precisely model ambiguity, is represented by an uncertainty set, that is, the set of all demand
models that could potentially be the real one. This ambiguity is handled using a robust formulation
which identifies operating policies that will guarantee the best possible level of performance (in a

min-max, competitive ratio, or minimum regret criteria, among others) for a given uncertainty set.

2 Model Description

Let (92, F,P) be a probability space endowed with a standard (rate 1) Poisson process D = (D(t) :
t > 0) and let F = (F;)¢>0 be the usual filtration generated by D. For a given 6 > 0, we define
the probability measure Py under which D(t) is Poisson process with rate 6. Note that P coincides
with P;. We denote by Ey the expectation operator under Py. Also, for every adapted process fi,
non-anticipating with respect to D(t), we define If(t) = fg fsds.

In this probabilistic environment, we consider the following stylized retail operations. At time
t = 0, a retailer owns Ny identical units of a non-perishable product that he can sell to a stochas-
tically arriving stream of buyers. These buyers are price sensitive and their purchasing behavior is
modulated by an Fi-adapted price process {p; : t > 0} selected by the retailer. In particular, any
given price p affects instantaneously the demand rate which we denote by A(p). We let D(I)(¢))
be the corresponding cumulative demand process up to time t. Under Py, this cumulative demand
define a non-homogeneous Poisson process with intensity 6 A(p;). The parameter § > 0 captures
the magnitude of the demand intensity while the quantity A(p) models buyers’ sensitivity to price.

We refer to 6 as the (demand) scale factor and A(p) as the unscaled demand intensity.

Consistent with standard economic theory, we assume that the mapping p — A(p) is a continuous,
nonnegative, and strictly decreasing function of the price p. Furthermore, to avoid unrealistic
unbounded optimal pricing strategies, we impose the additional condition that there exists a price

Poo (possibly infinite) such that limp A(p) = 0 as p T pso. These assumptions guarantee the existence



of an inverse demand function p(\) which is well-defined and continuous in the domain [0, A], where
A 2 X\(0). Based on this one-to-one correspondence between prices and demand intensities, we find
convenient to let the seller control demand intensities rather than prices. This is a recurrent
modeling approach in the revenue management literature that has proven to be calligraphically
efficient (e.g. Gallego and van Ryzin 1994). Under this change of control variable, we define an
admissible selling strategy as an adapted mapping A : t — A; where for each time ¢ > 0, A\; € [0, A].
We denote the set of such admissible strategies by A.

Section C1 in Appendix C describes three examples of demand models that satisfy the conditions
on the previous paragraph: the exponential demand model with A(p) = A exp(—ap) (e.g. Smith
and Achabal 1998), the linear demand model with A(p) = A — ap and the quadratic demand
model with A\(p) = \/m. In these cases, A is the maximum unscaled demand intensity and «
captures customers’ sensitivity to price. We will use these models in our computational experiments

throughout the paper.

The products we consider in this setting are non-perishable, in the sense that there is no predeter-
mined end of season. Basically, the season will end either when all units have been sold or before
if the retailer decides to stop before this depletion time. He can choose to do so at any random

stopping time. We denote by 7 the set of stopping times with respect to F.

There are two sources of demand uncertainty in our model. First, as described above, we use a
Poisson process to model the arriving pattern of customers. Our choice of a price-sensitive Poisson
process provides mathematical tractability to our model and is a recurrent assumption within the
dynamic pricing literature in operations, see Bitran and Caldentey (2003) for more details. Second,
we assume that the retailer has only partial information about the value of the scale factor 8. In
particular, 6 is a random variable taking values on a discrete set ©. For most part of the paper
we restrict the analysis to the case in which © = {0r,0y} with 07 < 6y, where the subscripts L
and H stand for Low and High market size, respectively. In Section 6 we show how to extend our

results to the case in which © is a general finite set.

We note that by modeling 6 as a fixed random variable we are implicitly assuming that market
conditions (e.g., customers’ preferences, competition,...) are not changing over time. Otherwise, it
would be more appropriate to model 8 as a O-valued stochastic process. In this respect, our model
with a fixed 6 is well suited for products with a short life-cycle (such as seasonal, perishable or
fashionable items) with only a few months of selling horizon and for which market conditions tend

to be relatively stable.

The retailer starts the selling season with a prior belief ¢ that § = 6;. As time goes by, and
demand data is collected, the retailer is able to update his estimate on the true value of 6. For
a given prior ¢ € [0,1], we use a slight abuse of notation and define the probability measure

P, £ qPy, + (1 — q) Py,,, with expectation operator E,.

The seller’s problem is to dynamically adjust the demand intensity A; in order to maximize long-



term expected cumulative profits. In particular, we consider the following intensity control problem

sup [E, [/ exp(—rt) p(As) dD(I(t)) + exp(—r7) R (1)
NeA, TeT 0
t
subject to Ny = Ny — / dD(Ix(s)), (Inventory Dynamics) (2)
0
7 <inf{t >0 : N, =0}. (Terminal Condition) (3)

A few remarks about this control problem are in order. Our modeling differs from the more
traditional revenue management literature (e.g., Talluri and van Ryzin 2004, Bitran and Caldentey
2003, Elmaghraby and Keskinocak 2003) in a couple of dimensions. Because of the non-perishability
of the product, our model does not consider a fixed finite horizon but rather an infinite-horizon
stopping time problem. Note that the stopping time 7 allows the retailer to stop selling the product
at any time satisfying constraint (3), and so backorders are not allowed. Another difference —~which
is consistent with our infinite horizon view of the retailer’s operation— is the use of discount rate
r > 0 that penalizes future cash flows. Finally, a distinguishing aspect of our model is the terminal
value R, which captures the opportunity cost of the retailer’s operation. We interpret R as the
expected discounted cash flows that the seller can get from his retail business after he stops selling
the current product. In practice, estimating the “correct” value of R is a difficult task. A commonly
used rule-of-thumb is to consider the historical returns of the operation. (Other interpretations
based on operational costs or property values are also possible). However, this measure fails to
take into account new information about markets and products. We do not model the problem of
computing this opportunity cost as it lies beyond the scope of this paper. Instead, we assume that
the retailer has been able to get a good estimate of the value of R. It is possible that in some cases
the reward R is a function of the terminal inventory N, (similar to the dumping option in Eppen
and Iyer 1997) or even a function of the seller’s updated beliefs on 6 at time 7 (in case of demand
correlation between two consecutive assortments). We postpone the discussion of these and other

extensions to Section 6.

In the following sections, we study problem (1)-(3) under different degrees of complexity. We start
by looking at the simplest (full information) case in which the retailer knows the value of 8 at ¢t = 0

and then move to the case where 6 is unknown.

3 Dynamic Pricing with Perfect Demand Information

In this section, we solve the retailer’s optimization problem and derive structural properties of its
solution assuming that 6 is fully known so that P, = Pg. Also, to ease the exposition, we first solve
problem (1)-(3) replacing the inequality sign in (3) by an equality sign. That is, we assume that all
units must be sold before the retailer can start selling a different assortment. The solution for the
case with inequality sign in (3) will follow directly from this analysis (see the discussion following

Proposition 1).

Under some minor technical conditions on A (see Section §II1.3 in Brémaud (1980)), we can rewrite



the seller’s optimization problem as follows.

W (Ny;0) = sup Eqy {/ exp(—rt)0c(A)dt + exp(—r7) R (4)
At€A 0
t
subject to Ny = Ny — / dD(Ix(s)), (5)
0
T=inf{t >0 : N; =0}, (6)

where ¢(\) £ Ap()\) is the unscaled revenue rate function. We denote by c¢* = max{c(\) : A €
[0,A]} the maximum unscaled revenue rate, which is guaranteed to exist given the continuity of
¢(A) in [0, A]. Without loss of generality, and for the rest of the paper, we normalize the unscaled

revenue rate function (by adequately adjusting the scale factor #) so that ¢* = r R.

We interpret W (n;0) as the value function for the associated dynamic programming formulation,
which measures the expected discounted cumulative revenue when the current inventory level is n
and the demand scale factor is 6. Observe that W includes revenues from both the current product

and future ones (captured by R).

Invoking standard stochastic control arguments (chapter VII in Brémaud 1980), we get the first
order optimality condition for this value function in the form of the following Hamilton-Jacobi-
Bellman (HJB) equation.

Og%{ SN (W(n:0) — W(n—1:0)) — rW(n;0) + ac(x)} -0, W(0;80)=R (7

To solve this HJB equation, we find convenient to rewrite it as follows

rW(n;0)

) :\II<W(n—1;9)—W(n;9)) and W(0;0) = R, where V(z)2 max {)\z+c()\)}.

0<A<A
(8)
The function ¥(-) defined on the real line, is nonnegative and monotonically increasing. It admits
an inverse function given by ®(z) £ ¥~1(2) (2 € R;). The function ¥(:) is known as the Fenchel-
Legendre transform of ¢(-) and has been extensively studied in the context of convex analysis (see

Rockafellar 1997). For future references, we also define the function
A 3\ ) —
¢(z) £ inf {)\ €0,A] : A= a%gg\lg\({)\z + c()\)}} 9)

This function ((z) is nondecreasing and satisfies ((0) = A* £ argmax{c()\) : A € [0,A]}. Figure 1
plots ¢ and the Fenchel-Legendre transforms ¥ and ® for the case of an exponential demand rate
(for further details see Section C1 in Appendix C). We note that ¥(0) = ¢* and ®(c¢*) = 0. Based
on equation (8), we can compute the value function iteratively through the recursion

r W(n;0)

W(0;0)=R and W(n;0)+® ( J

)zW(n—l;@), n=12,.... (10)

To complete the characterization of the optimal solution, the optimal demand intensity \*(n;6) for

an inventory of n is given by

A (n;0) = ¢(W(n —1;60) — W(n;0)). (11)
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Figure 1: Fenchel-Legendre transforms for the case of an exponential demand rate \(p) = A exp(—ap) with A = 10
anda=1.

Using the monotonicity of ®(z), the recursion in (10), and our scaling condition ¢* = r R, we obtain

the following result.

Proposition 1 For every 0 > 0 and R > 0 there is a unique solution W (n;8) to the recursion (10)
which is monotonically increasing in 6 and satisfies limy,_,oo W(n;6) = OR. If the scale factor § > 1
(resp. 6 < 1) then the value function W(n;@) is increasing and concave (resp. decreasing and

convex) as a function of n.

Proof: See Section Al in Appendix A. [J

Proposition 1 highlights the effect of the scale parameter 6 on revenues. For 6§ > 1, the revenue
function, W(n;#0) is always larger than R, and increases with the inventory level. The opposite
conclusion holds for # < 1. Based on this distinction, we say that a product is high-revenue (or
profitable) if # > 1 and we say that a product is low-revenue (or unprofitable) if § < 1. From now

on we assume 07, <1 < 0.

The difference between high-revenue and low-revenue products comes from the underlying trade-off
that the seller experiences in terms of present and future revenues. In our model, the quantity R
captures the future value of the seller’s operations after the current product has been depleted.
Therefore, for a given discount rate r, the term r R represents the seller’s average revenue rate
from future businesses. On the other hand, the revenue rate generated by the current product is
0 c(N), for a demand intensity 6 A\. Thus, the seller considers the current operations to be more
profitable than the average future business if max){f c(\)} > r R or equivalently 6 ¢* > r R. Given
the normalization ¢* = r R, this condition reduces to 6 > 1. In other words, for # > 1 the current
product offers higher returns than the average product that the seller usually sells and so the value
function increases with n; in this case, the retailer will always choose to sell this product until no
more units are available. On the other hand, if # < 1 then the seller would like to switch as soon as
possible from the current product to a new (more profitable) alternative. If the seller has to deplete
all units before switching to another product, then the corresponding value function is a decreasing

function of the inventory. In other words, the more units of this low-revenue product the seller has,



the longer it is going to take to sell them all and move to a better product. However, if the retailer

can stop selling the product at any time, then for § < 1 he chooses to stop immediately, i.e., 7 = 0.

An example of the results in Proposition 1 is depicted on the left panel in Figure 2. The right panel
shows the corresponding optimal demand intensity A*(n,f) that we discuss in Corollary 1 below.

Besides the monotonicity and convexity properties of the value function, Figure 2 also confirms
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Figure 2: Value function (left panel) and optimal demand intensity (right panel) for two values of 6 under an
exponential demand model A\(p) = A exp(—ap). The data used is A = 10, a = 1, r =1, 61 = 1.2, 6, = 0.8,
R = A exp(—1)/(ar) =~ 3.68.

the asymptotic behavior as the inventory grows large. Specifically, we have that W (n;0) — 0 R as
n — oo. Interestingly, Proposition 1 holds true without requiring any specific condition (such as
concavity) on the revenue rate function ¢(\). This is a distinguishing feature of our representation
of the value function in (8) in terms of the Fenchel-Legendre transform ¥ and its inverse ®. Indeed,
it is well known that ¥ is unaffected if we replace ¢(\) by its concave hull in equation (8). The

following corollary follows from Proposition 1.

Corollary 1 Let \* = argmax{c()\) : X € [0,A]} be its unique mazimizer. The optimal demand
intensity X\*(n;0) is monotonically decreasing in 6 and satisfies limy, oo A*(n;0) = X*. If 0 > 1

(resp. 0 < 1) then A*(n;0) increases (resp. decreases) with the level of inventory n.

Proof: The result follows directly from concavity (resp. convexity) of W(n;#) in Proposition 1,

equation (11), and the monotonicity of ((-). O

From a pricing perspective, we note that for a low-revenue product the price increases with the
available stock. This is in contrast to most of the dynamic pricing literature (e.g., Gallego and van
Ryzin 1994) which is more in synch with our high-revenue product where optimal prices decrease

with the inventory level. This, apparently, counterintuitive result relies on a simple observation. In

10



our setting, the retailer’s trade-off is current versus future revenues. As the initial stock increases
the time required to deplete these units go up as well. As a result, the retailer weights less future
revenues and maximizes current revenues by increasing the price. In contrast, for high-revenue

products the price decreases with inventory.

The different pricing behavior between low and high revenue products raises an important issue
regarding depletion time, specifically, whether we are selling faster when 6 is larger. In fact, even if
low-revenue products have lower prices than high-revenue, their demand scale factor, 6, is smaller.
Hence, the net effect on the net demand rate § A\(p) is unclear. According to Corollary 1, for n
sufficiently large the pricing policies for both low and high revenue products are almost identical
and so the effective rate of sales increases with 6. The following proposition shows that under
mild conditions on the demand model (Condition (12 below), this conclusion holds for all inventory

levels.

Proposition 2 Let s*(n;0) 2 0 X\*(n;0) be the optimal rate of sales for a given 0 and inventory

level n. If

L) <0, (12)

then the sales rate s*(n;0) increases with 0 for all n.

Proof: See Section A2 in Appendix A. [J

Condition (12) on the pricing function p(-) is not particularly restrictive and it is satisfied by
the three demand models (exponential, linear and quadratic) that we describe in Section C1 in
Appendix C. (A simple derivation of this condition translates in a slightly stronger requirement on
¢(+) than just concavity.) Interestingly, according to this Proposition even if prices increase with 6
the net demand rate, 8 \*, still increases with 6. In other words, the inventory turns of high-revenue
products are higher than those of low-revenue products even though the former are sold at a higher

price than the latter.

As a side remark, we can get an alternative interpretation of condition (12) using the notion of
reservation price (e.g. Bitran and Mondschein 1997). Suppose every arriving buyer has a maximum
price that he is willing to pay for the product. The seller is unable to observe this reservation price
but only knows its probability distribution (F') among the population of buyers. In this setting,
if the seller charges a price p the resulting demand intensity equals A(p) = A (1 — F(p)) with
corresponding inverse demand function p(\) = F~! (1 — #) For example, if the reservation
price is exponentially distributed with parameter o then we recover the exponential demand model
A(p) = A exp(—ap) and if the reservation price is uniformly distributed in [0, %] then we recover
the linear demand model A(p) = A — ap. With this interpretation of the demand process, it is
a matter of simple calculations to show that condition (12) is equivalent to the reservation price

distribution (F') having weakly increasing failure rate (IFR) (e.g. Lariviere 2005).

We conclude this section with a brief summary of our findings under full information. According to
our model, the seller can partition the set of products that he sells in two groups: (i) high-revenue

products for which 6 > 1 and (i) low-revenue products for which § < 1. High-revenue products sell
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faster (higher inventory turns) and at a higher price than their low-revenue counterparts. Hence,
if the seller were able to identify which products offer high revenues and which do not, then he
would never engage in procuring and selling low-revenue products. In practice, however, the seller
is rarely capable to perfectly anticipate the selling pattern of a given product. This pattern, which
depends on customers’ preferences and market competition, only reveals itself as the selling season

progresses, way after procurement decisions are made.

With this problematic in mind, we study in the following section optimal pricing strategies for the
case in which the seller has imperfect knowledge about customers’ preferences, or in our case the

value of the scale factor 6.

4 Dynamic Pricing with Incomplete Demand Information

In this section, we consider the case in which the retailer starts the selling horizon having only partial
information about the demand scale factor . We consider again the case in which 6 can take only
two values {0r,0g} with 0 <1 < 60p. (A generalization to the case of a multidimensional vector
6 is discussed in Section 6). This is the most interesting case in the sense that the retailer cannot
tell whether the product being sold is a high-revenue (f = 0y > 1) or a low-revenue (0 = 6 < 1)
product. The retailer starts the selling season with a prior belief ¢ that 8 = . We also assume
in this section that all initial Ny units must be depleted before a different product can be offered.

This final assumption is relaxed in Section 5.

The setting here describes, for example, those situations where the retailer is bringing a new product
into the market and has uncertain information about how well this product will sell. As the selling
period progresses and the demand process materializes, the retailer updates his information and
adjusts the price accordingly in order to maximize cumulative discounted profits. This active
learning process is essentially a Bayes update on the distribution of 6 while the retailer is only
observing the sales process over time. It is active in the sense that the optimal price is not only a

result of the current belief but also on how it will evolve in the future.
In formal terms, we embed the model in this section in a filtered probability space (Q, F., (Ft)t>0, IP’q) )
The probability measure P, satisfies (see Section 2 for notation)

Py =qPy, + (1- Q)PGH'

Given the retailer’s initial beliefs ¢, the random variable 6 satisfies Py(6 = 01,) = 1-P,(0 = 0y) = q.
We let ¢ = P, (6 = | F;) be the retailer’s belief about the value of 6 at time ¢ conditional on the
available information F;. Recall that (F; : ¢ > 0) is the filtration generated by the inventory (or
equivalently sales) process {N(t) = Np — fot dD; :t > 0}. Note also that the process {(gt, F¢) : t >
0} is by definition a Pj-martingale.

In this setting, the retailer problem becomes

V(No, q) = sup E, [/ exp(—rt) 0 c(A\)dt + exp(—r7)R|, 7T=inf{t>0: N, =0}. (13)
AeA 0
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We will tackle a solution to (13) using dynamic programming. For this, we will first derive the

specific dynamics of ¢; using Bayes’s rule and It6’s lemma.

Proposition 3 The Py-martingale (belief) process {(q:, F¢) : t > 0} satisfies the stochastic differ-

ential equation

s 9t(1—q) (0 —0r)

. 14
Orgr +0u(1 — q) 1)

dgr = —n(qi—) |dDy — (Opqi— + 0 (1 — qt_)))\tdt], where 1(qt)

Proof: See Section A3 in Appendix A. [

According to (14), the rate at which the seller beliefs change depends on the difference between the
observed demand rate, dD;, and the expected demand rate, (0rq— + 0 (1 — q:—))M\dt, given the
available information. Loosely speaking, the martingale nature of ¢; follows from (14) by noticing
that E,[dD¢|Fe] = (0rqi— + 0 (1 — gi—))Aedt. Observe as well that ¢ is a jump process driven by
the Poisson demand, and as a bounded martingale will converge to ¢oo Pg-a.s. (goo is a random
variable which takes under P, the value 1 with probability ¢ and 0 with probability 1 —¢.) As
long as no sales occur, ¢; increases deterministically towards one; the process jumps downward by
a factor of n(q;—) when a sale occurs. These jumps depend on the value of the belief and tend
to zero as ¢ approaches either zero or one (see figure 3 which depicts a pathwise evolution of the
belief process under a constant price policy.) As we should expect, equation (14) also reveals that
in all three cases ¢ = 0, ¢ = 1, and 0, = 0y the beliefs of the seller are actually constant over time,

which brings us back to the model of the previous section with perfect demand information.

1

0.95F

09r
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0.75F
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0.55F

05 . . . . . . .
0 50 100 150 200 250 300 350 400

Time, t

Figure 3: Values of pathwise ¢+ under a constant price strategy A+ = 1. The data used are starting inventory
n =350, =0.38, 0g =1.2.

Another important feature of the belief process in (14) is that it implies that learning is maximized
when the demand rate is set to its maximum value Ay = A for all ¢. Indeed, for a given a pricing
strategy A = (A¢)¢>0 the corresponding likelihood ratio process associated to the simple hypotheses
Hy ={0=0x} and H, = {6 = 0.} is equal to (see Bremaud (1980))

s (P LIVt 4 o
£, - (m - (é) exp (0 — 01) (1)), (15)
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where Py|F; denotes the restriction of Py to F;. Hence, for any history F; the likelihood ratio
process is maximized if we choose a pricing strategy A that maximizes I\(t), that is, setting \y = A
for all t.

Of course, we are not interested in choosing a pricing strategy that maximizes the seller’s learning
but one that maximizes the discounted expected payoff in equation (13). Note that the retailer
controls the unscaled demand rate \; while the actual rate realized is in fact 8 A\; which in turns
induces a revenue rate of fc(A;). The revenue rate function c(-) satisfies the same set of assumptions
as in the previous section. Therefore, in such context, the problem’s formulation can be written as
follows

V(No, q) = sup E, [/ exp(—rt) 0 c(A\)dt + eXp(—rT)R]
A€A 0

t
subject to Ny = Np — / dD(Ix(s)),
0

dgr = n(q:-) [th — (Opg— + 0 (1 — Qt—)))\tdt}, 9 = q,
T=inf{t >0 : N, =0}.

The value function associated with the dynamic programming formulation is now V'(n, ¢) where the
state variables are the level of inventory n and the seller’s beliefs g. We define 0(q;) £ E,[0|F] =

0rq: + 0 (1 — q:) to be the expected demand scale factor given the available information at time ¢.

The HJB equation is then given by (see Appendix C2 for a derivation)

rV(n,¢) = max [A 0(q)[V(n—1,q=n(q)) = V(n,q)] + A(q)Vy(n,q) + 0(q) c(N)|,  (16)

with #x(q) £ q(1 — ¢)(fg — 0) and boundary conditions V(0,q) = R, V(n,0) = W(n;0y), and
V(n,1) = W(n;0r). Recall that the function W(n;0) is the value function when there is no
uncertainty about the true value of 6 and is computed using the recursion in equation (10).

As in equation (10), we can rewrite the HJB condition using the Fenchel-Legendre transform of

¢(\) in the following convenient form

rVi(n,q
V(0,q9) =R, Vn,q)+® <02q))> —n(q) Vg(n,q) =V (n—1,9—n(q)), n=1,2,.... (17)
It also follows from equations (16) and (17) that the optimal demand intensity A} (n,q) satisfies
V
) = cow (2, (18)
0(q)

where ((-) is defined in (9) and ‘o’ stands for the composition operator.
In general, we have not been able to solve explicitly the difference-differential equation in (17)
to derive the corresponding optimal pricing policy. However, its recursive structure suggests the

following algorithm to compute V' (n, q).
Algorithm-V:

Step 1) Initialization: Set V(0,¢q) = R for all ¢ € [0, 1] and n = 1.
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Step 2) lteration: Set F(q) =V (n—1,q—1n(q)) and solve the following ordinary differential
equation (ODE) for G(g) in the domain ¢ € [0, 1]:

o) +® (HG(;?) @) C) = Fla),  G(0) = W(ni0), G(1) = W(n6r).  (19)

(Appendix D describes a finite-difference method that we use to solve this ODE.)

Set V(n,q) =G(q) and n =n+ 1.
Step 3) Goto Step 2.

The main step in this algorithm is to solve the ODE in step 2. This is not a straightforward task
as the border conditions at ¢ = 0 and ¢ = 1 are singular points for the differential equation since
n(0) = n(1) = 0. Hence, even the existence of a solution to (19) is a subtle issue. Fortunately, the

following proposition takes care of this problem.

Proposition 4 There ezists a unique sequence of functions, {V(n,-) : n > 1}, defined on [0,1] and
satisfying the system of equations (17) with border conditions V(n,0) = W(n;0p) and V(n,1) =
W(n; HL) .

Proof: The proof of this proposition requires a number of intermediate steps and can be found in
Appendix B. O

Despite the fact that we do not have an analytical solution to (17), this optimality condition
provides enough information to derive some useful properties that we use to approximate the value

function and the corresponding pricing strategy.

Proposition 5

i) The value function V(n,-) is monotonically decreasing and convex in q. It is also bounded by

the perfect information values for alln > 1 and q € [0, 1]

W(n;0r) <V(n,q) < W(n;0u).

ii) Furthermore, V(n,-) converges uniformly to the linear function RO(-) as n — oo, and
71151;0 A (n,q) = A"

Proof: See Section A4 in Appendix A. [J

As expected, part (i) of the proposition shows that the value function decreases with ¢ and it is
bounded by the value function in the full information case when 8 = 07, and 8 = . The asymptotic
result in part (ii) shows that the optimal demand intensity converges to A* which maximizes the
instantaneous revenue rate. Hence, as n gets large the retailer favors revenue exploitation over
demand exploration when selecting the optimal selling rate. The asymptotic result also shows that

the value function converges to the linear function R (6 q¢ + 0 (1 — ¢q)) as the number of initial
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units grows to infinity. This limiting behavior suggests a simple method to approximate the value
function which we undertake in the following subsection.

Before jumping into this asymptotic analysis, let us use the result in Proposition 5 to extend the
result in Proposition 2 to this case with an unknown 6. For this, we define s*(n,q) = 0(g) A>(n, q)
to be the expected selling rate when the inventory is n and the belief process is equal to ¢. As in the
full information case, the following proposition reveals that s*(n,q) increases with the (expected)

market size 0(q) even if optimal prices are increasing in 6(q).

Proposition 6 Suppose the demand function satisfies

L) <0,

then the sales rate s*(n,q) decreases with q for all n.

Proof: See Section A5 in Appendix A. [J

4.1 Asymptotic Approximation

Based on Proposition 5, it seems that (for a fixed inventory level n) V(n,q) is well approximated
by a linear function of ¢. In particular, we consider for each n > 1 and ¢ € [0, 1], the following

approximation of V'(n, q)
Vin,q) 2 Ey[W(n,0)] =qW(n,0r) + (1 —q) W(n,0). (20)

In what follows, we will use the tilde (7) notation to denote the asymptotic approximation of

quantities such as the value function in (20) or the demand intensity in (21).

The next result shows that the linear approximation is not only suggested by the limiting result on
V' (n,-) but it also represents an upper bound for the value function. More importantly, it approaches
the value function in a strong sense, i.e. their ratio goes to one uniformly in q. Combining

Propositions 1 and 5, we obtain that

Proposition 7 The approxzimation in (20) defines an upper bound of the value function, i.e.,

V(n,q) < V(n,q),

for all q € [0,1] and for all n. Furthermore, the approximation is asymptotically and uniformly (in
q) exact, as n goes to infinity. That is, ‘V(n, q)/V(n, q)‘ — 1 uniformly in q as n goes to co. Note

also, that under perfect information, V(n,q) = V(n,q) for ¢ € {0,1} or 0 = 0.

Proof: The upper bound is due to the convexity of V' in ¢. Because of the boundedness of V', the
uniform convergence of the ratio is guaranteed if the difference converges uniformly to zero. Using

triangle inequality we write

V(n,q) — V(n, 9)| < |V(n,q) — RO(q)| + |RO(q) — V(n, q)|.
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Both terms on the right converge to zero uniformly in ¢. The first one through Proposition 5.
The second term is smaller than ROy — W (n;0p) + W (n;0r) — RO, which is independent of ¢ and

converges to zero. [J

Let us turn to the pricing strategy. The asymptotic approximation in (20) works directly with the
value function, and thus it is unclear how to estimate the optimal demand rate Aj,(n,q). To fill
this gap, we propose to use the optimality condition in (18) using V(n, q) instead of V(n,q). It
follows from the linearity of 17(71, q) in ¢ that the proposed approximation for A\*(n, q) is given by

X, a) = ¢((a = n(@)) (AW (n,01) = AW (n,0,)) = AW (1, 617)), (21)
where AW (n,0) = W(n,0) — W(n —1,0).

Remarks.

1. Since ((z) increases with z, ¢ — n(q) increases with ¢, and AW (n,0g) > 0> AW (n,0r), it
follows that X(n, q) is increasing in q.

2. Furthermore, because ((0) = \* we have that

B ‘ . AW (n, 0 )
>\ f lyif ¢q— > ’ ‘
A(n,q) > A if and only if g —n(q) = AW (n,0g) — AW (n,07)

3. Using the convexity of V and the fact that V is an upper bound of V we get that

R—V(L,q)+n(q)Vq(l,q) = R=V (1, —n(q)) = R—V(1,q —n(q)).

If we the apply ¢ (which is an increasing function) to both sides we conclude that

A (1,9) > A(1,q).

That is, the asymptotic approximation overprices the optimal solution for n = 1. Unfortu-

nately, for n > 2 we have not been able to prove (or disprove) a similar claim.

Let us now assess the performance of the asymptotic approximation by comparing the optimal
expected discounted revenue V' (n,q) to the one obtained using the demand rate X(n, q). Also,
to measure the performance of our approximation with respect to other alternative policies, we

consider the following three heuristics.

1. Myopic Poricy: The popular myopic (or certainty equivalent) approximation of the value

function is defined as
Vo(na Q) é W(naEq(H)) = W(TL, é(‘]))

We note that this policy is asymptotically optimal in the sense that V°(n,q) converges to
R0(q) as n goes to infinity. We call this approximation myopic because it models the dis-

counted profit that a retailer would expect to get if he myopically considers the expected
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value 0(q) to be the true value of the scale factor §. As opposed to our original active learn-
ing strategy, such strategy falls into the category of passive learning. Like our asymptotic
policy, this myopic policy does not generate a pricing policy directly. It rather proposes an
approximation for the value function that we need to translate into an implementable pricing
strategy. Again, we can use the optimality condition (18) to get a demand rate associated to

this myopic policy.
X(n,q) =¢(VO(n—1,q —n(q)) — V°(n,q) + n(a) V,(n,q)).

We note that, despite its simplicity, the computational effort required to compute the myopic
policy is substantially higher than the one needed for the asymptotic policy. Indeed, our
asymptotic approximation is fully characterized by 2 (N + 1) values {(W(n,0r), W(n,0) :
0 < n < Ny} while the myopic policy is defined by Ny + 1 functions {W(n,0(q)) : 0 < n <
Np and g € [HL,QH]}.

. SINGLE-PRICE PoLICY: Another popular approximation in the Revenue Management litera-
ture is the single-price policy. Under this approximation, the price is kept fixed for the entire
planning horizon. The popularity of this approximation comes from (i) its simplicity from
an implementation point of view and (i7) its asymptotic optimality in certain settings with
large initial inventory and large demand rate (e.g., Gallego and van Ryzin 1994 or Bitran
and Caldentey 2003). Let us denote by V1(n,q; \) the retailer’s expected discounted payoff
starting with n units of inventory and a belief of ¢ if the fixed-price policy Ay = A is used. It
follows that

Vin,gA) = Eq [/OTe”ec(A)dtJre”R] = E, [(%@) (l—eTT)JrerTR]
= Mﬂaq [(R— 96(”) e_”}
- Uy (- ) (30 ) 0 (-2 (295

The last equality uses the fact that under the probability measure Py, the selling horizon 7 has

n
a Gamma distribution with parameters (n,\6;), i = L, H. Therefore, Eg,[e”" "] = <Tigi9¢>

for i = L, H. The corresponding demand rate associated with this single-price approximation

is given by

M(n,q) = Vi, ¢ N).
(n,q) argmax (. q; A)

It worth noticing that this single-price policy is also asymptotically optimal in the sense that

sup lim V(n,q;\) = 0(q) c(\*)/r = RO(q) = lim V(n,q).

. Two-PRrICE PoLicYy: An important limitation of the previous approximation is its inability

to adjust the price based on the realized demand. This is particularly serious in our setting
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where the demand distribution is unknown. To partially address this limitation, and at the
same time preserve the operational simplicity of the single-price policy, we consider a two-
price policy in which the retailer is able to change the price only once. (Feng and Gallego
(1995) provide structural properties of this type of policies under full demand information in
a finite-horizon setting.) A major difficulty for determining the optimal two-price policy is
that it requires solving an optimal stopping time problem. From a computational standpoint,
this is at least as demanding as computing the optimal value function. For this reason, we
only consider a suboptimal version that makes a single price change right after the first unit is
sold. The discussion of optimal pricing policies based on stopping time rules is postponed to
Section 5. Under this restriction, let us denote by V2(n, ¢; \) the retailer’s expected discounted
payoff starting with n units of inventory and a belief ¢ when the initial demand intensity is
set to Ay = A. It follows that

V2(n, A =E [eirn [p(\) + Vl(n -1, QTA)]] )

where 7 is the (random) time at which the first unit is sold if the seller uses a fixed strategy
At = A, t € [0,7)]. The corresponding demand rate associated with this two-price approxi-
mation is given by

N(n,q) = V2(n,q; \).
(n,q) argmmax (n,q; \)

Let us now compare the performance of the asymptotic approximation and the other three heuristics

in terms of their relative error with respect to the optimal solution. If we let V(n, q) be the expected

discounted payoff generated by any of these approximations (using the corresponding pricing policy)

then the relative error is defined by

V(n,q) —V(n,q)
V(n,q)

Table 1 shows the average relative error for the four approximations. We compute this average over

x 100.

SV(na q) <

the three demand models (exponential, linear and quadratic) described in Appendix C varying
uniformly the parameters A, 8y and 67, in the ranges [1,20], [1.1,8] and [0.1,0.9], respectively, for

a total of 225 different instances.

As we can see from Table 1, the Asymptotic policy performs extremely well for entire range of
inventories (n) and beliefs (¢) with an average error closed to 0.03%. On the contrary, the Myopic
approximation performs quite poorly specially for intermediate values of the inventory and belief;
this is despite the fact that it is optimal for ¢ € {0,1}. The average error of this Myopic policy is
closed to 26.5%. The single-price and two-price policies offer a reasonably good performance across
the board with an average error of 0.9% and 0.3%, respectively (although an order of magnitude
higher than the asymptotic policy). Thus, limiting the number of price changes can lead to good
results specially for small values of the inventory. In conclusion, our proposed asymptotic policy is

simple to compute (a linear function of ¢) and performs very well for the entire range of inventory.

In terms of implementation, we note that the performance of the asymptotic policy tends to degrade

for small values of inventory. Hence, it seems reasonable to implement a hybrid solution method
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Asymptotic Approximation Myopic Approximation
L Inventory (n) L]
o] v [ 5 [ w0 [ Jwl] [Joaf t [ 5 [ w0 [ 50 [10]

Inventory (n) ‘

0.0 || 0.000 | 0.000 | 0.000 | 0.000 | 0.000 0.0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
0.2 || 0.058 | 0.005 | 0.001 | 0.000 | 0.000 0.2 || 17.533 | 23.853 | 24.281 | 21.777 | 17.270
0.4 || 0.140 | 0.013 | 0.002 | 0.000 | 0.000 0.4 || 30.897 | 46.410 | 48.784 | 39.314 | 29.458
0.6 || 0.221 | 0.021 | 0.004 | 0.001 | 0.001 0.6 || 44.113 | 61.565 | 59.753 | 44.493 | 33.122
0.8 || 0.243 | 0.029 | 0.007 | 0.002 | 0.003 0.8 || 50.472 | 63.913 | 61.237 | 43.911 | 32.513
1.0 || 0.000 | 0.000 | 0.000 | 0.000 | 0.000 1.0 || 0.000 | 0.000 | 0.000 | 0.000 | 0.000
Single-Price Policy Two-Price Policy
H H Inventory (n) ‘ H H Inventory (n) ‘
Lo [ t | 5 [w ][ [w] [of t ][5 |10 ][50 |10]
0.0 || 0.001 | 0.201 | 0.313 | 0.285 | 0.065 0.0 || 0.001 | 0.017 | 0.043 | 0.023 | 0.107
0.2 || 0.814 | 0.950 | 0.823 | 0.569 | 0.337 0.2 || 0.113 | 0.219 | 0.215 | 0.162 | 0.082
0.4 || 1.347 | 1.669 | 1.252 | 0.602 | 0.334 0.4 || 0.169 | 0.373 | 0.319 | 0.199 | 0.112
0.6 || 1.297 | 2.318 | 1.707 | 0.638 | 0.320 0.6 || 0.170 | 0.540 | 0.435 | 0.237 | 0.135
0.8 || 0.721 | 2.559 | 1.994 | 0.666 | 0.287 0.8 || 0.108 | 0.712 | 0.546 | 0.276 | 0.146
1.0 || 0.028 | 1.603 | 1.031 | 0.863 | 0.865 1.0 || 0.028 | 0.876 | 0.842 | 0.863 | 0.865

Table 1: Relative value function error Ey(n, q).

that uses the asymptotic policy for large values of n and then switches to the computation of the

optimal solution using Algorithm-V for small values of n.

We conclude this section with a brief discussion of the seller’s preferences over different states
(n,q). First of all, we note that (similarly to the full information case) even though the cost of the
initial units is sunk, it is not necessarily true that the value function is increasing in n, i.e., the
retailer is not always better off with more units. Specifically, in the case where the initial belief ¢
is near one, more units will delay the retailer from liquidating this low-revenue product. On the
other hand, more units gives the retailer more time for learning. In the next proposition we study
the monotonicity of V through its approximation V and show that, for all ¢ < 1, there exists an

inventory threshold after which V (-, ¢) becomes increasing in n.

Proposition 8 For any fized level of the prior q < 1, there exists a level of inventory, no(q), such

that the approzimated value function ‘7(, q) is increasing in n for all n > ny.

Proof: See Section A6 in Appendix A.[J

The proof of the previous proposition is based on the following behavior: where simple calculations
show that W (n, @) converges faster to Ry, than does W (n,0y) to Rfy. Recall that V(n,q) is a
linear combination of W (n, ) (decreasing in n) and W (n, ) (increasing in n). Hence, for n large
enough, V(n,q) ~ qRO, + (1 — q)W (n,0y) which is increasing in n. From a pricing perspective,

Equation (18) implies that the optimal prices decrease eventually with the inventory level n which
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implies a higher learning rate. We conclude that the monotonicity of the value function is the result
of an increasing value of learning that is achieved for a large inventory level.

In the full information case, the retailer is able to partition the products in two categories (high-
revenue and low-revenue products), based on the value of § compared to 1. In the incomplete
information case, such partition depends on the initial belief and the inventory level. Prior to
accepting a batch of n units of a product, the seller would like to compare his prior ¢, to the value
G(n) solution to V(n,q) = R. This quantity defines the belief threshold between high-revenue and
low-revenue products as a function of the initial stock. The monotonicity in g of the value function

implies that (i) ¢(n) is unique and (i7), in expectation, the retailer would be better off discarding

the product if ¢ > ¢(n). Observe as well that in general, ¢(n) is different from 7%=, solution itself
- H—0L

to 0(q) = 1. However, as a result of Proposition 5 —in the limit as the inventory gets large— ¢(n)

converges to 99;’_791.

One can show similarly to the proof of Proposition 8 that the solution to the equation f/(n, q9)=R
is monotone in n for n larger than a certain threshold. Therefore, one expects a similar behavior
for g(n). Figure 4 plots the values of §(n) as a function of n for the case of an exponential demand

rate. In this case, ¢(n) is indeed increasing in n. This monotonicity suggests that the seller is

Non-Profitable

Products

qn)

Profitable Products

15 2
Initial Inventory (n)

Figure 4: Value of G(n) for an exponential demand rate \(p) = A exp(—ap). The data used is A = 10, a = 1,
r=1,0y =12 0, =08, R=c"/r~ 3.68.

willing to take more risk (measured by an increase in g) for larger orders (measured by an increase
in n). For example in Figure 4, if the seller’s initial belief is ¢ = 0.48 then an order of n = 5 units
is not attractive while an order of n = 15 units becomes attractive. Intuitively, for small orders,
the event that the product is high-revenue (i.e., § = 0p) has a small impact on the cumulative
discounted profit with respect to the opportunity cost R. In other words, the potential value for

demand learning increases with the size of the order.

5 Dynamic Pricing Under Optimal Stopping Time Rule

In many settings, a retailer that has acquired a certain number of units of a non-perishable product
will carry on selling those units until they are sold out. However, in some cases the seller has the
option to discontinue the current sales at any random time. This can occur for instance by moving

the current product to a secondary market (or simply to another floor like Filenef’s basement).

fA US department store, famous for its basement floor where discounted items are sold.
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In this section, we consider a similar setting to the one discussed in the previous section but allowing
the seller to stop the current sales and achieve the terminal value R at any point in time. We restrict
ourselves to times that depend on the current history (i.e. stopping times). In the full information
case the seller chooses at time zero either to acquire the units or not. When learning is taken into
account, the seller will pursue the business as long as the value function is greater than R and will
decide to drop it as soon as the value function hits R. The case in which this terminal reward R

depends on the number of unsold units at the time of stopping is discussed in Section 6.

The formulation of this problem in this case can be written as follows

U(No,q) = /\ei\upeTEq {/OT exp(—rt) O(q;) c(\)dt + eXp(—rT)R] (22)

t
subject to Ny = Ny — / dD(IA(s)),
0

dgr = n(q—) [th —(Orgi— + 0 (1 — Qt—))dl)\(t)]u q = ¢,
7 <inf{t >0 : N, =0}.

The optimality (HJB) equation is given by
max {R - U(?’L, Q)a \I/(U(TL —1,q— 77(‘1)) - U(na Q)) + 77(‘1) Uq(n> Q)) TN

which can be written also as follows

{ U(n,q) + @(T%gz)’”) —n(q) Uy(n,q) = U(n — 1,4 = n()) U 2R
U(n,q) + S(“505%) = n(q) Uy(n, q) < U(n — 1,9 — n(g)) if U(n, q) = R.

We denote by ¢ the smallest value of g for which U(n,q) = R. The following proposition shows,
among other things, that U(n,q) = R for all ¢ > ¢*. Hence, an optimal pricing strategy is only

defined on the continuation region ¢ € [0, ¢}) and satisfies

Ar(n,q) =Co® <TUHEZ)’Q)> '

Proposition 9

i) The system of equations given by (23) admits a unique continuously differentiable solution
U(n,-) defined on [0,1] such that U(n,q) > R on [0,q};) and U(n,q) = R on [¢}, 1], where ¢},

is the unique solution of the smooth pasting condition

R+® <g(§)> =U(n—1,q9—n(q))

ii) The value function, U(n,-) is decreasing and convex in q on [0, 1].
iii) The sequence (U(n,-) : n > 1) is increasing in n and satisfy for allm > 1 and q € [0, 1]

R<U(n,q) <W(n,0n).
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iv) Let s*(n,q) = 0(q) \j;(n,q) be the expected selling rate. Then, if the demand function satisfies

LOF ) <0,

then the sales rate s*(n,q) decreases with q for all n.

v) Let Aj;(n,q) and A\j,(n,q) be the optimal demand rate for the cases where the option to stop

is and is not available, respectively. Then, for all n and q
AV (n, q) < Ap(n,q).

Proof: See Section A7 in Appendix A.[J

The previous Proposition shows that most properties of the value function are maintained when
the option of stopping is permitted. A fundamental difference, however, is that U is increasing in
n for all g, as opposed to V' that might be decreasing in n, for some values of n and large values of
q. Indeed, with the option of stopping available one can do at least as good with n 4 1 units than
with n (under the assumption that the cost of the initial inventory is sunk). It should also be clear
that the value function when the option of stopping is not allowed represents a lower bound for
U, ie., V(n,q) <U(n,q) for all n > 0 and ¢ € (0,1). Part (v) in the proposition follows directly
from this inequality. Intuitively, this result follows from the fact that the value of demand learning
is higher when the option to stop is available which gives the retailer more incentives to set lower

prices to learn faster (see equation (15) and the discussion that follows it).
Now, we suggest the following algorithm to compute the value function.

Algorithm-U:

Step 1) Initialization: Set U(0,q) = R for all ¢ € [0,1] and n = 1.
Step 2) Iteration: Set F(¢q) =U(n —1,q —n(q)) and

(i) solve for the unique solution of

I

set ¢ to be this solution

(ii) solve the following ordinary differential equation (ODE) for G(¢) in the domain ¢ €

[0, g5):
rG(q)

0(a)
(iii) set U(n,q) = G(q) for ¢ < g} and U(n,q) = R otherwise. Set n =n + 1.

Glg) +® ( ) @) = Fla),  Cla) = R. (24)

Step 3) Goto Step 2.
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Again, the main step in this algorithm is solving the ODE in equation (24). The task here is
simpler than in Section 4 as the border condition is well defined, that is, the ODE does not have a
singularity at ¢ and can be solved using standard methods (e.g., Picard iteration). Appendix D

describes a finite-difference scheme that can be used to solve this ODE.

We now discuss some properties of ¢ which is the threshold value of the belief (when the current
stock is m units) at which the retailer will choose to stop selling the current product and move
to the next one. The quantity ¢ allows then the retailer to partition again the products in two

categories of high-revenue and low-revenue ones.

Proposition 10 The sequence (¢ : n > 1) is increasing in n and converges to ¢, < 1 as n — oo.

The sequence is also bounded by 62{—701 =q] < q, < qn <1, where for all n > 1, the upper bound
qn s the unique solution to
rR
R+ & 700 =(g—n(@) R+ (1 —q+n(q) W(n—1,0u). (25)

Proof: See Section A8 in Appendix A. [J

In the setting where stopping is allowed, we have showed that the value function U is always
increasing in the current inventory n. Hence, the threshold ¢}, (solution to U(n,q) = R) is increasing
as well in n. This monotonicity suggests that the seller is willing to take more risks (i.e., measured
by larger values of ¢) for larger initial inventory n. Indeed, higher initial inventory levels offer a
greater opportunity for learning which make them more attractive to the seller. Observe, however,
that the upper bound ¢ is strictly less than 1, and so the willingness to take risk is limited; if ¢

is greater than ¢}, then independently of the order size the seller always rejects such product.

We recall here that for a particular value of inventory and belief, the value function in the case
where stopping is allowed is always larger than the value function when such option is not available
(V(n,q) <U(n,q)). Therefore, the threshold ¢ is always larger than ¢, (solution to V'(n,q) = R).
This inequality implies that the values of the belief for which the product is assumed to be a
high-revenue one, is larger in the case where stopping is allowed compared to the case where it is
not. Put differently, consider n units of a product that the retailer is contemplating selling. If the
product’s prior ¢ is such that ¢, < ¢ < ¢;,, then the product is considered a non-profitable one
(low-revenue) in the case where stopping is not allowed and a profitable product (high-revenue)
in the case where stopping is allowed. Figure 5 depicts the behavior of ¢ and ¢, as a function
of n. As we can see the option of stopping has a significant effect on the seller’s segmentation of

profitable and non-profitable products. Indeed, it is worth noticing that .. = ¢j.

5.1 Bounds and Approximations

We suggested above an algorithm to solve numerically for the value function U; however, it is
impossible in general to obtain a closed-form expression for it. The remaining of this section will
be devoted first to obtain a limiting result as n gets large and second to suggest approximations to

the value function that we later test numerically.
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Inventory (n)

Figure 5: Thresholds ¢ and gy, for the exponential demand model. Data: A =10, a =1,7r =1, 0y = 1.2, 0;, = 0.8.

Proposition 11 For all n > 1, the value function U(n,-) is bounded above and below by piecewise
linear functions such that for all g € [0, 1]

max {VI;(TL,O) q+W(n;0u), R} < U(n,q) < max {W(n; 0n) — (W(n;0n) — R) qi : R} . (26)

Furthermore, the sequence of value functions (U(n, Jin > 1) converges uniformly on [0,1] to a

continuously differentiable function, Ux(+), as n — oo, such that for all g € [0, 1]

Rmax{0(q), 1} < Usx(q) < Rmax{fy — 95; ! , 1} (27)

o0

Proof: See Section A9 in Appendix A. [J

The previous Proposition shows that the value function converges as the number of the initial
inventory becomes large. It also gives a lower and an upper bound both linear in ¢ and truncated
at R.

We denote by U"(n, q) and U"(n, q) the lower and upper bounds of U(n, q) appearing in (26) (see
Figure 6). Lacking a simple limiting result, we suggest these bounds as possible approximations of
the optimal value function. Observe that the lower bound is just the tangent at zero until it hits R,
while the upper bound is a straight line linking the value U(n,0) at zero, to R at g, (recall that g,
is an upper bound of ¢}). All the parameters of these segments are known without having to solve
for U. Indeed, the value function at zero is W(n,0p), the tangent at zero is equal to the known
value V;(n,0) (we can prove this by induction using similar arguments as those in Lemma B4 in

Appendix B). Finally, g, is solution to equation (25) which is independent of U.

In order to assess the performance of the bound-based approximations, we follow a similar approach
to the one used in Section 4. We first introduce two additional approximations. The first one is an

approximation based on the myopic policy discussed in Section 4,

U™(n, q) = max{W(n,0(q)), R}.

25



The other one, is the piecewise linear

VQ(nv O)Q+W(n79H) ; for ¢ < qo
U'(n,q) = (Vg(n,0)qo +W(n,0u) —R)(¢—q)/(@o—q +R ; for qc(q,q) (28)
R ; for q>g,

where ¢ is such that each “piece” of U™ covers half of the range of U i.e. V(n,0)qo+ W (n,0n) =
(W(n,0m) — R)/2; see Figure 6. The function U™ is a hybrid function, approximating the value
function by the lower bound, U"(n,-) for ¢ < gp and by a linear function linking U"(n, qo) at gy to
R at G,. We put, U%(n,q) = R for ¢ > G,. Such approximation is meant to take into account the

change of slope of the original value function.
In order to compare these four different approximations, we compute for each of them, a corre-
sponding pricing strategy given for i € {uv,r,m,u} by the following equation

X(n,q) = ¢(U'(n— 1,9 —n(q)) — U'(n,q) + n(q) Ui(n,q)).

We define the following performance measure,

7 A U(n7 q) — U/ipprox(”? q)

where Uf;lppr oz (M, @), is the seller’s discounted profit under a particular approximating pricing policy.

We cannot expect these approximations to perform as well as the one suggested in Sections 4.
Indeed, none of them become asymptotically close to the optimal value function. Figure 6 depicts
the gap between the bounds, and the optimal value function. This gap will not improve much
as n gets large. These approximations, however, have the advantage of being simple (linear or
piecewise linear functions of ¢) consistent with our previous approximation in Section 4. The lower
bound behaves as good as the myopic policy (this is expected as both coincide when n gets large
limy, oo UM(n,q) — U"(n,q) = 0). The upper bound gives even better results. The numerical

analysis is summarized in Table 2 below. We observe, that the relative error defined above range

EXPONENTIAL DEMAND MODEL

Myopic: &}'(n,q) Lower Bound: &f(n,q)

H H Inventory (n) ‘ H H Inventory (n) ‘
Lal v [ 5 [ 10 [ 2 w0 [af v [ 5 [ 10 | 2 [ 10 /0]
0.0 || 0.00 % | 0.00 % | 0.00 % | 0.00 % | 0.00 % 0.0 || 0.00 % | 0.00 % | 0.00% | 0.00 % | 0.00 %
0.2 0.22% | 0.55% | 1.05 % | 0.85 % | 0.78 % 021 015% | 075% | 1.15% | 0.84 % | 0.77 %
04 ] 048 % | 1.01 % | 1.62 % | 1.46 % | 1.38 % 041 032% | 1.96% | 1.93% | 1.44 % | 1.33 %
0.6 || 0.26 % | 1.76 % | 2.58 % | 2.69 % | 2.62 % 0.6 || 0.05% | 1.73% | 3.50 % | 2.70 % | 2.53 %
0.8 || 0.00% | 0.42% | 066 % | 1.37 % | 1.41 % 0.8 || 0.00% | 048 % | 0.73 % | 1.34 % | 1.40 %
1.0 || 0.00 % | 0.00 % | 0.00 % | 0.00 % | 0.00 % 1.0 || 0.00 % | 0.00 % | 0.00 % | 0.00 % | 0.00 %

from 0 to 3.5% across the different approximations. The worse cases belong to the values of ¢

between 0.4 and 0.6. The error is much smaller for higher values of ¢. It seems that the upper
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Upper Bound: £f(n,q) Hybrid: &£ (n,q)

H Inventory (n)

H Inventory (n)

Lal v [ 5 | 10 | 2 | wo | [af 1t [ 5 [ 10 [ 2 [ 10|
0.0 [ 0.00 % [ 0.00% [ 0.00% | 0.00 % | 0.00 % 0.0 [ 0.00 % [ 0.00% [ 0.00% | 0.00 % | 0.00 %
0.2 ][ 019% [ 028% | 0.72% | 0.58 % | 0.52 % 02 ][ 752% | 471% | 1.36 % | 0.95 % | 0.90 %
0.4 ][ 042 % [ 0.32% | 0.60 % | 0.60 % | 0.56 % 04 ][ 3.02% [ 369% | 1.47% | 121 % | 1.19%
0.6 || 0.24% [ 051% | 0.54% | 0.79% | 0.77 % 06 028% [234% | 1.23% | 1.15% | 1.15%
0.8 ][ 0.00% | 0.45% | 039 % | 0.85 % | 0.85 % 0.8 || 0.00% [ 0.50 % | 0.62% | 0.97 % | 0.99 %
1.0 | 0.00 % | 0.00 % | 0.00 % | 0.00 % | 0.00 % 1.0 [ 0.00 % | 0.00 % | 0.00 % | 0.00 % | 0.00 %

Table 2: Relative Value function error for the exponential demand model A\(p) = A exp(—ap), with A = 10 and

a=1.

Lower Bound ~

3.5 I I I I )
0 0.2 0.4 0.6 0.8 1

q
Figure 6: Value function V(n,q) (for n = 10) compared to its linear lower and upper bounds for the exponential
demand model \(p) = A exp(—ap), with A =10 and a =1 .

bound approximation is giving the best results with a relative error strictly less than 1% for all
values of the belief ¢ and inventory n. Finally, as argued above, the value function corresponding

to the lower bound behaves numerically similarly to the myopic strategy.

6 Extensions

6.1 Multidimensional Scale factor ¢

The models discussed so far assume that the unknown scale factor 6 can take only two values 0g
and 07. In many practical situations the seller may want to enlarge this set of possible values
to {01,...,04} (d > 2) to enrich the modeling of the demand process. Naturally, the choice of
d trades off the accuracy of the demand model and the computational effort needed to solve the

corresponding multidimensional dynamic program.

From a mathematical standpoint, expanding the support of # is equivalent to expanding the belief

process to a multidimensional vector ¢(t) = (qi(t),...,qq(t)) where g;(t) = Py[6 = 0;|F]. The

27



optimization problem in this case becomes (we omit the derivation of the SDE for ¢(t))

V(n,q) = )\e,szluEeTEq {/OT exp(—rt) 0(q(t)) c(\)dt + exp(—r7)R (29)
subject to Ny =n — /0 dD(Ix(s)), (30)
dgi(t) = qi(t—) <W) (M O(q(t))dt —dDy), i=1,...,d, (31
7 <inf{t >0 : N, =0}, (32)

where 0(q(t)) = E,[0|F] = Zle qi(t) 6; is the expected value of # given the belief ¢(t).

Based on the results in the previous sections, we know that even for the simplest case d = 2 the
corresponding HJB optimality condition does not admit a tractable analytical solution. For this
reason, we will not analyze this model in full detail but simply present the following extension of

the asymptotic approximation in Proposition 5 to this multidimensional case.

Proposition 12 Consider the seller’s optimization problem (29)-(32) with constraint (32) replaced
byt =inf{t >0 : Ny =0} (i.e., the stopping time option is not available). Then, the corresponding
value function V(n,q) is convex in q and converges (uniformly in q) as n goes to infinite

lim V(n,q) = 0(q) R.

n—oo

The proof of this result mimics the proof of Proposition 5 and it is omitted. Based on this result

we propose the following approximation for V(n, q) if the stopping option is not available.

d
V(n,q) = Zqz' W(n,0;).
i=1
Each of the W(n, 6;) is computed using the recursion in (10).

6.2 Final Reward Function of the Market Proxy ¢

The final reward R, is a critical factor of our model and represents the expected discounted future
cashflows of the retailer’s operations- otherwise, it could represent the opportunity cost of the space
devoted for one product). One contribution of this paper is measuring the effect of this constant on
the optimal pricing strategy. This value represents a reference compared to which one continuously
tries to guess whether the product is of low revenue or of high revenue. It is likely in certain cases
that the future value of a business is affected by the performance of the current product that is being
sold. In our case, this translates in R being a function of #; the final reward, R(6) is henceforth
uncertain and revealed only in the long run. We consider here an extension of the model studied
in the previous sections by adopting a linear model where R(6) = Ry + R 6.

Under such assumption and in the case where no stopping is allowed before all units are sold, we
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can write the following

Vin,q) = )\eiupET E, {/OT exp(—rt) Olc(\¢) — rRa]dt + exp(—r7) (Ry + RQQ)}

= sup E, {/ exp(—rt) 0¢(A)dt + exp(—m’)f?} + R20(q),
AeA, TeT 0

where ¢(\) = ¢()\) — rRy and R = R;. The second equality is obtained by writing that exp(—r7) =

1— [y rexp(—rt). We let V(n,q) = V(n,q) — R20(q) which brings us back to our original problem

of Section 4. All the results obtained there will hold for V' when replacing ¢ ~ ¢ and R ~ R. In

particular, the approximation suggested for V' (n, ¢) under a terminal reward affine in 6, is given by

where, W is the value function corresponding to V under perfect information. It is interesting to
note that based on (16), the pricing strategy is not affected by this additional linear term in 6. In a
similar fashion, we can also generalize the optimal stopping problem of Section 5 to the case where,

again, the terminal reward R(f) is an affine function of 6.

6.3 Final Reward with Salvage Value

A potential improvement of our model is to make the opportunity cost R a function of the terminal
level of inventory. Obviously, this extension is irrelevant if the option to stop is not available; in
this case the final inventory is always zero. However, if the retailer can stop selling the product
at any time (as in Section 5) then we may want to include a salvage value for the unsold units.

Specifically, let R(n) be seller’s opportunity cost when there are n units of inventory.

The formulation of the problem remains almost the same than in the case of Section 5 except for

the objective function which becomes

U(No,q) = sup E, [/ exp(—rt) 0(q) c(\)dt + exp(—r7) R(Ng — N;)| . (33)
AeA,TeT 0

The only difference between this formulation and (22) is the value of the terminal reward R(n).

Such modification will result in the following optimality (HJB) equation, for each fixed n and

q€10,1]

{ U(n, q) + q»(”%ﬁj;‘”) —1(q) Ugln.q) = U(n — 1,4 — n(q)) UG 2RO
Un,q) +®("5(5%) = n(q) Uy(n, q) < U(n—1,q = n(q)) if U(n,q) = R(n).

Most of the results of Section 5 extend directly to this case if we impose the following two conditions

on R(n).
(A1) The function R(n) is increasing in n.

(A2) R(n) < W(n,0p) for all n.
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The monotonicity of R(n) is a natural requirement consistent with the notion of salvage value. The
second condition guarantees that for every inventory level n the retailer always prefers to sell a

high-revenue product (# = 6p) than to liquidate it and collect the terminal reward R(n).

The following proposition summarizes the main properties of U(n,q). The proof is omitted as
it follows the same line of arguments than the proofs of Propositions 10 and 11. Before stating
the result, we introduce the following quantities. Similar to Section 5, let g be the solution to

U(n,q) = R(n). Denote by g, and gn, respectively the solutions to

) <’“9]§é’;)) = R(n—1) - R(n),

and
r R(n
i)+ (0 ) = (g =) Ren = 1)+ (1= g+ () W (0~ 1.6n).
Proposition 13 Suppose conditions (A1) and (A2) hold. Then, the value function U(n,q) is

increasing inn and decreasing and convex in q. Furthermore, for everyn, the threshold q;, € [gn, dn),

and the value function is bounded by

max{W (n,0r) — (W(n,0x) — R(n)) —, R(n)}

n

< U(n,q) < max{W(n,0) — (W(n,60) — R(n)) qin , R(n)}.

[

We note that in this case, the threshold ¢} is not necessarily increasing in n. Finally, we mention
that other results of Section 5 hold as well; for instance, we can similarly use the upper and lower
bounds on U(n,q) as approximations of the true value function to estimate the optimal pricing

strategy.

7 Concluding Remarks

In this paper we have studied the problem faced by a retailer that sells non-perishable products
to a Poisson arrival stream of price sensitive customers with unknown demand intensity. The
uncertainty in the demand rate is modeled by a single factor # which is used as a proxy to capture
the unknown size of the market. The retailer is initially endowed with a finite inventory of the
product and a prior belief about the value of 6. In this setting, the retailer’s problem is to maximize
the expected discounted cumulative revenue adjusting dynamically the price of the product and
using Bayesian learning to update the distribution of . Besides the uncertainty with regard to
the demand intensity, the model differs from the traditional revenue management problem in two
important aspects. First, because the product is nonperishable, the selling horizon is not (a priori)
bounded. Second, the model includes explicitly an opportunity cost that the retailer incurs when

he decides to sell a particular nonperishable product instead of a different assortment.

The analysis of the retailer’s problem was divided in three parts. In Section 3, we considered the
case in which 6 is known with certainty at time 0. In this perfect information case, the problem

admits a tractable dynamic programming formulation that we showed how to solve efficiently. The
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main insight in this case is that the retailer can partition the set of non-perishable products in two
categories depending on the value of #. If # is larger than a fixed threshold (that we normalized
to 1) the product offers high returns compared to the retailer’s average revenue (captured by the
opportunity cost R). On the other hand, if 6 is low (less than 1 in our normalized system) the
product generates lower than average revenues. Hence, if the retailer were able to observe in advance
the value of 0, he would only engage in selling high-revenue products. An interesting feature of
the solution is that even though optimal prices increase with 6 the resulting optimal selling rates
also increase with #. That is, high-revenue products are sold at a higher price and have a higher

inventory turnover than low-revenue products.

In Section 4 we relaxed the perfect information assumption and considered the case in which 6
is unknown. We also assumed that the retailer must sell the initial inventory completely before
a different assortment can be offered. The analysis of this model is more involved as the state
description requires a new state variable to capture the retailer’s beliefs about the value of 6. As
a result, the resulting dynamic program does not admit a simple analytical solution. Nevertheless,
we propose a recursive algorithm to solve the corresponding HJB that requires solving a one-
dimensional ODE in each iteration. Because of this lack of tractability, we propose a simple
approximation to compute the value function and associated optimal pricing strategy. The proposed
policy is based on the fact that as the inventory gets large the retailer’s discounted revenue (as a
function of the initial belief) converges uniformly to a straight line that we can characterize in closed
form. This asymptotic property is used to develop a simple approximation that showed a good
performance when compared numerically to the optimal solution. Our computational experiments,
summarized in Table 1, reveal that the asymptotic approximation has on average a relative error
which is less than 1%. This is a remarkable good performance if we consider that the Myopic policy

(which is also asymptotically optimal) has an average relative error closed to 30%.

In Section 5 we considered the case in which the retailer can stop selling the product at any time
and move to a different assortment. This stopping decision depends on the inventory level, the
retailer’s beliefs about the true value of 8 and the opportunity cost. The HJB optimality condition
in this case resembles the one encountered in §4 but includes an extra degree of complexity. The
stopping time option creates a free boundary condition that complicates the analysis and solution
techniques. In particular, the asymptotic analysis that proved so effective in the model of Section 4
does not produce a similar result in the case where stopping is allowed. Moreover, we were not
able to characterize in simple terms the asymptotic limit of the value function (as inventory gets
large) and therefore could not derive an asymptotic approximation as we did in the case without
the stopping option. Instead, we derive piecewise linear upper and lower bounds for the optimal
value function which, together with the HJB condition, produce a simple procedure to estimate
the optimal pricing strategy. The numerical experiments in Table 2 suggest that the upper bound
approximation performs better than the other approximations with an average relative error of less
than 1%.

A distinguishing feature of our model with uncertain demand intensity is that the retailer must

consider the trade-offs between exploration and exploitation. That is, by adjusting the price the
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retailer can influence both the rate at which new information is gathered and the rate at which
revenues are collected. Our results in Sections 4 and 5 suggest that the retailer is willing to take
more risk —measured by an increase in the probability that the product is low-revenue— for larger
orders. Furthermore, when the stopping time option is available the retailer might accept to sell a
large batch even if his initial belief of 6 is strictly less than one. This behavior can be explained by
the fact that larger batches offer a larger exploration opportunity. That is, with larger batches the

retailer has more time to learn and hence is willing to take more risk for this option to learn.

There are a number of possible future research directions. First of all, we can generalize our formu-
lation by considering a non-stationary demand process including, for example, a time component
in the unscaled intensity, A(t,p), and in the terminal reward, R(¢). This is an important extension
in our nonperishable product setting as it captures the evolution of the product life cycle as well
as the fact that changing from one assortment to another is an option that is typically not equally
available over time. Another extension to this model would be to expand our analysis in Section 6.2
to consider an arbitrary dependence of R on 6. This will cover situations where learning not only
informs the retailer about the current product’s demand but also helps him predict demand in the
future (capturing possible correlation among successive products and economic business cycles). A
special case of such a setting occurs when the seller’s inventory decisions are made contingent upon

his knowledge of the market captured by 6.

In revenue management problems in general and in ours in particular, one assumes the cost of initial
units to be sunk and no replenishment permitted. However, in some retail businesses, replenishment
is certainly an option. An interesting research project would be to generalize our dynamic pricing
with learning to the case when the retailer can choose either to continue with the current product
by ordering a new amount or moving to a different product and basically making R. The cost
component needs to be introduced in this case. The problem becomes even more complicated, but

seems an interesting and a natural continuation of this paper.

Another possible extension would be to consider the operation of a retailer that sells simultaneously
a menu of substitute and complementary products. It would be interesting to embed our modeling
framework with unknown demand intensity in this case. Some preliminary results in this direction
are presented in Caro and Gallien (2005) using a finite horizon setting with no opportunity costs.
Finally, another interesting extension is to consider a different learning approach. Our Bayesian
method assumes that the retailer has a prior belief about the value of 6. This prior preconditions
the retailer’s learning process and, therefore, the resulting pricing strategy. It would be interesting
to study a related problem in which the retailer does not have a prior but instead uses a maximum
likelihood approach. We are currently exploring this variant that to the best of our knowledge has

received little attention in the dynamic pricing literature.
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APPENDIX A: Main Proofs

A1l. Proof of Proposition 1
- EXISTENCE AND UNIQUENESS: The existence and uniqueness of a solution W (n;6) follows by
noticing that recursion (10) is equivalent to F(W(n;0)) = W(n — 1;6), where the function

]:(z)éz—HI)(%)

is continuous, strictly increasing and ranges from [®(0), co). This follows from the fact that ®(z) is
continuous and nondecreasing. Therefore, F admits an inverse function F~! which is continuous
strictly increasing and non-negative in the domain [®(0), c0). Since ®(0) < 0 < R, it follows that

W (n; @) is uniquely determined through the recursion

W(0;0) = R, W(n;0) = F {(W(n—-1)0), n=1,2,....

- MONOTONICITY ON 6: To prove the monotonicity of W(n;#) on § we use induction over n. First
note that W (1;6) solves
rW(l;0) = 0 V(R — W(1;0)).

Since the function hj(z,6) = 0 ¥(R—z) is increasing in 6 (because VU is nonnegative) and decreasing
in z it follows that W (1;6) increases with 6. Let us assume that W (n — 1;6) is increasing in 6 for
some n. Now, W (n; 6 solves

rW(l;6) =0 U (R — W (1;6)).

Again, the function h,(z,6) = 6 V(R — z) is increasing in # and decreasing in z. We conclude that

W (n; @) is also increasing with 6.

- MONOTONICITY AND CONCAVITY/CONVEXITY ON n: We now prove the monotonicity and con-
cavity of W(n;#) for the case § > 1. The proof in the case § < 1 uses the same line of arguments
and it is left to the reader.

Suppose that 6 > 1. We proof the monotonicity of W (n;#) in n by induction.

I) First, for n = 1 we have that W(n — 1;0) = W(0;6) = R. Suppose, by contradiction,
that W (1;6) < W(0;6). Under this hypothesis, condition (10) implies & (%@) > 0. In
addition, by construction ®(z) > 0 implies z > ¢* and so rW(1;60) > 6c¢*. But this last
inequality implies that W (1;0) > 6 R > R = W (0;0), since ¢* = r R and 6 > 1. Therefore,

we conclude that W (1;0) > W(0;6) = R.
IT) Suppose that W (k;0) > W(k —1;0) forall k =1,...,n — 1, some n > 1.

IIT) Let us prove that W(n;0) > W(n — 1;0). Again, by contradiction, let us suppose that
W(n;0) < W(n — 1;0). Condition (10) implies ® (M) > 0 and so we must have
O R < W(n;0) < W(n—1;6). In addition, by condition (10) we also have that

W(n—1>:W(n_2)_q>(’W>.
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Since ®(z) is monotonically increasing and W(n — 1;6) > 6 R we conclude
W(n—-1,0) <W(n—2;0) —®(rR)=W(n-—2;0),
which contradicts the induction step (II). We conclude that W(n;6) > W(n — 1;6).

To prove the concavity of W (n;60) simply note that condition (10) implies
W(n;6
W (n:0) — W(n—1:0) = & (7“ b >) .

Since both ®(z) and W (n;#) are monotonically increasing in their corresponding arguments, we

conclude that the right hand side above is monotonically decreasing in n and so W (n;#) is concave.

- LimITING BEHAVIOR: Finally, to prove the asymptotic behavior of W (n;6), we first note that
W (n;0) is bounded. In fact, for the case § < 1 the boundedness follows since W (n) is decreasing
and nonnegative and so W(n;0) € [0, W(0;0)]. On the other hand, for the case § > 1, W (n;0) is
increasing in n and so by condition (10) and the monotonicity of ®(z) it follows that rWW(n;8)/6 <
c*, or equivalently, W (n;0) < 0 R. Given that W (n;#0) is bounded and monotonic (either increasing
if # > 1 or decreasing if § < 1), we have that lim,, . W(n;0) exists. If we denote by W (oc;6)
this limit, then letting n — oo in condition (10) and using the continuity of ®(z), we conclude that
@(M) =0or W(co;0)=60c/r=60R. O

A2. Proof of Proposition 2

Combining equations (10) and (11), it follows that
s*(n;0) =60Co® (W) ,

where ( o ® is the composition of ¢ and (.
Our assumption that Ap’()) is decreasing in \ implies that the function A% p/()) is also decreasing
in A\. Because A € [0, A], we denote by z = A?p'(A) its minimum value. The following lemma will

be useful.

Lemma 1 The function ( o ® satisfies

Cod(z) = A solution to N2 p/'(\) = —z ifOSz?g—g
A otherwise.

It follows from Lemma 1 that if 7 (n;0)/0 > —Zz then (o ®(rW(n;0)/0) = A in which case s*(n )
is trivially (locally) increasing in 6. Let us then assume then that W (n;0)/0 < —z. According to

Lemma 1, the optimal demand intensity A\*(n;6) satisfies

(N (:0))° PO (30)) = =00

which implies
rW(n;0)

s"(n;0) = X (n:0) p (W (n:0))
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To complete the proof note that(i) W(n;6) increases with 6 (by Proposition 1), Ap/(\) decreases
with A (by assumption), and (iii) A*(n;6) decreases with 6 *(by Corollary 1). O

A3. Proof of Proposition 3
We recall that D; = Ng— Ny is the cumulative demand up to time ¢, which has a Poisson distribution
with mean 6I)(t). Recall that I)(t) = fot Asds. The function Ay = A(p¢) is the unscaled demand
intensity at time ¢ given the pricing policy p; selected by the seller. Using the Poisson distribution

of cumulative demand in [0,¢] and Bayes’ rule we get that

g =Py(0 = 0| F1)
_ q- (0L I)\(t>Dt exp(—HL I,\(t))/Dt!
q- (9[, I)\(t)>Dt exp(—GL I,\(i))/Dt! + (1 — q) (O I/\(t))Dt eXp(—HH I)\<t))/Dt!

_ q a
= (= Q)00 (O — ) (D) (&)

The second equality follows from the Markov property of the demand process. We can now obtain

the dynamics of the seller’s belief process (¢ : ¢ > 0). For that, we write ¢ = f(Y;), where
Y; 2 In(0y/00)Dy — (0 — 01) I,(t) is an F;-semimartingale and f is a twice differentiable and

A

bounded function given by f(n) = From It6’s lemma (e.g., Ethier and Kurtz

]
T a0) 5000
(1986)) and the fact that Y; is a finite variation process (which follows from the fact that D(¢) is a

pure-jump process and I(t) is non-decreasing), we get
dgr = f'(Yi-) dYs + f(Y2) — f(Ye-) — f'(Yi-) AY:.

Taking advantage of the pure-jump nature of D; and the continuity of I)(t), we have dDy = ADy,
dY; = AY; — (0 — 0) dIx(t), and f(Y2) — f(Yi-) = [f(Yi- + In(0/0n)) — f(Yi-)]dDy, so that

th = —f/(Y%_)(HH — HL) dI)\(t) + [f(Y;t— + 1II(HL/GH)) - f(Y;f—)] th

— (0 — 0, (1 — g) exp(¥;-)
(¢4 (1 —q)exp(Yi—))?
q q

g+ (1 —q exp(Vi)g q+(1—q) exp(Yi)

dI)(t)

dD;

a (1 —q:)(0g —01)
Org +0u(l—q)

(a2)

= —n(qi-) [AD¢ = (01— + 01 = )AL, where n(g)

A4. Proof of Proposition 5

The monotonicity and boundedness of V'(n, q) are proven in the proof of proposition 4 in Appendix

B. To prove the convexity of V(n,q) with respect to ¢, we define

Jr(n,0) = / exp(—rt) 0 c(A\¢)dt + exp(—r7)R, 7 =inf{t >0 : N; =0},
0
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for an arbitrary policy A € A. We consider a pair of beliefs g1, g2 € [0,1] and set ¢ = g1 + (1 — ) g2

for some « € [0,1]. Then, convexity follows from

V(n,q) = sup{E[Jr(n,0)]} = Sllp {qEg, [Jr(n,0)] + (1 — q) Eo,, [Jr(n,0)]}

AeA
= itelg{ aq+(1-a) qz)EeL [Ia(n, 0)] + (1 — aqi — (1 — @) ¢2) Egyy [Ia(n,0)] }
= sup {aEq [Ia(n,0)] + (1 — a) Eg, [Jr(n, 0)]}

< asup {qu [JA(n, 0)]} + (1 — ) sup {qu [Jx(n, 9)]}
AEA A€A
= aV(n,q)+ (1 —a)V(n,q).
Finally, to prove the uniform convergence of V(n,q), let 7, be the time it takes to sell n units

under an optimal pricing policy. Similarly, let 7,,(\) be the time to deplete n units while keeping

the demand rate constant at A. Observe that

RO(g) = max E, [ /0 Ooexp(—rt)ﬁ(qt)c()\t)dt].

0< <A

To see this note that the Bounded Convergence Theorem allows an interchange of the expected
value and the integral. It is then clear that the LHS is an upper bound of the RHS and is achieved
for Ay = \*. Hence,

RH(q)<0<n§\?><<AIE/O exp(—rt)f(q:)c(A)dt + n}\?i( E /Tn exp(—rt)f(q:)c(A)dt.

The second term of the RHS of the previous inequality is bounded by

o
1
E —rt)0ycidt < —=c*Oy E — A)).
og\?}é/\ /Tn exp(—rt)fgc _TC 1 Eqexp(—r7,(A))

Using this bound, we write
|RO(q) — V(n,q)]

= |RA(q) — og}\?}é\ Eq{/Tn exp(—rt)0(q;)c(\)dt + Rexp(—r1n)}]

< |RA(@) — max, B / exp(—rH)f(a)c (M)t

+ | og}\a}éz\ Eq{/o exp(—1t)0(g)c(\)dt + Rexp(—r7,)} — <H}\?§A E /0 exp(—7t)8(q:)c( Ay )dt|

IN

1 *
C HHquXp(—rTn(A))—FOg}\?X RE exp(—rTy)

IN

(%C*QH + R)E, exp(—r7,(A)).

For the second inequality we use the fact that both differences on the RHS of the first inequality are
non-negative. We also used implicitly that 7,,(\) stochastically dominates 7,,(A) for all 0 < A < A.
We can easily show that E,exp(—r7,(A)) = (A/(r + A))". The RHS is then independent of ¢ and

converges to 0 as n — oo. We just showed that (V(n,-) : n € N) converge uniformly to a function
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V on [0,1] as n — oo. This is in agreement with the limiting differential equation obtained from

relation (17) by letting n goes to infinity

rVia)
0(q)

The linear function RA(q) is indeed the unique solution of this ODE. [J

V(q)=V(q—n(Q))+n(Q)Vq(Q)—‘I’< ) with  V(0) = Rey. (a3)

A5. Proof of Proposition 6

Suppose that Aj,(n,q) is locally decreasing in ¢ then it follows trivially that s*(n,q) is also locally
decreasing in ¢. So, let us assume that A}, (n, ¢) is locally increasing in ¢. According to equation (18),

the selling rate s*(n, q) satisfies

s"(n,q) =0(q) (o ® <7°V(nq)> :

0(q)
From here, we can use exactly the same steps as in the proof of Proposition 2 replacing W (n; 6) by
V(n,q). O

A6. Proof of Proposition 8

We start by studying the difference W,(n,0) = W (n, 8)—R6f. We observe based on the recursion (10)

and a first order Taylor expansion that

= Wo(n; 0)(1 + ~®'(c*) + o(1)).

It is then easily seen that
W(n; QL) — R@L _
~ . n 4
ROy —W(n;0g) ¢ > (a4)

as n — oo; where a > 0, ¢ > 1 and f(z) ~ g(z) as © — oo means that f(z)/g(z) — 1 as z — oo.

Now notice that

V(n,q) — RO(q) = qWe(n;0L) — (1 — ¢)We(n; 0n)
~ (qac™™ — (1 — q))We(n; 0g)

which is negative for large n. Finally, considering the linear approximation it is easy to see that

V(n,q) > V(n — 1,q) if and only if @(T‘g((iz)"l)) < 0 or equivalently V(n,q) — RA(q) < 0 which

completes the proof. [J

A7. Proof of Proposition 9

— We start with (ii). The convexity proof follows exactly the same steps as in the case of V(n,-)
in Proposition 5. Similarly, the monotonicity in ¢ follows from the same arguments used in the

lemma B2 in Appendix B restricted to (0, ¢}].
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— For part (i) Observe that the first equation in (23) with the border condition U(n,q)) = R
defines an ODE where a classical Lipschitz continuity argument proves existence and uniqueness of
a continuously differentiable solution on [0, ¢;]. Clearly, U(n,q};) = Ron g}, 1]. U(n, ) is continuous
on ¢} and so it remains to study the continuity of ¢. For that let € > 0, define ¢,(€) = ¢} + € and
q,(€) = ¢ —e. Note that U(n, ¢, (¢)) > R while U(n, ¢,(¢)) = R. By taking the difference between
the equations in the previous system (23) at the point ¢, and letting € goes to zero, we obtain by
continuity of the functions U(n,-) and U(n — 1,-) that

0 < n(gn)Uq(n, gy ).

The function U, being non-positive, we conclude that U, (n,q:~) = Uy(n,qi") = 0, and U(n,-) is
continuously differentiable on [0,1]. Putting U(n,q) = R we get that ¢ is the unique solution of
R+ (#2) = Uln—1,0—n(q)).

— For part (iii) Fix an initial belief g. With the option of stopping available, a retailer with n 4 1
units can follow the same policy than with n units and so U(n + 1,q) > U(n,q). As we saw
before, this is not necessarily true if the option of stopping is not available. Finally, the bounds are

straightforward.

— The proof of (iv) is essentially the same as in Proposition 6.

— To conclude, the prove of part (v) follows from the inequality V' (n,q) < U(n, q), the identities

and the fact that ¢ o ® is an increasing function. [J

)‘t/(naQ):CO(I)( and AE(n,q):Co@(

A8. Proof of Proposition 10

The monotonicity of ¢ is a direct consequence of the monotonicity of U(n,q) in n. To proof that

the limiting value ¢}, < 1 note that R + ® (é(q};)) = Uso(q}, — n(qk,)) and R+ @ <%) >R =

Uso(1) = Uso(1 — n(1)). Hence, we must have ¢}, < 1.

The prove that ¢ := 92{:91 is a lower bound for ¢ we note that R + ® (9%,%)) < Rfor all ¢ < gq.
Since by definition ¢ satisfies R + ® <§7(”q]f)> = Usx(q;, —n(q;)) > R, it follows that g, > ¢.

To derive the upper bound, let us first define the linear function U(n,q) := g R+ (1 — q) W(n, 0g).
From the convexity of U(n, q) as a function of ¢ and the fact that U(n,0) = W(n,0g) and U(n, 1) =
R if follows that

U(n,q) <U(n,q) for all ¢ € [0,1].

Since R + & (&—f) is an increasing function of ¢, it follows that ¢ solution of R + & <ﬁ> =

) 7
U(n —1,q —n(q)) must be bounded above by g, solution of R + ® (01"(—];)) =Un—-1,9g—n(q)). O

A9. Proof of Proposition 11
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The bounds on U(n, q) follows from its convexity and the definition of g,. The uniform convergence
is due to Dini’s Theorem. (Dini’s Theorem states that if a monotone sequence of continuous real-
valued functions converge pointwise on a compact set to a continuous function, then the convergence
is uniform, see Cheney (2001).) The bounds on Ux(q) are again due to the convexity of Us

preserved by the uniform convergence. [
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APPENDIX B: Proof of Proposition 4

In this appendix we investigate the existence and uniqueness of a solution to the following systems
of ODEs.

rV(n,
V(0,q) = R, V(n,q) + @ (M) —1(q) Vg(n,q) = V(n—1,q4 = n(q)),
with border conditions V(n,0) = W(n;0y) and V(n,1) = W(n;0z). We approach this task
recursively. That is, we will assume that we have a solution to V(n — 1,q) with the desired

properties and use it to compute V(n, q).

In what follows, we will drop the dependence on n and use the notation F'(q) =V (n—1,q—n(q)),
G(qg) = V(n,q), Go = W(n,0g) and G; = W(n,0y). Also, and due to some mathematical

technicalities, we will solve the following weaker version of the problem.

Problem-L: Consider two continously differentiable functions F(q) and ®(q). F(q) is
decreasing and ®(q) is increasing in ¢ € (0,1]. We are interested to find a continuously
differentiable function G(q) in (0, 1) that solves the ODE

G(g) ~ F(q) + @ (5552)

G'(q) = , qe€(0,1 bl
(q) o) (0,1) (b1)
with boundary condition
. rGy
limG(q) = G1, where Gy solves G;—F(1)+® | == ) =0. (b2)
qT1 9(1)

We note that we have replaced the original border conditions at ¢ = 0 and ¢ = 1 by (b2) which
is only a limiting condition at ¢ = 1. Fortunately, we will show that any solution to this weaker

Problem-L satisfies the original border conditions at both ¢ = 0 and ¢ = 1.

For completeness, we also define G to be the unique root of

Go— F(0) + @ <g(c(;)§> ~0.

The monotonicity of the function h(x) = z + ®(%) guarantees that both G and G are uniquely
defined.

To avoid confusion we will use the following terminology. We will say that G(q) is a solution to the
ODE if it solves (bl) in (0,1). We say that G(q) is a solution to Problem-L if is a solution to the
ODE that satisfies the boundary condition (b2).

In what follows, we will prove that there exists a unique solution to Problem-L. This solution
will also satisfy the border condition at ¢ = 0. Also, because we are solving the system of ODE
recursively, the solution G(g) becomes the function F'(¢) in the next iteration. Hence, we also
need to show that G(q) is continuously differentiable and decreasing in (0, 1]. The following three
sections address these issues of the existence, uniqueness and differentiability and monotonicity of

a solution to Problem-L, respectively.
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Bl Existence
Before discussing the existence of a solution to problem-L, let us first prove three lemmas.
Lemma B1 Let G(q) be a solution to the ODE. Let G € (0,1) and G = G(q).

i) If G < Gy then limg1G(q) < Gi.

ii) If@ > Gg then limqu(q) > Gy.

Proof: We prove only part (ii). The proof of (ii) uses the same arguments. Suppose G < G7 then
by the definition of G; we get

o 6(q) @
G'(q) = n(@) = (@)

) F(l)—F(@Hq’(g% —@(gﬁ;) <0

= n(q) o

The last inequality follows from the monotonicity of F' and ® and the fact that 6(g) > 6(1). Then,
G(q) is decreasing at ¢ = g and so by its continuity we conclude that limg11G(q) < G1. O

Lemma B2 Let G(q) be a solution to the ODE. If there is qo € (0,1) such that G'(qp) > 0 then
G'(q) = 0 for all g = qo.

Proof: The result follows from noticing that the function

h(g,x) :=x —F(q) + ® (&;)

is increasing in both = and ¢. That is, hq(g,xz) > 0 and h;(q,x) > 0 for all (¢, x), where hy and
h, are the partial derivatives of h(q, z) with respect to the first and second argument respectively.

Hence,

G'(q) = 77(1(1) h(g,G(q)) = 77(1(1) <n(qo) G'(qo) + /q [hy(s,G(5)) + ha(s,G(s)) G'(s)] ds> > 0,

where the inequality follows from the assumption G’(gp) > 0. O

Lemma B3 Let G(q) be a bounded solution to the ODE. If limy|o |G(q)| < oo then limgjo G(q) =
Go. Similarly, if limgr |G(q)| < oo then limgp G(q) = G1.

Proof: We prove only the limit at ¢ = 0. The argument in limit at ¢ = 1 is similar and it is left to
the reader. Because G(q) solves the ODE it follows that

rG(q)
0(q)

n(q) G'(q) = Glq) — Flg) + @ ( ) . forallge (0,1). (b3)
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Suppose that limg|o G(q) = G for some real G. We will show, by contradiction, that G = Gp. Let
us assume that G' # Go. Because of the continuity and boundedness of G(q), F(q) and ®(q), it
follows from condition (b3) that there is constant K # 0 such that

. rG
lim G'(q) =G —F(0 +<I><>:K
imn(q) & (q) (0) 70)
The fact that K # 0 follows from the definition (and uniqueness) of G and the assumption G # Gj.
Suppose K > 0 (the case K < 0 uses similar arguments). Because 7(q) ~ ¢ around ¢ = 0 and
K # 0, the limit above implies that G’(q) ~ ¢~! or equivalently G(g) ~ In(q) which violates the
assumption lim, o |G(q)| < oo. We conclude that G' = Go. O

We can move to the proof of existence of a solution to Problem-L. For this, we define three families
of solutions to the ODE in (bl).

G:= {G(q) solution to the ODE in (b1) such that 11%111 G(q) > Gl} .
q

= {G(q) solution to the ODE in (bl) such that liTnll G(q) = Gl} .
q

g = {G(q) solution to the ODE in (b1) such that li%rll G(g) < Gl} .
q

Proving existence of a solution requires showing G # (). Suppose, by contradiction that G = ().

We now define the following auxiliary functions

Glg) = ggg,{a@} and G(q)zgég{a@}, for all ¢ € (0,1),

these are the lower and upper envelopes of the set G and G, respectively. Note that Lemma Bl

guarantees that both G and G are nonempty and so the infimum and supremum are well defined.
Proposition B1 Suppose G =0, then for any q € (0,1)

G1 < G(q) = G(q) < Go.
Define, é’(q) = G(q), then G(q) is a solution to the ODE and satisfies

limG(q) =Gy and limG(q) = G1.

ql0 qT1
Proof: The lower bound on G(g) and upper bound on G(q) follow from Lemma B1. The equality
G(q) = G(q) follows from the assumption G = (). To prove that G(q) satisfies the ODE, let
qo € (0,1) and G(q) be the solution of the ODE passing through (go, G(qo)). We will show that

A~

G(q) = G(q) for all ¢ € (0,1) and so G(q) satisfies the ODE.

Because we are assuming that G = (), we must have G e G or G c G. We consider only the case
G € G, the proof in the other case follows the same steps. Suppose G’(q) # G(q) then (by the

42



fact that G(q) is the lower envelope of the set G) there exists G(q) € G such that G(q) < G(q) for
all ¢ € (0,1). But at gy the following holds G(qo) < G(qo) < G(qo) = G(qo). This contradiction
implies that G(q) = G(q) as required.

Next, we need to show that lim, o G(q) = Go and lim,; G(q) = G1. We start showing that these
limits exists. For the right limit at ¢ = 1, note that G(q) is continuous in (0, 1); this follows from the
fact that G(q) satisfies the ODE. Now if there is gy € (0, 1) such that G’(go) > 0 then by Lemma B2
the function G(q) is increasing in [go, 1). Furthermore, by the first part of this proposition, G(q) is
also bounded. Hence, the limit (as ¢ T 1) of an increasing and bounded function always exists. On
the other hand, if for all ¢ € (0,1) G'(g) < 0 then G(q) is decreasing and bounded in (0, 1) and,
therefore, it must have a limit as ¢ T 1.

For the left limit at ¢ = 0, we use a similar argument. Suppose there exists a go € (0,1) such that
G'(qo) < 0. Then, by Lemma B2 and the fact that G(q) satisfies the ODE, we have that G/(q) < 0
for all ¢ € (0,¢qo]. Hence by the boundedness of G(¢) we conclude that lim,jo G(g) exists. On the
other hand, if for all ¢ € (0,1) G'(¢) > 0 then this monotone condition and the boundedness of
G(q) imply again that limg o G(q) exists.

Finally, the desired limits lim,|o G(g) = Go and limg; G(q) = Gy follow from (i) the boundedness
of G(q), (ii) the fact that G solves the ODE, and (ii7) Lemma B3. O

The proposition shows that G (q) is a solution to Problem-L and we must have G # 0.

B2 Uniqueness

From the previous section, we already know that there exists a solution G (q¢) to Problem-L that it
is bounded and decreasing in (0,1) and satisfies lim,|o G(¢) = Go and lim,j; G(g) = G1. We can
then extend the domain of G(q) to [0,1] by defining G(0) = Go and G(1) = G.

In order to prove the uniqueness of this function G(q), we need the following result.

Lemma B4 Let G(q) be a solution to Problem-L. Then, limyy G'(q) exists and

B F,(l)-i- Té/gl)é(l) (I)/ T?(l)
G/(l) — ( 02(1) ) ( 9(1) > (b4)

L+ (ﬁ) L (TeG(S)) —1'(1)

Proof: Let us suppose, by contradiction, that limgq G’ (¢) does not exist. Since G (q) is decreasing,

this is equivalent to assume that limg; G'(q) = —oo.

Let us define the auxiliary function h(q) := n(q) G’(¢g) and note that h(1) = 0 and

v , (TG (rG(q)0(q) —rG(q) 0 (q)
h(q)—G(Q)—F(QH‘P(e(q)) ( 20 >

D)

By assumption, F’(q) is bounded and ®'(z) is nonnegative. Furthermore, by proposition B1 é(q)
is also bounded . Hence, the assumption limgq G’ (q) = —oco implies that there exists gg € (0,1)
such that h'(q) < 0 for all ¢ > qo.
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Take € > 0 such that gy < 1 — e. Then, from a first order Taylor expansion we get

1—e
hgo) = h(1 — ¢) - / K (q) dg.

q0

Since this is true for any € > 0 and h(1) = 0 and h'(q) < 0, it follows that h(gp) > 0. We conclude

that
h(Qo)

n(qo)

This is not possible because G(q) is decreasing. We conclude that the assumption limgpq G'(q) =

é'(qo) = > 0.

—00 cannot hold. That is, G(q) admits a left derivative at ¢ = 1. We can use L’Hépital’s rule to
compute G'(1).
Mg . hg _ 1

GO =lmo) = e~ 7

= / (G (r&Mmo) - rG1)o)
-y o (10 (2E020 om0

Solving for G'(1) we get condition (b4). O
The lemma asserts that any solution G(g) to Problem-L must have bounded derivative in (0, 1]

where G’(1) is understood to be the left derivative at ¢ = 1.

Now, let us suppose that we have two bounded solutions G(q) and §(q) to Problem-L. Without
lost of generality let us suppose that §(q) < G(q) in (0,1). Otherwise, if §(go) = G(qo) for some
go € (0,1) then they must agree in the entire (0,1) as they solve the same ODE in (bl).

Since both G(p) and §(p) satisfy the ODE it follows that for every ¢

5 - rG(a) rg(x)
Gx)—g(z)+® ( ) ) - < 90) >] dx
(b5)

The monotonicity of ®(z) and the boundedness of G(q) and §(q) imply that there exists a bounded

1 1
G- 3] = [ 1¢@) - )de = [ 77(1)

and nonnegative function £(g) such that

rG@\ o (TIDY _ Ay
<1>< 7 ) P < 70) > = &(q) (G(q) — 3(q))

Then,

~ _ L _ 1+&(x)

160 - 360 = [ (G - gt [FEED | o (b6)
q n(z)

By assumption, the left-hand side is nonpositive and the right-hand side is nonnegative. Hence,

they must be equal to zero. We conclude then that G(q) = §(¢) which shows uniqueness. (]

B3 Differentiability and Monotonicity

In order to solve recursively the control problem for V' (n, ¢) using Problem-L, we need to show that

any solution G(q) to this problem is continuously differentiable and decreasing in (0, 1].
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The fact that G(q) is continuously differentiable in (0, 1] follows from proposition B1 and lemma B4.
The monotonicity of é(q) follows directly from proposition B1 and lemma B2. In fact, from
proposition B1 we know that any solution G(g) to Problem-L is a bounded solution to the ODE
and satisfies G1 < G(q) < Gp and lim, o G(q) = Go and lim,; G(¢q) = G1. By lemma B2 if G(q)
is non-decreasing at any qp € (0,1) then it is non-decreasing at any ¢ > go. Combining these

properties of G(q) it follows that it must be decreasing in (0, 1].
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APPENDIX C: Supplements

C1. Three Examples of Demand Functions

— EXPONENTIAL DEMAND MODEL: Consider the case in which the demand intensity is well ap-

proximated by the following exponential demand model

A(p) = A exp(—ap), p>0.

For this demand model, the corresponding inverse demand function and corresponding revenue

rates are given by

)2 L1 <ﬁ) and () 2 Ap(\) = 2 In <A> . Ae0A]

o a A

respectively. The demand rate that maximizes ¢(\) is A* = A exp(—1) and ¢* = A\*/«. In addition,

the Fenchel-Legendre transform ¥ of ¢(\) satisfies

A . 1
A ) S explaz—1) ifz2< 2
V() _oinffA{A”C(Z)}_{ Az if 2> 1.
The corresponding maximizer is
Aexplaz—1) ifz< L
2 A — o
() £ apgmag 1 + ()} v sl

The function ¥(z) is continuously differentiable, increasing and convex. The associated inverse
function satisfies
B(:) 2 Li+m(e)] ifo<z<?
Z) =
% if 2 >4,
e}
Similarly, this function is continuously differentiable, increasing and concave. Note also that

®(c*) = 0.

— LINEAR DEMAND MODEL: Consider the case in which the demand intensity is given by the
following linear demand model
A

Ap) = A —ap, 0<ps<—

For this demand model, the corresponding inverse demand function and corresponding revenue

rates are given by

and c(A) =Ap(\) = ——=, A€ 0,A]

respectively. The demand rate that maximizes c(\) is \* £ % and ¢* £ (A\*)2/a. In addition, the

Fenchel-Legendre transform ¥ of ¢(\) satisfies

0 ifz<-2
L — ! (WHe2)? o A A
U(z) [nax, {Az+c(2)} o if QAS z2< 3
Az if 2> <.
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The corresponding maximizer is

() 2 argnax (A= +c(2)} = { oA i —A<scd
02A<A N
A ifz>2

The function ¥(z) is continuously differentiable, nondecreasing and convex. In the domain z > —%,

U(z) admits an inverse function

Vidaz—A A2
o e { Pt H0<z<
ifzz%.

>

Similarly, this function is continuously differentiable, increasing and concave. Note also that
O(c*) =0.

— QUADRATIC DEMAND MODEL: Consider the case in which the demand intensity is given by the
following quadratic demand model

2

A

For this demand model, the corresponding inverse demand function and corresponding revenue

rates are given by

A% — )2 A(A? — )2
p) 2 ey 2 = XA e
a a
respectively. The demand rate that maximizes c()) is \* = % and ¢* = 2(\*)3/a. In addition,
the Fenchel-Legendre transform ¥ of ¢(\) satisfies
0 if z < -4
s _ ] gWant 4 a2 A2
02 g b= 20053 ) <o
Az if z>2 %
The corresponding maximizer is
0 ifz<-2A

((2) 2 argnax Az +c(2)} = { (/A0 jp X <<
o A ifz>2d

A2

The function V() is continuously differentiable, nondecreasing and convex. In the domain z > —2-,

U(z) admits an inverse function

2
3(az/2)3-A% . A3
Q)(z)é T a 1f0§2:§2?

. A3
if 2>27-.

>l

Similarly, this function is continuously differentiable, increasing and concave. Note also that
O(c*) = 0.
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C2. Derivation of the HJB optimality condition

We consider the stochastic control problem

V(No, q) = sup E, [/ exp(—rt) 0 c(A)dt + exp(—rT)R]
AeA 0

t
subject to Ny = Np — / dD(Ix(s)),
0

dgr = n(qi-) [th — (Opg— + 60 (1 — Qt—)))\tdt}y 9 = q,
T=inf{t >0 : N, =0}.

The dynamic programming equation for this infinite horizon is

rVi(n,q) = Oglng[—QAV(n, Q)+ 0(q)c(N)],

where G* is the infinitesimal generator of (N, ¢;) given the control ), which following the notations
of Fleming and Soner (1993) is defined by

GV (n,q) & lim h=H B,V (n(h), (k) = V (1, q)].

To compute this last term we apply Itd’s lemma to the function V', while noticing that both
processes IV; and ¢ have finite variation. Using the fact that N; is a pure-jump process and so
dN; = AN, we obtain

dV(Nt7 qt) = V(;(Nt—’(h—)d% + V(Nt7Qt) - V(Nt—7 qt—) - V:](Nt—a qt—)Aqt7

where the notation V; stands for %—‘;. From the dynamics of ¢ in (14), it follows that Ny = Ng— Dy
and ¢; have common jumps of size -1 and —n(q;), respectively. From this observation, it follows
that

V(Nt,qt) = V(Ni—, ) = — [V(Nt— - Lqg- — U(Qt—)) - V(Nt—a%—)] d Ny

and so for a fixed control A
AV (Ni, q1) =q:(1 — q1) (0 — 01)Vy(Ni, qo)Adt — [V (Nee = 1,0 — nlge-)) — V(Ni—, qr-)] AN,
We define k() 2 (1 — q)(0 — 61,) and write
h~ B[V (n(h), q(h)) = V(n,q)]

h h
=h'E, [/0 K(qe)Va(Ne, qp) Adt — /0 V(N = 1, q— — nlg—)) = V(Ne—, 1—)] dNt]

h h
= h_lEq |:/(; /ﬁ(qt)Vq(Nt,qt) Adt +A G(qt) [V(Nt — l,qt — n(qt)) — V(Nt,qt)] Adt:| s

where the second equality follows from the fact that for a given control A the process N;+6(g;)\t—No

is an Fy-martingale. Finally, letting A | 0 we conclude that

GV (n.q) = =A(k(q) V(n,0) + 0@V (n = 1.q = n(@) = V(n,q)])-
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APPENDIX D: HJB Numerical Solution

In this appendix we describe the algorithm that we use in our numerical computations. The method
used to solve the HJB optimality conditions is essentially the same whether the optimal stopping
option is available or not. The algorithm is based on a finite-difference scheme®in which the belief
space {q € [0,1]} is partitioned using a mesh M(Agq) := {qo, ..., qn} such that go = 0, gay = 1 and
qj —qj—1 = Aq forall j =1,..., M. In our computations, the size of the mesh was chosen equal to
Aq=1073.

For simplicity, in what follows we will use the index i to refer to the belief ¢; and the index n to refer
to the level of inventory. In addition, we will use the same notation U and V for the (numerically
computed) value function for the case with and without the stopping option, respectively. For
example V'(n, i) is the (numerically computed) value function when the inventory is n, the belief is

q; and the option to stop is not available.
D1. Algorithm Without the Optimal Stopping Option

Suppose the system is in state (n, ) and we choose a demand intensity equal to A. Given our discrete
mesh M, we will keep this value of A until (7) a sale occurs and the state jumps to (n — 1,7 —n(i))
or (i7) the belief process moves up to ¢;+1 and the state becomes (n,i + 1).

Let us denote by Atf‘ the length of the time interval during which the control A is kept constant if
there is no sale. We need to write this time as a function of the initial belief ¢; and the control A
in order to ensure local consistency between this discrete approximation and the actual continuous
time evolution of ¢;. In fact, suppose that ¢ = ¢; and the control is fixed at A then by definition
At} should satisfy

G4+At;(\) = ¢i+1  conditional on the fact that there is no sale in the time interval [t,t 4+ At;())).

From equation (14) it follows that in the absence of sales and for a fixed A, ¢; evolves according to
the deterministic ODE

After integration we can show that

At} =

0 <Qz‘+1 (1— qz')>
A0y —0r) i (1 — giv1)
Let us denote by Ti)‘ the random time at which a sale occurs if we kept the demand intensity A fixed

when the initial belief is ¢;. Then, the discrete version of the HJB optimality condition for V' (n, q)

in equation (16) takes the form

, A : : AR :
V(i) = max Eq |Liacapye™ ™ (b)) +V(n =10 =n(0) + Loy e BV (n, i+ 1)] ;
o (d1)

tSee Numerical Methods for Stochastic Control Problems in Continuous Time by H. Kushner and P. Dupuis.
Springer-Verlag, New York, 2001.
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with border conditions V(0,7) = R and V(n, M) = W(n,0r), for all i = 1,...,m and all n.

It follows from the Markovian dynamics of ¢; that

AR
E, [ﬂ{fbm}} = P(1{" > At}) = exp (—A/ 0(q:) dt) 7
T T 0
where ¢; satisfies
dgr = q: (1 — ) (0 — 0)dt, qo=gi, forallt € [0,At;)).
The following result follows after integration and we omit the details.

Lemma B5 For alli=0,...,M —1 and X € [0, A],

_ %5 _ 0
¢ \%L (1—qig1) %%
By [1aoan}] = ( ) (+> , (d2)

Qi+1 1—q

Computing the value of E, []l (A <A} e T } is more involved and no closed-form solution is

available. However, we can rewrite this expectation as follows
\ At} \ At}
B (Lo e 7] = [ e am O =T BNAR) + [ e A D
T 0 0

where F(t) is the cumulative distribution function of 7. For all ¢ € [0, At}) we have that
0(i + 1) < 0(q;) < 0; and it follows that 1 — exp(—A0;41t) < FA(t) < 1 —exp(—A0;t). As result,

we get that the inequalities

- AR A Ay o MO S VN? S R
By [Lpeany ] = AR, (Ati)+r+)\9_i_<l_7“—i-)\§ie )e
/\é 1 T 0. A A
E. []l 77"7—19‘} > o TAR PAAN & il (g _ _ A1 A} | AR
% | <A} € = ¢ P (AL r+ A1 r+ A1 ‘ ‘

Note that we can write F}(At) = 1 — E, |:]1{7__)\>At}\ }} and use Lemma B5 to get its value.
If the mesh size Agq is small then the upper and lower bound above are closed to each other. Hence,
we can get an asymptotically optimal approximation of [E,, [Il (<A} e " T?} using one of the two

bounds. In our computations, we use

— O or,

A AO; ¢ 5% (1—qiy1\% % T XD AR | AR

E[ﬂ A )\erTi ~ — ( _ — e i AL erti.
RRSREE Git1 1—gi r+A0;

(d3)
After plugging the expressions in equations (d2) and (d3) back into the DP (d1) we get the recursion
that we use to solve numerically the value function V(n,4). A few technical remarks about this DP

recursion are now in order.

- First, note that if a sale occur within the time interval AtiA then the belief process will
jump backward from ¢; to ¢; — n(g;). Because of the discreteness of our mesh this value
¢i —n(q;) might not be a member of M. In this case, we replace ¢; —n(g;) by the closest value
q; € M. Because V(n,q) is continuous and uniformly bounded on ¢, this approximation is

asymptotically exact as Aq | 0.
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- Second, the value of AtiA above is equal to infinity for ¢ = 0 and ¢ = M — 1. This is a
consequence of the fact that the HJB has two singularities at ¢ = 0 and ¢ = 1. Because
the DP recursion works backward on ¢, we are only concerned with the singularity at ¢ = 1
that defines one of the border conditions. To bypass this technical problem, we use the (left)
continuity of V(n,q) at ¢ = 1 and the border condition V(n,1) = W(n,0r) to define a new
border condition at gp;_1 = 1 — Agq such that

Vin, M —1) = W(n,0) — Ag dv((i""”( .
q q=1

By Lemma B4 in Appendix B, we can compute recursively the derivative of V(n, q) as follows.

r(0g—0;) W(n,0r) rW(n,0r)

dV(n, q) Vy(n —1,1) — HOn-fone ‘D'< o L)

— =Vy(n,1) = e and V,(0,1) =0.
dg g=1- 1_1_&@/ (%)

L

- In terms of computational complexity, we solve the optimization in (d1) using a line search.

D2. Algorithm With the Optimal Stopping Option

In this case, the only change that we need to introduce in the previous algorithm is to change the

recursion in equation (d1) to

0<A<A

UWJ%:mM{R7ImMH% M@g&ﬁeqﬁ(MM*lKn—Li—WU»+ﬂmsmgquﬁUWJ+1ﬂ :

(a4)
with border conditions U(0,i) = R and U(n,M) = R, for all ¢ = 1,...,m and all n. Once
U(n, i) has been computed for all i, we can determine the threshold ¢} to be equal to i* Ag, where
i* =min{i : U(n,i) = R}.

o1



References

Aviv, Y., A. Pazgal. 2002. Pricing of short life-cycle products through active learning. Working Paper, Olin
School of Business, Washington University, St. Louis.

Aviv, Y., A. Pazgal. 2005. A partially observed markov decision process for dynamic pricing. Management
Sci. 51(9) 1400-1416.

Azoury, K.S. 1985. Bayes solution to dynamic inventory models under unknown demand distribution.
Management Sci. 31(9) 1150-1160.

Ball, M., M. Queyranne. 2005. Toward robust revenue management: Competitive analysis of online booking.
Working Paper, University of Maryland. Available at SSRN: http://ssrn.com/abstract=896547.

Bertsimas, D., G. Perakis. 2005. Dynamic pricing: A learning approach. Working Paper, Sloan School of
Management, MIT, Cambridge. Massachusetts.

Besbes, O., A. Zeevi. 2007. Dynamic pricing without knowing the demand function: Risk bounds and
near-optimal algorithms. Working Paper, Columbia University.

Bitran, G., R. Caldentey. 2003. An overview of pricing models for revenue management. Manufacturing
Service Oper. Management 5 203-229.

Bitran, G.R., S.V. Mondschein. 1997. Periodic pricing of seasonal products in retailing. Management Sci.
43(1) 64-79.

Bolton, P., C. Harris. 1999. Strategic experimentation. Econometrica 67(2) 349-374.

Brémaud, P. 1980. Point Processes and Queues, Martingale Dynamics. Springer-Verlag, New York, NY.

Caro, F., J. Gallien. 2005. Dynamic assortment with demand learning for seasonal consumer goods. Working
Paper, Sloan School of Management, MIT, Cambridge. Massachusetts.

Carvalho, A.X., M.L. Puterman. 2004. Dynamic pricing and learning over short time horizons. Working

Paper, Statistisc Department, University of British Columbia, Vancouver.
Cheney, W. 2001. Analysis for applied mathematics. Springer-Verlag, New York, NY.

Cope, E. 2004. Nonparametric strategies for dynamic pricing in e-commerce. Working Paper, The Sauder

School of Business, University of British Columbia, Vancouver.

Elmaghraby, W., P. Keskinocak. 2003. Dynamic pricing in the presence of inventory considerations: Research
overview, current practices and future directions. Management Sci. 49(10) 1287-1309.

Eppen, G.D., V. Iyer. 1997. Improved fashion buying with bayesian updates. Oper. Res. 45(6) 805-819.
Eren, S., C. Maglaras. 2006. Pricing without market information. Working Paper, Columbia University.

Ethier, S.N., T.G. Kurtz. 1986. Markov Processes: Characterization and Convergence. Wiley, New York,
NY.

Farias, V.F., B. Van Roy. 2007. Dynamic pricing with a prior on market response. Working Paper, Stanford
University, California.

Feng, Y., G. Gallego. 1995. Optimal starting times for end-of-season sales and optimal stopping times for
promotional fares. Management Sci. 41 1371-1391.

Fleming, W.H., H.M. Soner. 1993. Controlled Markov Processes and Viscosity Solutions. Springer-Verlag,
New York, NY.

Gallego, G., G. van Ryzin. 1994. Optimal dynamic pricing of inventories with stochastic demand over finite
horizons. Management Sci. 40 999-1020.

Keller, G., S. Rady. 1999. Optimal experimentation in a changing environment. Review of Economic Studies
66 475-507.

02



Lariviere, M.A. 2005. A note on probability distributions with increasing generalized failure rates.

Lariviere, M.A., E.L. Porteus. 1999. Stalking information: Bayesian inventory management with unobserved
lost sales. Management Sci. 4(3) 346-363.

Lim, A.E.B., J.G. Shanthikumar. 2006. Relative entropy, exponential utility, and robust dynamic pricing.
Oper. Res. 55(2) 198-214.

Lobo, M. Sousa, S. Boyd. 2003. Pricing and learning with uncertain demand. Working Paper, Duke Univer-
sity.

Lovejoy, W.S. 1990. Myopic policies for some inventory models with uncertain demand distribution. Man-
agement Sci. 36(6) 724-738.

Peskir, G., A.N. Shiryaev. 2000. Sequential testing problems for poisson processes. Ann. Stat. 28 837-859.

Petruzzi, N.C., M. Dada. 2002. Dynamic pricing and inventory control with learning. Naval Res. Logist. 49
303-325.

Rockafellar, R.T. 1997. Convexr Analysis. Princeton Landmarks in Mathematics, Princeton, NJ.
Scarf, H. 1958. Bayes solutions of the statistical inventory problems. Ann. Math. Stat. 30 490-508.
Shiryayev, A.N. 1978. Optimal Stopping Rules. Springer-Verlag, New York, NY.

Smith, S.A.; D. Achabal. 1998. Clearance pricing and inventory policies for retail chains. Management Sci.
44 285-300.

Talluri, K., G. van Ryzin. 2004. The theory and practice of revenue management. Kluwer Academic Press.

Xu, X., W.J. Hopp. 2005. Dynamic pricing and inventory control: The value of demand leraning. Department

of Industrial Engineering, Northwestern University.

53



