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Abstract

A firm that sells a non perishable product considers intertemporal price discrimination in the

objective of maximizing the long-run average revenue. Each period, a number of interested cus-

tomers approach the firm and can either purchase on arrival, or remain in the system for a period

of time. During this time, each customer’s valuation changes following a discrete and homogenous

Markov chain. Customers leave the system if they either purchase at some point, or their valuations

reach an absorbing state v0. We show that, in this context, cyclic strategies are optimal, or nearly

optimal. When the pace of intertemporal pricing is constrained to be comparable to customers pa-

tience level, we have a good control on the cycle length and on the structure of the optimizing cyclic

policies. We also obtain an algorithm that yields the optimal (or near optimal) cyclic solutions in

polynomial time in the number of prices. We cast part of our results in a general framework of

optimizing the long-run average revenues for a class of payoffs that we call weakly coupled, in which

the revenue per period depends on a finite number of neighboring prices.

1 Introduction

It is difficult for a customer to estimate, before a purchase, the value that he can generate from a

product. A product’s value is usually subjective and is implied by the information available before

the purchase occurs. When customers are interested in a product, they often go through a so-called,

purchasing decision process, during which they get exposed to a stream of information that continu-

ously affects their perceived value, and therefore, their willingness-to-pay (wtp). Consider for instance

a customer who is looking into buying a brand new camera. The wtp could initially depend on the

previous experience the customer had with that brand and the urgency to get the product. However,

this valuation can change, for instance, according to the reviews, that such brand model is scoring,

the specific features and the specs offered, the marketing campaigns the customer is being exposed to

(e.g. targeted online advertising), the introduction of a new model, the availability and the prices of

other competing products, and so on. Such information is received through time - starting from the

moment the customer shows interest in the product - resulting in a dynamic update of the valuation.
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Such behavior has been generally overlooked in the pricing literature where, often customers are

assumed to have a reservation price (possibly drawn from some given distribution) constant throughout

the sales process. In this work, we consider a continuous flux of customers interested in purchasing

a product but who see their valuations changing through time. We try to shed some lights on the

impact that such varying valuations have on the seller’s optimal pricing policy. We consider for that

a simple setting where a non perishable product is being sold throughout an infinite horizon during

which the seller has committed to a sequence of prices. Heterogenous customers get interested by the

product and approach the seller at different times. They could purchase on arrival or decide to remain

in the system for a (random) period of time during which they will see their valuations stochastically

changing following a discrete Markov chain. Customers’ heterogeneity is modeled through the initial

valuation each customer has of the product. The type of questions we are interested in are whether,

in this context, there is an opportunity for price discrimination; and if there is one, how to go about

characterizing it formally. We specifically examine how optimal and numerically efficient cyclic policies

are, especially since such policies have been proven to be optimal in similar settings in the literature.

Intertemporal pricing is experienced in practice and often argued for as a way to price discriminate,

and to take advantage of customers heterogeneity, scarcity of capacity, and demand stochasticity. In

our case, we analyze this phenomenon in a specific context characterized by the following modelling

choices: i.) We consider a continuous influx of customers. ii.) Customers who decide not to purchase

on arrival remain interested in the product for a random amount of time (possibly very large) and

during which their valuations change. Eventually, they either purchase or loose interest. iii.) We

limit ourselves to the context of non-strategic consumers; where, customers would purchase as soon

as their valuation reaches a value larger than the current price. We do discuss how our framework

and results remain valid for strategic consumers. iv.) In this infinite horizon setting, we assume that

the firm commits to its pricing policy at the start of the horizon and by doing so aims to maximize

its long-run average revenue. v.) We disregard any inventory and cost related issues and assume the

product is available throughout.

Our contribution is threefold.

1.) We suggest a simple, tractable and innovative model that incorporates time-varying valuations.

We show that such natural consumer’s behavior has a major impact on the pricing policy that the

firm should adopt. In particular, overlooking such behavior may lead to a sizeable opportunity

cost. Our analysis is undertaken in the context of intertemporal pricing in the presence of patient

and myopic customers. In the extension section, the results are shown to hold also in the context

of strategic customers.

2.) Despite the more complex structure of the current model, and in line with related work, we show

that cyclic policies remain either optimal or near optimal. Moreover, we suggest an algorithm to

obtain an optimal (or near optimal) policy that is polynomial in the number of prices available

to the firm to select from. We introduce a control parameter M for the firm, that depicts the

maximum number of price changes each customer witnesses during her purchasing process. Our
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general results apply to any value of M but are fully leveraged when we restrict M to take

relatively small values. In particular, when customers can only see at most two different prices

(i.e. M = 1), we show that the pricing policy is either a fixed price policy or cyclic and simple

i.e. no one price is repeated during a cycle.

3.) We cast our results in a general framework of optimizing (on infinite sequences of discrete prices)

the long-run average revenue. In this framework, we introduce two classes of payoffs that we

denote by affine and weakly coupled. In the former, the revenue generated by one price is linear

in the number of periods this price is set for. As for the latter, the revenue per period depends

on a finite number of neighboring prices. Within this framework, we characterize the solution

to the optimization problem and present an algorithm to obtain the solution in polynomial time

in the number of prices available.

1.1 Literature Review

The literature on intertemporal pricing is quite extensive starting with the early work on durable

goods (e.g., Coase (1972), Stockey (1981), Conlisk et al. (1984), Besanko and Winston (1990), Sobel

(1981)). We mention a couple of main ideas of this stream of literature that is relevant to our analysis.

First, price commitment policies in the presence of strategic consumers are an effective way to exercise

market power (see Coase (1972) and Stockey (1981)). Moreover, in the latter work price discrimination

is shown to be optimal when some level of heterogeneity exists. Customers in these models are present

in the system from the start. On the other hand, Conlisk et al. (1984) show that price discrimination

when prices are set dynamically can also be optimal. For that they consider a continuous flux of

strategic consumers some of whom value the product at a high value and the rest at a low value.

Customers remain in the system indefinitely as long as they did not purchase. Such pricing tactics

are shown to be also cyclic and decreasing. More recently, the operations management literature

have looked at different variants of intertemporal pricing models (see Bitran and Caldentey (2003)

and Aviv and Vulcano (2012)). Often in this literature, consumers are myopic and arrive through

time endowed with a valuation drawn from a given distribution. The customer purchases on arrival

if the price is higher than his valuation, otherwise leaves the system. Some of this literature has

also incorporated customers’ strategic behavior (see the review of Shu and Su (2007)). Levin et al.

(2009) and Levin et al. (2010) consider respectively a monopolistic and a set of firms selling to a set

of differentiated customers segments and assume that all customers are in the system from the start.

In both papers, they prove the existence of a unique subgame perfect equilibrium that determines

the optimal dynamic pricing policy. Aviv and Pazgal (2008) consider forward looking consumers with

declining valuations who arrive following a Poisson process and where the listed price changes only

once. More closely related to our work is the paper of Su (2007) that considers a deterministic model

where strategic consumers are differentiated not only through their valuation, but also, through their

patience level. Optimal prices are shown to be monotone. The very recent work of Caldentey et al.

(2016) considers an intertemporal pricing problem under minimax regret where both strategic and
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myopic patient-customers are considered. They develop a robust mechanism design to compute an

optimal policy. Finally, two recent notes (Wang (2016) and Hu et al. (2016)) tackle the problem

of intertemporal pricing in the presence of reference price effects in an infinite horizon setting with

discounted revenues. Probably, besides that of Conlisk et al. (1984), the papers that are the most

related to our model are the recent works of Besbes and Lobel (2015) and Liu and Cooper (2015).

Their models are variants of Conlisk et al. (1984), but, like us, consider a seller who commits to the

pricing policy at the start of the horizon and maximizes the long-run average revenue. In the case of

Besbes and Lobel (2015), heterogenous consumers, through their valuations and their patience level,

are strategic in a sense that they will purchase if the lowest price during their presence in the system

is lower than their valuation. They prove that a cyclic pricing policy is optimal but, does not need to

be monotonic. On the other hand, Liu and Cooper (2015) define patient customers in a myopic sense,

i.e., where customers purchase as soon as the price drops below their willingness-to-pay. In their case,

cyclic policies remain optimal but are shown to be decreasing monotone.

None of the above literature considers valuations that change through time. As a matter of fact,

and to the best of our knowledge, it is only recently that a handful of papers have tackled such behavior

(see, Garrett (2016), Deb (2014) and Gallego and Şahin (2010)). Garrett (2016) considers, similarly to

us, an infinite horizon setting where customers arrive through time with valuations that stochastically

change while facing a committed pricing path. There are though a number of differences with our

work. First, the model is set in continuous time where both buyers and sellers have a common discount

rate and where customers are homogeneous with a valuation process following a Markov process that

continuously switches between only two values, Low and High. The seller, is optimizing on the set

of pricing paths (on the entire positive line) in the presence of strategic consumers. The optimal

pricing path is shown to be cyclic decreasing (à la Conlisk et al. (1984)). We, on the other hand,

focus primarily on myopic but heterogenous consumers and where prices and valuations can take a

finite number of values. Another recent paper that considers a change in valuation is that of Deb

(2014). The model considers one unit of a good and one buyer who is present in the system from the

start and has a valuation drawn from some distribution. At some random time, a stochastic shock

occurs and cause the buyer’s valuation to be drawn again (from the same initial distribution). Finally,

we mention the paper of Gallego and Şahin (2010) that models changing valuations in the context

of revenue management. They primarily look at a two-periods model with brief generalization to a

multiperiod setting. In their case, the product is consumed and thus its value is realized in the last

period but, customers have the choice to purchase it earlier. All customers interested in the product

are present from the start.

1.2 Plan of the Paper

In Section 2, we introduce the modelling ingredients and state the main results of this work with

respect to the optimality of cyclic policies, their structure and how efficiently these can be obtained.

In Section 2.3, we give a motivating example depicting a Markovian valuation process, and discuss
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how a setting with changing valuations disrupts the typical structure used in the literature to prove

that cyclic policies are optimal and tractable. In Section 3, we introduce the notion of weakly coupled

payoffs that allows us to tackle the general case and to which we suggest an algorithm that can obtain

the optimal cyclic policy in polynomial time in the number of prices and exponential in the coupling

depth. In Section 4, we introduce the notion of τ̄ -affine type payoffs. We first show that such payoffs

induce a tractable solution of the optimization problem where the optimal policy is shown to be cyclic

and simple. We finally prove in Section 5 that the payoff of the problem at hand is indeed weakly

coupled. Moreover, when the prices change at a slow pace (compared to how valuations evolve), this

same payoff is shown to be τ̄ -affine. As we do so, we characterize the optimal payoff function in

closed form. We devote Section 6 for some extensive numerical analysis that takes full advantage

of the algorithm suggested earlier and shows the opportunity cost of neglecting customers changing

valuations. This section also suggests some simple policies that behave numerically surprisingly well.

Finally, in Section 7 we discuss some important extensions including how our framework can handle

the case of strategic consumers. Appendix A, is reserved for some of the proofs that were postponed

for clarity of the exposition. In Appendix B, we analyze the case where prices can only take two values

and discuss, specifically, the existence of a reset time.

2 Model Description and Main Results

2.1 Model Description

We consider a stream of consumers interested in buying a non perishable product from a seller who

commits at the beginning of the horizon to an infinite sequence of prices π = (p1, p2, ...). A number N

of these consumers arrive every period. At any time t, the new batch of arrivals have their respective

valuations in a set Ω∗, where Ω := {vj : 0 ≤ j ≤ K}, with v0 < v1 < v2... < vK and Ω∗ = Ω \ {v0}.
We let γj be the proportion of N that has a valuation at arrival equals to vj , with

∑K
j=1 γj =

1. Equivalently, γ = (γ1, ..., γK) is the initial distribution of the valuations of arriving customers.

Customers can buy upon arrival if they find the price suitable. If they don’t, they remain for some

time in the system. A customer in the system is a customer who is interested in the product and can

decide to purchase at any point during this time. Consumers interested in a product see their valuation

changing through time following a transient Markov chain with a given transition matrix Q known by

the seller and taking values in Ω. Each entry qij of Q, is the probability that a customer with current

valuation vi sees her valuation changing to vj in the next period. The consumer leaves the system

if he purchases the product at some point, or if he reaches the absorbing state v0, whichever occurs

first. Once out of the system, the customer would not consider purchasing the product anymore. The

absorbing state v0 models the possibility that the customer might loose interest in the current product,

purchase it (or a substitute) elsewhere, or simply loose patience; such absorbing state replaces the time

discounting factor present in other infinite horizon problems. It is worth noting that a setting, where

valuations remain constant throughout the purchasing process, is a special case of ours with Q being
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a diagonal matrix.

When it comes to making a purchasing decision, customers could be myopic or strategic. In the

former case, customers purchase the product as soon as their valuation reach a value higher than the

current price (e.g., Liu and Cooper (2015)). Strategic customers on the other hand, are those that

make their purchasing decision, not only based on current price and valuation, but also taking into

account future committed prices (e.g., Besbes and Lobel (2015)). In this paper, we restrict the main

analysis to the case where customers are myopic. This case does not necessarily reduce the complexity

of the problem as much as it allows us to strictly highlight the implications of changing valuations

on the problem’s formulation and the corresponding solution. We show in Section 7 how the main

results extend to the strategic case. However, we do not offer a specific analytical model to depict this

behavior as we believe this is beyond the scope of this work.

This work assumes that the prices set by the firm belong to a finite set. In our myopic setting, and

without loss of generality, we assume that this set is exactly Ω∗. We denote by pt the price set by the

firm at time t, e.g., pt = vk means that at time t the value of the price is set at vk. We interchangeably

use k and vk to denote the value of the price, with vk ∈ Ω∗ and k ∈ N∗K ≡ N ∩ [1,K]. We denote by

P the set of all possible pricing policies. Observe that the primitives of the problem are summarized

through the triplet (γ, Q,Ω). Now, given such triplet, and a policy π = (p1, p2, ...) ∈ P, we denote

by L(p1, .., pt) the payoff function, which is the expected revenues generated by the first t prices of π,

and by R(π) = lim supt→∞
1
t L(p1, ..., pt), the long-run average revenue generated by a policy π. We

are looking to solve for

sup
π∈P
R(π). (1)

We say that π∗ is optimal if it is a solution to Equation (1). We say that a pricing policy π′ is

ε-optimal, for some positive ε, if

sup
π∈P
R(π) ≤ R(π′) + ε.

Note that a detailed definition and formulation of the payoff function that takes also into account

the state of the system will be given later.

We should also mention that the long-run average revenue type objective used in this work does

not seem to be much of a restrictive setting, as some of the main results in this paper (e.g., Theorems 3

and 4) remain valid under an infinite horizon discounted revenue type payoff.

We introduce at this point two different regimes that govern a customer’s behavior and the corre-

sponding valuation process. For that, we introduce the notation Qm, which represents the principal

submatrix of Q on indices {1, ...,m}. We also denote by Vt(k) the current valuation of a customer

who entered the system t periods earlier with an initial valuation vk.

We say that customers have a maximum patience level, τ̄ , if for all k ∈ NK , Vt(k) is a Markov

chain governed by Q as long as 1 ≤ t ≤ τ̄ , and Vt(k) = v0, for t ≥ τ̄ + 1. With a slight abuse of

notations, we write this assumption as follows

(MPL) ∃ 0 < τ̄ <∞, such that Qτ̄+1
k is set at 0, for 1 ≤ k ≤ K.
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This assumption forces the customer to exit at most after τ̄ + 1 periods since arrival. It reflects the

fact that, once customers do not purchase on arrival, they set a (deterministic and finite) budget of

time during which they learn about the product and possibly make a purchase, but beyond which

they leave the system. During this maximum amount of time, the dynamics of the valuation process

are governed by Q. Assumption (MPL) does not constrain in any way the (Markovian) matrix itself;

it sets an exogenous upper limit on the duration of a customer in the system. This assumption is in

line with the recent literature (see Besbes and Lobel (2015) and Liu and Cooper (2015)). Note also

that the customer might reach the state v0 and leave the system without purchasing in less than τ̄

time periods.

We say that customers have an ε-bounded patience level if for all k ∈ NK , and for all t ≥ 0, Vt(k)

is a Markov chain governed by Q and the following holds,

(ε-BPL) given some ε > 0, ∃ 0 < τ̄ <∞, such that, ||Qτ̄+1
K−1|| < ε.

This assumption is very different in nature from (MPL) in the sense that it preserves the endogeneity of

the exit option which is purely governed by the transition matrix, making τ̄ intrinsic to Q. Moreover,

as opposed to (MPL) the duration the customer spends in the system under (ε-BPL) is only nearly

bounded (by τ̄) and with a small probability a customer might spend a longer time in the system.

A sufficient condition for (ε-BPL) to hold is that ||QK−1|| := 1 − ν < 1, for some ν ∈ (0, 1) which

we assume to be satisfied in this regime, and where || · ||, is the infinite norm for matrices. This

condition is equivalent to assume that every valuation state communicates with either state v0 or/and

vK guaranteeing that customers exit the system with probability one. In the (MPL) case, ν can well

be equal to one.

We end this discussion by noting that, besides the concept of changing valuations, the specific

characteristics of the (ε-BPL) regime, namely, the endogeneity and the possible unboundedness of the

patience level, represent also some of the main differentiating factors of this work.

2.2 Main Results

Definition 1 (Cyclic policies)

A policy π = (k1, k2, . . .) is called cyclic if there exists n ≥ 1 such that kj+n = kj for all j ∈ N. When

n is the minimal integer with the latter property, we say that (k1, k2, .., kn) is the cycle of π, n its size,

and denote π by its cycle π = (k1, . . . , kn).

For any t ≥ 1, a cyclic policy is said to be t-simple if any string of t consecutive prices appears at

most once in its cycle.

A fixed-price policy, one where the same price is set indefinitely, can also be viewed as cyclic with

n = 1.

We start by introducing a way to express any pricing policy π that will be convenient for our

exposition. Any pricing policy π ∈ P can effectively be viewed as a sequence of phases of the form
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π = ((kj , τj) : j ≥ 1), kj+1 6= kj , where each (kj , τj) ∈ N∗K × N is called a phase (of the pricing policy)

with duration τj during which the price is continuously set at kj . Specifically, k1 is set during τ1 periods,

followed by k2 6= k1 set during τ2 periods, so on and so forth. For all j ≥ 1, set Tj := τ1 + τ2 + ...+ τj .

Definition 2 For any τ ≥ 1, we denote by

• P−τ the set of policies π = ((kj , τj) : j ≥ 1) such that τj ≤ τ for all j ≥ 1.

• P+
τ the set of policies π = ((kj , τj) : j ≥ 1) such that τj ≥ τ for all j ≥ 1.

Definition 3 (Simple cyclic τ-policies)

i.) For any τ ≥ 1, we denote by Aτ the set of policies where each phase has a duration that

is a multiple of τ . We can always write such policy as a sequence of τ -phases of the form

π = ((kj , τ) : j ≥ 1), but where we do not suppose here that kj+1 6= kj. Policies in Aτ will be

called τ -policies.

ii.) For M ∈ N∗, a cyclic policy in Aτ is said to be M -simple if any string of M prices (k1, . . . , kM )

corresponding to M consecutive τ -phases of the policy appears at most once during a cycle. For

M = 1, we just say the policy is simple.

Note that, given the general definition of t-simple policies, we made a slight abuse of notations in the

definition of M -simple τ -policies. In case τ = 1, both definitions match.

2.2.1 A general upper-bound on the duration of the phases of optimal policies

Theorem 1 If (ε-BPL) holds, then

sup
π∈P
R(π) ≤ sup

π∈P−τ̄
R(π) + ε.

In the case where (MPL) holds, the inequality is replaced by an equality and ε = 0.

Theorem 1 states that, unless it is a fixed-price policy, a (near) optimal policy must have the durations

of all its phases upper-bounded by τ̄ ; where τ̄ is the maximum duration that (most) customers spend

in the system. This property reduces greatly the search for an optimal policy on the unconstrained

set P, albeit the search set remains substantially large.

We see next to which extent the complexity of the search of the optimal policy in P−τ̄ can be

reduced, in general and under additional assumptions.
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2.2.2 Controlled pricing pace, τ̃-policies

Before stating the rest of our result, we start by introducing the notion of pricing pace that allows

firms to regulate how frequently a price can change in their policies. We denote by τ̃ ≥ 1 the minimal

duration that the firms allows for each price in its pricing policy. The existence of a pricing pace

seems quite natural. It reflects the fact that, in practice, prices change at a slower pace than that at

which a customer’s valuation evolves in the system. It could be due to multiple factors including the

fact that changing prices are costly, whether from the logistical end or as a reflection of customers’

dissatisfaction from frequent changes in prices. By setting such a minimum pace firms can control on

how many different prices one customer could face during his lifespan in the system.

When the pricing pace is set to τ̃ the firm’s problem is reduced to a constrained optimization problem

on P+
τ̃ . The case τ̃ = 1 corresponds to the general unconstrained problem.

A natural quantity that plays a crucial role in the search of the optimal strategy is then the

parameter

M := dτ̄ /τ̃e.

Indeed, by choosing the pricing pace parameter τ̃ , the firm insures that customers witness no more

than M price-changes during τ̄ periods spent in the system.

We address first a particularly important setting in this paper: the one where M = 1, that is

τ̃ ≥ τ̄ .

Theorem 2 (Case M = 1) For any τ̃ ≥ τ̄ , under (MPL) (resp., (ε-BPL)), there exists a simple

cyclic τ̃ -policy that optimizes (resp., ε-optimal) R on P+
τ̃ .

Recall that a cyclic simple τ̃ -policy π = ((kj , τj) : j ≥ 1), is a policy where τj = τ̃ for all j ∈ N and

where there exists n ≥ 1, with kj+n = kj for all j ∈ N; moreover, ki 6= kl for all i, l ∈ [1, n], i 6= l. As a

consequence, the cycle size of the optimal policy is at most Kτ̃ .

Theorem 2 also implies that if the firm has the flexibility on setting τ̃ ∈ [τ̄ ,+∞), it is better off

with τ̃ = τ̄ (which also includes fixed-price policies). Finall, recall that by setting τ̃ = τ̄ the firm

makes sure that every customer typically experiences at most two consecutive phases. Interestingly,

we observe numerically (see, Section 6), that under τ̃ ≥ τ̄ , the (near) optimal policy is either a fixed

price policy or cyclic with two prices.

The case where τ̄ = τ̃ = 1, is an interesting special case. In this setting, the firm is solving for the

unconstrained optimization on P and can change price every period. On the other hand, customers

who don’t purchase on arrival remain for one additional period in the system and leave with high

likelihood after that. In this case, Theorem 2 asserts again that a (near) optimal solution is cyclic and

simple where each price is set for no more than one period during a cycle, hence, with a cycle’s size

being at most K.

The next result generalizes Theorem 2 to the case where M > 1 or equivalently, τ̃ < τ̄ . Up to

enlarging τ̄ if necessary, we will assume that τ̄ = Mτ̃ . We also restrict ourselves to policies in Aτ̃ , i.e.,

where prices are set in multiples of τ̃ .
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Theorem 3 (Case M > 1) Let M > 1, and τ̄ = Mτ̃ . Then under (MPL) (resp., (ε-BPL)), there

exists an M -simple cyclic τ̃ -policy that optimizes (resp., ε-optimal) R on Aτ̃ .

Observe here that an M -simple strategy in Aτ̃ has a length at most KM τ̃ .

The previous result is also true when τ̃ = 1 (i.e., M = τ̄). However, this result is mainly meaningful

(computationally) when M is small. In fact, even in the case where τ̃ ≥ τ̄ (i.e., M = 1), there are∑K
i=1 i! possible solutions that are cyclic and simple, and when M > 1 the number is clearly much

larger. The next result tackles the complexity of finding the optimal cyclic policies of Theorems 2 and

3 by means of an adequate algorithm that will be presented in Section 3.2.

Theorem 4 The optimal cyclic policies of Theorems 2 and 3 can be obtained, through an algorithm

that requires O(K4M ) elementary computations. This translates for the (ε-BPL) case into O
(
ε−4 lnK

ντ̃

)
.

In particular, when τ̃ ≥ τ̄ , the policy can be computed in O(K4). Observe that the exponential in M

curse of dimensionality is present even in the case of constant valuations (see Liu and Cooper (2015)).

As a matter of fact, in the latter paper and despite a major reduction in the cycle size (in the order of

K+M + 1), the complexity of the solution remained, as we understand it, exponential in both K and

M ; from that regard, our results help reducing the computational complexity in K despite the lack in

our case of the so-called regenerative structure (see the discussion in section 2.3.2). We should stress

though that our algorithm is generic, in the sense that it does not take into account any specific form

of the matrix Q. One could expect achieving better results when Q has some special form. Finally,

observe that the optimization problem under (ε-BPL) regime can still be solved in full generality (i.e.

τ̃ = 1) in O(ε−4 lnK/ν).

We end this section with a result that complements Theorems 2 and 3 which claims that if the

pricing pace is too slow (i.e., τ̃ large) the firm is better off setting a fixed-price policy.

Proposition 1 Suppose that ν > 0. For any ζ > 0, there exists a threshold τ̃0 such that, if τ̃ ≥ τ̃0,

then a fixed-price policy is ζ-optimal on P+
τ̃ .

The fixed-price policy of Proposition 1 is a strict optimum if and only if it strictly outperforms the

other fixed-price policies.

2.3 Additional Notes

2.3.1 Customers Valuations as a Markov chain. A Motivating Example.

One main feature of the model we introduce in this paper is customers’ changing valuations through

time. We assume that these valuations follow a transient Markov chain with transition matrix Q. We

discuss here one possible motivation for this choice.

One motivating factor of why customers valuations change through time is the active evaluation

process that customers go through once they show interest in a product. During this evaluation phase,

customers undergo a continuous processing of new information. We propose a simple setting that could
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depict a stylized way of how such process works. For that, suppose that the product’s “real” value for a

specific customer is a random variable V ∈ {VL, VH}. The customer knows the two possible values but

will only know which one applies to his case once he makes the purchase (i.e., start using/consuming

the product). The customer can decide to purchase as soon as he gets interested in the product. But,

if he doesn’t, he starts gathering some additional information and learns better the product’s fit. As

he does so, his valuation gets updated.

To model the learning dynamics of a specific customer, we assume that information is received

following a unit-rate Poisson process (N(t) : −∞ < t < ∞). One can think of it as the number of

positive comments the product is receiving on some social network platform. We assume that t = 0 is

the time at which this customer got interested in the product (and started following this information

(Poisson) process). The customer then processes new information as it shows up, updates his prior

based on whether this positive information is relevant for him and disregard it otherwise. Hence, his

valuation is being impacted by a thinned Poisson process. Consistently with the possible values of V ,

and for simplicity, we assume that this thinned process has a random rate β that can only take two

possible values, β ∈ {bL, bH}. Basically, if the rate of positive news he is finding relevant is b = βH

(resp., b = βL ) then the customer’s “real” valuation is V = VH (resp., V = VL).

The customer actively learns the value of β and accordingly implies the value of V . Consequently,

the valuation will jump upwards on positive-relevant news and will otherwise continuously decrease

until the next positive-relevant news. We denote by qt = P(β = bH |Ft) where Ft represents the entire

information available in (0, t). As the information is gathered the customer keeps updating the value of

qt through a Bayesian update starting with some prior q0. At any time t, the customer’s best estimate

of the product’s valuation -assuming he is still interested in purchasing the item- is the following

Ṽt := qt VH + (1− qt)VL.

Effectively, the valuation at time t is given by Vt = Ṽt · Yt, where, Yt is a binary variable that tracks

whether the customer lost interest in the product or not e.g. Yt = I(τ > t). We assume that τ is an

exponential random variable independent of (N(t) : t ≥ 0); it models the patience of the customer

or the maximum duration the customer is ready to wait to buy this particular good. It is not hard

to prove that the process qt is a continuous time, continuous state, bounded Markov process (see for

instance, Peskir and Shiryaev (2000)), and thus the same holds for Vt. This process can then be

discretized to match our assumption in this paper.

2.3.2 Cyclic Policies and Related Literature

Natural candidates for “good” policies are cyclic policies (which include fixed price policies). The

literature has recognized that such policies are optimal in some variants of our current setting (see,

Conlisk et al. (1984) and more recently, Ahn et al. (2007), Besbes and Lobel (2015), and Liu and

Cooper (2015)). In order to prove that optimal policies are cyclic and tractable, the aforementioned

papers relied all on showing that the system must eventually reset and for that they followed one of
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two approaches: i.) a regenerative point argument (e.g, Ahn et al. (2007), Besbes and Lobel (2015)

and Liu and Cooper (2015)), or ii.) customers’ accumulation type argument (see Conlisk et al. (1984)).

We quickly review these two approaches.

i.) The regenerative argument is based on the following simple but powerful observation. When

customers spend a bounded amount of time in the system, say τ̄ <∞, during which the valua-

tions remain constant, and when the set of prices the firm selects from is finite, then any given

policy (pt : t ≥ 0) contains an infinite subsequence (pt∗k : k ≥ 1) where for every k

pt∗k ≤ min{pt∗k+1, ..., pt∗k+τ̄}.

This result is proved easily by contradiction and applies whether customers are myopic or strate-

gic. On those times (t∗k : k ≥ 1), also so-called regenerative points, the system resets in the sense

that no customer that comes before this time would want to purchase at a later time. The

duration between two regenerative points is proven to be bounded reducing the infinite horizon

optimization to an optimization on cycles between two reset times.

ii.) The infinite accumulation argument (see, Conlisk et al. (1984)), relies on the fact that customers

remain in the system indefinitely and leave only if they purchase. The optimality of a cyclic

policy is obtained by showing that it is optimal for the firm to eventually set the lowest possible

price and reset the system. Indeed, if such reset price is not set for some time, customers with

low valuation start accumulating in the system. Eventually, this accumulation will generate in

one period (under the reset price), more revenues than any higher price can generate during this

same period.

When valuations change through time, then both approaches do not apply. Given a general

transition matrix and a pricing policy, customers with lower valuations can possibly have higher

valuations in the future and hence the regenerative points described above have no reason to exist

even for the optimal policy. Moreover, the expected number of customers in the system, (obviously

under (MPL) but also under (ε-BPL)), remains uniformly bounded, (see, Proposition 7), no matter

the pricing policy adopted, preventing any accumulation of customers in the system. In Appendix B,

in the case of K = 2, we obtain necessary and sufficient conditions under which the seller is better off

setting a reset price at the end of the cycle, showing therefore that cyclic policies are strictly optimal

in both regimes. When K > 2, this is not true anymore, where optimal or near optimal cyclic policies

do not necessarily contain any reset price.

In conclusion, in the presence of stochastic valuations, the typical intertemporal pricing model fails

to have the structure that allowed previous work to reduce the analysis to decoupled cycles. However,

in our case, we are still able to show the cyclic behavior of the optimal policy despite the fact that

these cycles are not decoupled. Moreover, by controlling on the depth of the coupled cycles we can

prove that such policy is tractable and can be efficiently obtained. Unfortunately, such weakly coupled
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cycles fail to inherit any “nice” property (such as the so-called reflection principle as in Besbes and

Lobel (2015) or monotonicity as in Liu and Cooper (2015)).

Next, we cast our main results in a general framework of optimizing the long-run average revenues

for specific class of payoffs. We introduce first the notion of weakly coupled payoffs, in which the

revenue per period depends on a finite number of neighboring prices. Next, we discuss affine payoffs

where the expected revenues generated by one price are linear in the number of periods this price is

set for.

3 Weakly coupled payoffs

In this section, we introduce a general framework to analyze the optimization problem formulated in

(1). We note that this problem is one of a general open-loop optimization, over a finite set of prices,

of the long-run average of some payoff function.

We identify below a general class of payoff functions for which the optimization problem is relatively

tractable. This is the class of weakly coupled payoffs, to which we later show that the payoffs generated

in the context of intertemporal pricing with changing valuations belong.

However, we believe that the general framework in which these payoffs are treated and the results

we obtain are relevant beyond the current setting and thus we treat them separately, in this section,

in a self contained way. We also mention that these results (and the corresponding main results of

Theorem 3 and 4) are also valid under an infinite horizon discounted revenue type payoff.

Recall that we have to find π ∈ P that maximizes R(π) = lim supt→∞
1
t L(p1, ..., pt). We expressed

earlier any policy π ∈ P as a sequence of phases, π =
(
(ki, τi) : i ≥ 1

)
. In this section, it will

be useful to adopt another way of viewing a policy π ∈ P. Indeed, for any given fixed τ > 0, we

divide any infinite sequence π = (p1, p2, ...) into finite chunks of τ consecutive prices of the form

w1 = (p1, p2, ..., pτ ), w2 = (pτ+1, p2, ..., p2τ ), .... Without loss of generality, any policy π ∈ P can be

written as an infinite string of such terms, π =
(
(wn : n ≥ 1) : wn ∈ NτK

)
.

Definition 4 (Weakly coupled payoffs) We say that a payoff (that generates a revenue function

R) is (ε, τ̄)-weakly coupled for some τ̄ and ε positive, if for any τ ≥ τ̄ , there exists a function f :

NτK × NτK → R+, such that for any π =
(
(wn : n ≥ 1) : wn ∈ NτK

)
∈ P, the following holds∣∣∣∣∣R(π)− lim sup

n→∞

1

nτ

n∑
i=1

f(wi, wi+1)

∣∣∣∣∣ ≤ ε.
A payoff is said to be τ̄ -weakly coupled if it is (ε, τ̄)-weakly coupled with ε = 0 and in this case the

inequality in the definition is replaced with an equality.1
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3.1 Optimizing weakly-coupled payoffs

Given some function f : NτK × NτK → R+, we denote by ϕ the long run-average of f , i.e. for any

π = (w1, w2, . . .), where the wi’s belong to NτK , we let

ϕ(π) = lim sup
n→∞

1

n

n∑
i=1

f(wi, wi+1). (∗)

We extend the definition of ϕ to finite strings. For a finite string W = (w1, ..., wn), we denote by

ϕ(W ) =
1

n

n∑
i=1

f(wi, wi+1),

with the notation wn+1 = w1. Note that ϕ(W ) = ϕ(π), where π = (W,W, ...).

We are interested in finding the policy that maximizes ϕ.

Proposition 2 For any τ ≥ 1, for any function f : NτK × NτK → R+, there exists a τ -simple cyclic

π∗ ∈ P that maximizes ϕ.

Recall that τ -simple means that no w ∈ NτK appears more than once in the cycle of the policy.

Proof. Denote by Wn the set of strings of length less than n, that is W ∈ Wn if W = (ω1, . . . , ωl)

with ωi ∈ NτK for all i ≤ l and l ≤ n. We have that ϕ(W ) = ϕ(π(W )), where π(W ) = (W,W, ...). Let

W̄n = argmaxW∈Wn
ϕ(W ). From the definition of ϕ it follows that for any π ∈ P

ϕ(π) ≤ ϕ(W̄n) +
max f

n
.

Hence it is sufficient to prove that for any fixed n, the maximizer W̄n can be taken to be simple.

Suppose ω is such that W̄n = (W,W ′) with W and W ′ starting with some ω ∈ NτK , and let N and N ′

be the sizes of W and W ′. Then since

ϕ(W̄n) =
1

N +N ′
(Nϕ(W ) +N ′ϕ(W ′))

we get that ϕ(W ) = ϕ(W ′) = ϕ(W̄n). Continuing this procedure we reach a simple maximizer of ϕ

on Wn. From that we also conclude that

ϕ(π) ≤ ϕ(W̄ ),

where W̄ is the maximizer of ϕ on all τ -simple cyclic policies. �

Let M ≥ 1, and τ̄ = Mτ̃ . Recall also that a cyclic policy in Aτ̃ is said to be M -simple if a string

of M consecutive τ̃ phases with a given string of prices (k1, . . . , kM ) appears at most once during a

cycle. Since τ̄ = Mτ̃ we have that a cyclic τ̄ -simple policy (Definition 1) that lies in Aτ̃ is M -simple

in Aτ̃ (Definition 3)

Therefore, the following immediate corollary of Proposition 2 (with τ = τ̄) shows that Theorem 3

will follow if we just prove the property of weakly coupled for the payoffs generated in the context of

(MPL) and (ε-BPL).
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Corollary 1 If a payoff L is τ̄ -weakly coupled, then the maximum of R on Aτ̃ is reached by an

M -simple cyclic τ̃ -policy. A similar statement with ε-optimal policies holds for (ε, τ̄)-weakly coupled

payoffs.

3.2 Optimization Algorithm

The objective of this section is to present an algorithm to find the optimal τ -simple cyclic policies of

Proposition 2.

For a finite string W = (w1, ..., wn), we denote by

ϕ̃(W ) =
1

n− 1

n−1∑
i=1

f(wi, wi+1).

We define the following map from NτK × NτK to the subsets of NτK , denoted by σ
(
NτK
)
,

ψ(w,w′) = S;S = {w̄ ∈ NτK : ϕ(w,w′, w̄) = max
w̃∈NτK

ϕ(w, w̃, w̄)}.

A collection Wn of finite simple strings of the same size n is called admissible if for all W ∈ Wn, it is

of the form (w1, .., wn) with the same w1 := a; moreover, if (W,W ′) ∈ Wn
2 such that wn = w′n, then

W = W ′. Set K̃ = Kτ .

Algorithm.

Step 1. Initialization. Fix (w1, w2) ∈ NτK × NτK , with w1 6= w2, let W2(w1, w2) = {(w1, w2)},
S2(w1, w2) = ∅ and set n = 2

Step 2. Computation. Given an admissible simple collection Wn with n < K̃ and #Wn ≤ K̃, define an

admissible collection Wn+1 = Ψ(Wn) in the following way

1. for each W i ∈ Wn := (wi1, . . . , w
i
n), consider Si = ψ(win−1, w

i
n) := {si1, . . . , siJi} where,

Ji ≤ K̃ depends on the pair (win−1, w
i
n). Consider all the strings{

W i
j = (wi1, . . . , w

i
n, s

i
j) : 1 ≤ j ≤ Ji, 1 ≤ i ≤ #Wn

}
.

2. Select from these strings those such that sij = w1. This set of strings (possibly empty) is

denoted by Sn+1

3. Eliminate from the remaining all the strings W i
j ’s that are not simple

4. From those remaining, consider any two strings, such that sij = si
′
j′ for some (i, j) and (i′, j′).

If ϕ̃(W i
j ) < ϕ̃(W i′

j′ ) or ϕ̃(W i
j ) > ϕ̃(W i′

j′ ), then eliminate the string that has the smaller value of

ϕ̃. If ϕ̃(W i
j ) = ϕ̃(W i′

j′ ), we eliminate (randomly) one of them. We do that for all such strings.

The remaining strings must define an admissible collection of simple strings which we denote

by Wn+1 and note that #Wn+1 ≤ K̃.
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Step 3. Iteration. If n = K̃, STOP. Otherwise, set n = n+ 1 and GO TO Step 2.

Given that each computation step generates simple strings, and by noticing that the first part of

Step 2 can be done offline, we need at most O(K̃2) computations to obtainWn(w1, w2) and Sn(w1, w2),

n ≤ K̃. This algorithm takes as an input, w1 and w2 and hence, needs to be repeated for all possible

values of w1 and w2.

Proposition 3 If the cycle of the optimal strategy of Proposition 2 is W := (w1, w2, . . . , wJ), for

some integer J ≥ 2, then W ∈ SJ(w1, w2).

As a consequence of Proposition 3, if we consider

S :=
⋃

(w1,w2),w1 6=w2

⋃
n≤K̃

Sn(w1, w2)

and the set of single value strategies

S0 :=
⋃

w∈NτK

{(w)}

then the optimal strategy W of Proposition 2 satisfies W ∈ S. Note that the computation of S needs

at most O(K̃4) calculations of the type ϕ(w,w′, w′′). As a corollary we obtain the following.

Corollary 2 If a payoff is τ̄ -weakly coupled, then the optimal M -simple cyclic τ̃ -policy of Corollary

1 can be obtained with O(K̃4) elementary calculations.

For the proof of our main results on inter-temporal pricing we retain from this section the following.

Conclusion. The conclusion of this section is that, in view of Corollaries 1 and 2, it suffices to prove

the τ̄ -weakly coupled property for the payoffs generated in the context of the (MPL) and (ε-BPL),

(with τ̄ being the threshold defined respectively, by the (MPL) and (ε-BPL) regimes), to guarantee

the validity of Theorems 3 and 4.

4 Affine Payoffs

We saw in the previous section that to prove our main theorems in the case M > 1 it will be sufficient

to establish the adequate weakly coupled property on the payoffs under (MPL) and (ε-BPL).

To prove Theorems 1 and 2 we need a more specific property of the payoff that we call τ̄ -affine and

that we now introduce. When we later prove that our payoffs are τ̄ -affine, such property will also help

us characterize the payoff function in a closed form, which in turns allows to perform our algorithm

and obtain the optimal policy.
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4.1 Payoff pair

First we have to introduce more carefully the notion of payoff that is at play in an intertemporal

pricing problem as ours.

We set π =
(
(kj , τj) : j ≥ 1

)
. We denote by θj the vector which K entries, θjm, 1 ≤ m ≤ K, that

measures the expected number of customers in the system with valuation m at time Tj = τ1 + . . . , τj ,

i.e., at the end of the jth phase. In this work, we always assume θj to remain bounded (this is implied

for example, in the (ε-BPL) case, by the assumption ν > 0 in our model setup), that is, there exists

ρ > 0 such that θj−1 ∈ [0, ρ]K (see, Proposition 7). Since we are interested in the optimization of the

long run average revenue, we may assume that θ0 = 0. The definition of the payoff involves then an

operator Θ :M≡ N∗K × N× [0, ρ]K → [0, ρ]K that yields θj recursively:

θj = Θ
(
kj , τj |θj−1

)
.

It is worth stressing that θj accounts for both those customers that were in the system at time Tj−1

and did not exit by time Tj , as well as those that arrived during the phase (kj , τj) and did not exit

by time Tj .

To complete the payoff’s definition we further consider an operator L : M→ R+, whereby given

θj−1 ∈ [0, ρ]K ,

L
(
kj , τj |θj−1

)
is the total expected revenues generated during phase (kj , τj). These expected revenues are the result

of purchases that occur from either customers present in the system at time Tj−1, or, from those that

arrive to the system during (kj , τj). We stress that L does not account for revenues generated from

any of these customers if the purchase occurs after time Tj . We drop the index j when we consider

a general phase e.g. (k, τ) with a given expected state of the system at the beginning of the phase

e.g. θ ∈ [0, ρ]K . If the phase starts when no customers are in the system then we drop θ from the

notations of both operators.

A payoff is defined by a pair (L,Θ) as above.

4.2 Optimizing affine payoffs

Definition 5 (τ̄ -affine and (ε, τ̄)-affine Payoffs) A payoff (L,Θ) is said to be τ̄ -affine if for any

k ∈ [0,K], there exists Θ̄k ∈ [0, ρ]K , Ak, Bk ∈ R+, B̄′k ∈ RK such that for any τ ≥ τ̄ , for any

θ ∈ [0, ρ]K we have that

(A1) Θ
(
k, τ |θ

)
= Θ̄k;

(A2) L(k, τ |θ) = Ak +Bk(τ − τ̄) + 〈θ, B̄′k〉.

(ε, τ̄)-affine payoffs are defined similarly with equalities in (A1) and (A2) replaced by inequalities up

to an error of ε.
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The previous definition is interesting in the sense that it introduces and highlights the general

property of the payoff function required for Theorems 1 and 2 to hold exactly. Propositions 6 and 5

are the analogues of these two theorems for payoffs that are τ̄ -affine. What would remain to do in

order to complete the proof of these theorems is to check that the payoffs of interest in this paper are

indeed τ̄ -affine for the right value of τ̄ .

Before we state the main results of this section, we start with a simple proposition that first confirms

the natural role that cyclic policies play in our setting and secondly, allow us in many instances, to

restrict our analysis to cyclic policies.

Proposition 4 Given a payoff (L,Θ), where Θ is uniformly bounded, then for any ζ > 0, there exists

a cyclic policy that is ζ-optimal, where the cycle size is in the order of O(1/ζ).

Proof. See Appendix. �

The previous result that holds in broad generality (as it relies only on the boundedness of Θ) is

to be compared with the much more tractable optimizations (Theorems 2–4) obtained also in great

generality but for some special and relevant situations.

Proposition 5 If the payoff (L,Θ) is (ε, τ̄)-affine, then

sup
π∈P
R(π) ≤ sup

π∈P−τ̄
R(π) + ε.

In case the payoff is τ̄ -affine then the latter holds with ε = 0.

Proof. We deal with the case of τ̄ -affine, the (ε, τ̄)-affine case being similar. From Proposition 4, we

know that the boundedness of Θ implies that optimal strategies can be arbitrarily well approximated

by cyclic ones.

Fix now T arbitrary large and consider first the set of cyclic strategies of length T . We finish if we

show that the maximum over these strategies is reached on a strategy in P−τ̄ . Fix an integer n and

consider the set of strategies πn = ((ki, τi).., (kn : τn)) with Tn =
∑n

i=1 τi ≤ T . Suppose now that

for some ` ∈ [1, n], all the parameters ki, i ≤ n and τi, i ∈ [1, n] − {`} are fixed. For simplicity

call P = P ({ki}i∈[1,n], {τi}i∈[1,n]−{`}, T ), the set of all the corresponding strategies, where only the

parameter τ` ∈ [1, T −
∑

i∈[1,n]−{`} τi] is left free. By what preceded, we finish if we show that either

the maximum of R(πn), πn ∈ P is reached for τ` ≤ τ̄ , or the fixed price policy with price k` performs

better than any πn ∈ P . Indeed, from the definition of affine payoffs we get for any πn ∈ P and any

τ` ∈ [τ̄ , T −
∑

i∈[1,n]−{`} τi] that

R(πn) =
1∑n
i=1 τi

(U + V (τ` − τ̄)),

where U and V do not depend on the value of τ` > τ̄ . We thus get that the function R(πn) is a

monotonous function of τ` ∈ [τ̄ , T −
∑

i∈[1,n]−{`} τi]. Should this function be decreasing, the maximum
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over πn ∈ P of R(πn) would be reached for τ` ≤ τ̄ , while if the function is increasing then the fixed

price policy with price k` (whose average revenue is V ) would perform better than any πn ∈ P . �

Proposition 6 If the payoff (L,Θ) is τ̄ -affine (res. (ε, τ̄)-affine), then if τ̃ ≥ τ̄ , there exists a simple

cyclic τ̃ -policy that optimizes (resp., ε-optimal) R on P+
τ̃ .

Proof. We deal with the case of τ̄ -affine, the ε-affine case being similar. The same argument as that

used in the proof of Proposition 5 implies that the optimum of R on P+
τ̃ is reached on a fixed price

policy or on a τ̃ -policy π = ((kj , τj) : j ≥ 1) with τj = τ̃ for all j ∈ N. Observe also that τ̄ -affine

Payoffs clearly have the τ̃ -weakly coupled property in restriction to the space Aτ̃ of τ̃ -policies. Hence,

the case M = 1 of Corollary 1 implies that the optimal τ̃ -policy can be taken to be simple cyclic. �

As in the proof of Proposition 6, Theorem 4 in the case M = 1 follows from the conclusion of

Section 3 if we prove the τ̄ -affine property of the payoff generated by (MPL) and (ε-BPL).

We move now to the proof of Proposition 1 which claims that if ν > 0, then there exists a threshold

τ̃0 such that, if τ̃ ≥ τ̃0, a fixed-price policy is optimal on P+
τ̃ .

Proof of Proposition 1. It suffices from Proposition 6 to consider simple cyclic policies in Aτ̃ . For such

a policy πc = (k1, . . . , kn) (where each ki is set for τ̃ periods), we have from the definition of affine

payoffs that

R(πc) =
1

nτ̃

n∑
i=1

Ai +Bi(τ̃ − τ̄) + Ti,i+1

where Ai and Bi are functions of ki and Ti,i+1 is a function of (ki, ki+1) (and not of τ̃) and where

kn+1 := k1. Observe also that Bi is the long run average revenue of the fixed price policy with price

ki.

As τ̃ →∞ it is clear that the fixed price policy with price k such that Bk = maxk′ Bk′ becomes an

increasingly better approximation of the optimal policy in Aτ̃ . In the generic case where maxk′ Bk′ is

a strict maximum for k′ = k then as soon as τ̃0 is such that for any simple cyclic vector (k1, . . . , kn)

we have

Bk(nτ0 + τ̄ −
n∑
i=1

Bi
Bk

(τ0 − τ̄)) >
n∑
i=1

Ai + Ti,i+1

then the fixed-price policy with price k is strictly optimal on P+
τ̃ . �

Finally, with respect to the proof of our main results we retain from this section the following.

Conclusion. The conclusion of this section is that the proofs of Theorems 1, 2 and Theorem 4 (in the

case M ≤ 1) will be completed once we show that the payoff pair (L,Θ) corresponding to our initial

setting is τ̄ -affine (resp., (ε, τ̄)-affine), where τ̄ is the value defined respectively through the (MPL)

and (ε-BPL) regimes.
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5 Analysis and Proofs of the Main Results

In the previous section, we proved that the conclusions of our main results stated in Section 2.2 apply

for some general classes of payoffs functions. It is our goal in this section to complete the proofs of

these results and show that the payoffs at hand fit the framework of τ̄ -weakly coupled and τ̄ -affine

payoffs. Our proof, that relies on the Markovian dynamics of the valuation process, allows us also to

obtain closed form approximations and properties of both the expected revenues generated from every

period and the expected number of customers present in the system at any point in time.

5.1 Problem Re-Formulation and Additional Results

The intertemporal pricing problem of interest in this work admits as a primitive a triplet (γ,Q,Ω).

In this context, we consider the corresponding payoff pair (L,Θ), as defined in section 4.1. Without

loss of generality, and due to the linearity of L in θ, we assume that N = 1. The next result confirms

that Θ is in our context uniformly upper bounded.

Proposition 7 For any policy π =
(
(kj , τj) : j ≥ 1

)
∈ P, we have that for all j ≥ 1 and 1 ≤ m ≤ K,

θjm = Θm(kj , τj |θj−1) ≤ ρ <∞,

with θ0 = 0 and where ρ = min{1/ν, τ̄}.

Given, a pricing pace, τ̃ , and in light of the payoff pair introduced above, we can formulate the firm’s

optimization problem as follows,

R∗ := sup
π∈P+

τ̃

lim sup
n→∞

1

Tn

n∑
j=1

L(kj , τj |θj−1), (2)

with θ0 = 0 and Tn =
∑n

i=1 τi. We let R(π) = lim supn→∞
1
Tn

∑n
j=1 L(kj , τj |θj−1), and call a solution

optimal if it solves (2). In Section 5.2.1, we obtain an exact formulation of respectively L and Θ as

a function of the entries of the transition matrix Q. These formulations can be handy to numerically

compute the expected revenues generated from simple pricing policies such as fixed price policies.

From the boundedness of Θ we recall Proposition 4 which states that sufficiently long cyclic policies

are near optimal. More specifically, it implies that cyclic policies of cycle size O(ρ/ε) are ε-optimal

with respect to the unconstrained optimization and thus can be obtained in O(K1/ε).

We end this section by stating the two results that are required to close the loop and finalize the

proofs of Theorems 1 to 4. Note that in the (ε-BPL) case τ̄ is defined so that ||Qτ̄K−1|| > ε, which

would imply that it is in the order of O(|ln ε/ ln(1− ν)|). Without loss of generality, we assume that

in the (ε-BPL) regime, τ̄ is given by,

τ̄ε = |ln ε/ ln(1− ν)| .
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Proposition 8 For any triplet (Q,γ,Ω), if (ε-BPL) holds then for any ε > 0, the payoff (L,Θ) is

ε-τ̄ -affine, for any τ̄ ≥ τ̄ε. Moreover, the parameters Ak, Bk, B̄′k and Θ̄m(k)’s making up the definition

of a τ̄ -affine payoff are given in closed form in Section 5.2.3.

From the previous proposition, we conclude that as long as τ̃ ≥ τ̄ε, then Theorem 1, 2 and

Theorem 4 (in the case M ≤ 1) hold.

Proposition 9 For any triplet (γ, Q,Ω), if (ε-BPL) holds and τ̃ is set such that τ̄ε = Mτ̃ (i.e.,M >

1), then for any ε > 0, the payoff (L,Θ) is (ε, τ̄)-weakly coupled, for any τ̄ ≥ τ̄ε.

The previous propositions stated the result for the (ε-BPL) regime. Equivalent results hold under the

(MPL) case with τ̄ε is replaced by a τ̄ , and (ε, τ̄)-affine (resp., -weakly coupled) replaced with τ̄ -affine

(resp., -weakly coupled).

5.2 Proofs of Propositions 8 and 9.

We start with Proposition 8. The main idea behind the proof is the following. The value of τ̄ε, implied

by (ε-BPL), guarantees that customers, present in the system at the start of a phase (k, τ) with τ ≥ τ̄ε,
would unlikely remain in the system by the end of it. As a result, the expected revenues generated

following a long phase (k, τ) depend on (k, τ) and on the subsequent phases, but are independent of

all the phases preceding (k, τ). This leads, as we show analytically in the next section, to an affine

formulation of the payoff as stated in Definition 5

5.2.1 Preliminary Analysis

This section is devoted to some preliminary analysis and calculations. In particular, we characterize

how the expected number of customers that are in the system evolve through time and we also obtain

a closed form formulation of the payoff (L,Θ). Recall that v0 < v1 < . . . < vK .

We start by introducing new notations. We set the following

• Pi,j+ =
∑K

l=j qil. The probability to transfer from state i to any possible state l ≥ j.

• Pi−,j+ =
(∑K

l=j q1l,
∑K

l=j q2l, . . . ,
∑K

l=j q(i−1)l

)T
. The column vector whose entries are the prob-

abilities to go from a state strictly lower than i to all possible states higher than j.

• Ui,j− =
(
qi1, . . . , qi(j−1)

)
. The row vector whose entries are the probabilities to go from state i

to a specific state strictly lower than j

• Qi−j− = {qkl : 1 ≤ k < i, 1 ≤ l < j} is the matrix of transfer probabilities from states lower than

i to states lower than j. It is a minor of the matrix Q. We denote by Qm the square matrix

Qm−m−
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Note first that “− ” involves states strictly lower while “ + ” involves states larger or equal; secondly,

all the above quantities involve transition probabilities between states in Ω∗ and do not involve the

absorbing state v0. Recall also that the valuation process follows a transient Markov chain with an

absorbing state at v0 and obviously at vK ; hence its transition matrix can be written as follows

Q =

 1 0 0

H QK−1 H ′

0 0 1

 ,

where H (resp., H ′) is a column vector with dimension K−1, which entries are the probabilities to go

from any state vk > v0 (resp., vk < vK) to v0 (resp., vK). Assuming that all the values of H +H ′ are

positive, we conclude that the non negative square matrix QK−1 is such that the sum of each one of

its raw is strictly smaller than 1. We denote by Λ the maximum among all these sums and ν = 1−Λ.

The same holds for all Qm’s minor of the matrix QK−1. Hence, ||QK−1||∞ ≡ maxi
∑

j qij = Λ < 1,

where || · ||∞ is the infinity norm for matrices induced by the infinite vector norm (where for X ∈ Rm,

||X||∞ = maxi |Xi|). For m < K, we denote ||Qm||∞ = Λm. We drop, from now on, the subscript

infinite from the notation of the infinite norm.

Expected Number of Customers in the System.

We consider θ = (θ1, ..., θK) ∈ [0, ρ]K , where θm is again the expected number of individuals with

valuation vm who are currently in the system. Given an expected state of the system, θ, we recall

that Θ(k, τ | θ) =
(
Θ1(k, τ |θ), ...,ΘK(k, τ |θ)

)
, is the expected state of the system one phase later.

Therefore, if m ≥ k then Θm(k, τ |θ) ≡ 0, otherwise,

Θm(k, τ |θ) =

(
k−1∑
l=1

θl Ul,k−Q
τ
k +

τ−1∑
i=0

k−1∑
l=1

γl Ul,k−Q
i
k

)
m

+ γm (3)

We recognize that for τ large, the first terms in the previous sum have little effect on the outcome.

We also introduce the quantity Θ̄. For m < k, set

Θ̄m(k) :=

( ∞∑
i=0

k−1∑
l=1

γl Ul,k−Q
i
k

)
m

+ γm <∞. (4)

We let Θ̄m(k) ≡ 0, when m ≥ k.

Expected Revenues.

We denote by L(k,τ)(m) the expected revenue generated in the next τ periods by one individual

currently present in the system with valuation vm, facing in the next τ periods the price vk. It is
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possible that the individual does not purchase during these τ periods; any revenues generated after τ

are not included in L(k,τ)(m). Therefore,

L(k,τ)(m) =
[
Pm,k+ + Um,k−Pk−,k+ + Um,k−QkPk−,k+ + Um,k−QkQk Pk−,k+ + . . .

]
· vk

=
[
Pm,k+ +

τ−2∑
l=0

Um,k− Q
l
k Pk−,k+

]
· vk

(5)

Given that ||Qk|| := Λk < 1 for 1 ≤ k ≤ K, the previous formulation shows that if the duration τ of

the phase is large enough, only the “first” terms of the sum would probably matter. We also denote

by L̄(k,τ)(m) the expected revenues generated from one individual who just arrived into the system

with valuation vm, and who will be facing the phase (k, τ). Therefore,

L̄(k,τ)(m) = δm≥kvk + (1− δm≥k)L(k,τ)(m).

The first term depicts the revenues generated if at arrival the customer has a valuation larger or equal

than the listed price k. Otherwise, the customer now is in the system and the expected revenues

generated from the remaining period are given by L defined above.

Putting together some of these formulations we obtain a closed formulation of the expected long

term revenues L.

Proposition 10 Given a transition matrix, Q, a vector γ of initial proportions and a set Ω of valua-

tions, the expected revenues generated from a set of consecutive phases
(
(kj , τj) : 1 ≤ j ≤ n)

)
, is given

by

L(k1, ..., kn : τ1, ..., τn) =

n∑
j=1

L(kj , τj |θj−1)

=
n∑
j=1

K∑
m=1

[
γm

τj∑
τ=1

L̄(kj ,τ)(m) + θj−1
m L(kj ,τj)(m)

] (6)

with θjm = Θm(kj , τj |θj−1) is given in closed form in (3) and θ0 = 0.

Next we detail the proof of Proposition 8 which we divide in two parts (A1) and (A2) to parallel

Definition 5, in the (ε-BPL) case.
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5.2.2 Proof of Proposition 8 - (A1).

We denote by eT = (1, ..., 1)T, with ‖eT‖ = 1. We set Λ = 1 − ν. From the formulation of Θ in

Equation 3 and that of Θ̄ in Equation 4, we write that

∥∥Θ̄(k)−Θ(k, τ |θ)
∥∥

1
=

∣∣∣∣∣−(
K∑
l=1

Θl Ul,k−
)
Qτk eT +

( k−1∑
l=1

γl Ul,k−
) ∞∑
i=τ

Qik eT

∣∣∣∣∣
≤ max

{( K∑
l=1

Θl Ul,k−
)
Qτk eT,

( k−1∑
l=1

γl Ul,k−
) ∞∑
i=τ

Qik eT

}

≤ max

{∥∥∥∥∥(
K∑
l=1

Θl Ul,k−
)∥∥∥∥∥

1

‖Qτk eT‖ ,

∥∥∥∥∥(
k−1∑
l=1

γl Ul,k−
)∥∥∥∥∥

1

∥∥∥∥∥
∞∑
i=τ

Qik eT

∥∥∥∥∥
}

≤ max

{
ρΛ Λτ ,Λ

∞∑
i=τ

Λi

}

= max

{
K Λτ+1

1− Λ
,

Λτ+1

1− Λ

}
=
K Λτ+1

1− Λ
.

In the second inequality we used the fact that |X Y T| ≤ ‖X‖1 ‖Y T‖. The last inequality is obtained

as we observe that ‖Ul,k−‖1 =
∑k−1

i=1 qli = Λl ≤ Λ, ||Qτk|| ≤ Λτ and
∑∞

t=τ Λt = Λτ/(1−Λ). In order to

guarantee that term Λτ/(1 − Λ) is less than ε it is enough to take τ ≥ ln b ε
ln Λ with b = (1 − Λ). Note

that ln b < 0, hence, it suffices that τ ≥ τ̄ε ≡ ln ε
ln Λ which completes our proof. �

5.2.3 Proof of Proposition 8 - (A2).

We introduce some additional notations. Recall that L(k,τ)(m) (resp. L̄(k,τ)(m)) is the expected

revenues generated in the next τ periods from one individual who is already in the system (resp. just

arrived to the system) facing the price vk for τ consecutive periods. Given a certain duration τ̄ , we

denote by

• B′k(m) = L(k,τ̄)(m), is the expected revenues generated during the phase (k, τ̄) by an individual

initially in state m,

• Bk(m) = L̄(k,τ̄)(m), is the expected revenues generated during the phase (k, τ̄) by an individual

arriving with valuation vm,

• Ak(m) =
∑τ̄

τ=1 L̄(k,τ)(m)

• Ak :=
∑

m γmAk(m), is the aggregate expected revenues generated during the phase, (k, τ̄), by

all the customers that arrived during this same phase,

• Bk :=
∑

m γmBk(m), is the aggregate expected revenues generated during the phase, (k, τ̄), by

all the customers that newly arrived at the beginning of this phase,
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• Tk,k′ :=
∑

m Θ̄m(k)B′m(k′), is the expected revenues generated by Θ̄(k) during a phase (k′, τ̄),

where, Θ̄ is given by (4) and is an approximation of the expected number of customers remaining

in the system at the end of phase (k, τ̄).

We start with a simple observation.

Sublemma. Assume τ ≥ τ̄ . Then

0 ≤ L̄k,τ (m)− L̄k,τ̄ (m) ≤ pk,τ̄ ,m vK

with pk,τ̄ ,m being the probability that the individual with valuation m does not exit from the system

after having faced a price, k during τ̄ periods, i.e.

pk,τ̄ ,m =
∑
i

(
Um,k−Q

τ̄
k

)
i

The proof of the Sublemma is obvious. We move to show the inequality related to (A2) of Defini-

tion 5 in the case again of (ε-BPL) and give a closed form of the constants involved in that expression.

We start with the quantity L(k1 : τ1|θ) that can be written as the sum of three terms. First, the

expected revenues generated from new customers in the last τ̄ε periods of the phase and that is ex-

actly Ak1 . Secondly, the expected revenues generated from new comers that arrived in the first τ − τ̄ε
periods of the phase and that is exactly,

∑
m

∑τ1
τ=τ̄ε+1 γm L̄(k1,τ)(m). Finally, the revenues generated

from customers that were in the system at the beginning of the phase θ, and that is
∑

m θm Lk1,τ1(m).

We write that

L(k1, τ1|θ) = Ak1 +
∑
m

τ1∑
τ=τ̄ε+1

γm L̄(k1,τ)(m) +
∑
m

θm Lk1,τ1(m)

≤ Ak1 +
∑
m

τ1∑
τ=τ̄ε+1

γm(Bk1(m) + pk1,τ̄ε,m vK) +
∑
m

θmB
′
k1,m +

∑
m

θm pk1,τ̄ε,m vK

≤ Ak1 +Bk1 (τ1 − τ̄ε) +
∑
m

θmB
′
k1,m + (τ1 − τ̄ε) ε vK + ρ vKε.

The first inequality is due to i.) and to the observation that if τ ′ ≥ τ̄ε, then L̄k1,τ ′(m) ≤ Bk1,m +

pk,τ̄ε,m vK (resp., Lk1,τ ′(m) ≤ B′k1,m
+pk,τ̄ε,m vK). The second inequality is due to the following bounds,

pk1,τ̄ε,m ≤ ε,
∑

m γmpk1,τ̄ε,m ≤ ε and
∑

m θmpk1,τ̄ε,m ≤ ρ ε. This proves our result.

Note that if we consider a cyclic policy (k1, ..., kn : τ1, ..., τn) with τi ≥ τ̄ε for all i ≤ n, then, from

(A1) we have that the expected revenues generated during (ki, τi) are upper bounded by L(ki, τi|Θ̄(ki−1))+

ε, and hence, by summing these terms and dividing by Tn while noticing that n ≤ Tn we obtain that

R(k1, ..., kn : τ1, ..., τn) ≤ 1

Tn

n∑
i=1

L(ki, τi|Θ̄(ki−1)) + ε

≤ 1

Tn

n∑
i=1

(
Aki +Bki (τi − τ̄ε) + 〈Θ̄m(ki−1), B′ki〉

)
+ (1 +

ρ

τ̄ε
) vK ε.
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Having in mind Proposition 6, when we restrict ourselves to cyclic policies with τi ≡ τ̃ , the previous

inequality shows that payoffs that are (ε, τ̃)-affine are also (ε, τ̃)-weakly coupled.

5.2.4 Proof of Proposition 9

We move now to discuss the proof of Proposition 9. We focus on the (MPL) case. By writing

π =
(
(wn : n ≥ 1) : wn ∈ Nτ̄K

)
, we can define the payoff (L,Θ) recursively, applied this time, - not on

a phase (k, τ)) but, - on a string of prices w ∈ Nτ̄K . Assuming here that τ̄ = M τ̃ , with M > 1, we

observe that w is in fact a sequence of M consecutive phases (ki, τ̃) (with ki possibly equal to ki+1).

Similarly to Proposition 8 - (A1), it is easily seen that for any w ∈ Nτ̄K , Θ(w|θ) = Θ̃(w), for some

given Θ̃, where θ is the expected number of customer present in the system at the beginning of the

string w. Recalling Proposition 10, we conclude that the long run average revenue of any finite string

(w1, ..., wn), ϕ(w1, ...wn) = 1
n τ̄

∑n
i=1 f(wi, wi+1), with wn+1 = w1, which implies that

R(π) = lim sup
n→∞

1

nτ̄

n∑
i=1

f(wi, wi+1).

As for the (ε-BPL) regime, the proof follows similar steps than those of Propositon 8 and is omitted.

Moreover, using Equation (4) and Proposition 10, one can again obtain the function f in closed form.

6 Numerical Analysis

Our objective in this section is to understand the behavior of the solution to our optimization problem.

We use our algorithm to obtain and analyze the optimal (or nearly optimal) cyclic policy for many

choices of the matrix Q, while also varying τ̄ , the valuation vector V and its size K. Without much loss

of generality we set γ = [1/K, . . . , 1/K]. The parameters that we use in drawing different realizations

of Q and V are the following:

i.) The parameter ν > 0 represents the probability in any given period that a customer leaves the

system by reaching the absorbing state v0. Without a great loss of generality we often confine,

for simplicity of notations, our numerical analysis to the case where ν is the same for any given

state of the customer. The coefficients of the matrix QK−2 are thus drawn randomly in (0, 1)

such that the sum on each row is equal to 1− ν.

ii.) The parameter e > 0 is introduced to represent the average gap between consecutive valuations.

That is, the vector V = [v1, . . . , vK ] is such that v1 = 1 and vi+1 = vi (1 + e θi) where θi is

uniformly drawn in (0, 1).

When the findings with respect to the (MPL) and (ε-BPL) cases are the same, we present these

under the (MPL) setting. We later discuss the finding that is specific to the (ε-BPL) case. Hence, we

let for now τ̃ = τ̄ = τ . For each set of parameters (τ̄ , ν, e,K) we make N � 1 drawings of the different
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parameters to which we apply the analytic algorithm. We collected and summarized the statistics of

the outcomes in the table below.

We call k-cyclic policy a cyclic and simple τ -policy of size kτ (i.e., with k different prices).

We say that a cyclic policy π outperforms π′ by a% if 100(R̄(π)− R̄(π′))/R̄(π′) = a.

Set f the percentage of times where the maximal policy performs better than all the fixed price

policies, and d denotes the average ratio (in percent) of how much the maximal policy outperforms

the fixed price policy (this average is computed conditional on the fact that the maximal policy is not

a fixed price one).

Set f′ the percentage of times where the maximal policy performs better than all the fixed price and

two-cyclic, and d′ denotes the average ratio (in percent) of how much the maximal policy outperforms

the maximum over the fixed price and two-cyclic (this average is computed conditional to the fact

that the maximal policy has period larger or equal to three).

Finding I. Cyclic policies with cycle at most three are always optimal.

In the case τ̃ = τ̄ and (MPL) each customer sees at most two prices and this is true with probability

larger than 1 − ε in the (ε-BPL) case. It is hence reasonable to conjecture that the optimal cyclic

policies given by Theorem 2 actually have a short cycle size, even if K is large. This observation

is confirmed by our numerical analysis that actually yields, in all the cases we considered, optimal

policies that are k-cyclic with k smaller or equal than 3. Moreover, in all the cases we treated, the fixed

price and two-cyclic policies were nearly optimal, with just very few instances where a three-cyclic

policy outperformed them; and in those cases the performance ratio was less than 1%. Hence, our

first finding is that for all values of the parameters and for all the instances considered, the optimal

policies are k-cyclic with k ≤ 3.

Finding II. Fixed price and two-cyclic policies are practically optimal.

Our second finding is that fixed price policies and period two-cyclic policies are almost optimal

with very few cases where the optimal policy is of period three and in those rare events, it outperforms

the best among the fixed price and two-cyclic policies by at most 1%. This is reflected in the two last

columns of Table 1.

Finding III. As τ increases fixed price policies perform increasingly better compared to

two-cyclic ones.

In line with our result of Propositions 1 we find that, as long as the probability to reach the

absorbing state v0 or vK from all the other valuations is supposed to be strictly positive, then as τ̄

goes to ∞ the fixed price policies become the best. This is because the customers tend to see just

one price as τ̄ goes to infinity. As shown by the fourth column of Table 1, the frequency at which

two-cyclic policies outperform the fixed price policies is decreasing with τ . As shown by the fifth

column of Table 1 we also see the outperforming rate of the two-cyclic policies d is also a decreasing

function of τ . Finally, the last line of these two columns confirm our result of Proposition 1, namely

that as τ goes to infinity the optimal policy is a fixed price one.
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Finding IV. As ν increases fixed price policies perform increasingly better compared to

two-cyclic ones. ( We also find that as the probability to reach the absorbing states v0 or vK , from all

the other valuations, increases, the fixed price policies become the best. This is natural since when the

latter probability grows, the customers spend less time in the system and it is clear for example that

if each customer stays in the system for just one period, then the price that optimizes the revenue of a

single period (without consideration of Θ) gives rise to the optimal policy that is the fixed price policy

with this same price. As shown by the fourth column of Table 1, the frequency at which two-cyclic

policies outperform the fixed price policies is decreasing with ν. As shown by the fifth column of the

Table 1, we also see the outperforming rate of the two-cyclic policies d is also a decreasing function of

ν.

τ ν e f d f′ d′

1 0.1 0.1 76 2.6 5 0.1

5 0.1 0.1 43 0.6 2 0

9 0.1 0.1 21 0.3 0 0

13 0.1 0.1 13 0 0 0

5 0. 0.1 67 3 5 0.3

5 0.1 0.1 54 0.6 4 0.1

5 0.2 0.1 16 0.1 0 0

5 0.3 0.1 1 0 0 0

5 0.1 0.05 45 0.3 2 0.1

5 0.1 0.15 43 0.7 3 0.1

5 0.1 0.25 29 1.2 2 0.2

5 0.1 0.35 34 1.7 2 0.2

Table 1. (MPL), τ̃ = τ̄ = τ , K = 4.

Finding V. Impact of disregarding changing valuations on revenues.

We illustrate these findings with a couple of specific examples. Consider first the following. Set

K = 4 and τ̄ = τ̃ = 10 under the (MPL) case and set the transition matrix Q close to the Identity,

Q =


0.9 0.05 0.03 0.02

0.05 0.8 0.1 0.05

0 0.05 0.95 0

0 0 0 1

 .
Note that ν(Q) = 0 as is the case for the Identity matrix. Let V = [1.0, 1.3, 1.45, 1.6]. For this

valuations vector and this transition matrix Q, the optimal policy the two-cyclic policy [3, 2]. If

however the matrix is the Identity (i.e., the valuations are not changing), the optimal policy is given
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by [2, 1]. Of course, if the seller disregards the impact of the changing valuations, and thus solves for

the optimal policy using Q′ = Id, she will end up setting the two-cyclic policy [2, 1] instead of [3, 2].

The loss in profit of doing so is found numerically to be 4%. This result is quite robust. Indeed, the

policy [2, 1] is in fact numerically found to be optimal for all diagonal matrices that are close to the Id.

Such losses are typically obtained when one replaces the transition matrix Q by the identity matrix.

Now, let V = [1.0, 1.1, 1.25, 1.4] and

Q =


0.7 0.1 0.05 0.07

0.05 0.7 0.07 0.07

0.07 0.07 0.7 0

0 0 0.05 0.8

 .
For any transition matrix that is diagonal, Q′ = Diag(d1, d2, d3, d4) where di ∈ [0.6, 1], we find

that the fixed price policy [1] is optimal. On the other hand, when we consider Q to be the transition

matrix, the policy [3, 2, 1] is optimal and outperforms [1] by 5%.

Finding VI. An example of three-cyclic optimal policy.

In the case of τ̄ = Mτ̃ , M ≥ 2, one expects that optimal policies with longer cycles appear.

However each customer sees M + 1 prices in this context and it is reasonable to conjecture that the

length of the cycles will be small if M is taken to be small. Because of the complexity K4M we are

bound to let M be small if we want to apply our algorithm.

In all the examples we have tested (M ≤ 4) the optimal policies had a cyclic length of at most 3.

However, as opposed to the case M = 1, we often got cases where a three-cyclic policy outperforms

both two-cyclic and the fixed price policies by more than 5%. We illustrate this finding with the

following example.

Consider the following (MPL) example with τ̃ = 1, τ = 3 (that is M = 3). We take K = 4, τ̄ = 6

and τ̃ = 2. We set V = [1.0, 1.2, 1.4, 2] and γ = [0.25, 0.25, 0.25, 0.25]. We let

Q =


0.8 0.05 0.0 0

0.2 0.6 0.0 0.2

0.1 0.2 0.6 0

0.1 0.2 0.6 0

 .
We compute numerically the maximum fixed price policy which is given by [1] with R([1]) = 1. The

optimal two-cyclic policy is given by [3, 1] and while R([3, 1]) = 1.09. Finally, the optimal policy is a

three-cyclic policy and is given by [4, 3, 1] with R([4, 3, 1]) = 1.14. It is an example where the optimal

policy outperforms the fixed price policies by 14% and the two-cyclic ones by 4%.

Finding VII. Tuning ε in the (ε-BPL) case.

Consider the (ε-BPL) case. Suppose we want to obtain the best possible unconstrained cyclic

policy using our algorithm with some fixed M . We consider in what follows M = 1 (τ̃ = τ̄) but the

same reasoning holds for any M . For that we fix K,Q, V, and γ.
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For every ε > 0 we define τε = − ln ε/ν. Recall that the error in the estimation of the revenue by

our analytical formulas (M = 1) is less than ε. By setting τ̄ = τε, we denote by R̄ the long-run average

revenue generated by the algorithm that identifies a maximal policy that we also denote by πε. It is

natural to define a lower bound on the performance of such maximal policy by setting Lε := R̄(πε)−ε.
Of course, in the case of fixed price policies we have that R = R̄. To compare the performance

of πε with the fixed price policies we then introduce the notation ∆ε = R̄(πε) − R∗f − ε where R∗f
denotes the revenue of the best fixed price policy. Typically, as ε→ 0, fixed price policies are optimal

that the algorithm would confirm. As ε becomes large, we may often find two-cyclic optimal policies

πε. However as ε becomes too large, ∆ε is inevitably negative which would imply that any non fixed

price policy we find is not guaranteed to perform better than the fixed price ones once we account for

the error ε of our approximations. As we vary ε > 0, we aim to maximize L(πε). We illustrate this

approach using the following example. We let V = [1.0, 1.2, 1.5, 2] and

Q =


0.65 0.05 0 0.05

0.05 0.65 0 0.05

0.05 0.05 0.6 0

0 0 0 0.6

 .
Note that ν(Q) = 0.3. From Table 1, we observe that there is a broad range of values of ε, where

a two-cyclic policy is strictly better than fixed-price policies. In particular, by setting ε = 0.01 the

algorithm would generate a policy that will outperform the best fixed price policy by more than 3%,

and represent our best approximation of the unconstrained optimization.

ε τε πε R̄(πε) ∆ε

10−13 83 [4] 1.02 0

10−5 32 [4,1] 1.03 0.02

10−3 19 [4,1] 1.04 0.04

10−2 12 [4,1] 1.05 0.05

10−1 6 [4,1] 0.99 0

0.2 4 [4,1] 0.91 -0.1

0.4 2 [4,1] 0.73 -0.27

Table 2. An (ε-BPL) case, with M = 1.

7 Extensions

7.1 Asymptotic Analysis

In the previous section, we restricted our analysis to policies that satisfy assumptions (MPL) and (ε-

BPL), both of which guarantee that the system has finite memory in a sense that all or most customers
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do not spend more than a finite amount of time in the system. In this section, we scale this amount

of time by a parameter ν → 0 that represents the probability to exit the system. We also scale τ̄ by

ν, defining τ̄ν = τ̄ /ν for some fixed τ̄ . We also assume that τ̃ν = τ̄ν .

Recall that Proposition 1 stated that for a fixed ν > 0, if τ̃ is sufficiently large then a fixed price

policy is optimal in P+
τ̃ . Our observation in the current section will be that as ν → 0, although

τ̃ν →∞, price discriminating policies may well outperfom fixed price policies. For that, we consider a

sequence of intertemporal pricing problems, similar to the ones introduced above, that we parameterize

by ν > 0. The set of possible valuations Ων remains the same equal to Ω. On the other hand, the

transition matrix, Qν , is assumed to converge to the identity matrix I as ν → 0. For that and for

each value of ν, we let QνK = I − ν WK where WK−1 = (wi,j : 1 ≤ i, j ≤ K − 1) is some invertible

matrix and the column vectors Hν and H ′ν (made respectively, of the transition probabilities of any

state into state v0 and vK) are set in a way to guarantee that Qν remains a stochastic matrix (see, the

representation of Q in 5.2.1). We denote by Λνk = ||Qνk|| = 1 − αk ν, for some fixed positive αk. By

assuming, without loss of generality, that mink αk = 1, we recover the same definition of ν introduced

earlier in this paper. Finally, we recall that τ̄ν is set to τ̄ /ν, for some constant value τ̄ ≥ 1.

In this setting, recalling Proposition 7 and its proof, the likelihood that customers exit the system

because their valuations reached an absorbing state is decreasing to zero with ν. Theorefore, the

expected number of customers remaining in the system is growing also in 1/ν.

We let Wk (corresponding to Qk) be the restriction of W to the first k − 1 rows and columns.

We also define W−1
k to be its inverse and denote by Zk = Ik − exp(−τ̄ Wk), where exp(−τ̄ Wk) is the

exponential matrix operator applied to −τ̄ Wk.

We now state a lemma that gives the limits, as ν goes to zero, of the different components of the

long-run average revenue. We kept the same notations for L, L̄ and U, introduced earlier but to which

we added a subscript ν.

Lemma 1 We define PWi−,j+ =
(∑K

l=j w1l,
∑K

l=j w2l, . . . ,
∑K

l=j w(i−1)l

)T
. For any 1 ≤ k ≤ K, as

ν → 0, the following limits hold

i.) L̄ν(k,∞)(m)→ L0
(k,∞)(m) :=

(
δm≥k + U0

m,kW
−1
k PWk−,k+

)
vk,

ii.) Lν(k,τ̄ν)(m)→ L0
k(m) :=

(
δm≥k + U0

m,k ZkW
−1
k PWk−,k+

)
vk,

iii.) L̄ν(k,τ̄ν)(m)→ L0
k(m),

iv.)
Aνk(m)

τ̄ν
:=

1

τ̄ν

τ̄ν∑
τ=1

L̄νk,τ (m)→ L̃0
k(m) :=

(
δm≥k + U0

m,k

(
Ik −

1

τ̄
ZkW

−1
k

)
W−1
k PWk−,k+

)
vk

v.) ν Θ̄
ν
(k, τ̄ν)→ Θ̄

0
(k) ≡

k−1∑
l=1

γl U
0
l,k−ZkW

−1
k

where, Θ̄
ν
(k, τ) ≡

τ̄∑
τ=0

k−1∑
l=1

γl U
ν
l,k− (Qν)τ ≤ Θν(k, τ).
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We denote by B̂0
k =

∑
m γm L0

(k,∞)(m) the expected long-run average revenue generated by the

fixed price policy, vk. We also denote by A0
k =

∑
m γm L̃0

k(m) and by T̄ 0
k,k′ = 1

τ̄

∑
m Θ̄0

m(k)L0
k′(m). We

set

ζ∗ ≡ sup
(n,k1,...,kn : ki 6=kj)

1

n

n∑
i=1

(
A0(ki) + T̄ 0

ki,ki+1

)
.

Note also that both ζ∗ and the B̂0
k’s depend only on the primitives γ, W , and Ω of the problem.

Proposition 11 For any triplet (γ,W,Ω) such that maxk B̂
0
k < ζ∗, there exists ν0 > 0 so that for any

ν ≤ ν0, there exists a simple cyclic τ̄ν-policy that strictly outperforms all fixed-price policies on P+
τ̄ν .

Proof. It is enough to show that for ν small enough,

ζ∗ ≤ sup
π∈Aτ̄ν

Rν(π).

This inequality results from the following. First, cyclic and simple policies for which the durations of

all its phases are exactly equal to τ̄ν , belong to Aτ̄ν . Consider any such policy, (k1, ..., kn : τ̄ν , ..., τ̄ν).

Its long-run average revenue is equal to
∑n

i=1

( Aνk
n τ̄ν +

T̄ νki,ki+1

n τ̄ν

)
, where T̄ νki,ki+1

is the revenues generated

by Θν(ki, τ̄
ν) during phase (ki+1, τ̄

ν). Moreover, from Lemma 1 ii.) and v.), we conclude that for ν

small enough

T̄ 0
ki,ki+1

:=
1

τ̄

∑
m

γmΘ̄0
m(k)L0

k′(m) ≤ 1

τ̄

∑
m

γm(νΘν
m(k, τ̄ν))Lνk′,τ̄ν (m) =

T̄ νki,ki+1

τ̄ν
,

while from Lemma 1 iv.) and the definition of Aνk, we have that

Aνki/τ̄
ν → A0

ki
,

as ν → 0. By putting these observations together we conclude that

1

n

n∑
i=1

(
A0(ki) + T̄ 0

ki,ki+1

)
≤ sup

π∈Aτ̄ν
Rν(π).

By taking the sup on the LHS we obtain our result. �

Hence, any primitives of the problem (γ,W,Ω) for which maxk B̂
0
k < ζ∗ guarantee that price

discriminating policies are optimal at the limit. Interestingly, our previous algorithm can again be

applied to solve for ζ∗ and check whether the condition of Proposition 11 holds or not.

7.2 Strategic Consumers

Strategic customers, once in the system, make their purchasing decision not only based on the current

valuation and price, but also based on future prices. We assume in this discussion that customers adopt

an up to τ̄ periods look-ahead policy, where τ̄ is still given by the (MPL) or (ε-BPL) assumption. It

is beyond the scope of this paper to formulate a specific model of strategic behavior as we did in the
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myopic case, however, we are able to argue that similar results to Theorems 2 to 4 still hold in this

case. To set the ideas clear, we start by a couple of examples of possible customers’ strategic behavior.

Example 1. Customers present in the system purchase in a specific period if the current surplus

is larger than all possible surplus in the future calculated using the current valuation. Suppose a

customer is currently present in the system with valuation k who arrived t periods earlier and could

remain in the system for at most another τ̄ + 1− t periods. Such customer would decide to purchase

the product at the current price k1, if k − k1 ≥ 0 and k1 ≤ min{k2, ..., kτ̄+1−t}, with k1, ..., kτ̄+1−t are

the next consecutive τ̄ + 1− t prices the customer would face if she remains in the system. Basically,

the customer would delay a purchase if she sees that the product is offered at a cheaper price during

her possible “stay” in the system. In this example, we assume that the customer is not aware of the

matrix Q and believes that her current valuation is the best prediction of her future valuation.

Example 2. Customers purchase in a specific period if the current surplus is larger than the

expected value of the maximum surplus that can be generated in the next τ̄ periods. Consider a

customer with current valuation k, present in the system. She would purchase at the current price k1,

if

k − k1 ≥ Ek max
1≤s≤τ̄

{Vs(k)− ks+1},

where k1 is the current price, and where k2, ..., kτ̄+1 (resp., V2(k), ...,Vτ̄+1(k)) are the next τ̄ prices

(resp., valuations) the customer would face (resp., have) if she decides to remain in the system. The

customer and the firm have here the same information with respect to the dynamics of the valuation

process, governed by Q.

In such models, the dynamics of the valuation process is assumed to remain the same as before,

the only difference is the purchasing decision criteria leading to a different payoff function.

However, we still have that the customers present in the system at the start of a phase (k, τ) with

τ ≥ τ̄ , would unlikely remain in the system by the end of it. As a result, the expected revenues

generated following a long phase (k, τ) depend on (k, τ), but are independent of the phase preceding

(k, τ). This leads, as in the case of myopic customers studied in detail in Section 5, to an affine

formulation of the payoff similar to the one stated in Definition 5.

We only consider the (MPL) case. In order to handle the (ε-BPL) case we would need to know

more about how customers are making their purchasing decision (for instance, whether we are in the

case of Example 1 or Example 2). Once such analytical model is specified an equivalent result to

Proposition 8 can be obtained. But otherwise, the rest of the analysis is similar to the (MPL) case.

The result is stated for M = 1, but again it can be generalized to any M ≥ 1 in exactly the same

way it was done for the myopic case.

We say that a customer is strategic if the decision to purchase at time t takes into account not

only price pt but also pt+1, ..., pt+τ̄ .
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Proposition 12 Consider a triplet (γ, Q,Ω) and assume that (MPL) holds with a given τ̄ so that

τ̃ ≥ τ̄ . Moreover, assume that all arriving customers are strategic. Then, the results of Theorem 2

apply in this context and the corresponding cyclic policy can be obtained in O(K4).

The steps of the proof are the same than in the myopic case. First, we need to show that the payoff in

this setting remains affine (an equivalent result to Proposition 8). Then, we apply Proposition 6 that

reduces the optimization set to policies that are cyclic simple with the durations of their phases equal

to τ̃ . Finally, we need to observe that the latter policies generate a payoff that is weakly coupled. The

only difference with the myopic case is with respect to the first step where a more general definition of

affine payoffs is required. For that, consider two consecutive phases (k, τ) and (k′, τ ′) with τ, τ ′ ≥ τ̄ . In

Definition 5, we replace (A1), with Θ(k, τ |θ) = Θ̄(k, k′) ∈ [0, ρ]K . As for (A2), the affine relationship

remains the same except that we replace Ak by a positive constant Ak,k′ . Basically, we allow these two

constants to depend not only on the price k of the current phase, but also on the one of the following

phase k′. Besides that, the rest of the proof follows the exact same approach than in the myopic case.

Notes

1Under an infinite horizon discounted revenue setting, the definition of weakly coupled payoff becomes |R(π) −∑∞
n=0 e

−r nf(wn, wn+1)| ≤ ε, where r > 0 is the discount factor. Interestingly, all the results in Section 3 related to

weakly coupled payoffs remain valid in this setting and that is also true for Theorems 3 and 4.

Appendix A

Proof of Proposition 4:

Let R∗T be the maximum long-run average revenue generated by any cyclic policy with size exactly T

(the number of such cyclic policies is finite and hence R∗T exists and is finite.) Consider any policy

π ∈ P and fix a duration T0 that is multiple of T (say T0 = mT ). We truncate again this subpolicy

into m consecutive time periods of duration T . Recall that the expected revenues generated during a

time period of length T is the expected revenues generated by customers arriving during this period

(which we denote by Lj , 1 ≤ j ≤ m) plus the expected revenues from those who were in the system at

the beginning of this time period. Given the uniform boundedness of Θ by ρ, the latter can be upper

bounded by ρvK . We can write the following:

L(p1, ..., pT0)

T0
=

∑m
j=1 Lj

T0
+
mρvK
mT

≤ R∗T +
ρ vK
T

.

This is enough to prove that the lim sup on the LHS as T0 →∞ remains upper bounded by the RHS.

Indeed, if T0 is not a multiple of T then the LHS can be upper bounded by the same term on the RHS

plus a term of the form Lm+1/T0 which is itself upper bounded by T vK/T0 which will vanish at the

limit. �
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Proof of Proposition 7:

The expected number of individuals in a particular state, k < K at time t, following any pricing

policy, is less than the number of individuals that would have been in that state at time t, if the

pricing policy would have been set at vK all throughout t. Recall, that ΘK = 0 and θ0 = 0, and thus

from Equation 3 we have that

||Θ(K, t)|| ≤ ||
t−1∑
i=0

K−1∑
l=1

γl Ul,K−Q
i
K ||+ ||(γ1, γ2, ..., γK−1, 0)||

≤
t−1∑
i=0

K−1∑
l=1

γl ||Ul,K− || ||QK ||i + 1

≤ Λ

t−1∑
i=0

Λi + 1 ≤ 1

1− Λ
.

The second inequality is due to the fact that
∑K−1

l=1 γl ||Ul,K− || ≤ Λ
∑

l γl ≤ Λ. The bound above shows

that each component of Θ is bounded by 1/(1 − Λ). Hence, ||Θ(K, t)||1 ≤ ρ = K/(1 − Λ). If Q was

doubly stochastic then the upper bound, ρ, can be reduced to 1/(1− Λ). �

Proof of Proposition 11:

The proof follows directly from Lemma 1 of which we give here a proof.

We write L(k,τ)(m) = [Pm,k+ +Um,k−(I−Qτ−1) (I−Qk)−1 Pk−,k+ ] vk. Recall that if ||Qk|| < 1 then∑t−2
t=0Qk = (Ik − Qt−1

k )(Ik − Qk)−1. Now by scaling the system we notice that P νk−,k+ = −ν PWk−,k+ ,

moreover, P νm,k+ → δm≥k and Uνl,k− → U0
l,k− <∞ as ν → 0. We can now write the following

Lν(k,∞)(m) = [P νm,k+ + Uνm,k− (ν Wk)
−1 P νk−,k+ ] vk

→ L0
(k,∞)(m) ≡ [δm≥k − U0

m,k−W
−1
k PWk−,k+ ] vk

as ν → 0. Similarly, as we note that (I − ν W )τ̄
ν

= exp(τ̄ /ν ln(I − ν W )) ∼ exp(−τ̄ W ) as ν → 0, we

have that

Lν(k,τ̄ν)(m) = [P νm,k+ + Uνm,k−(Ik −Qτ̄
ν−1
k ) (Ik − (Ik − ν Wk))

−1 (−ν)PWk−,k+ ] vk

→ L0
k(m) ≡ [δm≥k + U0

m,k−(Ik − exp(−τ̄ Wk))W
−1
k PWk−,k+ ] vk

as ν → 0. Similarly, L̄ν(k,τ̄ν)(m) → L0
k(m) as ν → 0. Similar calculations than above show that if

||Qk|| < 1 then
∑τ̄

τ=1(Ik − Qτ−1
k ) = τ̄ Ik − (Ik − Qτ̄k) (Ik − Qk)−1, and iv.) follows easily. As for v.),

note from equation 3 that

Θ(k, τ |θ) ≥ Θ̄(k, τ) ≡
k−1∑
l=1

γl Ul,k−

τ−1∑
i=0

Qik =

k−1∑
l=1

γl Ul,k−(Ik −Qτk)(Ik −Qk)−1.

Moreover,

ν Θ̄
ν
(k, τ̄ν)→ Θ̄

0
(k) ≡

k−1∑
l=1

γl U
0
l,k−(Ik − exp(−τ̄ Wk))W

−1
k .

�
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Appendix B

A Simpler Model. The case of K = 2

In this section, we consider the case where K = 2 and Ω∗ = {v1, v2}, with v0 ≤ v1 ≤ v2. A seller facing

a myopic customer would only consider a pricing policy p where at any time t, pt ∈ {v1, v2}. We

start by observing that the price v1 is a reset price and that is, once set the system empties. Having

this in mind, it is easy to see that the optimal policy is either a fixed price policy where for all t,

pt = vi i = 1, 2, or is cyclical of the form πc =
(
(v2, τ), (v1, 1)

)
; the cycle starts with v2 that is set for

0 < τ < ∞ consecutive periods and then v1 is set once. Note that the extreme cases of τ ∈ {0,∞}
cover the cases where the prices are constant.

The arriving customers has valuation v2 with probability γ, and have valuation v1 with probability

γ̄ = 1− γ. The average revenue per period collected by the seller is R(τ), with

R(τ) =
1

τ + 1

(
γv2τ + v1 + v1

γ̄q12

1− q11

(
τ − 1− qτ11

1− q11

)
+ v1γ̄

1− qτ11

1− q11
(q11 + q12)

)
The first two terms in parenthesis represent the revenues from customers that arrive and buy right

away: those with valuation v2 at price v2 during τ periods, and everyone at price v1 in the last period.

The last two terms in parenthesis account for the customers that accumulate over time and end up

buying at either v1 or v2. The expected number of customers buying in a particular period l, 1 ≤ l ≤ τ ,

at price v2 is given by the expression

γ̄q12

l−2∑
n=0

qn11 = γ̄q12
1− ql−1

11

1− q11
,

i.e., these are all customers that arrive earlier with low valuation v2, and for whom the valuation

remains at v2 and jumps to v1 from at period l − 1. Summing over all l, 1 ≤ l ≤ τ , we get:

τ∑
l=1

(
γ̄q12

1− ql−1
11

1− q11

)
=

γ̄q12

1− q11

(
τ −

τ∑
l=1

ql−1
11

)
=

γ̄q12

1− q11

(
τ −

τ−1∑
l=0

ql11

)
=

γ̄q12

1− q11

(
τ − 1− qτ11

1− q11

)
The expected number of customers buying in period τ + 1 at price v1 is given by those who arrived

earlier with valuation v1 and remained at v1 until period τ , and then either stayed at v1 or jumped to

v2, i.e.,

γ̄

τ−1∑
l=0

ql11(q11 + q12) = γ̄(q11 + q12)
1− qτ11

1− q11
.

We next state our main result here where we show that under some conditions involving the prim-

itives of the problem, the seller is better off implementing a strictly cyclic policy of the form πc =(
(v2, τ), (v1, 1)

)
with τ finite.

Proposition 13 We denote by τ∗ = arg maxτ∈N{R(τ)}. We have the following

0 < τ∗ <∞ iff C ln q11 < B − v1 < C,
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where

B = γ v2 + v2γ̄
q12

1− q11
= v2

γq20 + q12

1− q11
> 0,

and

C = −v2γ̄
q12

(1− q11)2
+ v2γ̄

q11 + q12

1− q11
.

If these conditions do not hold, then τ∗ = 0 iff B − v1 < C ln q11, and τ∗ =∞ otherwise.

Proof. Given the expressions of B and C, we rewrite the revenue function as follows

(τ + 1)R(τ) = v1 +B τ + C (1− qτ11).

Note that C > 0 iff v2 < v1(1 + q11

q12
) (1− q11) where the term (1 + q11

q12
) (1− q11) ≥ 1. In order to prove

that it is optimal for the seller to set pt at v1 and reset the system, it is enough to prove that τ∗ the

maximizer of R is finite i.e. 0 ≤ τ∗ <∞. Simple calculations show that

R′(τ) =
B − v1 − C + C qτ11 (1− (τ + 1) ln(q11))

(τ + 1)2
.

We denote by N (τ) the numerator of R′(τ). By taking the derivative with respect to τ of g(τ) =

qτ11 (1− (τ + 1) ln(q11)), we observe that this quantity is non-increasing in τ , from which we conclude

that N (τ) is itself monotone in τ . Therefore, the equation R′(τ) = 0 admits at most one solution.

In light of that, we denote by τ̂∗ the supremum of R on the positive real line and conclude that a

necessary and sufficient condition for 0 < τ̂∗ <∞ is that

i.) N (0) > 0 and ii.) N (∞) < 0.

Hence, by putting these two inequalities together we get that −C(1 − ln q11) < B − v1 − C and

B − v1 − C < 0. We finally get that

0 < τ̂∗ <∞ iff C ln q11 < B − v1 < C.

Note that under these condition R(τ) > R(∞) ≡ B for any τ ≥ τ̂∗ and R(τ) > R(0) for any τ ≤ τ̂∗

and hence τ∗ := arg maxnR(n) ∈ (0,∞), which completes our proof.
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