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Chaos: Significance, Mechanism, and
Economic Applications

William J. Baumol and Jess Benhabib

magine a bargaining model (say, involving diplomats negotiating tariff levels or a

disarmament treaty) in which each party has been instructed by higher

headquarters to respond to each new offer by her opposite number with a
counteroffer that is to be calculated from a simple reaction function provided in
advance. Both negotiating parties are prohibited from revealing their own reaction
functions to the other. If the perfectly deterministic sequence of offers and counter-
offers that must emerge from these simple rules were to begin to oscillate wildly and
apparently at random, the negotiations could easily break down as each party, not
understanding the source of the problem, came to suspect the other side of duplicity
and sabotage. Yet all that may be involved, as we will see, is the phenomenon referred
to as chaos, a case that is emphatically not pathological, but in which a dynamic
mechanism that is very simple and deterministic yields a time path so complicated
that it will pass most standard tests of randomness.

Chaos has become a subject of great interest to specialists and nonspecialists alike.
Besides economics, it has entered the literature of geometry, physics, ecology and
meteorology. It has been written about at length in the New York Times Magazine and
Scientific American, as well as technical publications. This article seeks to describe what
it is, how it works, and what it means for economics.

Roots in the Earlier Dynamic Models

The roots of economists’ interest in complex dynamics are to be found in the vast
nonmathematical literature on business cycles, with its large number of models each
undertaking to provide a set of conditions sufficient to generate oscillatory behavior in
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the economy. However, many of these models were vague and their logic difficult to
verify.

All this changed in the 1930s with the work of Frisch (e.g., 1933), Lundberg
(1937), and Samuelson (1939), who used difference equations, differential equations
and mixed models to generate deterministic time paths. It was readily demonstrated
for such models that any parameter values chosen within broad ranges that are
sometimes easily calculated must yield an oscillatory time path.

For example, the simplest sort of difference equation is the first order (one-period
lag) linear equation y,,, = ay,, where j, is the value at time ¢ of its single variable.
Given initial value jy,, this obviously generates the time path

N=@qy =@y =ay,.. ., = a'y,.

Clearly, any negative value of parameter a yields an oscillatory time path, as a'y,
successively goes from positive to negative and back.

An example that is somewhat less oversimplified is Samuelson’s justly famous
multiplier-accelerator model (1939) which is made up of the three standard relation-
ships

Yz=Ct+It’ CI=CYI—1+k, Iz=b(Yt—1_ Yt—z)’

where Y is national income (output), C is consumption, ¢ is the marginal propensity
to consume, and [ is investment. The C equation is an obvious linear consumption
function with a one-period lag. The investment function is a linear lagged accelerator
with investment assumed proportionate to the preceding period’s rate of growth of
output. Substitution of the two latter equations into the first at once yields

Y, = (C + b)yt—l —bY,_, + &,

which is Samuelson’s second-order linear difference equation. It is easy to show that
for broad ranges of values of ¢ and b this equation, too, generates oscillations, and it is
not hard to explain intuitively the economics of the oscillatory mechanism.

These models were received enthusiastically and generated many writings by
leading economists. Still, before long disappointment seemed to set in and publication
slowed. There were two basic reasons. First, it became clear that the behavior of the
time path generated by such a linear dynamic system can be extremely sensitive to
changes in the values of the parameters, as well as the structure of the model. That
made it hard to formulate models (and econometric estimates of their parameter
values) that constituted robust and reliable representations of reality. Still; as we will
see, this is not really a shortcoming of the models, but a weakness of some of their
interpretations. Such sensitivity, though of a rather different variety, holds with even
greater force for chaos models, and is one of the main reasons for their interest.
Second, it was recognized early that, qualitatively speaking, such linear models were
capable of generating only four types of time path: (1) oscillatory and stable (that is,
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converging with oscillations of decreasing amplitude toward some fixed equilibrium
value); (2) oscillatory and explosive (cycles of ever-increasing amplitude); (3) nonoscil-
latory and stable; and (4) nonoscillatory and explosive. It was soon recognized that
linear equations even more complex (that is, of higher order) than Samuelson’s would
not generate any time paths basically different from these four. This range of possible
time path configurations simply was not sufficiently rich for the economists’ purposes,
since in reality time paths are often more complicated and many oscillations do not
seem either to explode or dampen toward disappearance.

A solution to the problem, brought to our attention by Hicks and Goodwin, was
the nonlinear models, perhaps of the general form Y, = f(Y,_,,..., Y,_,). Responding
to real economic issues, not just to formal mathematical problems, these authors, for
example, showed that such a nonlinear model can yield a stable limit cycle toward
which all possible time paths of the variable Y, converge. That is, rather than
converging to a fixed equilibrium value, Y*, with the oscillations dampening out
toward zero amplitude, the nonlinear models could instead yield a stable equilibrium
cycle, with Y, forever wandering from peak to trough along the equilibrium cyclical
path. This is pretty much where matters were left, with the work stopping short of
introducing explicitly a degree of nonlinearity sufficiently great to generate chaotic
behavior.

In essence, chaos theory shows that a simple relationship that is deterministic bur
nonlinear; such as a first order nonlinear difference equation, can yield an extremely
complex time path. Intertemporal behavior can acquire an appearance of disturbance
by random shocks and can undergo violent, abrupt qualitative changes, either witt
the passage of time or with small changes in the values of the parameters. Chaotic
time paths can have the following attributes, among others: a) a trajectory (time path’
can sometimes display sharp qualitative changes in behavior like those we associate
with large random disturbances (for example, very sudden changes from small-ampli
tude to large-amplitude cycles, and vice-versa), so at least some of the standard tests o
randomness cannot distinguish such chaotic patterns of change from “truly random’
behavior; b) a time path is sometimes extremely sensitive to microscopic changes 11
the values of the parameters—a change in, say, the fifth decimal place of on
parameter can completely transform the qualitative character of the path; c) the
may never return to any point they had previously traversed, but display in a boundex
region an oscillatory pattern which is consequently very “disorderly.”

Where chaos occurs economic forecasting becomes extremely difficult (for furthe
discussion see Baumol and Quandt, 1985). The two basic forecasting devices—
extrapolation (of various degrees of sophistication) and estimation of a structure
forecasting model—Dboth become questionable. Extrapolation is hardly appropriat
for a time path that might exhibit two-period oscillations of steadily increasin
amplitude for 50 periods, with the fluctuations but all disappearing for the next 2
periods, and still another pattern abruptly emerging thereafter. Forecasting carrie
out with the aid of estimates of the parameters of an underlying model also runs int
difficulties if an error in calculation of the third decimal place of a parameter ca
change the qualitative character of the forecast beyond recognition.
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The work on chaotic dynamics suggests that disenchantment with earlier dy-
namic models is perhaps attributable to failure to recognize their most promising role
—that of revealing sources of uncertainty, and enriching the list of recognized possible
developments. Three brief examples will suffice to illustrate the point and to lead us
toward economic applications of chaos analysis.

The first is the demonstration by even the earliest formal models of how easy it is
for any deterministic time path to produce oscillation, a fact well recognized by
engineers who work with control theory (the theory of automatic adjustment mecha-
nisms such as steering devices or thermostats). The analysis demonstrated that the
construction of a model sufficient to imply the presence of fluctuations requires neither
convoluted reasoning nor premises that are implausible or pathological.

In addition, despite their sensitivity, the dynamic models proved to be effective
instruments for disproof of the universal validity of propositions that had previously
been accepted too readily, and for corresponding warnings to policy designers. For
instance, such a model was used to disprove by counterexample the allegation that
profitable speculation is always and necessarily stabilizing (Baumol, 1957). That is,
even if speculators buy when price is low and sell when price is high they can
conceivably increase the amplitude of any fluctuations in the price of the good in
which they are speculating, if its price happens to be rising at the time they buy and
declining at the time they sell. Similarly, it was shown that slight lags in response can
undermine apparently rational countercyclical policy (Baumol, 1961). A government
which pursues an “obvious” policy such as spending more whenever the economy’s
output (or its growth rate) is below some target level and reducing its expenditure
when output (or growth rate) is above target can increase the amplitude of fluctua-
tions even if the lag in its countercyclical measures is assumed unrealistically small
(see also Phillips, 1954, 1957).

Chaos theory has at least equal power in providing caveats for both the economic
analyst and the policy designer. For example, it warns us that apparently random
behavior may not be random at all. It demonstrates dramatically the dangers of
extrapolation and the difficulties that can beset economic forecasting generally. It
provides the basis for the construction of simple models of the behavior of rational
agents, showing how even these can yield extremely complex developments. It has
served as the basis for models of learning behavior and has been shown to arise
naturally in a number of standard equilibrium models. It offers additional insights
about the economic sources of oscillations in a number of economic models. Some of
this will be illustrated later, once the required tools have been described. Meanwhile,
some references to the literature should suggest the range encompassed so far by
economic writings on the subject.'

'In economics, the possibility of cyclical and chaotic dynamic behavior was perhaps first suggested by May
and Beddington (1975), and has been shown to arise in simple ad hoc macroeconomic models (Stutzer,
1980; Day and Shafer, 1983, in duopoly models (Rand, 1978), in models of growth cycles (Day, 1983; R. A.
Dana and P. Malgrade, 1984), in cobweb models of demand and supply (R. V. Jensen and R. Urban,
1982), in models of the firm subject to borrowing constraints (Day, 1982), in dynamic models of choice with
endogenous tastes (Benhabib and Day, 1981), in models of productivity growth (Baumol and Wolf, 1983),
in dynamic models of advertising expenditures (Baumol and Quandt, 1985), in models analyzing military
arms races and disarmament and negotiations (Baumol, 1986). Cyclic and chaotic dynamics have been
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How Complex Cyclical Patterns Arise

Since much of the discussion that follows relates to cyclical and oscillatory
behavior, it is important to define precisely what we mean by those terms. A time
path, 3, will be taken to be characterized by a cycle whose duration is p periods if it
always replicates itself precisely every p periods from any initial point in its trajectory,
and does not always repeat itself precisely in any smaller number of periods. In short,
any pattern which repeats itself exactly every p periods is said to be a p-period cycle.

In contrast, an oscillatory time path is defined more vaguely as one which is not
monotonic, involves “frequent” rises and declines in the values of its variables, but in
which the time path may rarely or never replicate an earlier portion of its trajectory.

The simplest and most common chaos model involves a nonlinear one-variable
difference equation of first order, that is, one of the form y,,, = f( »,), whose graph
(the phase diagram) showing f( ,) as a function of y, (Figure 1) is hill-shaped and
“tunable ”’; in other words, the height, steepness and location of the hill can be adjusted
as desired by a suitable modification in the values of the parameters of f( y,). This
phase diagram, which will presently be described explicitly, is the geometric instru-
ment used to analyze the time path generated by a difference equation model, and it
is employed extensively in chaos analysis.

The function most commonly used to illustrate the chaos phenomenon is the
quadratic equation with a single parameter, w

(1) Ji+1 =f( )’t) = w.yt(l _}’t)’ where &y, ,/dy, = w(l - 2}’1)'

The phase curve (the hill-shaped curve) in Figure 1 is defined as the graph of the
difference equation j,,, = f( »,); in this case, it shows this function when w = 3.5.
The figure also shows the generation of a time path graphically, using the phase curve
in the manner familiar in elementary economic dynamics, to find y, from y, (point
A), next, using the 45° ray to transfer », from the vertical to the horizontal axis (point
B) then repeating the procedure to find y, from y, (point C) and so on.?

Figure 2 shows that the height of the phase curve hill, and its slope at the
(equilibrium) intersection point with the 45° ray depends on the value w of the
parameter(s) of the difference equation. There are four general cases, each illustrated

shown to arise in a number of competitive models of intertemporal general equilibrium. These results are of
particular interest since they demonstrate that prices and outputs can oscillate even under standard
competitive assumptions such as market clearing, perfect information and perfect foresight. For overlapping
generations models of exchange, Benhabib and Day (1982) have provided sufficient conditions for cyclic
and chaotic dynamics under perfect foresight when the young are net borrowers (the classical case; see Gale,
1973). Grandmont studied the case where young are net savers (the Samuelsonian case; see Gale 1973) and
correctly learn to forecast periodic equilibria. In equilibrium models with infinitely lived agents Benhabib
and Nishimura (1979; 1985, 1989), provided sufficient conditions for cyclic equilibrium and recently, albeit
in a more abstract setting, Boldrin and Montracchio (1985) and Deneckre and Pelikan (1984) have shown
that chaotic trajectories can occur in such models. See also Woodford (forthcoming). These are only part of
a growing list.

?We see immediately from (1) that whatever the value of w, the graph (the phase curve) for the equation
always must reach its maximum at y = 0.5, where dy,, ,/dy, = w(l — 2, = 0. At that point its height is
w 0.5 (1 — 0.5) = w/4 which increases in proportion to w.
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Fig. 1. Phase diagram, periods 0-9 y(¢ + 1) = 3.5p(¢)[1 — »(¢)], »(0) = 0.034
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Figure 1 can be used to remind the reader in a bit more detail how one uses a phase diagram to
calculate the behavior of an ongoing time path. We must start our calculation at some arbitrarily chosen
date, call it ¢ = 0, at which the value of 3, is indicated by the point labelled »(0) on the horizontal axis of
the graph. Then the next period’s value of y, that is, y(1), is given by the height of point A on the phase
graph of 3., = t( ) directly above »(0). Next, we want to repeat the process, this time starting from y(1),
in order to find »(2), the next value of y,. In order to do this, we must, obviously, first transfer y(1), i.e., the
height of point A, from the vertical axis to the horizontal axis. For this purpose we first move horizontally
from point A to point B on the 45° line. The point directly below B is the position of y(1) on the horizontal
axis, because the two coordinates of any point of the 45° line must be equal. Having found y»(1) on the
horizontal axis we now move directly upward to point C on the phase graph, whose height is »(2).
Continuing in this way we trace out the time path of j,.

We notice that in the leftward region of the diagram, where the phase graph is upward sloping, the
time path ABCDH. .. does not change direction (i.e., in this case it goes steadily upward). Thus, as, e.g.,
where » = a‘y, with a > 0, the time path has no oscillations. However, toward the righthand end of the
diagram, where the phase graph has a negative slope (as where a < 0 in 3 = a‘y) the time path starts to
oscillate. It goes up and down in a cobweb pattern (such as HJKLM) around the equilibrium point E. (E is
the equilibrium point since that is where the phase curve cuts the 45° line, so that there 3., = 3, as
equilibrium requires.

in Figure 2: As is easily shown directly from equation 1, (1) if w < 1 the phase curve
will lie entirely below the 45° ray in the positive quadrant;3 but if w > 1 there will be
a positive valued ( y, > 0) intersection (equilibrium) point, E, between the phase curve
and the 45° ray. In particular, (2) if 1 < w < 2, the phase curve’s slope at the
intersection point will be positive; (3) if 2 < w < 3 that slope will be negative but less
than unity in absolute value, and (4) if w > 3 the slope will be less than —1.

For two reasons, this last case, w > 3, is the one that is of interest here. First,
since the slope of the phase curve at the equilibrium point is negative, then the

*For at a crossing of the phase line with the 45° ray ., =3 =y, so that 3 =uwy(l — ) or
wy? = (w — 1)y, Hence, 3 = (w — 1)/w will not have a positive value for w < 1. Note that, by (1), at E
the slope of the phase graphis w(l — 2y))=w - 2(w — 1) =2 — w.
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Fig. 2. y(t + 1) = wy(t)[1 — ()] various values of w and a simulated path.

elementary theory of difference equations tells us that the time path must be
oscillatory. The cobweb-like oscillations will involve a rise and a fall in every two
successive periods, with the high point of one period, y,, followed by the low point,
9,41, of the next, just as in y, = a‘y, when a < 0. Second, since the slope is greater
than unity is absolute value, the oscillations will be explosive (of ever-growing
amplitude), moving ever further away from the equilibrium value, ,, in the neigh-
borhood of that value of y. An example of such a time path is the case where
94, = —2y and y, =1, so that y, = —2; y;= +4; = —8; and so on. In
Figure 1 such a path is shown by the cobweb-like trajectory surrounding point E.

If the graph were not hill-shaped that would be the end of the story, with the
cobweb oscillations moving ever further away from the equilibrium point. However,
with a hill-shaped phase curve, eventually, as the cobweb expands it will encounter
the positively sloping side of the hill and “bounce off it” at a y,,, value closer to the
equilibrium level than some earlier y,, . (Thus, in Figure 1 the height of point N is
closer to that of equilibrium point E than is earlier point M’s.) Such a return toward
equilibrium must occur eventually, since as the cobweb expands further to the left
during its explosive stage, its height in the next move that follows must be reduced
because the slope of the pertinent portion of the graph is positive. When this happens,
the cycles will begin converging toward E once more, but that can only be temporary,
because the slope of the phase curve at E is greater than unity in absolute value, so
that E is an unstable equilibrium that generates an explosive time path, as we have
seen.

The analogy with a billiard ball bouncing off the sides of the table in a
complicated pattern is suggestive here. It is easy to imagine why, in such cir-
cumstances, the time path can turn out to be complex, as chaos requires. What is
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rather more surprising is that the pattern of chaotic behavior will then follow some
very simple and orderly rules.

To understand this orderly pattern it is necessary to describe chaotic behavior
more carefully. While the discussion is based largely on our illustrative chaos equation
9,41 = wp(1 — »,), exactly the same sort of behavior holds for a very wide set of
relationships 7, , = f( »,) whose graph is hill-shaped and “tunable” by adjustment of
the parameter values.

Let us first preview the results that will be shown, initially without explanation.
We will see that for values of w slightly less than 3 there will be cobweb time paths
whose oscillations converge to a stable equilibrium point E (Figures 3a and 3b). When
w increases slightly above 3, these time paths will be replaced by one which is
explosive but which converges to a stable limit cycle, two periods long (the rectangular
trajectory LL’HH in phase diagram 3c and the corresponding time path in Figure 3d
with its clear two-period limit cycle). Then, for higher values of w, the two-period
cycles will in turn (at a known value of w) give rise to a cycle of four-period length.
At a higher value of w this cycle will in turn give birth to an 8-period cycle, and then
to a 16-period cycle, etc. Here, a term such as “four-period cycle” means a path such
as “high point; low point; still higher point; still lower point,” which is then repeated
over and over again.

We begin the story just where the tuning (or controlling) parameter attains a
value (w = 3 in our case) at which the equilibrium point, E, becomes unstable
because the slope of the phase curve exceeds unity in absolute value. Exactly at that
value of w the stable two period limit cycle, y,, 3, (with y; = »;) will be shown to
make its appearance. Then, as w increases further (to w = 3.4495 in our case) the
two-period cycle, in its turn, will become unstable. At exactly that value of w we will
see that a stable four-period cycle, »X, »*, y¥, »* (with p&¥ = p*) makes its
appearance. Two of these four points, say, »*, y5, of the four period-cycle are
generated from one of the points, say y,, of the two-period cycle, via a process called
“bifurcation” (which will be explained presently), while the other two new points
7%, »* “bifurcate” from the other point of the two-period cycle.

As the value of the parameter w is increased further, the four-period cycle itself
becomes unstable in its turn, and from each of the four values y*, »*, s, »* that
constitute the four-period cycle, two additional points emerge via a new bifurcation.
These new eight points now constitute a stable eight-period cycle. When the four-period
cycles are introduced, the two-period cycle remains present; similarly, when the
eight-period cycles enter, those of four and two periods remain. As w is increased, the
period-doubling bifurcation tale will repeat itself, successively adding new stable
cycles. Ultimately, at suitable values of the parameter, the time path must involve an
infinite number of cycle lengths.

At first, these will only have even periods of increasing length, all of them powers
of two. Eventually, cycles whose length involves an odd number of periods will
appear. The first such odd-period cycles to enter the time path will be very long, but
they will be joined by odd-period cycles of shorter and shorter duration, encompassing
every positive odd integer (for a complete characterization, see Sarkovskii, 1964).
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Finally, at some value of the controlling parameter w even three-period cycles will
occur. There will then be an uncountable number of initial values yielding bounded
time paths which never repeat any past behavior, no matter how long a set of time
periods one permits the calculation to encompass. When this set of conditions holds,
one may wish to say that chaos is present.

It should be made clear, however, that while an infinite number of cycle lengths
are present then, they need in general not all be equally influential upon the time

(32)
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Fig. 3. Three types of time path and equilibria.
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path. For example, when the four-period cycle enters the picture, the two-period limit
cycle continues to be present in the structure of the model, but since it is now unstable
it will generally no longer influence the long-run behavior of the time path. Similarly,
when the eight-period cycle emerges, the four-period limit cycle will remain in the
background, largely deprived by its instability of influence on the time path.

Figures 1 and 3e show for the case w = 3.5 how the four-period limit cycle is
gradually approached. In addition to showing f( 3,), Figure 1 also includes the time
path of the first 10 periods, starting with 3, = 0.034. The resulting messy cobweb
displays oscillatory behavior about point E, but the pattern is not obvious. However,
Figure 3e represents the time path toward which , converges as ¢ approaches infinity.
We see here that the time path has settled down into a recurrent pattern (so that w
has not yet entered into the region of chaotic behavior). We seem to have two nested
cycles with the time path alternating between them. The cyclical path AA’BB does
not return to starting point A but instead goes to neighboring point C; then it follows
the cycle CC’'DD’ and then, apparently as something of a miracle, returns to starting
point A of the other cycle. However, this is no great coincidence, but a normal part of
the process, for reasons the analysis of the next section will indicate.

To see just how this produces a four-period cycle we turn to Figure 3f, which is
the time path generated by the phase diagrams in Figures 1 and 3e. At first glance we
see only a persistent (but imperfectly replicated) oscillation exactly two periods in
length, which clearly dominates behavior. But superimposed on it are two cyclical
disturbances, each four periods long, which together constitute the four-period cycle.
To see them one must first look exclusively at the upper horizontal segments a, ¢, €, g
and i of the time path, and then by looking in turn only at the lower segments, b, d, f,
h and j.

The upper segments describe the first of the oscillations. Starting from a, and
skipping one period, , falls to c. Then, after a gap of another period, , rises again to e.
Continuing in this way we see that one has an oscillatory disturbance whose high
points are a,e,i,... and whose low points are c,g,..., with four periods elapsing
between, say, one high point and the next. This oscillation corresponds to the
difference in height between horizontal segments AA’ and CC' in the time path of the
phase diagram 3e. The reader will now readily recognize the other four period
oscillatory disturbance in Figure 3f by looking at the lower horizontal segments b, d, {,
h, and j. The net result (in the limit) is a single four-period cycle, that is, a cycle that
repeats itself precisely every four periods, as is confirmed by careful examination of
the right hand end of the time path in Figure 3f.

The Orderly Structure of Chaotic Behavior*

Let us begin to consider, now, why chaos should be approached by such an
orderly progression: as w is increased, first there is one stable two-period cycle; then at

*The bulk of the following discussion is based on the beautiful analysis in May (1976).
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the value of w at which the two-period cycle becomes unstable, a stable four-period
cycle emerges; that four-period cycle, as we have seen, is produced by two sets of
oscillation one around the top points and one around the lower points of the
two-period cycle. Then, at the value of w where the four-period cycle becomes
unstable, eight-period cycles appear, and so on, ad wnfinitum. We will seek to provide
an intuitively appealing view of the matter.

We start by studying how the stable two-period cycles enter, since the mechanism
of the subsequent introduction of 4, 8, 16 and higher period cycles is perfectly
analogous. Because we want to study the transition from a stable equilibrium point E
to a stable two-period cycle we must extend our analytic tools correspondingly. An
equilibrium point is for obvious reasons defined by the requirement y,,, = y, = J,.
This clearly compares the values of y in two successive periods.

But if an equilibrium is constituted by a two-period cycle it is, obviously, defined
by 9, = Y495 Jis1 = Y43 This clearly requires comparison of the values of y in every
other period. Thus, to investigate the genesis of two-period cycles we need a relation-
ship between 3., and ), not one between ., and y. Such a two-period
relationship is obtained via a second iteration of the relationship y,,; = f( »,). That is,
we first find y,,, from f( »,) and then we find jy,,,, in turn, from f( y,, ) to give us
Y42 = F[ f(2,)]. To carry out this calculation, if, for example, y,,, = wy(1 — »,) so
that also y,,, = wy,, (1 — »,.), we substitute the expression for y,,, from the first
equation into the second to obtain a direct relation, y,,, = f[ f( 3,)], between .,
and y,. (Henceforth, we will use f@ to represent f[ f( 3,)] = Ji12, f© to represent
FLFLA()]} = ivs, and s0 on.)

To tell the story of the introduction of the two-period cycles we must first
consider some properties of the graph of the general two-period relationship y,,, =
f®(,). This may be considered the equation of a two-period phase curve in the
graph which has jy,,, rather than y,, , on its vertical axis. In Figure 4a such a phase
curve [labelled y(t + 2)], with its typical double hump, is superimposed on the
hill-shaped two-period phase curve [labelled (¢ + 1)].

Let us examine the relations between the two phase curves, y(¢t + 2) (or @),
and (¢t + 1) (or f). First we note that the two-phase curves in Figure 4a cross the
horizontal axis at the same points, that is, at the points y, = 0 and y, = 1. This is
generalized in Proposition 1:° If the graph of f goes through the origin, then all roots of
f (that is, points at which ,,, = f( y,) = 0) must also be roots of f®.

Next, we note that the two-phase curves cross the 45° ray at a common
equilibrium point, E. This is generalized in Proposition 2: Any equilibrium point of f
must also be an equilibrium point of f®.

We also have Proposition 3:° The slope of f® at an equilibrium point of f must
equal the square of the slope of f. That is, at any y =y =y, we must have

df ®/dy, = (df/dy,)".

5Pmof of proposition 1: Let »* be a root of f. Then, since f( y*) =0, f[ f(»*)] =f(0) =0

Proof of proposition 2: If 3, is an equilibrium point of f then f( 5,) = j, so that fO ) =flf=
J(3.) = 3, Proof of proposition 3: df ® /dy, = (dy,.o/dy, . \ Ny /dy,), but at 3, =y, =, we must have
B/ = Do/ Dy = df/D,.
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Comment: Proposition 3 must hold, in particular, at the origin, where y,,, =
7, = 0. Note that corresponding propositions also hold for any f () where n is any positive integer.

The final key observation linking the graphs of f® and f is that where (as in
the case of equation 1) the basic relationship, f( ) is quadratic (it includes a term
with »? in it), and consequently has one peak, the relationship f ACy) = ()]
will be of fourth degree; it has a term involving 3}, as the reader can verify by direct
substitution. (For example, if y,,, = y2 so that y,,, = y% ,, then 3., = %) So f @
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can then be expected to have either two maxima and one minimum, or the reverse.
That is why the f@ graph, as is shown in the figure, typically has a double hump.’

Figures 4a—4c illustrate the behavior of the preceding relationships as the value
of w increases. Each graph is derived from our basic illustrative equation for a
different value of w, as will now be explained, and we will see precisely why two new
equilibrium points must appear just at the value of the tuning parameter (@ = 3 in
our example) where the initial equilibrium point E becomes unstable.

By Proposition 3, in all three graphs f®( y,) must cut the horizontal axis at the
same points as f( 3,). It is easy to show that each of these curves will have a slope
greater than 1 near the origin and so lie above the 45° ray. Finally, at equilibrium
point E all three phase curves, f( ), will have the slope 2 — w (see footnote 3) so that
by proposition 3 f® will have the slope (2 — w)*

It follows at once that where (as in Figure 4a) 2 < w < 3, then the slope of f®
will be positive and less than unity. That is, the f @ curve will cut the 45° ray at E
from above as one moves from left to right.

Figure 4b shows the case w = 3 so that at E, df/dy, = — 1 exactly; and the slope
of f@ is(df/dy)? = (2 — w)> = +1. Then f®( y,) will be tangent to the 45° ray at
E, as the figure shows.

Finally, the full story emerges in Figure 4c where w > 3 so that df @ /dy, =
(2 — w)? > 1. Therefore, fP( y,) must cut the 45° ray from below at E as we move
from left to right. This means that as f®)( y,) leaves the origin, initially lying above

"This also suggests in another way how the bifurcation process works. Equilibrium points for y,,, = f ()
by definition require 3, , = 3, call their common value j,,. Then the equation jy, = f @ 5,,) which gives
these equilibrium points is a quartic. Two of its roots will be imaginary until w attains the value at which
the new equilibria appear. :
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the 45° ray, at some point G to the left of E, it must cross that ray for it to be possible
for that curve to cut the ray at point E from below. Similarly, to the right of E,
f®( »,) must first lie above the ray, and so must cross it again at some point, H, in
order to reattain the horizontal axis again at y, = 1. We see that happen just at that
value of w at which the slope of the f( »,) graph begins to exceed unity in absolute
value, so that when its equilibrium becomes unstable, there appear two new intersec-
tion points G and H, which have no counterparts in Figure 4a. These are the two new
equilibrium points® that constitute the bifurcation which generates a two-period cycle
from the equilibrium E. This cycle will be stable because the absolute value of the
slope of f® at G and H is negative and less than 1. The limit cycle is approached by
an oscillatory cobweb which is shown in Figure 4c by the time path abcd... which,
analogously to that in Figure 3c, approaches the rectangular limit cycle HJGK. It
should be noted that the size and position of the limit cycle are given by the two
corner points G and H, which are clearly the stable two-period equilibrium points of
intersection between the curve y,,, = f®( »,) and the 45° ray. This limit cycle entails
a perpetual and successive rise and fall of y, from the height of point G to that of
point H, and so on, forever.

How Four-Period Limit Cycles Arise

We can now quickly see by analogy how the two-period equilibrium points G
and H that generate the two-period limit cycle in Figure 4c become unstable and four
new equilibrium points then appear. The story is a precise replication, with a second
bifurcation step, of that in the previous section. As the value of w increases, the
absolute slopes of () at G and H will increase monotonically, and must
ultimately exceed unity, so their surrounding cobwebs must again become unstable. If
we form the function y,,, = f®( 3,) = f( f( f( f( 3,)))), for precisely the same reasons
as before, the curve representing f* will become tangent to the 45° ray at G just
when the slope of f® = —1, and the same will be true at H. For w slightly larger
than this, G and H will each be surrounded, via bifurcation, by two new equilibrium
points, producing a four-period limit cycle, just like that shown in Figure 3e. These
four new equilibrium points constitute a four-period limit cycle which is initially stable
but will grow unstable as w increases still further. The process obviously can repeat
itself ad infinitum, thus giving rise to an infinite set of superimposed oscillations, each
one with a period that is a power of two.

How Three-Period Cycles Arise

So far we have dealt only with cycles whose duration is an even number of
periods. However, it is now easy to show how odd-period cycles arise, using essentially

81t can be proved that the slope of the phase curve at equilibrium points G and H must be the same, and
the analogous result holds at any equilibrium points that emerge at any subsequent bifurcation.
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the same approach as before. To find the three-period cycles, for example, we plot the
phase diagram for ,,5 = fP(3) = f(J(f(3))).

If f( ) has a single hill, f®( »,) will normally exhibit four hills when the tuning
parameters have made the f( y,) hill sufficiently steep. The graph is shown in Figures
5a and 5b. In 5a, with w relatively small, the phase curve only crosses the 45° ray
once, at a location, E, which is also the nonzero equilibrium point of f( y,). However,
as w increases in value the hilltops of f® will rise and the valleys will deepen, and
eventually the 45° ray will be crossed seven times. The corresponding six new
crossings will correspond to points on two distinct cycles of three periods, one of which
is stable and the other unstable. Unlike the bifurcations of cycles of even order which
derive from cycles of lower period as their equilibrium points undergo a loss of
stability, odd period cycles do not bifurcate from lower order cycles, but simulta-
neously emerge or disappear in pairs, with a stable and unstable cycle constituting
each pair.

Chaos and Strange Attractors

Despite its aura of erotic kinkiness, “strange attractor” is a technical term which
offers yet another insight into the workings of the chaos phenomenon. An attractor is
what most of us might describe as the equilibrium or limit time path of a stable
dynamic system, whether or not that system is chaotic. For example, the difference
equation j,,, = 0.5y, clearly converges toward the equilibrium value y, = 0 so that
any time path of the equation, whatever the initial point, will converge in the limit to
the origin in the phase diagram. The origin is then said to be the attractor for this
relationship; and in this case the attractor is clearly a single point.

In other cases, the attractor is more complex. For example, all time paths of the
system may be cobwebs which converge toward a simple rectangle in the phase
diagram. This means that the time path will settle down in the limit to a two-period
oscillation—a repeated traversing of that rectangle, going endlessly back and forth
from its upper to its lower edge and then back up again. Here the attractor is the
rectangle, that is, it is a two-period limit cycle, toward which all time paths of the
system converge (Figure 3c).

Attractors can grow more complex still, as illustrated in Figures 1 and 3e. In the
former we see a complicated cobweb path which converges to the attractor shown in
Figure 3e, an attractor which can perhaps be described as a pair of intertwined
rectangles. The result is an equilibrium time path involving somewhat messy oscilla-
tions approximating those in Figure 3f.

Now intuition suggests, correctly, that in the stable case, as the attractor of the
system is made increasingly complex by changes in the pertinent parameter values,
some time paths will increasingly take on chaotic attributes. Before defining a strange
attractor we must note that a bounded time path is called aperiodic if it will never
return to any point it had previously visited. Second, an infinite set is called



92 Journal of Economic Perspectives

09+

0.7+

0.6+
y(t+ 3)
y(t+ 1)
0.4

0.3
0.2 4
0.1

0 } + } : } } } t \

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
()

Fig.5a. p(t + 3) = f(f{ f[ 2D, (¢ + 1) = 3.65(1)[1 = (V)]

“countable” if its elements correspond in number to that of the set of all integers.
Otherwise, the set is called uncountable.

Turning next to a strange attractor we may think of it, roughly, as a set of points
toward which complicated paths starting off in its neighborhood are attracted. More
accurately, it is an uncountable set of points such that all time paths that start off
within it will remain in that set, that neighboring time paths will be attracted to it and
such that time paths that start in the set can be aperiodic or whose period is as long as
any arbitrarily preselected number.

It is possible to provide pictures of strange attractors, but they are sufficiently
convoluted that it is fairly difficult to do so without recourse to three-dimensional
colored diagrams (for nice examples, see Crutchfield, Farmer, Packard and Shaw,
1980, pp. 50-51).

Sensitivity of the Time Path

An important matter, especially for forecasting purposes, is whether initial points
that are close together give rise to time paths that diverge. Such divergence has been
termed “sensitive dependence to initial conditions” and has attracted a great deal of
attention in disciplines outside of economics which have also utilized chaos theory. For
example, meteorologists have dubbed this sensitivity the “butterfly’s wing phenome-
non.” They refer to the possibility that a butterfly fortuitously flapping its wings in
Hong Kong can cause tornados in Oklahoma if weather is controlled by chaotic
relationships.
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A few graphs will illustrate this degree of sensitivity. In Figures 6a and 6b there is
no difference in initial conditions or anything else, except that in 6a w = 3.935, while
in 6b w = 3.94. The figures show that changes in the third decimal place in the
parameter value can transform the entire picture unrecognizably. A similar qualita-
tive jump occurs if we move to w = 3.945. It is easy to demonstrate that far smaller
changes in the value of the parameter can cause similar upheavals. Not only that. If
we hold the parameter value constant and change the initial condition by microscopic
amounts in a chaotic regime equally startling qualitative changes in the time path
may follow.

The sensitivity of the time path of a variable governed by a chaotic time path
can be brought out in another way. In a calculation by Richard Quandt, the time
path of our illustrative equations 3,,, = wy,(1 — »,) was determined twice, each time
for 640 periods. The first calculation was carried out by a process that rounded after 7
decimal places while, in the second, rounding occurred after 14 decimal places. With
w sufficiently low so that the equation had not yet actually entered the chaotic region,
the two calculated time paths remained virtually identical even after 600 iterations. In
contrast, with a w value sufficiently large to produce chaos, after only 30 iterations
the two series lost virtually any resemblance to one another.

Sensitive dependence to initial conditions will not be observed if there exist stable
periodic time paths that attract trajectories from almost all initial points. For the
quadratic case there will be many values of w between 3 and 4 for which stable orbits



94 Journal of Economic Perspectives

lg  o¢ WH
0.9t s ¢
0.8 1
0.7t
0.6
ity 0.5¢

0 t t + } + + : + + |
0 5 10 15 20 30 35 40 45 50

25
Period (¢)

Fig. 6a. Time path, periods 0-50, y(¢ + 1) = 3.935y(¢)[1 — »(¢)], »(0) = 0.99

exist but there will also be a “large” set of w’s for which trajectories will be sensitive
to initial conditions. The studies of Shaw (1981) also suggest that for the quadratic
case sensitive dependence will be prevalent for values of w between 3.5 and 4 (in the
sense that sensitive dependence will occur for a set of w’s of positive Lebesque
measure, a standard measure of the number of points in a set, defined in terms of the
total area or volume completely occupied by those points; see Jacobson, 1981).

These figures indicate the difficulties that are apt to beset forecasting in the
presence of chaos. Even a forecasting procedure of unprecedented accuracy is likely in
such a case to yield results that differ vastly from the actual course of future
developments.

Sudden Qualitative Breaks in the Time Path

Figure 6b also dramatizes another of the characterizing attributes of chaotic
trajectories— their propensity to introduce sharp and unheralded qualitative breaks in
time path. From the initial point, A, of the time path until point B, some 25 periods
later, there is a fairly homogeneous regime of (somewhat lopsided) cycles which seem
to exhibit no clear trend in amplitude. Then, suddenly, the time path becomes almost
horizontal, and for 10 periods (from B to C) cyclical behavior all but disappears. At
that point, just as unexpectably, several fairly sharp oscillations arise, apparently out
of nowhere, abruptly becoming very moderate again to the right of point D. It is
difficult to imagine how any forecasting technique that relies upon extrapolation,
direct or indirect, could have correctly predicted events during the period encom-
passed between points B and C from even the most accurate and fullest set of data
about the 25-period interval that preceded it.

This graph suggests that chaotic behavior does not generally mimic pure ran-
domness in the performance of its basic variable. Rather, the time path can resemble
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one that might be expected of a deterministic model, but which is at the same time
subject to very large random disturbances occurring at randomly determined inter-
vals.®

Some Basic Mathematical Results

Modern methods of qualitative analysis of dynamic systems go back to Poincare
(1880, 1892). Since the classic work of Smale (1967), it has become clear that very
complicated trajectories (time paths) can easily arise in certain dynamical systems and
that such complicated trajectories can persist when small perturbations of the underly-
ing system occur. (For a clear exposition see Guckenheimer and Holmes, 1983.) The
papers of Li and Yorke (1975) and others and the work of Sarkovskii (1964) which has
recently been rediscovered (see Stefan, 1977) have greatly facilitated exploration of
the pertinence of such complicated dynamics, arising in simple first order dynamic
systems, to a variety of fields, such as physics, biology or economics. (For a recent
excellent exposition, also see Grandmont, 1986.)

Let us now describe a widely used and very useful result on chaotic dynamics,
translating it into terms that economists can follow more easily. The theorem describes
the superimposition of cycles of periods of different length and the resulting behavior
of the time path when cycles of every integer periodicity are included. We will also

®Professor Quandt has carried out a simulation exercise in which the behavior of a chaotic time path
generated by our basic illustrative difference equation was contrasted with one that followed an uncom-
plicated deterministic regime that was subject to substantial random disturbance of moderately low
probability. Spectral analysis then yielded very similar results for the chaotic series and the series subject to
random disturbances, properties very different from those that held for the time paths of series generated by
our equation with w values not far from the chaotic region. The implication is that standard statistical
procedures may fail to determine correctly in any particular case whether a set of observations has been
subject to random disturbances or whether it has been generated by a model that is perfectly deterministic
but chaotic. For details of the simulations see Baumol and Quandt (1985).
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note a few serious pitfalls besetting interpretation of this theorem, and continue to
consider alternate definitions of chaos. (Readers less interested in mathematical
foundations may wish to skip over this section and the next.)

The Li-Yorke Theorem. Let f be a difference equation that is continuous, and for
which there exist two numbers, a and 8, such that if a < y, < b, then a < y,,, < b.
Now, if one can find a y, such that when j, rises for two successive periods it will fall
back to below its initial value in the next period, that is,

(7) D+t =f())t) >y, and  y,, =f(2)(.yt) >y, but y,, =f(3)( yt) <
then two major consequences follow:

(a) For any integer £ > 1 there is at least one initial point y, between a and & such
that the subsequent time path, jy,, is characterized by cycles of period #;

(b) There exists an uncountable set, S, of initial points in the interval between a and &
such that if initial points x;, and y, both lie in S, then (i) at some time ¢ in the
future the difference (x, — y,) will come arbitrarily close to zero, that is, the two
paths will (temporarily) move as close to one another as may be desired; (ii)
however, after some interval of close proximity the two time paths must always
diverge again; (ii1) moreover, no such time path will ever converge asymptotically
to any periodic time path and a time path originating in § will not converge
asymptotically to any time path that originates outside S.

While a difference equation that, depending on the initial condition selected, will
either give rise to time paths with cycles of any period length, as in (a) above, or can
generate aperiodic time paths described in (b) above, may be said to “generate chaotic
dynamics,” this definition of chaos may be misleading. As has been noted already, the
aperiodic trajectories, whose existence is shown in the Li-Yorke theorem, will normally
be generated by an uncountable infinity of different initial conditions. Speaking very
roughly, this may make it appear that this region in the realm of initial condition is
“very large.” Yet, the Lebesque measure of these initial points may be zero, that is,
for some chaotic models their behavior may be nonchaotic “almost everywhere.” Here
it should be noted that the Lebesque measure is defined so that the measure of any
interval is equal to its length, while a set of “isolated” points, even if there is a
nondenumerable infinity of them, has Lebesque measure zero (that is, these points can
be covered with a countable set of intervals whose total length is arbitrarily small).

Under certain conditions it has been shown that the time paths will have at most
one stable periodic orbit which will attract all initial points except for a set sufficiently
small that its Lebesque measure is zero. To illustrate the point, again consider the
family of equations y,_, = wy,(1 — »,), with w lying between 2 and 4. As has been
seen, as the value w rises the time path will be subject to a sequence of period-dou-
bling bifurcations, with that period tending to infinity as w approaches a limit point
w’ lying between 3 and 4. Now for many values of w between w’ and 4 there will be a
single attracting and periodic time path, with a period that is not a power of two, and
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toward which almost all time paths starting off from initial points between zero and
one will converge. For many values of w between @’ and 4 our equation will be
chaotic in the sense of Li and Yorke, in that the set of initial points that give rise to
“aperiodic” time paths, is infinite and, indeed, uncountable. Yet this set of points can
be so small as to be of (Lebesque) measure zero, with almost all initial points being
followed by time paths that converge to the stable cycle that was just mentioned. For
such a value of w the chaotic behavior can be “unobservable.” That is, almost all
choices of initial point will lead to behavior that is simply periodic.

On the other hand, there will also exist many other values of w between w’ and 4
for which there is a set of initial points § sufficiently large to have measure greater
than zero, each such initial point yielding an aperiodic time path which can therefore
be described as “chaotic.” We can interpret this as a case in which chaos is
“observable” because the number of initial points generating chaotic time paths is so
large. Moreover, here any such chaotic time path which starts off from a point in set §
must remain in that set.

In such a case we can define a limiting frequency with which the aperiodic
(chaotic) time paths visit particular subsets of S. This permits us to interpret
observable chaos as a case in which such a frequency distribution can only be defined
on a set sufficiently large to have positive measure. It is, however, not known yet
whether “observable chaos” is implied by sensitive dependence on initial conditions. It
is also possible to show in some cases that the frequency distribution will be the same
for almost all initial poinis in S (see Woodford, forthcoming).'®

The key issue that remains to be settled is whether the class of difference

b

equations that give rise to “observable chaos,” or to strange attractors, itself con-
stitutes a large set. In particular, for our illustrative family of difference equations (1),
the question is whether the set of values of w that gives rise to observable chaos is
large. Jacobson (1981) has shown that this set has positive (Lebesque) measure. But
this does not rule out the possibility that the set S is small under still another
definition: § may contain no (complete) intervals (see Jacobson, 1981; Collet and
Eckmann, 1980).

Matters are different if one turns to difference equations whose graph is piecewise
linear and has the shape of an inverted V. If the slope of this graph is everywhere
greater than unity in absolute value (except at the apex, where slope is, of course, not
defined), then it is easily shown that the equation will give rise to aperiodic time paths
from almost all initial points and all of its periodic time paths will be unstable.
Moreover, the chaos in this case must be observable in the sense just defined. If we
perturb (change the parameter values of) such a difference equation slightly, but the
slope continues to be greater than unity everywhere that the equation is defined,

' Nonetheless, since the value say of 3, is completely determined by j, in a deterministic system, using
this frequency distribution is of no use for forecasting. (The conditional distribution of 3, given y, is
degenerate.) It is also not possible to forecast y some periods ahead by a linear stochastic difference equation
that somehow makes use of this frequency distribution. Therefore, for modelling purposes, the temptation
actually to treat the dynamics of the nonlinear system as if it were generated by a simple stochastic system
should be resisted.
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except the apex, these properties will clearly continue to hold. An economic equi-
librium model which demonstrably gives rise to observable chaos that is also robust
under perturbation is provided by Woodford (forthcoming).

Chaos in Higher Order and Multivariate Systems

A number of economic models use n simultaneous difference equations of first
order to relate a vector of n dated variables (x, x,,..., x,,) to their values
(X1,41> X9r415- -+ » Xne41) In the subsequent period. Other models employ an nth order
difference equation in a single variable y, = f( y,_,..., J,_,), like the justly famed
Samuelson model of the accelerator-multiplier cycle. Any theorem about chaotic
behavior in 7 simultaneous first order systems (that is, about systems whose variables
are n dimensional) must also apply to a single nth order equation. This is so since, as
is well-known, such an nth order equation can easily be rewritten as the simultaneous
first order system in n variables

xlt:_:yt—l; x?lE.yt—Q""’ XME)I,_", .ytzf(‘xln""xnl)'

Almost all of the chaotic economic models referred to in this paper employ
one-dimensional (that is, single variable first-order) difference equations. One excep-
tion is the paper by Benhabib and Day (1981) which studies the dynamics of
endogenous choice and provides conditions on preferences under which chaotic choice
sequences of n-commodity vectors arise under stationary conditions. They use the
results of P. Diamond (1976) which generalize the Li and Yorke (1975) propositions to
the n dimensional (n variable or n period lag) case. A further generalization is also
reported by Llibre (1981) and Marotto (1978). However, these results all are subject
to the same limitations that beset the Li-Yorke result. Though they imply that there is
an infinite (and uncountable) set of initial values that give rise to a time path
sufficiently complex to exhibit no cycles (it is “aperiodic”), they do not show that the
set must be sufficiently great to have a positive Lebesque measure (roughly speaking,
it does not have enough points to “fill in” a line segment or a region). These results
are not easy to employ and their use up to now has been limited. They only suggest
the conjecture that in higher-order systems sufficient conditions for chaos to arise are
“easier” to satisfy than in the case of first-order systems; that is, chaos is “more likely”
to occur in higher-order systems.

How Hill-Shaped Phase Diagrams Arise in Economics

The key to construction of a model in which chaotic behavior may arise, as we
have seen, is the generation of a hill-shaped phase graph, at least if the model is built
upon a difference equation of first order. We must, then, indicate how such hill-shaped
dynamic relationships can arise in economics. Let us provide brief discussions of
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several models which have this property. We begin with an example that is an
oversimplification, to say the least, but in which there is a very clear connection with
the shape of phase curve in which we are interested. Its weakness is the degree of (not
wholly unrealistic) irrational adherence to rules of thumb that it assumes for the firm,
a problem that does not beset the bargaining model with which the paper began, or
the models that follow this one.

Consider the relationship between a firm’s profits and its advertising budget
decision. Suppose that without any expenditure on advertising the firm cannot sell
anything. As advertising outlay rises, total net profit first increases, then gradually
levels off and finally begins to decline, yielding the traditional hill-shaped profit curve.
If P, represents total profit in period ¢ and y, is total advertising outlay, P, can, for
illustration, be taken to follow the expressions P, = ay,(1 — y,). If, in addition, the firm
devotes a fixed proportion, b4, of its current profit to advertising outlays in the
following period so that y,,, = bP,, the first equation is immediately transformed into
our basic chaotic equation (1b), with w = ab.

The reason the slope of the phase graph turns from positive to negative in this
case is clear and widely recognized. Even if an increase in advertising outlay always
raises total revenue, after a point its marginal net profit yield becomes negative and,
hence, the phase diagram exhibits a hill-shaped curve.

A moment’s thought also indicates why the time path of 3 can be expected to be
oscillatory. Suppose the initial level of advertising, y,, is an intermediate one that
yields a high profit figure F,. That will lead to a large (excessive) advertising outlay y,
in the next period, thereby bringing down the value of profit P,. That, in its turn, will
reduce advertising again and raise profit and so on ad infinitum.

The thing to be noted about this process is that it gives us good reason to expect
the time paths of profit and advertising expenditure to be oscillatory. But it does not give
us any reason to expect that these time paths need either be convergent or perfectly replicatory.
Exactly the same logical structure is consistent with “sloppiness” in the cycles, so that
past behavior is reproduced only imperfectly in the future. That, then, is how chaotic
behavior patterns can arise.

Another example has been provided in the theory of productivity growth
(Baumol and Wolff, 1983). It involves the relationship between the rate of productiv-
ity growth, (I1,,, — I'1,)/I1,, (which we can write as [1*) and the level 7, of R&D
expenditures by private industry. Obviously, a rise in 7, can be expected to increase
I1*. However, because research can be interpreted as a service activity with a more or
less fixed labor component, its cost will be raised by productivity growth in the
remainder of the economy and the resulting stimulus to real wages. This, in turn, will
cut back the quantity of R&D demanded. The result, as a formal model easily
confirms, will be analogous to the corn-hog (cobweb) cycle with high productivity
growth rates leading to high R&D prices which restrict the next period’s productivity
growth, and so reduce R&D prices, and so on. If R&D costs ultimately increase
disproportionately with increases in productivity growth it is clear that the relation
I1% , = f1}) can generate the sort of hill-shaped phase graph that is consistent with
a chaotic regime.
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Another model that can generate cyclic or chaotic dynamics is a standard growth
model of Solow type in which the propensity to save out of wages is lower than that
for profits (for a more complex version of this model see Akerlof and Stiglitz, 1969).
Suppose that at low levels of capital stock K one obtains increasing marginal returns
to increased capital and the elasticity of substitution of labor for capital is initially
low; but diminishing returns eventually set in and the elasticity of substitution moves
the other way. Then total profits can rise at first, relative to total wages, but later
profits may fall both relative to wages, and even absolutely. This can immediately
generate a hill-shaped relationship between K,,, and K, as rising K, at first elicits
rising savings and then eventually depresses them as profits fall.

Similar results can be obtained for a model in which the propensity to save out of
profits and wages is the same but where this propensity declines as the society grows
progressively richer. (For a formulation in terms of an overlapping generations model
in which the discount factor increases with wealth see Benhabib and Day, 1980a.)

Questions have been raised about the possibility of constructing simple chaotic
macromodels that are consistent with the presence of long-lived agents who optimize
intertemporally and have perfect foresight and in which market clearing occurs. Much
of the macroeconomic literature on cycles and chaos uses life-cycle models. It has been
suggested that previous models of this type may generate chaos only because they
involved agents whose lifespans were less than the duration of many of the cycles, and
who were thereby prevented from eliminating the cycles through acts of arbitrage.
A number of studies (Benhabib and Nishimura, 1979, 1985, 1989; Boldrin and
Montrucchio, 1986; Deneckere and Pelikan, 1986; Woodford, forthcoming) have
demonstrated that such models exhibiting cycles and chaos can easily be constructed.
(For an earlier discussion, see Stiglitz, 1973.) Discounting, for example, permits
relative prices to cycle as long as their percentage change in each period does not
exceed the rate of discount. Alternatively, storage costs or imperfect financial markets
may prevent complete arbitrage (as in Woodford, forthcoming) and allow cycles or
chaos to persist even under rational expectations.

Empirical Evidence on the Presence of Chaos

The evidence on whether chaos does or does not occur in economic phenomena so
far is only suggestive.

Brock (1986) has used some new techniques (see also Brock and Dechert, 1986),
to test whether a particular time series is most likely to have been generated by a
stochastic system or instead by a regime that is (predominantly) chaotic, defined as a
deterministic system giving rise to complicated dynamics (perhaps with minor random
influences). Brock and Sayers (1985) have used these techniques to study a number of
macroeconomic series. While the evidence is weak and somewhat inconclusive, there
seem to be grounds for the tentative conclusion that the use in econometric analysis of
simple linear systems with stochastic disturbances may in some particular cases be
inadequate and misleading and that nonlinear systems may be more appropriate.
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On the other hand, even though it has so far been used mostly in macroeco-
nomics, macro variables may not be the most promising place to look for chaos.
Rather, from its logic, one may suspect that chaotic dynamics is more likely to affect
disaggregated variables (such as the production of pig iron) rather than an aggregate
series such as GNP, particularly when the micro variables are inherently subject to
resource constraints that interconnect future values of the variables with their current
levels (as in the case of resource depletion). All in all, the evidence for the existence of
chaotic behavior in real economic time series is far from compelling so far, though
what there is does suggest the value of further research in that direction.

How does one test for chaos empirically? One rather simplistic approach pro-
ceeds by seeking the underlying dynamic system generating a possibly “chaotic” time
series. To dramatize its simplicity, we use the data for the highly “disorderly” time
path in Figure 6b, to reconstruct the hill-shaped graph of our generating equation
Yie1 = 394 y(1 — ). Assume we have guessed that the underlying relationship is a
single difference equation of first order. This enables us to proceed directly from pairs
of adjacent observations of y in Figure 6b and merely plot each jy,,, against the
corresponding y,. The result is shown back in Figure 2, which indicates that despite
the complicated pattern of the data, this yields a virtually perfect reconstruction of the
underlying phase curve (the circled points on the highest parabola in the figure).

This procedure works, of course, because there is absolutely nothing random in
the process. Each generated point in the time path slavishly follows the dictates of the
underlying model and so must correspond to a point on the graph of the equation.
This immediately suggests a naive test to determine whether a time series involves
random or chaotic influences; if such a reconstruction of the underlying model yields a
highly regular relationship, the time path can be presumed chaotic, not random.

However, this calculation has several pitfalls. First, the underlying system may
have many variables and /or a complicated lag structure with an unknown number of
periods. This underlying mechanism is no longer so “simple,” and the kind of
structure to look for is never obvious. Yet, this problem is no different from that in
choosing the structure of a model for econometric estimation. Second, the available
observations may not provide information on the variables of the underlying system
but on some function of those variables. Thus, if the system is a difference equation in
n variables (vector x,), then we may only be in a position to observe a function of x,,
3, = h(x,) where y, is a single variable, perhaps an aggregated time series like GNP.
The system, therefore, cannot be reduced to a single difference equation since each j,
is compatible with many values of the vector x,.

Given the preceding considerations, the problem of distinguishing essentially
deterministic dynamics from dynamics primarily governed by stochastic elements
becomes difficult if not ambiguous. Sophisticated methods to deal with such problems
have been sought. These include means to determine whether a given time series is
generated by a stable and stochastic system or by one which is chaotic but determinis-
tic. Here, the “dimension” of the set of points toward which the time path tends in the
limit has proved a helpful criterion. To understand this, note that in the stable
stochastic case the state of the system at a future date is a random variable whose
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future limit may be describable beforehand only by a frequency distribution. Conse-
quently, in the random case only a continuum may be sufficient to contain all possible
limit points of the time path. In contrast, a trajectory of a deterministic dynamical
system may, as some of the preceding illustrations show, converge to a finite number
of points (say, a stationary point or a cycle). Or, instead it may follow a chaotic path
or converge to a chaotic set (a “strange attractor”). In the last two cases, the
trajectory, while not constituted by a finite number of points, can nevertheless be
distinguished from a continuum because, roughly speaking, the former contains
“fewer points.” (This will be explained presently in somewhat greater detail.)

Methods that seek to distinguish empirically whether the underlying mechanism
is deterministic or not on the basis of finite (but large) and possibly aggregated sets of
time series data are based on this distinction between the “dimension” of a “strange
attractor” and the “dimension” of a stationary distribution generated by a stable
stochastic dynamical system. The “dimension” of the latter, suitably defined, can be
shown to be infinite. Several definitions of “dimension,” which are appropriate for use
in testing for a finite but large data set, have been provided by Takens (1985),
Proccacia and Grassberger (1985) and others. For a description and some applications
of these methods see Brock (1986), Brock and Dechert (1986), Scheinkman and
LeBaron (1986), Brock and Sayers (1985), and Brock, Dechert and Scheinkman
(1986).

The logic of the dimension approach to empirical testing of whether a time path
is chaotic or random can be suggested with the aid of Figure 2. We have just seen how
plotting of successive values of ,,, against the corresponding y, from the chaotic
time path in Figure 6b gives us a series of points on the phase curve of Figure 2. Now,
even if in the limit these points were to fill in the entire phase curve, they would still
only form a one dimensional set—a curve in two dimensional space.

In contrast, had the time path been subjected to random influences, the exercise
just carried out would obviously have yielded a set of points scattered about the
parabola: at best, an area that can be covered by a continuous two-dimensional
region. This suggests why chaotic behavior is associated with a set of points lower in
dimension than is randomness, and indicates how dimension can, in principle, be used
to distinguish one case from the other.

This leaves the difficult problem of distinguishing empirically any mixed case in
which chaotic and random influences are both present. The deterministic structure of
9, may involve a time path with a limit of low dimension (possibly corresponding to a
“strange attractor”) and the deterministic part can be large relative to the magnitude
of the variation in the series of independently distributed random shocks. The
possibility of a “strange attractor” arising out of the deterministic part of the system,
with some noise superimposed upon it, has been called “noisy chaos.” Methods to
identify cases where the noise component of the time path is “small” relative to the
deterministic part are given by Ben-Mizrachi (1984) and also Brock and Dechert
(1986).

These approaches are complicated by the fact that the data sets used in reality
are necessarily finite. A linear stochastic difference equation system can appear to
generate a “finite dimensional” attractor if its stochastic component is small enough,
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and can therefore suggest the conclusion that the underlying dynamic system is strictly
deterministic. (For a discussion of the difficulties stemming from finiteness of the data
samples, see Ramsey and Yun, 1987.)

A promising additional check tests whether the underlying system is, on the
average, “stable.” Such a test seeks to ascertain whether trajectories generated by a
given relationship, but with different initial conditions, that are initially close together,
remain close, as they would not do if they were chaotic. Methods have been designed
to estimate the mean rate of divergence of such trajectories. A positive divergence rate
is taken as evidence of the presence of a strange attractor rather than a stable but
stochastic dynamical system, whose stability prevents marked divergence of the
trajectories of its variables.

At present, methods to distinguish whether a time series has been generated by a
stable linear stochastic system or a deterministic nonlinear system giving rise to chaotic
dynamics (possibly also containing a negligible stochastic component) are still very
new. Whether these methods can be developed further to overcome problems that
arise with “small” data sets remains to be seen.

Though necessarily incomplete, this discussion should offer the reader some
impression of the methods now being used in empirical studies of chaotic phenomena
in economics.

W The authors are grateful to the C. V. Starr Center for Applied Economics for its assistance in
preparation of this paper. We are also deeply indebted to William Brock, Dermot Gately, Alannah
Orrison, Richard Quandt, Carl Shapiro and Joseph Stightz for their very substantial help, and to
Vacharee Devakula for her skillful contribution to the graphs.
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