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Assignment 6

Asymptotics for Least Squares and the Classical Regression Model
Solutions

I.Parameter Estimation in a Distribution

A.  Regression Functions

f(x|y) = f(x,y)/f(y)  =  f(y|x)f(x)/f(y) = {(exp[-((+()x]((x)y/y!} / f(y).  The joint distribution is the product of the conditional, f(y|x) and the marginal, f(x).  We need f(y), which is found by integrating x out of the joint distribution. Thus,


f(y) = 
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We'll skip a few lines.  You can pull ((y/y! out of the integral.  What remains is


f(y) = ((y/y! 
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x

e

y

x

)

(

0

q

+

b

-

¥

ò

.

The integral is a gamma integral (see page 178 of your text), with (P-1) equal to y, c equal to 1, and a equal to (( + ().   We're going to need this a few more times, so here is a general result:



[image: image4.wmf]dx

x

e

P

x

1

0

-

l

-

¥

ò

  =  
[image: image5.wmf]P

P

l

G

)

(

, which we will use for different values of ( and P.

Plugging terms in to that result for the gamma integral, we get that the integral is equal to ((y+1)/((+()y+1.  Now, ((y+1) = y! when y is an integer, which it is here.  This cancels the y! we already have.  Plugging in the terms, we are left with


f(y)  =  
[image: image6.wmf],...
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Now, we need f(x|y) so we divide the joint density by this marginal.  Just doing the division and skipping a line of algebra provides


f(x|y)  =  
[image: image7.wmf]!

)

(

1

)

(

y

x

e

y

y

x

+

q

+

b

-

q

+

b


To get the conditional mean, we now need 

E[x|y] = 
[image: image8.wmf]ò
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 which is a gamma integral again.  Using the result given above and the result that ((y+2) = (y+1)((y+1) = (y+1)y!, so we can get the factorials to cancel, the end result simplifies to

(2)  E[x|y]  =  
[image: image10.wmf]q
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  =  (  +  (y, where (  =  1/(( + ().  (yikes!!)  and, remember, 

(1)  E[y|x]  =  (x.

B.  Simple Estimation:  

Linear regression of y on x without a constant estimates ( consistently.  Call this estimator b.

Linear regression of x on (y+1) estimates ( consistently.  Call this latter estimator m.  Use 1/m to estimate 

( + (.  So, 1/m - b estimates ( consistently, by virtue of the Slutsky theorem.  This estimator is not unbiased.  It is only consistent.  The estimator of ( is unbiased, as can be shown using all our results for the linear regression model.  The estimator of ( is also unbiased.  Since we are using 1/m, it is not unbiased, since E[1/m] is not 1/E[m].  (See the text, on Jensen's inequality.)

C.  One more approach...  If E[x] = 1/(, then 
[image: image11.wmf]x

 is a consistent estimator of 1/(, and ( can be estimated consistently using 1/
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.  Once again, this estimator will not be unbiased, since 
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 is unbiased for 1/( and the reciprocal function is not linear.  (See part B.)

D.  Maximum Likelihood Estimation:  The log likelihood function is the log of the product of the densities, or the sum of the logs;


Log-L  =  (i [-(xi + yilog((xi) - logyi!]  =  (i [-(xi + yilog(() + yilog(xi) - logyi!]

The derivative is 

(logL/(( = (-(ixi)+ (1/()((iyi). Equate to zero and divide both sides by n, so the solution is

the ( for which
-
[image: image14.wmf]x

+(1/()
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 = 0.    The solution falls out easily.

II.  Asymptotic Efficiency.

A. For   the maximum likelihood estimator found above,

bm 
=  
[image: image16.wmf]y
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The expectation conditioned on the x's is

E[bm|x]  
=  (1/
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) E[
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|x] 

=  (1/
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)(1/n){E[(iyi]|x}  

=  (1/
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)(1/n)((iE[yi|xi])  

=  (1/
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=  (.  

Since E[bm|x] = (, E[bm] = (.  This makes it unbiased.  For consistency, we'll use mean square convergence.  The mean obviously converges to (, since is equals ( for all n.  The variance is the expected conditional variance plus the variance of the conditional mean.  Since the conditional mean is (, the variance of the conditional mean is zero.   To find the variance, we start with

bm 
=  
[image: image23.wmf]y

/
[image: image24.wmf]x

  =  (1/
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)(1/n)(iyi.

So, the conditional variance is


Var[bm|x]  
=  [(1/
[image: image26.wmf]x

)(1/n)]2 ( (i Var[yi|xi]  

=  [(1/
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)(1/n)]2 ( (i (xi
=  ( / (n
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It is obvious that the conditional variance goes to zero, since 1/
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converges to 1/E[x] = (, which gets us the consistency we need, by mean square.  In fact, it is possible to get the exact, unconditional variance.  (Though, this is not strictly necessary; you could stop here.)  In assignment 7, you'll find that E[1/
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] is actually ( ( n/(n-1).  This gets us the consistency that we need unconditionally.  For looking ahead, we should note that the large sample variance above will behave the same as


Asy.Var[bm]  =  (/n ( whatever 1/
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 converges to, which is (, which leads us to


Asy.Var[bm]  =  ((/n.

For least squares, we have an unbiasedness proof from our class work that still applies.  yi = E[yi|xi] + (i by simple construction; (i is just the deviation to make this add up.  But, also by construction, E[(i|xi] = 0.  Now, y = x( + (, and our proof of unbiasedness goes through.  But, let's do it the long way, so we see the result in full.


b  =  (x'y) / (x'x)  =  (ixiyi / (ixi2.  E[b|x]  =  (i xiE[yi|xi] / (ixi2  =  (i xi(xi / (ixi2.

The sums of squared x's cancel after ( is pulled out of the summation, which gets us the unbiasedness.  

The variance of the least squares estimator is not (2/x(x here, however, since this is not a classical regression model.  In order to get consistency of least squares, we are going to have to get its variance to go to zero.  The variance is given in the problem set:

Var[b|x]  =  (1/(ixi2) ( (1/(ixi2) ( ( (ixi3.  

It's not hard to prove this.  Var[b|x]
=  Var[ (ixiyi / (ixi2 | x]  

=  [1/(ixi2]2 ( Var[(ixiyi]

=  [1/(ixi2]2 ( (i Var[xiyi|xi]

=  [1/(ixi2]2 ( (i xi2 Var[yi|xi]

=  [1/(ixi2]2 ( (i xi2 (xi]

=  ([1/(ixi2]2 ( (i xi3
=  ((1/(ixi2) ( (1/(ixi2) ( (ixi3
To see where this goes, multiply the middle term by n and divide the third term by n - the n's cancel.  Now, the middle term, by virtue of Greene's nontheorem and the Slutsky theorem converges to 1/E[x2], or (2/2.  The third term will converge to E[x3]  = 6/(3.  So, the product will converge to 3(/(.  That leaves the first term, which doesn't converge at all, since it is just a sum of n squares, which keeps growing.  That gets us consistency, since the variance goes to zero.  The asymptotic variance of the least squares estimator is given by the expression above, involving the sums.  But, for purposes of understanding it, we can also insert our now known results for the summations, and analyze


Asy.Var[b|x]  =  (3(/() ( (1/(ixi2).  

Going yet one more step, we should view this as behaving the same as


Asy.Var[b]  

=  (3(/() ( (1/n) ( (n/(ixi2)

which behaves the same as

=  (3(/() ( (1/n) ( (2/2,

so, finally, we would use

Asy.Var[b]  =  3((/(2n).

B.  
1.  We did this above.


2.  We did this above also.  The bonus insight is that this is a direct application of that result.


3.  All of the legwork for this part was done above also.  The end result is that both estimators are consistent so both variances converge to zero.  But, when you take the ratio of the variance of the least squares estimator to the variance of the MLE, you find that the ratio is 3/2 or 1.5.  That means that the MLE is 50% more efficient than the least squares estimator.  It's a better use of the data.


4.  What happened to the Gauss Markov theorem?  It does not apply here because the regression model E[y|x] = (x, Var[y|x] = (x doesn't satisfy the conditions of the theorem.  Gauss-Markov requires all disturbances to have the same variance, (2.

Part III.

1.  Regression of y on x, no constant term.  Estimates (.

+-----------------------------------------------------------------------+

| Ordinary    least squares regression    Weighting variable = none     |

| Dep. var. = Y        Mean=   1.720000000    , S.D.=   1.837570860     |

| Model size: Observations =      25, Parameters =   1, Deg.Fr.=     24 |

| Residuals:  Sum of squares= 27.73386709    , Std.Dev.=        1.07498 |

| Fit:        R-squared=  .657776, Adjusted R-squared =          .65778 |

| Model test: F[  1,     24] =   46.13,    Prob value =          .00000 |

| Diagnostic: Log-L =    -36.7707, Restricted(b=0) Log-L =     -50.1743 |

|             LogAmemiyaPrCrt.=     .184, Akaike Info. Crt.=      3.022 |

| Model does not contain ONE. R-squared and F can be negative!          |

| Autocorrel: Durbin-Watson Statistic =   2.77591,   Rho =      -.38796 |

+-----------------------------------------------------------------------+

+---------+--------------+----------------+--------+---------+----------+

|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X|

+---------+--------------+----------------+--------+---------+----------+

 X            3.933187063       .37478981   10.494   .0000     .43120000

Appropriate standard error is

--> crea;x2=x*x;x3=x2*x$

--> calc;list;sqr( b(1)/n * xbr(x3) / (xbr(x2)^2) )$
    Result  =  .69366471485383640D+00

Note, much larger than the one given with the regression.

2.  Maximum likelihood estimator is ratio of means

--> calc;list;bmle=xbr(y)/xbr(x)
    ;smle=sqr( (bmle/n) * 1/xbr(x) ) $
    BMLE    =  3.9888683030889090

    SMLE    =  .60829671346610150D+00

Calculator: Computed   2 scalar results

Note that the MLE is close to the least squares estimate, but has a somewhat smaller estimated standard error.
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