Econometrics I

Professor William Greene Stern School of Business Department of Economics

http://people.stern.nyu.edu/wgreene/Econometrics/Econometrics.htm

Course Outline	
<u>Class Notes</u>	
Problem Sets	This is an i
Data Sets	estimation, regression
Text	maximum i techniques
Solutions for 6th Edition	test. Specifi data, multip
Queries	following t The Parad Classical I Classical I Asymptoti Nonlinear
	The Gener Methods o Instr
	 Max. Gene Two Estir Baye Non

This is an intermediate level, Ph.D. course in Applied Econometrics. Topics to be studied include specification, estimation, and inference in the context of models that include then extend beyond the standard linear multiple regression framework. After a review of the linear model, we will develop the asymptotic distribution theory necessary for analysis of generalized linear and nonlinear models. We will then turn to instrumental variables, maximum likelihood, generalized method of moments (GMM), and two step estimation methods. Inference echniques used in the linear regression framework such as t and F tests will be extended to include Wald, Lagrange multiplier and likelihood ratio and tests for nonnested hypotheses such as the Hausman specification est. Specific modelling frameworks will include the linear regression model and extensions to models for panel data, multiple equation models, and models for discrete choice. The discussion will include elements of the following topics:

The Paradigm of Econometrics

Classical Linear Regression Model. Part 1. Specification and Computation Classical Linear Regression Model. Part 2. Statistical Inference in Finite Samples Asymptotic Theory and Instrumental Variables Estimation Nonlinear Regression Models The Generalized Regression Model Methods of Estimation

- Instrumental variables estimation
- Maximum likelihood estimation
- · Generalized method of moments (GMM) estimation
- Two step estimation
- · Estimation by simulation; models with unobserved heterogeneity
- · Bayesian methods in econometrics
- Non and semiparametric estimators

1-2/40

Abstract

Overview: This is an intermediate level, Ph.D. course in Applied Econometrics. Topics to be studied include specification, estimation, and inference in the context of models that include then extend beyond the standard linear multiple regression framework. After a review of the linear model, we will develop the theory necessary for analysis of generalized linear and nonlinear models.

Topics to be examined:

Regression modeling

Instrumental variables

Robust estimation and inference

Causal inference

Nonlinear modeling

Cross section, time series and panel data

Objective:

Preparation to read and carry out empirical social science research using modern econometric methods.

Prerequisites

- A previous course that used linear regression
- Mathematical statistics
- Matrix algebra

Readings

 Main text: Greene, W., Econometric Analysis, 8th Edition, Prentice Hall, 2017.

- A few articles
- Notes and materials on the course website:

http://people.stern.nyu.edu/wgreene/Econometrics/Econometrics.htm

Course Schedule

No class on:

Thursday, September 21 *Tuesday, November 21 Thursday, November 23 *Tuesday, November 28

Added class on: Tuesday, December 12

Midterm: October 24

Econometrics I: Applied Econometrics Stern School of Business

Professor W. Greene Department of Economics Office:;MEC 7-90, Ph. 998-0876 e-mail: wgreene@stern.nyu.edu WWW: http://people.stern.nyu.edu/wgreene

Abstract: This is an intermediate level, Ph.D. course in Applied Econometrics. Topics to be studied include specification, estimation, and inference in the context of models that include then extend beyond the standard linear multiple regression framework. After a review of the linear model, we will develop the asymptotic distribution theory necessary for robust estimation and inference and analysis of linear and nonlinear models. We will then turn to instrumental variables, maximum likelihood, generalized method of moments (GMM), and two step estimation methods. Inference techniques used in the linear regression framework such as t and F tests will be extended to include Wald, Lagrange multiplier and likelihood ratio and tests for nonnested hypotheses such as the Hausman specification test. Specific models fing memorks will include the linear regression model and extensions to models for panel data, multiple equation models for discrete choice and sample selection.

Prerequisites: Multivariate calculus, matrix algebra, probability and distribution theory, statistical inference, and an introduction to the multiple linear regression model. Appendices A and B in *Greene (2017)* are assumed. We will survey the parts of Appendix C that would have appeared in prerequisite courses. A significant part of this course will focus on the advanced parts of Appendices C and D. We will also make use of a few of the results in Appendix E (optimization).

Final: Take home; posted December 7, due December 19

Practicals

Software

- NLOGIT provided, supported http://people.stern.nyu.edu/wgreene/Econometrics/NLsetup.exe
- SAS, Stata, EViews optional, your choice
- R, Matlab, Gauss, others
- Questions and review as requested
- Problem Sets: (more details later)

Course Requirements

Problem sets: 5 (30%)
Midterm, in class (30%)
Final exam, take home (40%)

Econometrics I

Part 1 - Paradigm

Part 1: Introduction

1-9/40

Econometrics: Paradigm

Theoretical foundations

- Behavioral modeling: Optimization, labor supply, demand equations, etc.
- Microeconometrics and macroeconometrics
- Mathematical Elements
- Statistical foundations
- 'Model' building the econometric model
 - Mathematical elements
 - The underlying truth is there one?

Objectives

Understanding covariation:

- What is the income elasticity of the demand for health care in an economy?
- Understanding a relationship:
 - How will drivers respond to the availability of a new toll road?
- Causal Inference: The search for "causal" effects
 - Did an antitrust intervention that broke up a British boarding schools cartel have an impact on fees charged?

Prediction of an outcome of interest

Does internet "buzz" help to predict movie success?

Trends in Econometrics

- Small structural models
- Pervasiveness of an econometrics paradigm
- Non- and semiparametric methods vs. parametric
- Robust methods / Estimation and inference
- Nonlinear modeling (the role of software)
- Behavioral and structural modeling vs. "reduced form," "covariance analysis"
- Identification and "causal" effects

Data Structures

Observation mechanisms

- Passive, nonexperimental (the usual)
- Randomly assigned experiment (wishful)
- Active, experimental (occasional)
- The 'natural experiment' (occasional, limited)
- Data types
 - Cross section
 - Pure time series
 - Panel
 - Longitudinal data NLS
 - Country macro data Penn W.T.
 - Financial data

Paradigm: Classical Inference

Imprecise inference about the entire population – sampling theory and asymptotics Characteristics Behavior Patterns Choices

Part 1: Introduction

1-14/40

Paradigm: Bayesian Inference

Measurement

Sharp, 'exact' inference about only the sample – the 'posterior' density. Characteristics Behavior Patterns Choices

Part 1: Introduction

1-15/40

An Application: Cornwell and Rupert Labor Market Data Is Wage Related to Education?

Cornwell and Rupert Returns to Schooling Data, 595 Individuals, 7 Years Variables in the file are

EXP	= work experience
WKS	= weeks worked
OCC	= occupation, 1 if blue collar,
IND	= 1 if manufacturing industry
SOUTH	= 1 if resides in south
SMSA	= 1 if resides in a city (SMSA)
MS	= 1 if married
FEM	= 1 if female
UNION	= 1 if wage set by union contract
ED	= years of education
LWAGE	= log of wage = dependent variable in regressions

These data were analyzed in Cornwell, C. and Rupert, P., "Efficient Estimation with Panel Data: An Empirical Comparison of Instrumental Variable Estimators," *Journal of Applied Econometrics*, 3, 1988, pp. 149-155.

1-16/40

🎟 Data Ed	itor						
28/900 Vars; 11111 Rows: 4165 Ob: Cell: 0							
	LOGWAGE	EDUC					
1 »	5.56068	9					
2 »	5.72031	9					
3 »	5.99645	9					
4 »	5.99645	9					
5 »	6.06146	9					
6 »	6.17379	9					
7 »	6.24417	9					
8 »	6.16331	11					
9 »	6.21461	11					
10 »	6.2634	11					
11 »	6.54391	11					
12 »	6.69703	11					
13 »	6.79122	11					
14 »	6.81564	11					
15 »	5.65249	12					
16 »	6.43615	12					
17 »	6.54822	12					
18 »	6.60259	12					
19 »	6.6958	12					
20 »	6.77878	12					
21 »	6.86066	12					
1 22	C 15C00	10					

Model Building in Econometrics

Role of the assumptions

- Parameterizing the model
 - Nonparametric analysis
 - Semiparametric analysis
 - Parametric analysis
- Sharpness of inferences

Application: Is there a relationship between (log) Wage and Education?

Nonparametric Regression

Kernel regression of log wage on education

Semiparametric Regression:

Least absolute deviations regression

Parametric Regression: Least squares – maximum likelihood – regression

1-19/40

A First Look at the Data Descriptive Statistics

Basic Measures of Location and Dispersion

- Graphical Devices
 - Box Plots
 - Histogram
 - Kernel Density Estimator

Descripti	ive Statistics f	or 11 variab.	les			
Variable	Mean	Std.Dev.	Minimum	Maximum	Cases	Missing
EXP WKS OCC IND SOUTH SMSA MS FEM UNION LWAGE	19.85378 46.81152 .511164 .395438 .290276 .653782 .814406 .112605 .363986 6.676346	10.96637 5.129098 .499935 .489003 .453944 .475821 .388826 .316147 .481202 .461512	1.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.605170	51.0 52.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 8.537000	4165 4165 4165 4165 4165 4165 4165 4165	0 0 0 0 0 0 0 0 0
YEAR	4.0	2.000240	1.0	7.0	4165	0

Descriptive Statistics for LWAGE Stratification is based on YEAR

Subsample			Mean	Std.Dev.	Cases	Sum of wts	Missing
YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	= = = =	1 2 3 4 5 6 7	6.375173 6.465212 6.596717 6.696079 6.786454 6.864045 6.950745	.388426 .362702 .446691 .440750 .424013 .424021 .438403	595 595 595 595 595 595 595 595	595.00 595.00 595.00 595.00 595.00 595.00 595.00 595.00	0 0 0 0 0 0 0
Full Sample			6.676346	.461512	4165	4165.00	0

Box Plots

Shows upward trend in median log wage

1-22/40

Histogram: Pooled data obscure within person variation

What is the source of the variance, variation across people or variation over time?

1-23/40

Kernel density estimator suggests the underlying distribution for a continuous variable

$$\hat{f}(x_{m}^{*}) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{B} K \left[\frac{x_{i} - x_{m}^{*}}{B} \right]$$
$$= \frac{1}{n} \sum_{i=1}^{n} Q(x_{i} \mid x_{m}^{*}, B), \text{ for a set of points } x_{m}^{*}$$

B = "bandwidth"

K = the kernel function

 $x^* =$ the point at which the density is approximated.

 $\hat{f}(x^*)$ is an estimator of $f(x^*)$

Part 1: Introduction

1-24/40

The kernel density estimator is a histogram (of sorts).

$$\begin{split} \hat{f}(x_m^*) &= \frac{1}{n} \sum_{i=1}^n \frac{1}{B} K \left[\frac{x_i - x_m^*}{B} \right] \text{, for a set of points } x_m^* \\ B &= \text{"bandwidth" chosen by the analyst} \\ K &= \text{the kernel function, such as the normal} \\ & \text{ or logistic pdf (or one of several others)} \\ x^* &= \text{ the point at which the density is approximated.} \\ \text{This is essentially a histogram with small bins.} \end{split}$$

1-25/40

JOURNAL OF APPLIED ECONOMETRICS J. Appl. Econ. 26: 549–579 (2011) Published online 14 December 2009 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/jae.1134

HOW DOES HETEROGENEITY SHAPE THE SOCIOECONOMIC GRADIENT IN HEALTH SATISFACTION?

ANDREW M. JONES^a AND STEFANIE SCHURER^{b*}

^a Department of Economics and Related Studies, University of York, York, UK ^b Melbourne Institute of Applied Economic and Social Research, University of Melbourne, Parkville, Victoria, Australia

SUMMARY

Individual heterogeneity plays a key role in explaining variation in self-reported health and its socioeconomic gradient. It is hypothesised that the influence of this heterogeneity varies over levels of health and increases over the life cycle. These hypotheses are tested by applying a threshold-specific alternative to the conditional fixed-effects logit and longitudinal data from Germany. Our results suggest that income influences health at the lower end, but not at the higher end of the health distribution, once unobservable factors are controlled for. The underlying assumptions of the statistical model matter for this conclusion, in particular for the older age groups. Copyright © 2009 John Wiley & Sons, Ltd.

Figure 2. Distribution of health measure: self-assessed health (SAH)

1-27/40

Part 1: Introduction

From Jones and Schurer (2011) Stylized Box Plot

Figure 4. Marginal effects of income on the probability to report satisfaction with health greater than two for both men (M) and women (W) obtained from three different models: pooled ordered logit (POL), random-effects logit (REL), and conditional fixed-effects logit (CFEL)

1-28/40

Part 1: Introduction

From Jones and Schurer (2011)

Figure 7. Probability distribution of individual fixed effect obtained from the conditional fixed-effects logit (CFEL), when the threshold values are j = 2 and j = 4 for the sample of men

1-29/40

Objective: Impact of Education on (log) Wage

- Specification: What is the right model to use to analyze this association?
- Estimation
- Inference
- Analysis

Simple Linear Regression

LWAGE = 5.8388 + 0.0652*ED

1-31/40

Multiple Regression

Ordinary LHS=LWAGE Regression Residual Total Fit Model test	least squares Mean Standard devia No. of observa Sum of Squares Sum of Squares Standard error R-squared F[9, 4155]	regression ation = ations = s = s = c of e = = =	6. 34 54 88 294.	67635 46151 4165 5.763 1.142 6.905 36089 38985 98231	DegFreedom 9 4155 4164 Root MSE R-bar squared Prob F > F*	Mean square 38.41812 .13024 .21299 .36045 1 .38853 .00000
LWAGE	Coefficient	Standard Error	z	Prob. z >Z•	95% Con • Inte	nfidence erval
Constant ED EXP WKS OCC SOUTH SMSA MS FEM UNION	<pre>5.44028*** .05682*** .01040*** .00525***14867***07024*** .13241*** .08568***37561*** .09995*** ==> Significance</pre>	.07208 .00267 .00054 .00111 .01507 .01279 .01235 .02108 .02577 .01318	75.48 21.25 19.37 4.71 -9.87 -5.49 10.72 4.06 -14.58 7.58	.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000	5.29902 .05158 .00935 .00306 17819 09530 .10820 .04435 42611 .07411	5.58155 .06207 .01145 .00743 11914 04517 .15663 .12700 32511 .12579

Nonlinear Specification: Quadratic Effect of Experience

Ordinary LHS=LWAGE Regressic Residual Total Fit Model tes	least squares Mean Standard devi No. of observ on Sum of Square Sum of Square Sum of Square Standard erro R-squared st F[10, 4154]	regression = ation = s = s = s = r of e = = =	6. 37 51 88 298.	67635 46151 4165 0.955 5.950 6.905 35243 41826 66153	DegFreedom 10 4154 4164 Root MSE R-bar squared Prob F > F*	Mean square 37.09546 .12421 .21299 .35196 1 .41686 .00000
LWAGE	Coefficient	Standard Error	z	Prob z >Z*	95% Con • Inte	nfidence erval
Constant	5.24547 *** .05654 ***	.07170	73.15 21.64	.0000	5.10493 .05142	5.38600 .06166
EXP EXP*EXP	.04045 *** 00068 ***	.00217 .4783D-04	18.61 -14.24	.0000	.03619 00077	.04471 00059
WKS OCC SOUTH	.00449 *** 14053 *** 07210 ***	.00109 .01472 .01249	4.12 -9.54 -5.77	.0000 .0000 .0000	.00235 16939 09658	.00662 11167 04762
SMSA MS	.13901*** .06736***	.01207	11.51 3.26	.0000	.11534	.16267
UNION	38922 *** .09015 ***	.02518	-15.46 6.99	.0000	43857 .06488	.11542
nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. ***, **, * ==> Significance at 1%, 5%, 10% level.						

Model Building in Econometrics

A Model Relating (Log)Wage to Gender and Education & Experience

1-34/40

Partial Effects Coefficients may not tell the story

Ordinary LHS=LWAGE Regression Residual Total Fit Model test	least squares regres Mean Standard deviation No. of observations Sum of Squares Sum of Squares Sum of Squares Standard error of e R-squared F[11, 4153]	sion = = = = = = =	6.67635 .46151 4165 378.218 508.687 886.905 .34998 .42645 280.71214	DegFreedom 11 4153 4164 Root MSE R-bar squared Prob F > F*	Mean square 34.38347 .12249 .21299 .34948 1 .42493 .00000
Constant ED EXP EXP*EXP WKS OCC SOUTH SMSA MS FEM UNION	5.24547*** .05654*** .04045*** 00068*** .00449*** 14053*** 07210*** .13901*** .06736*** 38922*** .09015***	\rightarrow	Education Experience FEM	.05654 .04045 - 2*.00 .38922	0068*Exp

1-35/40

Effect of Experience = .04045 - 2*.00068*Exp Positive from 1 to 30, negative after.

1-36/40

Interaction Effect Gender Difference in Partial Effects

Ordinary LHS=LWAGE Regression Residual Total Fit Model test	least squares Mean Standard devia No. of observa Sum of Squares Sum of Squares Sum of Squares Standard erro: R-squared Ff 10 41541	regression = ation = ations = s = s = r of e = = =	6.	 67635 46151 4165 7.213 9.692 6.905 36045 39149 24949	DegFreedom 10 4154 4164 Root MSE R-bar square Prob F > F*	Mean square 34.72132 .12992 .21299 .35997 d .39002
+-						
LWAGE	Coefficient	Standard Error	z	Prob z >Z*	. 95% Co: * Inte	nfidence erval
Constant	5.47075***	.07256	75.39	.0000	5.32853	5.61298
ED	.05458***	.00275	19.81	.0000	.04918	.05998
EXP	.01035***	.00054	19.29	.0000	.00930	.01140
WKS	.00528***	.00111	4.74	.0000	.00310	.00746
occi	14659***	.01506	-9.73	.0000	17611	11707
SOUTH	07176***	.01278	-5.61	.0000	09682	04671
SMSA	.13351***	.01234	10.82	.0000	.10932	.15770
MS	.08392***	.02107	3.98	.0001	.04263	.12520
FEM	67961***	.09456	-7.19	.0000	86495	49427
UNION	.09496***	.01325	7.17	.0000	.06899	.12093
ED*FEM	.02350***	.00703	3.34	.0008	.00971	.03729
***, **, *	==> Significan	ce at 1%, 5	%, 10% 1	evel.		

Partial Effect of a Year of Education $\partial E[\log Wage] / \partial ED = \beta_{ED} + \beta_{ED*FEM} *FEM$ = 0.05458 + 0.02350*FEMNote, the effect is positive. The effect 43% is larger for women.

Partial Effects Analysis for Linear Regression Function								
Effects on function with respect to ED								
Results are computed by average over sample observations Partial effects for continuous ED computed by differentiation Effect is computed as derivative = df(.)/dx								
df/dED Partial Standard (Delta method) Effect Error t 95% Confidence Interva								
APE. Function	.05199	.06247						
FEM = .00 Average effect	.05458	.00275	19.81	.04918	.05998			
FEM = 1.00 Average effect	.07808	.00690	11.32	.06456	.09161			

1-38/40

Gender Effect Varies by Years of Education

 $\Delta E[logWage] / \nabla FEM = \beta_{FEM} + \beta_{ED^*FEM} *ED$

= -0.67961 + 0.0235*ED

1-39/40

Analysts are interested in interaction effects in models.

1-40/40

Part 1: Introduction