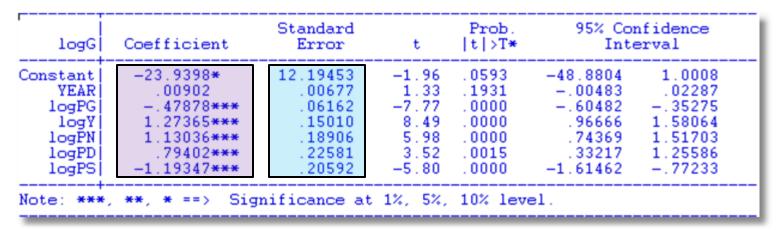

Econometrics I

Professor William Greene Stern School of Business Department of Economics

Econometrics I


Part 10 – Interval Estimation and Prediction

Interval Estimation

b = point estimator of β

We acknowledge the sampling variability.

Estimated sampling variance

- Point estimate is only the best single guess
- □ Form an interval, or range of plausible values
- Plausible likely values with acceptable degree of probability.
- To assign probabilities, we require a distribution for the variation of the estimator.
- **D** The role of the normality assumption for ε

Robust Inference: Confidence Interval for β_k

 b_k = the point estimate

Std.Err[b_k] = sqr{Estimated Asymptotic Variance of b_k } = v_k The matrix may be any robust or appropriate covariance matrix.

- $b_k \sim Asy.N[\beta_k, v_k^2]$
- (b_k-β_k)/v_k ~ Asy.N[0,1]

Consider a range of plausible values of β_k given the point estimate b_k . $b_k \pm$ sampling error.

- Measured in standard error units,
- $|(b_k \beta_k)/v_k| < z^*$
- Larger z* → greater probability ("confidence")
- Given normality, e.g., z* = 1.96 → 95%, z*=1.645→90%
- Plausible range for β_k then is $b_k \pm z^* v_k$

Critical Values for the Confidence Interval

Assume normality of **ε**:

- $b_k \sim N[\beta_k, v_k^2]$ for the true β_k .
- $(b_k \beta_k)/v_k \sim N[0,1]$

 $v_k = [s^2(X'X)^{-1}]_{kk} (b_k - \beta_k)/Est.(v_k) \sim t[n-K].$

Use critical values from t[n-K] distribution instead of standard normal. Will be the same as normal if n > 100. Based on asymptotic results or any robust covariance matrix estimator, use N[0,1].

Confidence Interval

Ordinary LHS=logG Regression Residual Total Fit Model test	Mean Standard dev No. of obser Sum of Squar Sum of Squar Sum of Squar Standard err R-squared	vations = es = es = or of e = =	5. 2. .10522 2.	39299 24878 36 15567 7E-01 16619 01905 99514 14814	DegFreedom 6 29 35 Root MSE R-bar square Prob F > F*	Mean square .35928 .00036 .06189 .01710 d .99414 .00000
logG	Coefficient	Standard Error	t	Prob t >T		nfidence erval
Constant YEAR logPG	-23.9398* .00902 47878***	12.19453 .00677 .06162	-1.96 1.33 -7.77	.0593 .1931 .0000	-48.8804 00483 60482	1.0008 .02287 - 35275
logY logPN	1.27365*** 1.13036***	.15010	8.49	.0000	. 96666	1.58064
logPD logPS	.79402 *** -1.19347 ***	.22581 .20592	3.52 -5.80	.0015	.33217 -1.61462	1.25586 77233
Note: ***,	, ** , * ==> Sig	mificance at	1%, 5%,	10% 10	evel.	

Critical t[.975, 29] = 2.045

Confidence interval based on t: $1.27365 \pm 2.045 * .1501$ Confidence interval based on normal: $1.27365 \pm 1.960 * .1501$

Specification and Functional Form: Interaction Effects

Population

$$y = \beta_{1} + \beta_{2}x + \beta_{3}z + \beta_{4}xz + \varepsilon$$

$$\hat{y} = b_{1} + b_{2}x + b_{3}z + b_{4}xz$$

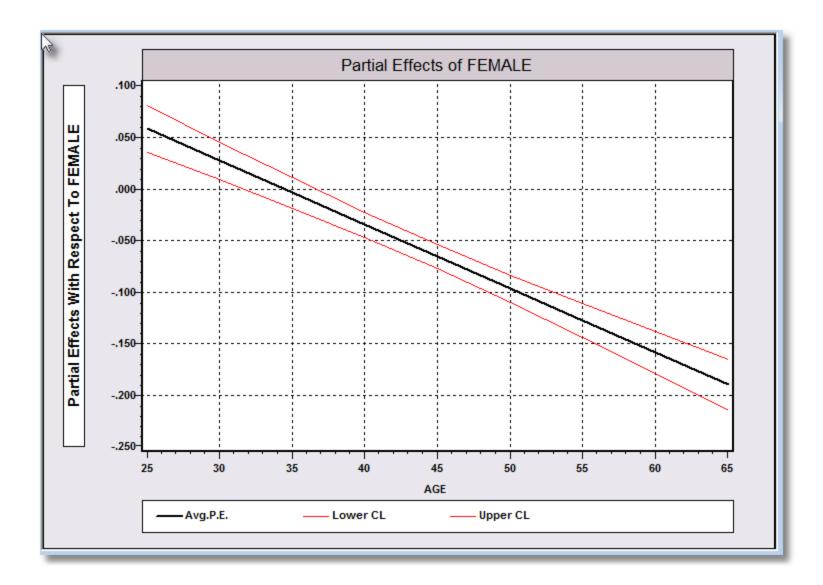
$$\delta_{x} = \frac{\partial E[y \mid x, z]}{\partial x} = \beta_{2} + \beta_{4}z$$

$$\hat{\delta}_{x} = b_{2} + b_{4}z$$
Estimator of the variance of $\hat{\delta}_{x}$

$$Est.Var[\hat{\delta}_{x}] = Var[b_{2}] + z^{2}Var[b_{4}] + 2zCov[b_{2}, b_{4}]$$

10-8/39

Interaction Effect


Ordinary	least squar	es regress	sion			
LHS=LOGY	Mean		=	-1.1574	5	
	Standard de	viation	=	.49149	•	
	Number of o	bservs.	=	27322	2	
Model size	Parameters		=	4	1	
	Degrees of	freedom	=	27318	3	
Residuals	Sum of squa	res	= (6540.45988	3	
	Standard er	ror of e	=	. 48931	L	
Fit	R-squared		=	.00890	5	
	Adjusted R-	squared	=	.0088	5	
	F[3, 2731	-)	
Variable Co	efficient	Standard	Error	b/St.Er.	P[Z >z]	Mean of X
	-1.22592***			-76.376	.0000	
AGE	.00227***	.000)36	6.240	.0000	43.5272
FEMALE	.21239***	. 023	863	8.987	.0000	.47881
	00620***)52	-11.819	.0000	21.2960

Do women earn more than men (in this sample?) The +.21239 coefficient on FEMALE would suggest so. But, the female "difference" is +.21239 - .00620*Age. At average Age, the effect is .21239 - .00620(43.5272) = -.05748.

Partial Effects Analysis for Linear Regression Function

Effects on function with respect to FEMALE Results are computed by average over sample observations Partial effects for binary var FEMALE computed by first difference

df⁄dFEMAL (Delta me		Partial Effect	Standard Error	t	95% Confidence	Interval
AGE = AGE =	tion	05750	.00595	9.67	06916	04585
	25.00	.05737	.01143	5.02	.03498	.07977
	30.00	.02637	.00929	2.84	.00817	.04457
	35.00	00463	.00746	.62	01926	.01000
	40.00	03563	.00624	5.71	04786	02341
	45.00	06664	.00599	11.12	07838	05490
	50.00	09764	.00683	14.30	11102	08426
	55.00	12864	.00843	15.26	14517	11211
	60.00	15964	.01046	15.27	18014	13915
	65.00	19065	.01270	15.01	21555	16575

10-11/39

Part 10: Interval Estimation

Bootstrap Confidence Interval For a Coefficient

Bootstrap CI for Least Squares

							Percentiles Sample size	BREF 10
Ordinary	least square	s regression					Min.	. 7
LHS=LOGG	Mean Standard dev	istion -		94245 23881			01th	. 9
	 No. of obser 			52	DegFreedom	Mean square	*025	1.0
Regression				79360	5	. 55872	05th 10th	1.0
Residual	Sum of Squar			14979	46	.00250	20th	1.1 1.1
[otal	Sum of Squar Standard err			90858 05000	51 Root MSE	.05703	25th	1.2
7it -	R-squared	=		96047	R-bar square		30th	1.2
fodel test	F[5, 46] =	223.	52968	Prob $F > F*$. 00000	40th	1.2
+-		Standard		Prob	95% Co	nfidence	Med.	1.2
LOGG	Coefficient	Error	t	$ t\rangle$		erval	60th	1.3
							70th 75th	$1.3 \\ 1.3$
LOGI Constant	1.28609 *** -20.9548 ***	.14566 1.52568	8.83 -13.73	.0000	.99289 24.0259	1.57930 -17.8838	80th	1.3
LOGPG	02797	.04338	-13.73	.5222	11529	.05934	90th	1.4
LOGPNC	15576	.21002	- 74	.4621	- 57852	.26699	95th	1.4
LOGPUC	.02850	.10199	. 28	.7811	17680	.23381	* 975	1.5
LOGPPT	18283	.11908	-1.54	.1315	42252	.05686	99th	1.6
							Max.	1.9

Bootstrap CI for Least Absolute Deviations

Least abso Nonlinear LHS=LOGG	olute deviations least square Mean		n				Percentiles Sample size	BREP:1 1000
	Standard dev Number of ob	iation =		24202 52			Min.	. 11903
Model size	e Parameters	=		6			01th	.53445
	Degrees of f	reedom =		46			*025	.72084
Residuals	Sum of squar Standard err			19690 05101			05th	.83721
Fit	R-squared						10th	.93752
	Adjusted R-s	quared =		95558			20th	1.04461
	t_F[5, 46						25th	1.08954
Not using	OLS or no const solute deviation	ant. Rsqrd (F may b				30th 40th	$1.11451 \\ 1.16544$
			1.00				- Med.	1.22374
		Standard			95% Co	onfidence	60th	1.26602
LOGG	Coefficient	Error	z	z >Z *	Int	erval	70th	1.31469
+	Covariance matri	v based on	50 repl	ications			75th	1.34340
LOGI	1.20636***				. 87573	1.53698	80th	1.37143
Constant	-19.6510***			.0000	-23.0889	-16.2132	90th	1.45886
LOGPG	.04376		1.12		03269		95th	1.54635
LOGPNC	50766 .04250		-1.46		-1.19038 30610		*975	1.60223
LOGPPT	01514				33461		99th	1.70422
							Max.	2.16943

10-14/39

Bootstrapped Confidence Intervals Estimate Norm(β)=($\beta_1^2 + \beta_2^2 + \beta_3^2 + \beta_4^2$)^{1/2}

Untitled 1 *	×
∱x Insert Name: ▼	
?*************************************	Â
<pre>Namelist : x=one,x1,x2,x3,x4\$ Regress : lhs=yit;rhs=x\$ Wald : parameters = b ; covariance = varb ; labels=a,b1,b2,b3,b4 ; fn1 = sqr(b1^2+b2^2+b3^2+b4^2) \$</pre>	Ш
? Bootstrap Method	
Proc\$ Regress ; quietly ; lhs=yit ; rhs=x\$ Matrix ; beta=b(2:5);bnorm=sqrt(beta'beta)\$ Endproc\$	
Execute ; n=500 ; bootstrap = bnorm\$ Create ; bootnorm=bootstrp\$ Dstat ; Rhs=bootnorm ; quantiles\$	Ŧ

10-15/3

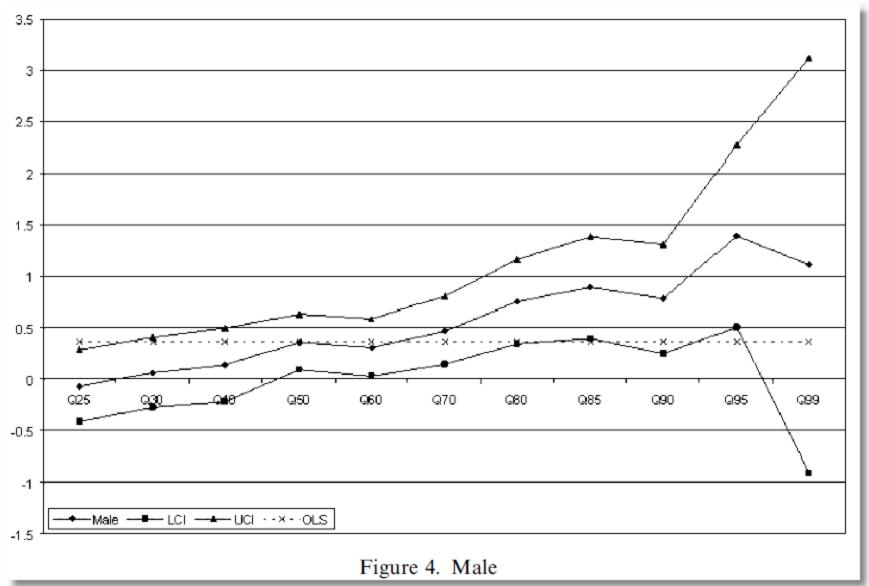
Variable	Mean	Standard Deviation	Minimum	Maximu	m Cases	Missing Values		
BOOTNORM	.748701	.012426	.715269	.79103	3 500	982		
Descriptive St DSTAT results			ables 1 current proje	ct.				
Percentiles Sample size								
 Min. Olth	.715269 .722066							
*025	.725308							
05th	.727917					I		
10th	.732863		dure. Estimates	and standard	d errors for	nonlinear	functi	ons and
20th	.738778		of nonlinear re					
25th	.740387			= 4841.0				
30th	.742011		Chi-squared[1]					
40th	.745226		are computed at	means of va:	riapies			
Med.	.748275			Standard	P1	rob. 9	5% Conf	idence
50th	.751571	WaldFcns	Function					
70th	.754829							
75th 30th	.757144		.74792***	.01075	69.58 .00	.7	2685	.76899
90th	.75874 .765108							
95th	.770278							
•975	.77354							
- 27 3	.777276							
99th	777776							

10-16/39

HEALTH ECONOMICS Health Econ. 19: 1063–1074 (2010) Published online in Wiley InterScience (www.interscience.wiley.com).10.1002/hec.1647

QUANTILE REGRESSION ANALYSIS OF THE RATIONAL ADDICTION MODEL: INVESTIGATING HETEROGENEITY IN FORWARD-LOOKING BEHAVIOR

AUDREY LAPORTE^{a,*}, ALFIA KARIMOVA^b and BRIAN FERGUSON^c


^aDepartment of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ont., Canada ^bDepartment of Economics, University of Toronto, Toronto, Ont., Canada ^cDepartment of Economics, University of Guelph, Guelph, Ont., Canada

SUMMARY

The time path of consumption from a rational addiction (RA) model contains information about an individual's tendency to be forward looking. In this paper, we use quantile regression (QR) techniques to investigate whether the tendency to be forward looking varies systematically with the level of consumption of cigarettes. Using panel data,

10-17/39

Coefficient on MALE dummy variable in quantile regressions

10-18/39

Forecasting

- Objective: Forecast
- Distinction: Ex post vs. Ex ante forecasting
 - Ex post: RHS data are observed
 - Ex ante: RHS data must be forecasted
- Prediction vs. model validation.
 - Within sample prediction
 - "Hold out sample"

Prediction Intervals

Given x⁰ predict y⁰.

Two cases:

Estimate $E[y|\mathbf{x}^0] = \beta' \mathbf{x}^0$;

Predict $y^0 = \beta' x^0 + \varepsilon^0$

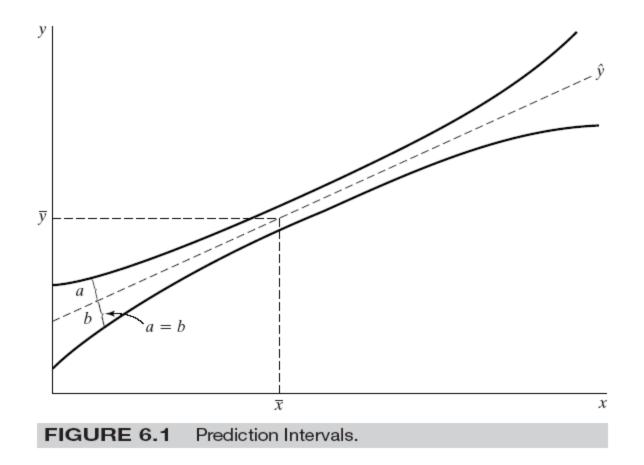
Obvious predictor, **b'x**0 + estimate of ε^0 . Forecast ε^0 as 0, but allow for variance.

Alternative: When we predict y^0 with $\mathbf{b'x^0}$, what is the 'forecast error?' Est. $y^0 - y^0 = \mathbf{b'x^0} - \beta'\mathbf{x^0} - \varepsilon^0$, so the variance of the forecast error is

 $\mathbf{x^{0'}} \forall ar[\mathbf{b} - \beta] \mathbf{x^0} + \sigma^2$

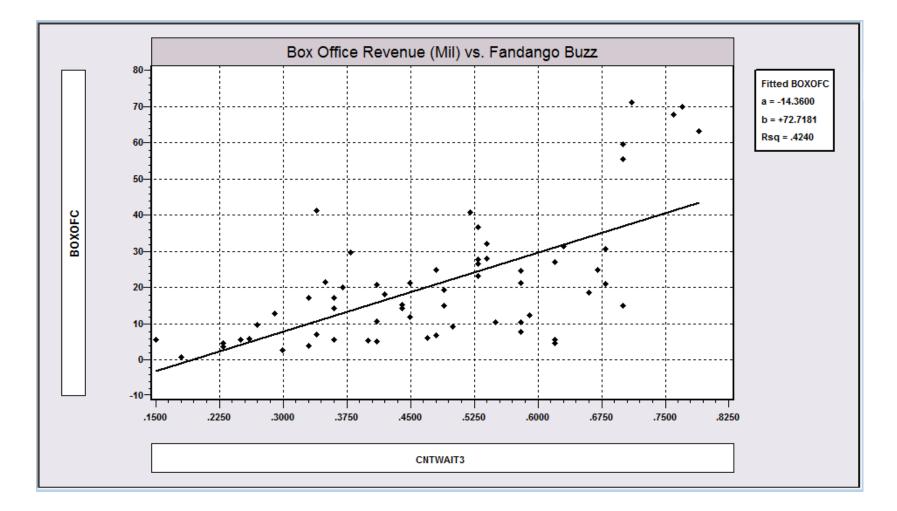
How do we estimate this? Form a confidence interval. Two cases: If **x**⁰ is a vector of constants, the variance is just **x**⁰' Var[**b**] **x**⁰. Form confidence interval as usual.

If \mathbf{x}^0 had to be estimated, then we use a random variable. What is the variance of the product? (Ouch!) One possibility: Use bootstrapping.


Forecast Variance

Variance of the forecast error is $\sigma^2 + \mathbf{x}^{0}$ Var[**b**] $\mathbf{x}^0 = \sigma^2 + \sigma^2 [\mathbf{x}^{0'} (\mathbf{X}'\mathbf{X})^{-1} \mathbf{x}^0]$ If the model contains a constant term, this is

$$\operatorname{Var}[e^{0}] = \sigma^{2} \left[1 + \frac{1}{n} + \sum_{j=1}^{K-1} \sum_{k=1}^{K-1} (x_{j}^{0} - \overline{x}_{j}) (x_{k}^{0} - \overline{x}_{k}) (\mathbf{Z}' \mathbf{M}^{0} \mathbf{Z})^{jk} \right]$$


In terms squares and cross products of deviations from means. Interpretation: Forecast variance is smallest in the middle of our "experience" and increases as we move outside it.

Butterfly Effect

10-22/39

Internet Buzz Data

A Prediction Interval

Prediction includes a range of uncertainty Point estimate: $\hat{y} = a + bx^*$

The range of uncertainty around the prediction:

$$a + bx^* \pm 1.96 \sqrt{S_e^2 \left(1 + \frac{1}{n} + \frac{(x^* - \overline{x})^2}{\sum_{i=1}^n (x_i - \overline{x})^2}\right)}$$

The usual 95% Due to ϵ Due to estimating α and β with a and b

Slightly Simpler Formula for Prediction

- Prediction includes a range of uncertainty Point estimate: $\hat{y} = a + bx^*$
- The range of uncertainty around the prediction:

$$a + bx^{*} \pm 1.96 \sqrt{S_{e}^{2} \left(1 + \frac{1}{n}\right) + (x^{*} - \overline{x})^{2} \left(SE(b)\right)^{2}}$$

Prediction from Internet Buzz Regression

Session		💾 Woi	rksheet 1 ***				×
Regression Analysis: BoxOffice versus Buzz	I	t	C1	C2	C3	C4	
···· ·································			BoxOffice	Buzz	Sample Split	Residual	
The regression equation is		1	19.1671	0.49	0	-2.1048	
BoxOffice = - 14.4 + 72.7 Buzz		2	63.1066	0.79	1	20.0193	
		3	5.4016	0.36	0	-6.4169	
Predictor Coef SE Coef T P Constant -14.360 5.546 -2.59 0.012		4	67.5289	0.76	1	26.6231	
Buzz 72.72 10.94 6.65 0.000		5	26.2231	0.53	1	2.0425	
		6	69.6377	0.77	0	28.0047	
S = 13.3863 R-Sq = 42.4% R-Sq(adj) = 41.4%		7	14.8007	0.49	0	-6.4712	
		8	31.0698	0.63	1	-0.3826	
Analysis of Variance		9	12.0635	0.59	1	-16.4802	
Andrysis of variance		10	4.2714	0.62	1	-26.4538	
Source DF SS MS F P		11	3.4456	0.23	0	1.0804	
Regression 1 7913.6 7913.6 44.16 0.000 Residual Error 60 10751.5 179.2		12	0.5119	0.18	0	1.7826	
Total 61 18665.1		13	30.4802	0.68	0	-4.6081	
Buzz = 0.48242		14	3.5317	0.33	1	-6.1053	
Max(Buzz)= 0.79		15	14.8511	0.70	1	-21.6916	
			40 4007	0.50	4	47 7400	-
		•				•	зđ

Prediction Interval for Buzz = .8

Predict Box Office for Buzz = .8a+bx = -14.36 + 72.72(.8) = 43.82

$$\sqrt{s_e^2 \left(1 + \frac{1}{N}\right)^2 + (.8 - \overline{Buzz})^2 SE(b)^2}$$

= $\sqrt{13.3863^2 \left(1 + \frac{1}{62}\right)^2 + (.8 - .48242)^2 10.94^2}$
= 13.93
Interval = 43.82 ± 1.96(13.93)
= 16.52 to 71.12

Semi- and Nonparametric Estimation

10-28/39

Application: Stochastic Frontier Model

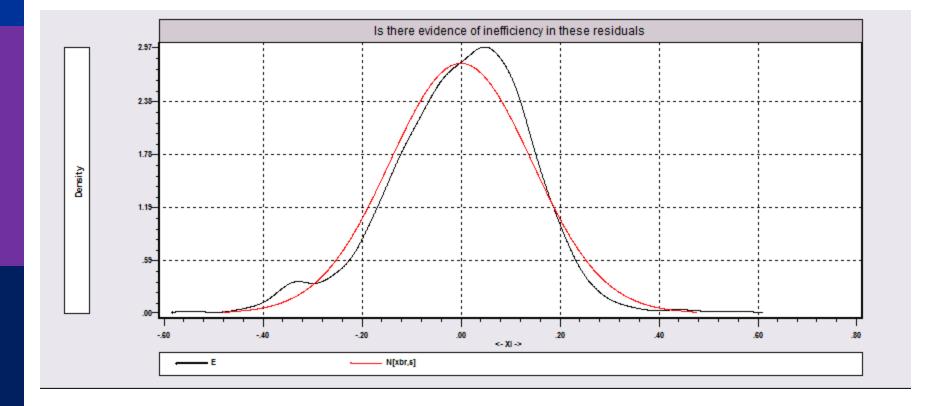
Production Function Regression: logY = b'x + v - u

where u is "inefficiency." u > 0. v is normally distributed.

Save for the constant term, the model is consistently estimated by OLS.

If the theory is right, the OLS residuals will be skewed to the left, rather than symmetrically distributed if they were normally distributed.

Application: Spanish dairy data used in Assignment 2


yit = log of milk production x1 = log cows, x2 = log land, x3 = log feed, x4 = log labor

10-29/39

Regression Results

Ordinary LHS=YIT	least squares Mean Standard devi	ation =	11.	57749 64344		
Regressio Residual Total Fit Model tes Diagnosti Model was	Sum of Square Sum of Square Standard erro R-squared t F[4, 1477]	s = s = r of e = = d = =0) = 4] =	29 61	67609 90834 16885	Degrees of fr 4 1477 1481 R-bar squared Prob F > F* Akaike I.C. Bayes I.C. Prob C2 > C2*	l = .95242 = .00000 = -3.92381 = -3.90592
YIT	Coefficient	Standard Error		Prob. z >Z•		fidence rval
Constant X1 X2 X3 X4	11.5775*** .59518*** .02305** .02319* .45176***		3175.52 30.39 2.05 1.78 41.89	.0000 .0000 .0400 .0751 .0000	.55679 .00105	11.5846 .63356 .04505 .04873 .47290
Note: ***	, ** , * ==> Sign	ificance a	t 1%, 5%,	10% le	evel.	

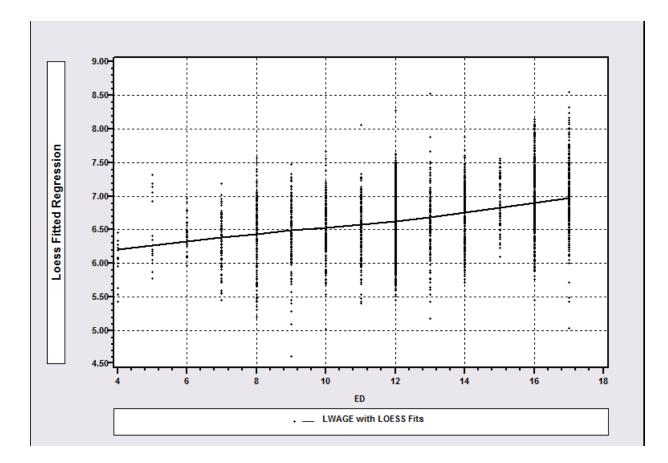
Distribution of OLS Residuals

10-31/39

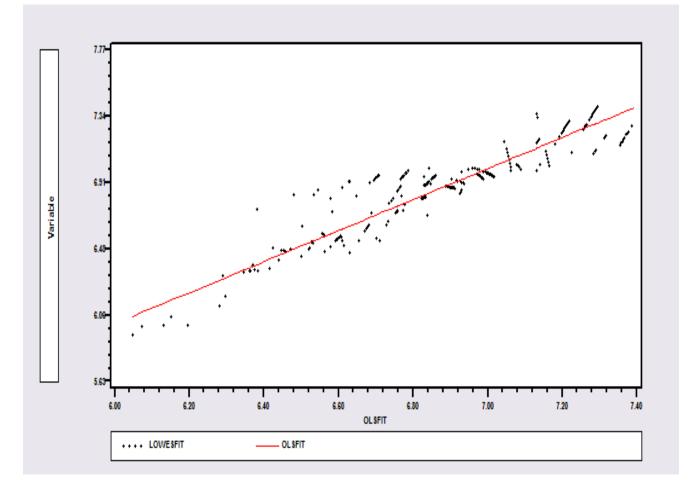
A Nonparametric Regression

υ y = μ(x) +ε

- Smoothing methods to approximate µ(x) at specific points, x*
- **D** For a particular x^* , $\mu(x^*) = \sum_i w_i(x^*|\mathbf{x})y_i$


•
$$\mathbf{w}_i = 1/n + (\mathbf{x}_i - \overline{\mathbf{x}}) / \Sigma_i (\mathbf{x}_i - \overline{\mathbf{x}})^2$$

We look for weighting scheme, local differences in relationship. OLS assumes a fixed slope, b.


Nearest Neighbor Approach

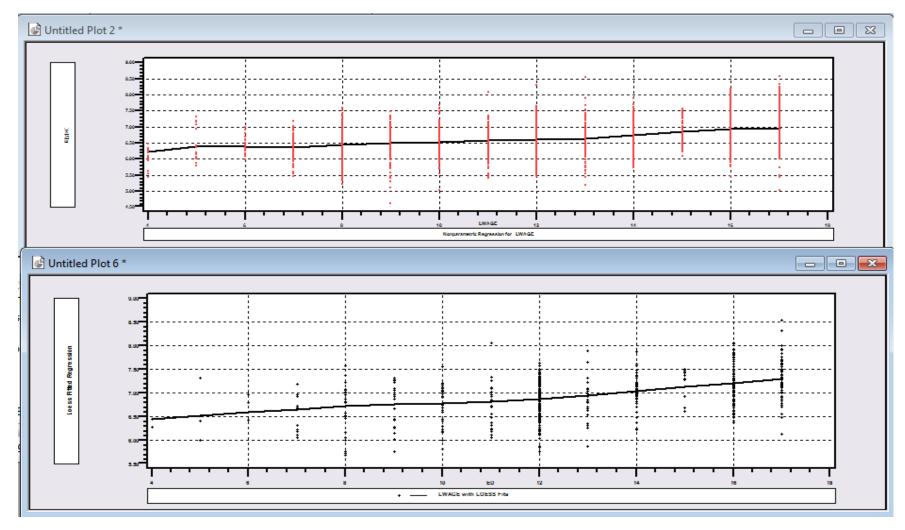
- Define a neighborhood of x*. Points near get high weight, points far away get a small or zero weight
- Bandwidth, h defines the neighborhood: e.g., Silverman h =.9Min[s,(IQR/1.349)]/n^{.2} Neighborhood is + or – h/2
- □ LOWESS weighting function: (tricube) $T_i = [1 - [Abs(x_i - x^*)/h]^3]^3$.
- □ Weight is $w_i = 1[Abs(x_i x^*)/h < .5] * T_i$.

LOWESS Regression

OLS Vs. Lowess

10-35/39

Smooth Function: Kernel Regression


$$\hat{\mu}(x^* | \mathbf{x}, B) = \frac{\sum_{i=1}^n \frac{1}{B} K \left[\frac{x_i - x^*}{B} \right] y_i}{\sum_{i=1}^n \frac{1}{B} K \left[\frac{x_i - x^*}{B} \right]}$$

Kernel Functions:

Normal: $K(t) = \phi(t)$ Logistic: $K(t) = \Lambda(t)[1-\Lambda(t)]$ Epanechnikov: $K(t)=.75(1-.2t^2)/\sqrt{5}$, if $|t| \le 5$ and 0 otherwise

10-36/39

Kernel Regression vs. Lowess (Lwage vs. Educ)

10-37/39

Locally Linear Regression

$$\mu(\mathbf{x}^*) = \beta(\mathbf{x}^*)'\mathbf{x}^*.$$

$$\beta(\mathbf{x}^*) = \left[\sum_{i=1}^n w_i(\mathbf{x}^*, \mathbf{x}_i)\mathbf{x}_i\mathbf{x}_i'\right]^{-1} \left[\sum_{i=1}^n w_i(\mathbf{x}^*, \mathbf{x}_i)\mathbf{x}_i\mathbf{y}_i\right]$$

$$w_i(\mathbf{x}^*, \mathbf{x}_i) = K[(\mathbf{x}^* - \mathbf{x}_i)'(\mathbf{x}^* - \mathbf{x}_i), h]$$

10-38/39

Ordinary LHS=LWAGE	least squares Mean Standard devi	=	6.	95074 43840	
Regression	No. of observ	vations =		595 .4740	Degrees of freedom
Residual	Sum of Square			.6913	590
Total	Sum of Square Standard erro			4.165 35818	594
Fit Model test	R-squared	=		33700 97447	R-bar squared = .33251 Prob F > F* = .00000
Diagnostic		d =	-230.		Akaike I.C. = -2.04509 Bayes I.C. = -2.00821
Model was	Chi squared [estimated on Aug	[4] =	244.	53559	Prob C2 > C2* = .00000
LWAGE	Coefficient	Standard Error	z	Prob z >Z	
Constant ED FEM	5.57608*** .07657*** 44938***	.38522 .00548 .04704		.0000	.06583 .08732

-9.55 3.23 1.08

.0013

.04103

.16798

03239

Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

OLS vs. LOWESS

🖽 Matrix	x - LOCLBETA					×
[595, 5]	Cell: 0.30572	29	✓ ×			
	1	2	3	4	5	
1	4.78094	0.0473557	-0.541554	0.364504	0.360682	
2	5.62988	0.0774372	-0.46378	0.102727	0.084603	
3	6.97646	0.0351276	-0.365454	0.0817198	-0.134264	
4	4.09146	0.0978699	-0.519258	0.212737	0.42492	
5	4.24776	0.0951743	-0.408972	-0.0647883	0.387792	
6	6.55862	0.048071	-0.414722	0.0847438	-0.066336	
7	6.99921	0.0350738	-0.36576	0.0812928	-0.139938	
8	5.80921	0.0136297	-0.583179	0.228573	0.198185	
9	4.24905	0.0951543	-0.408957	-0.0648068	0.38754	
10	4.25924	0.0949729	-0.408828	-0.0650166	0.385654	-

Part 10: Interval Estimation

10-39/39

UNION LOGWKS

.10451*** .10534