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Classical Hypothesis Testing 

    We are interested in using the linear regression 

to support or cast doubt on the validity of a 

theory about the real world counterpart to our 

statistical model.  The model is used to test 

hypotheses about the underlying data 

generating process. 
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Types of Tests 

 Nested Models:  Restriction on the parameters of a 

particular model 

y = 1 + 2x + 3T + ,   3 = 0  

(The “treatment” works; 3  0 .) 

 Nonnested models: E.g., different RHS variables 

yt = 1 + 2xt + 3xt-1 + t 

yt = 1  + 2xt + 3yt-1 + wt  

(Lagged effects occur immediately or spread over time.) 

 Specification tests: 

 ~ N[0,2] vs. some other distribution 

(The “null” spec. is true or some other spec. is true.) 



Part 11: Hypothesis Testing - 2 11-5/78 

Hypothesis Testing 

 Nested vs. nonnested specifications 

 y=b1x+e vs. y=b1x+b2z+e:   Nested 

 y=bx+e vs. y=cz+u:             Not nested 

 y=bx+e vs. logy=clogx:   Not nested 

 y=bx+e; e ~ Normal vs. e ~ t[.]:  Not nested 

 Fixed vs. random effects:   Not nested 

 Logit vs. probit:    Not nested 

 x is (not) endogenous:    Maybe nested. We’ll see … 

 Parametric restrictions 

 Linear:    R-q   = 0, R is JxK, J < K, full row rank 

 General:  r(,q)  = 0, r = a vector of J functions,  

                   R(,q) = r(,q)/’.  

 Use r(,q)=0 for linear and nonlinear cases 
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Broad Approaches 

 Bayesian: Does not reach a firm conclusion. Revises odds. 

 Prior odds compares strength of prior beliefs in two states of the 

world 

 Posterior odds compares revised beliefs 

 Symmetrical treatment of competing ideas 

 Not generally practical to carry out in meaningful situations 

 Classical: All or nothing; reject the theory or do not reject it. 

 “Null” hypothesis given prominence 

 Propose to “reject” toward favor of “alternative” 

 Asymmetric treatment of null and alternative 

 Huge gain in practical applicability 
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Inference in the Linear Model 

Formulating hypotheses:  linear restrictions as a general 
framework 

Hypothesis Testing   J linear restrictions 

 Analytical framework:           y   =  X  +   

 Hypothesis:  R  -  q   =  0,   

Substantive restrictions:  What is a "testable hypothesis?" 

 Substantive restriction on parameters 

 Reduces dimension of parameter space 

 Imposition of restriction degrades estimation criterion 
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Testable Implications of a Theory 

    Investors care about nominal interest rates and 

 expected inflation: 

 I  =  1 + 2r + 3dp + e 

    Restriction is 3 = - 2. 

    Investors care only about real interest rates. 

    (1)  Substantive restriction on parameters 

    (2)  Parameter space is 3.  Restricted space  

           is a 2 dimensional subspace (not 2). 

    (3)  Restrictions must lead to increase in sum of  

      squared residuals 
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The General Linear Hypothesis:  H0: R - q = 0 

A unifying departure point:  Regardless of the hypothesis, least squares 
is unbiased. 

 

  E[b]  =  

 

The hypothesis makes a claim about the population 

 

    R – q = 0.  Then, if the hypothesis is true, E[Rb – q] = 0. 

 

The sample statistic, Rb – q will not equal zero. 

Two possibilities: 

 Rb – q is small enough to attribute to sampling variability 

 Rb – q is too large (by some measure) to be plausibly attributed to 

  sampling variability 

Large Rb – q is the rejection region.  
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Neyman – Pearson Classical Methodology 

 Formulate null and alternative hypotheses 

 Hypotheses are exclusive and exhaustive 

 Null hypothesis is of particular interest 

 Define “Rejection” region = sample evidence 

that will lead to rejection of the null hypothesis. 

 Gather evidence 

 Assess whether evidence falls in rejection region 

or not. 
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Testing Fundamentals - I 

 SIZE of a test = Probability it will incorrectly 

reject a “true” null hypothesis.   

 This is the probability of a Type I error. 

Under the null hypothesis, F(3,100) has 

an F distribution with (3,100) degrees of 

freedom.  Even if the null is true, F will 

be larger than the 5% critical value of 

2.7 about 5% of the time. 
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Distribution Under the Null 

Density of F[3,100]
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A Simulation Experiment 
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Simulation Results 

About 5% of computed F values are in the 

rejection region, though 1=2=3=0 is true. 
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Testing Fundamentals - II 

 POWER of a test = the probability that it will 

correctly reject a “false null” hypothesis 

 This is 1 – the probability of a Type II error. 

 The power of a test depends on the specific 

alternative. 
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Power of a Test 

Null:  Mean = 0.  Reject if observed mean < -1.96 or > +1.96. 

Prob(Reject  = 0 |  = 0) = 0.05 

Prob(Reject  = 0 |  =.5) = 0.07902 

Prob(Reject  = 0 |  = 1) = 0.170066.  Increases as the (alternative)  rises. 
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3 Approaches to Defining the Rejection Region 

(1)  Imposing the restrictions leads to a loss of fit.  Sum of squared 

       residuals must increase. 

       R2  must go down.  Does it go down “a lot?”  (I.e., significantly?).  

       Ru
2 = unrestricted model, Rr

2 = restricted model fit.  Test is based 

       on  Ru
2 – Rr.  Is this difference large? 

 

(2)  Is Rb - q close to 0?  Basing the test on the discrepancy   
 vector:  m = Rb - q.   
 Using the  Wald criterion:  m(Var[m])-1m.  A distance measure 

      of how far m is from zero. 

       

(3)  Does the restricted model appear to satisfy the restrictions? 

       Examine the residuals from the restricted model.  Do the  

       residuals appear to be random noise? 
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Testing Strategy 

How to determine if the statistic is 'large.'   

     Need a 'null distribution.' 

If the hypothesis is true, then the statistic will have a certain 
distribution.  This tells you how likely certain values are, 
and in particular, if the hypothesis is true, then 'large 
values' will be unlikely. 

If the observed statistic is too large, conclude that the 
assumed distribution must be incorrect and the 
hypothesis should be rejected. 
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Robust Tests 

 The Wald test generally will (when properly 

constructed) be more robust to failures of the 

narrow model assumptions than the t or F 

 Reason:  Based on “robust” variance estimators 

and asymptotic results that hold in a wide range 

of circumstances. 
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Robustness 

 Assumptions are narrower than necessary 

 (1) Disturbances might be heteroscedastic 

 (2) Disturbances might be correlated across 

observations – these are panel data 

 (3) Normal distribution assumption is unnecessary 

 F, LM and LR tests rely on normality, no longer 

valid 

 Wald test relies on appropriate covariance 

matrix. (1) and (2) invalidate s2(X’X)-1. 
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Robust Inference Strategy 

(1)  Use a robust estimator of the asymptotic 

covariance matrix.  (Next class) 

 

(2)  The Wald statistic based on an appropriate 

covariance matrix is robust to distributional 

assumptions – it relies on the CLT. 
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The Nonrobust F Statistic 

        An application:  (Familiar)  Suppose bn is the least 
squares estimator of  based on a sample of n 
observations.  No assumption of normality of the 
disturbances or about nonstochastic regressors is 
made.  The standard F statistic for testing the 
hypothesis  H0: R - q  =  0   is 

 

        F[J, n-K]  =  [(e*’e*  -  e’e)/J]  /  [e’e / (n-K)] 

         

        where this is built of two sums of squared residuals.  
The statistic does not have an F distribution.  How can 
we test the hypothesis?  
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Application - 1 

    Regression Model 

 LogG  =  1              + 2logY      + 3logPG  + 

                   4logPNC + 5logPUC + 6logPPT + 

                   7logPN    + 8logPD    + 9logPS  +   

    Period  =  1960 - 1995. Note that all coefficients  

in the model are elasticities.  
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Full Model by Least Squares 
---------------------------------------------------------------------- 

Ordinary     least squares regression ............ 

LHS=LG       Mean                 =        5.39299 

             Standard deviation   =         .24878 

             Number of observs.   =             36 

Model size   Parameters           =              9 

             Degrees of freedom   =             27 

Residuals    Sum of squares       =         .00855 

             Standard error of e  =         .01780 

Fit          R-squared            =         .99605 

             Adjusted R-squared   =         .99488 

--------+------------------------------------------------------------- 

Variable| Coefficient    Standard Error  t-ratio  P[|T|>t]   Mean of X 

--------+------------------------------------------------------------- 

Constant|   -6.95326***      1.29811       -5.356   .0000 

      LY|    1.35721***       .14562        9.320   .0000      9.11093 

     LPG|    -.50579***       .06200       -8.158   .0000       .67409 

    LPNC|    -.01654          .19957        -.083   .9346       .44320 

    LPUC|    -.12354*         .06568       -1.881   .0708       .66361 

    LPPT|     .11571          .07859        1.472   .1525       .77208 

     LPN|    1.10125***       .26840        4.103   .0003       .60539 

     LPD|     .92018***       .27018        3.406   .0021       .43343 

     LPS|   -1.09213***       .30812       -3.544   .0015       .68105 

--------+------------------------------------------------------------- 
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Testing a Hypothesis Using  

a Confidence Interval 

Given the range of plausible values 

Testing the hypothesis that a coefficient equals 

zero or some other particular value:  

 Is the hypothesized value in the confidence 

interval?   

 Is the hypothesized value within the range of 

plausible values?   

    If not, reject the hypothesis. 
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Test About One Parameter 

Is the price of public transportation really ‘relevant?’  H0 : 6 = 0. 

 

Confidence interval:  b6    t(.95,27)  Standard error   

                       =  .11571  2.052(.07859) 

                       =  .11571  .16127  =  (-.045557 ,.27698) 

                   Contains 0.0.  Do not reject hypothesis  H0 : 6 = 0. 
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Test a Hypothesis About a Coefficient 
Confidence intervals are often displayed in results 

This model does not contain the micro price indices (PNC, PUC, PPT).  
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A Distance Measure 
Testing more generally about a single parameter.  

Sample estimate is bk Sample estimated standard error is vk. 

Hypothesized value is βk 

How far is βk from bk?  If too far, the hypothesis is inconsistent with the sample evidence. 

 Measure distance in standard error units 

                               t  =  (bk - βk)/Estimated vk. 

If t is “large” (larger than critical value), reject the hypothesis.  The critical value is 
obtained in a table (computed) for the t distribution. 
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Test Statistic Based on Fit Measures 

For the fit measures, use a normalized measure of 

the loss of fit:   
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Hypothesis Test: Sum of Coefficients = 0? 

---------------------------------------------------------------------- 

Ordinary     least squares regression ............ 

LHS=LG       Mean                 =        5.39299 

             Standard deviation   =         .24878 

             Number of observs.   =             36 

Model size   Parameters           =              9 

             Degrees of freedom   =             27 

Residuals    Sum of squares       =         .00855  <******* 

             Standard error of e  =         .01780 

Fit          R-squared            =         .99605  <******* 

             Adjusted R-squared   =         .99488 

--------+------------------------------------------------------------- 

Variable| Coefficient    Standard Error  t-ratio  P[|T|>t]   Mean of X 

--------+------------------------------------------------------------- 

Constant|   -6.95326***      1.29811       -5.356   .0000 

      LY|    1.35721***       .14562        9.320   .0000      9.11093 

     LPG|    -.50579***       .06200       -8.158   .0000       .67409 

    LPNC|    -.01654          .19957        -.083   .9346       .44320 

    LPUC|    -.12354*         .06568       -1.881   .0708       .66361 

    LPPT|     .11571          .07859        1.472   .1525       .77208 

     LPN|    1.10125***       .26840        4.103   .0003       .60539 

     LPD|     .92018***       .27018        3.406   .0021       .43343 

     LPS|   -1.09213***       .30812       -3.544   .0015       .68105 

--------+------------------------------------------------------------- 

Sum = 0.9293.  Significantly different from 0.0000? 
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Restricted Regression 
---------------------------------------------------------------------- 

Linearly restricted regression 

LHS=LG       Mean                 =   5.392989 

             Standard deviation   =   .2487794 

             Number of observs.   =         36 

Model size   Parameters           =          8  <*** 9 – 1 restriction 

             Degrees of freedom   =         28 

Residuals    Sum of squares       =   .0112599  <*** With the restriction 

Residuals    Sum of squares       =   .0085531  <*** Without the restriction 

Fit          R-squared            =   .9948020 

Restrictns.  F[  1,    27] (prob) =   8.5(.01) 

Not using OLS or no constant.R2 & F may be < 0 

--------+------------------------------------------------------------- 

Variable| Coefficient    Standard Error  t-ratio  P[|T|>t]  Mean of X 

--------+------------------------------------------------------------- 

Constant|   -10.1507***       .78756      -12.889   .0000 

      LY|    1.71582***       .08839       19.412   .0000      9.11093 

     LPG|    -.45826***       .06741       -6.798   .0000       .67409 

    LPNC|     .46945***       .12439        3.774   .0008       .44320 

    LPUC|    -.01566          .06122        -.256   .8000       .66361 

    LPPT|     .24223***       .07391        3.277   .0029       .77208 

     LPN|    1.39620***       .28022        4.983   .0000       .60539 

     LPD|     .23885          .15395        1.551   .1324       .43343 

     LPS|   -1.63505***       .27700       -5.903   .0000       .68105 

--------+------------------------------------------------------------- 

F = [(.0112599 - .0085531)/1] / [.0085531/(36 – 9)]  =  8.544691 
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Joint Hypotheses 

Joint hypothesis: Income elasticity = +1, Own price elasticity = -1. 

The hypothesis implies that b2 = 1 and b3 = -1. 

 

                        logG = β1 + logY – logPg + β4 logPNC + ... 

 

Strategy: Regress logG – logY + logPg on the other variables and compare the sums 

of squared residualss 

 
With two restrictions imposed 

Residuals    Sum of squares       =   .0286877 

Fit          R-squared            =   .9979006 

Unrestricted 

Residuals    Sum of squares       =   .0085531 

Fit          R-squared            =   .9960515 

 

F = ((.0286877 - .0085531)/2) / (.0085531/(36-9))  =  31.779951 

 

The critical F for 95% with (2,27) degrees of freedom is 3.354.   

The hypothesis is rejected. 
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Basing the Test on R2 

Based on R2s,  

 

F = ((.9960515 - .997096)/2)/((1-.9960515)/(36-9)) 

   = -3.571166 (!) 

 

What's wrong?  The unrestricted model used LHS = logG. 

The restricted one used logG - logY + logPG.  The 

regressions have different LHS variables. 

 

The calculation is always safe using the sums of squared 

residuals.  The calculation is OK if the dependent variable is 

the same in the two regressions. 
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An important relationship between t and F 

 

 

 

 
2
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For a single restriction, F[1,n-K] is the square of the t ratio. 
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For one restriction, F = t2 
---------------------------------------------------------------------- 

Ordinary     least squares regression ............ 

LHS=LG       Mean                 =        5.39299 

             Standard deviation   =         .24878 

             Number of observs.   =             36 

Residuals    Sum of squares       =         .00855 

             Standard error of e  =         .01780 

Fit          R-squared            =         .99605 

--------+------------------------------------------------------------- 

Variable| Coefficient    Standard Error  t-ratio  P[|T|>t]   Mean of X 

--------+------------------------------------------------------------- 

Constant|   -6.95326***      1.29811       -5.356   .0000 

      LY|    1.35721***       .14562        9.320   .0000      9.11093 

     LPG|    -.50579***       .06200       -8.158   .0000       .67409 

    LPNC|    -.01654          .19957        -.083   .9346       .44320 

    LPUC|    -.12354*         .06568       -1.881   .0708       .66361 

    LPPT|     .11571          .07859        1.472   .1525       .77208 

     LPN|    1.10125***       .26840        4.103   .0003       .60539 

     LPD|     .92018***       .27018        3.406   .0021       .43343 

     LPS|   -1.09213***       .30812       -3.544   .0015       .68105 

--------+------------------------------------------------------------- 

Regression fit if drop?  Without LPPT, R-squared  =  0.99573 

                                                   Compare R2, was      0.99605, 
F(1,27) = [(.99605 - .99573)/1]/[(1-.99605)/(36-9)]  

                  = 2.187  

                  = 1.4722  (with some rounding difference) 
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F-Value = T-Value2 
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The Wald Statistic 

-1

Many test statistics are Wald distance measures

W = (random vector - hypothesized value)'   times

        [Variance of difference]                      times

       (random vector - hypothesized value)

 
-1

   = Normalized distance measure

    = (  - ) [Var(  - )] (  - )

Under the null hypothesis that E[ ] = ,  W is exactly 

distributed as chi-squared(J) if 

(1) the distance, , is normally distributed a

q ' q q

q

q

  



nd 

(2) the variance matrix is the true one, not the estimate.
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Wald Test Statistics 

                    W  =  m[Est.Var(m)]-1m 

For a single restriction, m = r’b - q.  The variance 

                     is r’(Var[b])r 

The distance measure is  

                     (m / standard deviation of m)2.  

Example: The standard t test that bk = 0, 

                      Wald  =  [(bk – 0)/standard error]2. 

                      t2 is the Wald statistic. 
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General Result for the Wald Statistic 

Full Rank Quadratic Form 

       A crucial distributional result (exact):  If the 

random vector x has a K-variate normal 

distribution with mean vector   and 

covariance matrix , then the random variable 

W = (x - )-1(x - ) has a chi-squared 

distribution with K degrees of freedom. 

 

       (See text, Appendix B11.6, Theorem B.11.)  
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Building the Wald Statistic-1 

     Suppose that the same normal distribution 

assumptions hold, but instead of the parameter 

matrix  we do the computation using a matrix 

Sn which has the property plim Sn = .  The 

exact chi-squared result no longer holds, but 

the limiting distribution is the same as if the true 

 were used. 
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Building the Wald Statistic-2 

Suppose the statistic is computed not with an x that has an 
exact normal distribution, but with an xn which has a 
limiting normal distribution, but whose finite sample 
distribution might be something else.  Our earlier 
results for functions of random variables give us the 
result 

   (xn - ) Sn
-1(xn - )   2[K]   

 

 (!!!)VVIR!  Note that in fact, nothing in this relies on the 
normal distribution.  What we used is consistency of a 
certain estimator (Sn) and the central limit theorem for 
xn. 
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General Result for Wald Distance 

The Wald distance measure:  If plim xn = , xn is 

asymptotically normally distributed with a 

mean of  and variance , and if Sn is a 

consistent estimator of , then the Wald 

statistic, which is a generalized distance 

measure between xn converges to a chi-

squared variate. 
 

            (xn - ) Sn
-1(xn - )   2[K]  
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Test Statistics 

    We have established the asymptotic distribution of b.  

We now turn to the construction of test statistics.  In 

particular, 
 

       F[J,n-K] = (1/J)(Rb - q)’[R s2(XX)-1R]-1(Rb - q)  
 

    This is the usual test statistic for testing linear 

hypotheses in the linear regression model, distributed 

exactly as F if the disturbances are normally distributed.  

We now obtain some general results that will let us 

construct test statistics in more general situations.  
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JF is a Wald Statistic 

F[J,n-K]  =  (1/J)  (Rbn - q)[R s2(XX)-1 R’]-1 (Rbn - q). 

Write m  = (Rbn - q).  Under the hypothesis, plim m=0.   

n m  N[0, R(2/n)Q-1R’] 

Estimate the variance with R(s2/n)(X’X/n)-1R’] 

Then,  (n m )’ [Est.Var(n m)]-1 (n m ) 

fits exactly into the apparatus developed earlier.  If plim bn 

= , plim s2 = 2, and the other asymptotic results we 

developed for least squares hold, then  

     JF[J,n-K]  2[J]. 
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The Wald Statistic is Robust 

Estimate the variance with R V R’ where V is any 

appropriate (conventional, heteroscedasticity 

robust, cluster corrected, etc.) 

   Then,  (n m )’ [Est.Var(n m)]-1 (n m ) 

    fits exactly into the apparatus developed earlier.  

If plim bn = , and the other asymptotic results 

we developed for least squares hold, then, 

specifically for the linear regression model,  

                     JF[J,n-K]  2[J]. 

   (Use JF and critical values for 2[J] for tests. 
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Hypothesis Test: Sum of Coefficients 

Do the three aggregate price elasticities sum to zero? 

H0 :β7  + β8  +  β9  =  0 

R = [0, 0, 0, 0, 0, 0, 1, 1, 1],  q  =  [0] 

 
Variable| Coefficient    Standard Error  t-ratio  P[|T|>t]   Mean of X 

--------+------------------------------------------------------------- 

 LPN|    1.10125***       .26840        4.103   .0003       .60539 

 LPD|     .92018***       .27018        3.406   .0021       .43343 

 LPS|   -1.09213***       .30812       -3.544   .0015       .68105 
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Wald Test 

m = b7 + b8 + b9 = 0.9293. 

(See slide 31) 
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Wald Statistic for 2 Restrictions 

Matrix ; R = [0,1,0,0,0,0,0,0,0 /  

              0,0,1,0,0,0,0,0,0]$ 

Matrix ; q = [1/-1]$ 

Matrix ; list ; m = R*b - q $ 

Matrix m        has  2 rows and  1 columns. 

               1 

        +-------------+ 

       1|     .35721 

       2|     .49421 

        +-------------+ 

Matrix ; list ; vm = R*varb*R' $ 

Matrix VM       has  2 rows and  2 columns. 

               1             2 

        +-------------+-------------+ 

       1|     .02120       .00291 

       2|     .00291       .00384 

        +-------------+-------------+ 

Matrix ; list ; w = m'<vm>m $ 

Matrix W        has  1 rows and  1 columns. 

               1 

        +-------------+ 

       1|   63.55962 

        +-------------+ 

Joint hypothesis: 

b(LY)   =   1 

b(LPG)   =  -1 
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Example: Panel Data on Spanish Dairy Farms 

Units Mean Std. Dev. Minimum Maximum 

Output
Milk 

Milk production (liters) 131,107  92,584  14,410 727,281 

Input 
Cows 

# of milking cows   22.12  11.27   4.5   82.3 

Input 
Labor 

# man-equivalent units   1.67   0.55   1.0    4.0 

Input 
Land 

Hectares of land devoted 
to pasture and crops. 

  12.99   6.17   2.0   45.1 

Input 
Feed 

Total amount of 
feedstuffs fed to dairy 
cows (Kg) 

 57,941 47,981 3,924.14  376,732 

N = 247 farms, T = 6 years (1993-1998) 
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Application 

 y = log output 

 x = Cobb douglas production: x = 1,x1,x2,x3,x4  

   = constant and logs of 4 inputs (5 terms) 

 z = Translog terms, x1
2, x2

2, etc. and all cross products, 

       x1x2, x1x3, x1x4, x2x3, etc. (10 terms) 

 w = (x,z) (all 15 terms) 

 Null hypothesis is Cobb Douglas, alternative is  

translog = Cobb-Douglas plus second order terms. 
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    Translog Regression Model 

H0:z=0 

x 
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Wald Tests 

 r(b,q)= close to zero? 

 Wald distance function: 

 r(b,q)’{Var[r(b,q)]}-1 r(b,q) 2[J] 

 Use the delta method to estimate Var[r(b,q)] 

 Est.Asy.Var[b]=s2(X’X)-1 

 Est.Asy.Var[r(b,q)]= R(b,q){s2(X’X)-1}R’(b,q)  

 The standard F test is a Wald test; JF = 2[J]. 
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   1Wald= { } 42.122 - 0 Var[ - 0] - 0b b bz z z

Close  

to 0? 

W=J*F 
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Score or LM Test: General 

 Maximum Likelihood (ML) Estimation, Adapted to LS. 

 A hypothesis test 

 H0: Restrictions on parameters are      true 

 H1: Restrictions on parameters are not true 

 Basis for the test: b0 = parameter estimate under H0 (i.e., 

restricted),            b1 = unrestricted 

 Derivative results: For the likelihood function under H1,  

 (logL1/ | =b1) =  0  (derivatives = 0 exactly, by definition) 

 (logL1/ | =b0) ≠  0.  Is it close?  If so, the restrictions look 

                                          reasonable 
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Restricted regression and derivatives for the LM Test 

Are the residuals from regression of y on X alone uncorrelated with Z? 

2

2

Derivatives are

/
 = 

/

s

s

 
 

 

X e
g

Z e
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Computing the LM Statistic 

Testing z = 0 in y=Xx+Zz+ 
Statistic computed from regression of y on X alone  

1.  Compute Restricted Regression (y on X alone) and compute 
     residuals, e0 

 
2.  Regress e0 on (X,Z).  LM = NR2 in this regression. (Regress 
     e0 on the RHS of the unrestricted regression. 
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Application of the Score Test 

Linear Model: Y = X+Zδ+ε = W + ε 

 Test H0: δ=0 

 Restricted estimator is [b’,0’]’ 

 

NAMELIST ; X = a list… ; Z = a list … ; W = X,Z $  

REGRESS   ; Lhs = y ; Rhs = X ; Res = e $ 

CALC          ; List ; LM = N * Rsq(W,e) $ 
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Regression Specification Tests 

LM                                       =       41.365 
Wald Test:   Chi-squared [ 10]   =       42.122   
F Test:         F ratio[10, 1467]   =         4.212   
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Wald test based on conventional standard 

errors: Chi-squared [ 10]   =  42.122, 
P = 0.00001 

Wald statistic based on robust 

covariance matrix  =  10.365. 

P  =  0.409!! 

The Spanish dairy data are a 6 period panel.  We robustify our test by using the 

cluster corrected covariance matrix.  We were misled by the conventional 

covariance matrix!  Use WALD with a robust covariance matrix for the test. 
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Structural Change Test 



Part 11: Hypothesis Testing - 2 11-62/78 

Application: Wald Tests 
Year,  G ,     Pg,    Y ,  Pnc ,  Puc ,  Ppt ,  Pd ,   Pn ,   Ps $ 

1960 129.7   .925  6036  1.045   .836   .810   .444   .331   .302 

1961 131.3   .914  6113  1.045   .869   .846   .448   .335   .307 

1962 137.1   .919  6271  1.041   .948   .874   .457   .338   .314 

1963 141.6   .918  6378  1.035   .960   .885   .463   .343   .320 

1964 148.8   .914  6727  1.032  1.001   .901   .470   .347   .325 

1965 155.9   .949  7027  1.009   .994   .919   .471   .353   .332 

1966 164.9   .970  7280   .991   .970   .952   .475   .366   .342 

1967 171.0  1.000  7513  1.000  1.000  1.000   .483   .375   .353 

1968 183.4  1.014  7728  1.028  1.028  1.046   .501   .390   .368 

1969 195.8  1.047  7891  1.044  1.031  1.127   .514   .409   .386 

1970 207.4  1.056  8134  1.076  1.043  1.285   .527   .427   .407 

1971 218.3  1.063  8322  1.120  1.102  1.377   .547   .442   .431 

1972 226.8  1.076  8562  1.110  1.105  1.434   .555   .458   .451 

1973 237.9  1.181  9042  1.111  1.176  1.448   .566   .497   .474 

1974 225.8  1.599  8867  1.175  1.226  1.480   .604   .572   .513 

1975 232.4  1.708  8944  1.276  1.464  1.586   .659   .615   .556 

1976 241.7  1.779  9175  1.357  1.679  1.742   .695   .638   .598 

1977 249.2  1.882  9381  1.429  1.828  1.824   .727   .671   .648 

1978 261.3  1.963  9735  1.538  1.865  1.878   .769   .719   .698 

1979 248.9  2.656  9829  1.660  2.010  2.003   .821   .800   .756 

1980 226.8  3.691  9722  1.793  2.081  2.516   .892   .894   .839 

1981 225.6  4.109  9769  1.902  2.569  3.120   .957   .969   .926 

1982 228.8  3.894  9725  1.976  2.964  3.460  1.000  1.000  1.000 

1983 239.6  3.764  9930  2.026  3.297  3.626  1.041  1.021  1.062 

1984 244.7  3.707 10421  2.085  3.757  3.852  1.038  1.050  1.117 

1985 245.8  3.738 10563  2.152  3.797  4.028  1.045  1.075  1.173 

1986 269.4  2.921 10780  2.240  3.632  4.264  1.053  1.069  1.224 
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Regression Model 

Based on the gasoline data:  The regression 

equation is 

  g =1 + 2y + 3pg + 4pnc + 5puc + 

               6ppt + 7pd + 8pn + 9ps + 10t +  

All variables are logs of the raw variables, so that 

coefficients are elasticities.  The new variable, t, 

is a time trend, 0,1,…,26, so that 10 is the 

autonomous yearly proportional growth in G.  
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Structural Change 

Time series regression, 

 

 LogG  =  1 + 2logY + 3logPG  

               + 4logPNC + 5logPUC + 6logPPT 

               + 7logPN + 8logPD + 9logPS +   

 

A significant event occurs in October 1973.  We will be 

interested to know if the model 1960 to 1973 is the same 

as from 1974 to 1995.   
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Data Setup 

Create; 

 G=log(G); 

 Pg=log(PG); 

 y=log(y); 

 pnc=log(pnc); 

 puc=log(puc); 

 ppt=log(ppt); 

 pd=log(pd); 

 pn=log(pn); 

 ps=log(ps); 

 t=year-1960$ 

Namelist;X=one,y,pg,pnc,puc,ppt,pd,pn,ps,t$ 

Regress;lhs=g;rhs=X$ 
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Least Squares Results 
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Covariance Matrix 



Part 11: Hypothesis Testing - 2 11-68/78 

Chow Test 

Structural change test – The CHOW test.  Is the regression model the same 

in the two subperiods, before and after 1973.  Use 3 regressions to find out. 

 

Pooled sum of squares    = 0.0037769400  =  ss01 

                      1960-1973  = 0.0000412580  =  ss0 

                      1974-1986  = 0.0001343820  =  ss1 

 

F[10, 27 – 20]  =  [(ss01 – (ss0 + ss1))/K] / [(ss0 + ss1)/(n0 + n1 – 2K] 

                        =  14.353 

 

The critical value is 3.637.  The hypothesis of no structural change is 

rejected. 
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Residuals Show the Implication of the Restriction  

of Equal Coefficients.  Loss of fit in the first period. 
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Algebra for the Chow Test 

      
       

      

   
    

   

1960-1973 1960-1973 1960-19731

1974-1995 1974-1995 1974-19952

1960-1973 1960-1973 19

1974-1995 1974-1995

Unrestricted regression is

Restricted regression is

y X 0

y 0 X

y X

y X








 
 
 





60-1973

1974-1995

1 2

1 2 1 2

In the unrestricted model,  = [ ,- ], = .

= ;  

[Var( , )] = Var[ ] Var[ ] (no covariance)

R I I q 0

Rb - q b b

R b b R' b b





Part 11: Hypothesis Testing - 2 11-71/78 

Structural Change Test 

      
       

      

 
 

 

1960-1973 1960-1973 1960-1973

1974-1995 1974-1995 1974-1995 1974-1995

1960-1973

1974-1995

Alternative Formulation

Unrestricted regression is

Restricted regression is

y X 0

y X X

y X

y





 

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Wald Var[ ]

0

X X 0
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d d d
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
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Application – Health and Income 

German Health Care Usage Data, 7,293 Individuals, Varying Numbers of Periods 

Variables in the file are 

Data downloaded from Journal of Applied Econometrics Archive. This is an unbalanced 

panel with 7,293 individuals. There are altogether 27,326 observations.  The number of 

observations ranges from 1 to 7 per family.  (Frequencies are: 1=1525, 2=2158, 3=825, 

4=926, 5=1051, 6=1000, 7=987).  The dependent variable of interest is 

DOCVIS  =  number of visits to the doctor in the observation period 

HHNINC =  household nominal monthly net income in German marks / 10000. 

                     (4 observations with income=0 were dropped) 

HHKIDS = children under age 16 in the household = 1; otherwise = 0 

EDUC     =  years of schooling  

AGE        = age in years 

MARRIED=marital status 

WHITEC = 1 if has “white collar” job 
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Men 
+----------------------------------------------------+ 

| Ordinary    least squares regression               | 

| LHS=HHNINC   Mean                 =   .3590541     | 

|              Standard deviation   =   .1735639     | 

|              Number of observs.   =      14243     | 

| Model size   Parameters           =          5     | 

|              Degrees of freedom   =      14238     | 

| Residuals    Sum of squares       =   379.8470     | 

|              Standard error of e  =   .1633352     | 

| Fit          R-squared            =   .1146423     | 

|              Adjusted R-squared   =   .1143936     | 

+----------------------------------------------------+ 

+--------+--------------+----------------+--------+--------+----------+ 

|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 

+--------+--------------+----------------+--------+--------+----------+ 

|Constant|     .04169***       .00894        4.662   .0000            | 

|AGE     |     .00086***       .00013        6.654   .0000     42.6528| 

|EDUC    |     .02044***       .00058       35.528   .0000     11.7287| 

|MARRIED |     .03825***       .00341       11.203   .0000      .76515| 

|WHITEC  |     .03969***       .00305       13.002   .0000      .29994| 

+--------+------------------------------------------------------------+ 
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Women 

+----------------------------------------------------+ 

| Ordinary    least squares regression               | 

| LHS=HHNINC   Mean                 =   .3444951     | 

|              Standard deviation   =   .1801790     | 

|              Number of observs.   =      13083     | 

| Model size   Parameters           =          5     | 

|              Degrees of freedom   =      13078     | 

| Residuals    Sum of squares       =   363.8789     | 

|              Standard error of e  =   .1668045     | 

| Fit          R-squared            =   .1432098     | 

|              Adjusted R-squared   =   .1429477     | 

+----------------------------------------------------+ 

+--------+--------------+----------------+--------+--------+----------+ 

|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 

+--------+--------------+----------------+--------+--------+----------+ 

|Constant|     .01191          .01158        1.029   .3036            | 

|AGE     |     .00026*         .00014        1.875   .0608     44.4760| 

|EDUC    |     .01941***       .00072       26.803   .0000     10.8764| 

|MARRIED |     .12081***       .00343       35.227   .0000      .75151| 

|WHITEC  |     .06445***       .00334       19.310   .0000      .29924| 

+--------+------------------------------------------------------------+ 
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All 

+----------------------------------------------------+ 

| Ordinary    least squares regression               | 

| LHS=HHNINC   Mean                 =   .3520836     | 

|              Standard deviation   =   .1769083     | 

|              Number of observs.   =      27326     | 

| Model size   Parameters           =          5     | 

|              Degrees of freedom   =      27321     | 

| Residuals    Sum of squares       =   752.4767     | All 

| Residuals    Sum of squares       =   379.8470     | Men 

| Residuals    Sum of squares       =   363.8789     | Women 

+----------------------------------------------------+ 

+--------+--------------+----------------+--------+--------+----------+ 

|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 

+--------+--------------+----------------+--------+--------+----------+ 

|Constant|     .04186***       .00704        5.949   .0000            | 

|AGE     |     .00030***     .919581D-04     3.209   .0013     43.5257| 

|EDUC    |     .01967***       .00045       44.180   .0000     11.3206| 

|MARRIED |     .07947***       .00239       33.192   .0000      .75862| 

|WHITEC  |     .04819***       .00225       21.465   .0000      .29960| 

+--------+------------------------------------------------------------+ 
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F Statistic for Chow Test 

--> Calc     ; k = col(x) 

             ; List; dfd = (tm + tf - 2*k) 

             ; Chowtest = ((sall - sm - sf)/k) /  

                          ((sm+sf)/dfd) 

             ; FCrit = Ftb(.95,k,dfd)  $ 

 

DFD       =  27316.000000 

CHOWTEST  =     64.281630 

FCRIT     =      2.214100 
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Use Dummy Variables (and Base 

the Test on a Robust Covariance Matrix) 
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Wald Test for Difference 
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Specification Test: Normality of  

 Specification test for distribution 

 Standard tests: 

 Kolmogorov-Smirnov: compare empirical cdf of X to normal with 

same mean and variance 

 Bowman-Shenton: Compare third and fourth moments of X to 

normal, 0 (no skewness) and 34 (meso kurtosis) 

 Bera-Jarque – adapted Bowman/Shenton to linear 

regression residuals 
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Testing for Normality 
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The Stochastic Frontier Model 
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             ui > 0, usually assumed to be |N[0,]| 
             vi may take any value.   
 
A symmetric distribution, such as the normal 
distribution, is usually assumed for vi. 
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2 2

2 2

Closed Skew Normal Distribution

v ~ N[0, ],    U ~ N[0, ]

                        u  =  |U|    (absolute value)
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Application to Spanish Dairy Farms 

Input Units Mean Std. 
Dev. 

Minimum Maximum 

Milk Milk production (liters) 131,108  92,539  14,110 727,281 

Cows # of milking cows   2.12  11.27   4.5   82.3 

Labor # man-equivalent units   1.67   0.55   1.0    4.0 

Land Hectares of land 
devoted to pasture and 
crops. 

  12.99   6.17   2.0   45.1 

Feed Total amount of 
feedstuffs fed to dairy 
cows (tons) 

 57,941 47,981 3,924.1

4 

 376,732 

N = 247 farms, T = 6 years (1993-1998) 
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Stochastic Frontier Model 
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Appendix 

Miscellaneous Results 
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Nonlinear Restrictions 

I am interested in testing the hypothesis that 

certain ratios of elasticities are equal. In 

particular, 

 1 = 4/5  -  7/8 = 0 

 2 = 4/5  -  9/8 = 0  
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Setting Up the Wald Statistic 

To do the Wald test, I first need to estimate the asymptotic covariance matrix for the 
sample estimates of 1 and 2.  After estimating the regression by least squares, the 
estimates are  

                                          f1  = b4/b5  -  b7/b8  

                                          f2 = b4/b5  -  b9/b8.   

 

Then, using the delta method, I will estimate the asymptotic variances of f1 and f2 and the 
asymptotic covariance of f1 and f2.   For this, write f1 = f1(b), that is a function of the 
entire 101 coefficient vector.  Then, I compute the 110 derivative vectors,  
d1 = f1(b)/b  and  d2 = f2(b)/b   These vectors are 

 

                  1    2   3     4         5      6     7        8        9       10 

           d1 = 0,  0,  0,  1/b5, -b4/b5
2,  0, -1/b8, b7/b8

2,    0,       0 

           d2 = 0,  0,  0,  1/b5, -b4/b5
2,  0,   0,    b9/b8

2,  -1/b8,    0 
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Wald Statistics 

Then, D = the 210 matrix with first row d1 and second row 

d2.  The estimator of the asymptotic covariance matrix of 

[f1,f2] (a 21 column vector) is  

V  =  D  s2 (XX)-1  D.  Finally, the Wald test of the 

hypothesis that  = 0 is carried out by using the chi-

squared statistic W = (f-0)V-1(f-0).  This is a chi-squared 

statistic with 2 degrees of freedom.   The critical value 

from the chi-squared table is 5.99, so if my sample chi-

squared statistic is greater than 5.99, I reject the 

hypothesis. 
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Wald Test 

    In the example below, to make this a little 

simpler, I computed the 10 variable regression, 

then extracted the 51 subvector of the 

coefficient vector c = (b4,b5,b7,b8,b9) and its 

associated part of the 1010 covariance matrix.  

Then, I manipulated this smaller set of values. 
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Application of the Wald Statistic 

?  Extract subvector and submatrix for the test 

matrix;list ; c  =b(4:9)]$ 

matrix;list ; vc=varb(4:9,4:9) 

?  Compute derivatives 

calc  ;list  

; g11=1/c(2); g12=-c(1)*g11*g11; g13=-1/c(4) ; g14=c(3)*g13*g13 ;  g15=0 

; g21=   g11 ; g22=g12                ; g23=0         ; g24=c(5)/c(4)^2      ; g25=-1/c(4)$ 

?  Move derivatives to matrix 

matrix;list; dfdc=[g11,g12,g13,g14,g15 / g21,g22,g23,g24,g25]$ 

?  Compute functions, then move to matrix and compute Wald statistic 

calc;list ; f1=c(1)/c(2) - c(3)/c(4) 

             ; f2=c(1)/c(2) - c(5)/c(4) $ 

matrix ; list; f = [f1/f2]$ 

matrix ; list; vf=dfdc * vc * dfdc' $ 

matrix ; list ; wald = f' * <vf> * f$ 
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Computations 
Matrix C        is    5 rows by    1 columns. 

                 1 

     1   -0.2948  -0.2015   1.506   0.9995  -0.8179 

Matrix VC       is    5 rows by    5 columns. 

                 1           2           3           4           5 

     1    0.6655E-01  0.9479E-02 -0.4070E-01  0.4182E-01 -0.9888E-01 

     2    0.9479E-02  0.5499E-02 -0.9155E-02  0.1355E-01 -0.2270E-01 

     3   -0.4070E-01 -0.9155E-02  0.8848E-01 -0.2673E-01  0.3145E-01 

     4    0.4182E-01  0.1355E-01 -0.2673E-01  0.7308E-01 -0.1038 

     5   -0.9888E-01 -0.2270E-01  0.3145E-01 -0.1038      0.2134 

 G11 =  -4.96184        G12 =  7.25755      G13= -1.00054    G14     =   1.50770   G15     =  0.000000 

 G21 =  -4.96184        G22 =  7.25755      G23 = 0          G24     = -0.818753  G25     =  -1.00054 

DFDC=[G11,G12,G13,G14,G15/G21,G22,G23,G24,G25] 

Matrix DFDC     is    2 rows by    5 columns. 

                 1           2           3           4           5 

     1    -4.962       7.258      -1.001       1.508      0.0000 

     2    -4.962       7.258      0.0000     -0.8188      -1.001 

F1= -0.442126E-01 

F2=  2.28098 

F=[F1/F2] 

VF=DFDC*VC*DFDC' 

Matrix VF       is    2 rows by    2 columns. 

                 1           2 

     1    0.9804      0.7846 

     2    0.7846      0.8648 

WALD   Matrix Result   is    1 rows by    1 columns. 

                 1 

     1     22.65 
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Noninvariance of the Wald Test 
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Nonnested Regression Models 

 Davidson and MacKinnon:  If model A is correct, 

then predictions from model B will not add to the 

fit of model A to the data. 

 

 Vuong:  If model A is correct, then the likelihood 

function will generally favor model A and not 

model B 
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Davidson and MacKinnon Strategy 

 Obtain predictions from model A  =  AFit 

 Obtain predictions from model B  =  Bfit 

 If A is correct, in the combined model (A,Bfit), 

Bfit should not be significant. 

 If B is correct, in the combined model (B,Afit), 

Afit should not be significant. 

 (Unfortunately), all four combinations of 

significance and not are possible. 
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Application 

Model A 

 LogG(t)  =  1 + 2logY(t) + 3logPG(t)  

               + 4logPNC(t) + 5logPUC(t) + 6logPPT(t) 

               + 7logG(t-1) +   

Model B 

 LogG(t)  =  1 + 2logY(t) + 3logPG(t)  

               + 4logPNC(t) + 5logPUC(t) + 6logPPT(t) 

               + 7logY(t-1) +  w 

 



Part 11: Hypothesis Testing - 2 11-98/78 

B does not add to Model A 
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A Does Add to Model B 
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Voung 

 Log density for an observation is 

Li = -.5*[log(2) + log(s2) + ei
2/s2] 

 Compute Li(A) and Li(B) for each observation 

 Compute Di = Li(A) – Li(B) 

 Test hypothesis that mean of Di equals zero 

using familiar “z” test. 

 Test statistic > +2 favors model A, < -2 favors 

model B, in between is inconclusive. 
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Oaxaca Decomposition 

Two groups, two regression models:  (Two time periods, 
men vs. women, two countries, etc.) 

    y1  =  X11  +  1  and y2  =  X22  +  2 

Consider mean values,   

       y1* =  E[y1|mean x1]   =  x1* 1  

       y2* =  E[y2|mean x2]   =  x2* 2 

Now, explain why y1* is different from y2*.  (I.e., departing 
from y2, why is y1 different?)    (Could reverse the roles 
of 1 and 2.) 

      y1*  -  y2*  = x1* 1 - x2* 2 

                      = x1*(1 - 2)          +  (x1* - x2*) 2 

                      (change in model)    (change in conditions) 



Part 11: Hypothesis Testing - 2 11-103/78 

The Oaxaca Decomposition 

  

  

1 1 1 2 2 2

1 2

1 2 1 1 2 1 2 2

Two groups (e.g., men=1, women=2)

Regression predictions: 

ˆ ˆy ,  y  (e.g., wage equations)

ˆ ˆExplain y  - y .

ˆ ˆy  - y ( )     +   (  

            discrimination + qualificati

x b x b

x b - b x - x )b

 

 

     

     

2 1 2 1

1 1 2 1 1 1 1 2 2 2

2 2 1 2 1

1 1 2 1 1 1 1 2 2 2

ons

Var[ ( )]= { ( ) ( ) }

Wald :  W=( ( )) / [ { ( ) ( ) } ]

What is the hypothesis?

1

1

x b - b x X X X X x

x b - b x X X X X x
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Application - Income 
German Health Care Usage Data, 7,293 Individuals, Varying Numbers of 

Periods 

Variables in the file are 

Data downloaded from Journal of Applied Econometrics Archive. This is an 

unbalanced panel with 7,293 individuals. They can be used for regression, count 

models, binary choice, ordered choice, and bivariate binary choice.  This is a 

large data set.  There are altogether 27,326 observations.  The number of 

observations ranges from 1 to 7.  (Frequencies are: 1=1525, 2=2158, 3=825, 

4=926, 5=1051, 6=1000, 7=987).   

HHNINC =  household nominal monthly net income in German marks / 10000. 

                     (4 observations with income=0 were dropped) 

HHKIDS = children under age 16 in the household = 1; otherwise = 0 

EDUC =  years of schooling  

AGE = age in years 

MARRIED = 1 if married, 0 if not 

FEMALE = 1 if female, 0 if male 
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Regression: Female=0 (Men) 
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Regression Female=1 (Women) 
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Pooled Regression 
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Application 
namelist ; X = one,age,educ,married,hhkids$ 

? Get results for females 

include  ; new ; female=1$                       Subsample females 

regr     ; lhs=hhninc;rhs=x$                     Regression 

matrix   ; bf=b ; vf = varb ; xbarf = mean(x) $  Coefficients, variance, mean X 

calc     ; meanincf = bf'xbarf $                 Mean prediction for females 

? Get results for males 

include  ; new ; female=0$                       Subsample males 

regr     ; lhs=hhninc;rhs=x$                     Regression 

matrix   ; bm=b ; vm = varb ; xbarm = mean(x) $  Coefficients, etc. 

calc     ; meanincm = bm'xbarm $                 Mean prediction for males 

? Examine difference in mean predicted income 

calc     ; list  

         ; meanincm ; meanincf                   Display means 

         ; diff = xbarm'bm - xbarf'bf $          Difference in means 

matrix   ; vdiff = xbarm'[vm]xbarm + xbarf'[vf]xbarf $ Variance of difference 

calc     ; list ; diffwald = diff^2 / vdiff $          Wald test of difference = 0 

? “Discrimination” component of difference 

matrix   ; db = bm-bf  ; discrim = xbarm'db      Difference in coeffs., discrimination 

         ; vdb = vm+vf ; vdiscrim = xbarm'[vdb]xbarm $ Variance of discrimination 

calc     ; list ; discrim ; dwald = discrim^2 / vdiscrim $ Walt test that D = 0. 

? “Difference due difference in X” 

matrix   ; dx = xbarm - xbarf $                  Difference in characteristics 

matrix   ; qual = dx'bf ; vqual = dx'[vf]dx $    Contribution to total difference 

calc     ; list ; qual ; qualwald = qual^2/vqual $  Wald test. 
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Results 

+------------------------------------+ 

| Listed Calculator Results          | 

+------------------------------------+ 

MEANINCM =       .359054 

MEANINCF =       .344495 

DIFF     =       .014559 

DIFFWALD =     52.006502 

 

DISCRIM  =      -.005693 

DWALD    =      7.268757 

 

QUAL     =       .020252 

QUALWALD =   1071.053640 
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Decompositions 
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Likelihood Ratio Test 

 The normality assumption 

 Does it work ‘approximately?’ 

 For any regression model yi = h(xi,)+εi where  

εi ~N[0,2], (linear or nonlinear), at the linear (or 

nonlinear) least squares estimator, however computed, 

with or without restrictions, 

        2 2ˆlogL( and /N) (N/2)[1+log2 +log ]ˆˆˆ ˆ

This forms the basis for likelihood ratio tests.  

  


 



2
2

2

ˆ ˆ2[log ( ) log ( )]

ˆ
Nlog [ ]

ˆ

unrestricted restricted

drestricted

unrestricted

L L

J



Part 11: Hypothesis Testing - 2 11-112/78 

LR = 2(830.653 – 809.676) = 41.954 

Likelihood Ratio Test 


