Econometrics I

Professor William Greene Stern School of Business Department of Economics

Econometrics I

Part 11 – Hypothesis Testing

Classical Hypothesis Testing

We are interested in using the linear regression to support or cast doubt on the validity of a theory about the real world counterpart to our statistical model. The model is used to test hypotheses about the underlying data generating process.

Types of Tests

■ <u>Nested Models</u>: Restriction on the parameters of a particular model $y = \beta_1 + \beta_2 x + \beta_3 T + \epsilon$, $\beta_3 = 0$

(The "treatment" works; $\beta_3 \neq 0$.)

Nonnested models: E.g., different RHS variables

 $y_{t} = \beta_{1} + \beta_{2}x_{t} + \beta_{3}x_{t-1} + \varepsilon_{t}$ $y_{t} = \gamma_{1} + \gamma_{2}x_{t} + \gamma_{3}y_{t-1} + w_{t}$ (Lagged effects occur immediately or spread over time.)

Specification tests:

 $\epsilon \sim N[0,\sigma^2]$ vs. some other distribution (The "null" spec. is true or some other spec. is true.)

Hypothesis Testing

Nested vs. nonnested specifications

- y=b₁x+e vs. y=b₁x+b₂z+e: Nested
 y=bx+e vs. y=cz+u: Not nested
 y=bx+e vs. logy=clogx: Not nested
 y=bx+e; e ~ Normal vs. e ~ t[.]: Not nested
 Fixed vs. random effects: Not nested
 Logit vs. probit: Not nested
 x is (not) endogenous: Maybe nested. We'll see ...
- Parametric restrictions
 - Linear: $R\beta$ -q = 0, R is JxK, J < K, full row rank
 - General: $\mathbf{r}(\beta,\mathbf{q}) = \mathbf{0}$, $\mathbf{r} = a$ vector of J functions,

 $\mathsf{R}(\beta,\mathbf{q}) = \partial \mathsf{r}(\beta,\mathbf{q}) / \partial \beta'.$

Use r(β,q)=0 for linear and nonlinear cases

Broad Approaches

Bayesian: Does not reach a firm conclusion. Revises odds.

- Prior odds compares strength of prior beliefs in two states of the world
- Posterior odds compares revised beliefs
- Symmetrical treatment of competing ideas
- Not generally practical to carry out in meaningful situations
- Classical: All or nothing; reject the theory or do not reject it.
 - "Null" hypothesis given prominence
 - Propose to "reject" toward favor of "alternative"
 - Asymmetric treatment of null and alternative
 - Huge gain in practical applicability

Inference in the Linear Model

Formulating hypotheses: linear restrictions as a general framework

Hypothesis Testing J linear restrictions

- Analytical framework: \mathbf{y} = $\mathbf{X}\boldsymbol{\beta}$ + ϵ Hypothesis: $\mathbf{R}\boldsymbol{\beta}$ - \mathbf{q} = $\mathbf{0}$
- Substantive restrictions: What is a "testable hypothesis?"
 - Substantive restriction on parameters
 - Reduces dimension of parameter space
 - Imposition of restriction degrades estimation criterion

Testable Implications of a Theory

Investors care about nominal interest rates and expected inflation:

 $I = \beta_1 + \beta_2 r + \beta_3 dp + e$

Restriction is $\beta_3 = -\beta_2$.

Investors care only about real interest rates.

- (1) Substantive restriction on parameters
- (2) Parameter space is \Re^3 . Restricted space is a 2 dimensional subspace (not \Re^2).
- (3) Restrictions must lead to increase in sum of squared residuals

The General Linear Hypothesis: H_0 : $R\beta - q = 0$

A unifying departure point: Regardless of the hypothesis, least squares is unbiased.

 $\mathsf{E}[\mathbf{b}] = \beta$

The hypothesis makes a claim about the population

 $R\beta - q = 0$. Then, if the hypothesis is true, E[Rb - q] = 0.

The sample statistic, Rb – q will not equal zero. Two possibilities:

Rb – q is small enough to attribute to sampling variability

Rb – q is too large (by some measure) to be plausibly attributed to sampling variability

Large Rb – q is the rejection region.

Neyman – Pearson Classical Methodology

- Formulate null and alternative hypotheses
 - Hypotheses are exclusive and exhaustive
 - Null hypothesis is of particular interest
- Define "Rejection" region = sample evidence that will lead to rejection of the null hypothesis.
- Gather evidence
- Assess whether evidence falls in rejection region or not.

Testing Fundamentals - I

SIZE of a test = Probability it will incorrectly reject a "true" null hypothesis.

□ This is the probability of a Type I error.

Under the null hypothesis, F(3,100) has an F distribution with (3,100) degrees of freedom. Even if the null is true, F will be larger than the 5% critical value of 2.7 about 5% of the time.

Distribution Under the Null

A Simulation Experiment

```
sample ; 1 - 500 $
create ; x1=rnn(0,1);x2=rnn(0,1);x3=rnn(0,1)$
matrix
         ; fvalues=init(1000,1,0)$
proc$
create ; fakey = rnn(-.3,1.5) $ $ Coefficients all = 0
         ; quietly ; lhs = fakey ?
                                         Compute regression
regress
         ; rhs=one, x1, x2, x3$
calc ; fstat = (rsqrd/3)/((1-rsqrd)/(n-4))$ Compute F
         ; fvalues(i)=fstat$
                                    ? Save 1000 Fs
matrix
endproc
execute ; i= 1,1000 $
                                    ? 1000 replications
kernel ; rhs = fvalues
         ; title=F Statistic for H0:b2=b3=b4=0 $
quantile ; rhs=fvalues$
```

Simulation Results

About 5% of computed F values are in the rejection region, though $\beta_1 = \beta_2 = \beta 3 = 0$ is true.

Percentiles	FVALUES:1
Sample size	1000
Min. 01th *025 05th 10th 20th 25th 30th 40th Med. 60th 70th 75th 80th 90th	0.003284 0.028683 0.070420 0.115276 0.182580 0.309095 0.376636 0.444732 0.633529 0.798674 0.951718 1.262215 1.392785 1.592293 2.086798 2.626567
*975	2.992109
99th	3.494726
Max.	6.182722

Testing Fundamentals - II

POWER of a test = the probability that it will correctly reject a "false null" hypothesis

- □ This is 1 the probability of a Type II error.
- The power of a test depends on the specific alternative.

Power of a Test

11-16/78

Part 11: Hypothesis Testing - 2

3 Approaches to Defining the Rejection Region

(1) Imposing the restrictions leads to a loss of fit. Sum of squared residuals must increase.

 R^2 must go down. Does it go down "a lot?" (I.e., significantly?). R_u^2 = unrestricted model, R_r^2 = restricted model fit. Test is based on $R_u^2 - R_r$. Is this difference large?

- (2) Is Rb q close to 0? Basing the test on the discrepancy vector: m = Rb q. Using the <u>Wald criterion</u>: m'(Var[m])⁻¹m. A distance measure of how far m is from zero.
- (3) Does the restricted model appear to satisfy the restrictions? Examine the residuals from the restricted model. Do the residuals appear to be random noise?

Testing Strategy

How to determine if the statistic is 'large.'

Need a 'null distribution.'

- If the hypothesis is true, then the statistic will have a certain distribution. This tells you how likely certain values are, and in particular, if the hypothesis is true, then 'large values' will be unlikely.
- If the observed statistic is too large, conclude that the assumed distribution must be incorrect and the hypothesis should be rejected.

Robust Tests

- The Wald test generally will (when properly constructed) be more robust to failures of the narrow model assumptions than the t or F
- Reason: Based on "robust" variance estimators and asymptotic results that hold in a wide range of circumstances.

Dear Professor Greene,

I recently submitted a paper in a journal estimating a wage equation corrected for sample selection. The referee has come back with the following comment:

"I do not trust the standard errors reported in Table 5. Most of the coefficients are highly statistically significant (at the 1% level), while the R-squares are still relatively low. I suspect this is because the standard error are not corrected for heteroscedasicity. The author should report robust standard errors at the minimum. Standard errors allowing for occupational clustering would be even better."

What command does one use to calculate robust standard error in the sample selection model?.

Also, if there are 6 occupations included in the regression equation, what command should one use for standard errors allowing for occupational clustering.

In both cases, assume we are estimating an earnings function corrected for sample selection.

Robustness

Assumptions are narrower than necessary

- (1) Disturbances might be heteroscedastic
- (2) Disturbances might be correlated across observations – these are panel data
- (3) Normal distribution assumption is unnecessary
- F, LM and LR tests rely on normality, no longer valid
- Wald test relies on appropriate covariance matrix. (1) and (2) invalidate s²(X'X)⁻¹.

Robust Inference Strategy

(1) Use a robust estimator of the asymptotic covariance matrix. (Next class)

(2) The Wald statistic based on an appropriate covariance matrix is robust to distributional assumptions – it relies on the CLT.

The Nonrobust F Statistic

An application: (Familiar) Suppose \mathbf{b}_n is the least squares estimator of β based on a sample of n observations. No assumption of normality of the disturbances or about nonstochastic regressors is made. The standard F statistic for testing the hypothesis H0: $\mathbf{R}\beta - \mathbf{q} = \mathbf{0}$ is

 $F[J, n-K] = [(e^{*}e^{*} - e^{*}e)/J] / [e^{*}e / (n-K)]$

where this is built of two sums of squared residuals. The statistic does not have an F distribution. How can we test the hypothesis?

Application - 1

Regression Model LogG = β_1 + $\beta_2 \log Y$ + $\beta_3 \log PG$ + $\beta_4 \log PNC$ + $\beta_5 \log PUC$ + $\beta_6 \log PPT$ + $\beta_7 \log PN$ + $\beta_8 \log PD$ + $\beta_9 \log PS$ + ϵ Period = 1960 - 1995. Note that all coefficients in the model are elasticities.

Full Model by Least Squares

Ordinary	least squar	es regression			
LHS=LG	Mean	=	5.3929	9	
	Standard de	viation =	.2487	8	
	Number of o	bservs. =	3	6	
Model size	e Parameters	=		9	
	Degrees of	freedom =	2	7	
Residuals	Sum of squa	res =	.0085	5	
	Standard er	ror of e =	.0178	0	
Fit	R-squared	=	. 9960	5	
	Adjusted R-	squared =	. 9948	8	
Variable	Coefficient	Standard Error	t-ratio	P[T >t]	Mean of X
Constant	-6.95326***	1.29811	-5.356	.0000	
LY	1.35721***	.14562	9.320	.0000	9.11093
LPG	50579***	.06200	-8.158	.0000	. 67409
LPNC	01654	.19957	083	.9346	.44320
LPUC	12354*	.06568	-1.881	.0708	. 66361
LPPT	.11571	.07859	1.472	.1525	.77208
LPN	1.10125***	.26840	4.103	.0003	. 60539
LPD	.92018***	.27018	3.406	.0021	. 43343
LPS	-1.09213***	. 30812	-3.544	.0015	.68105

Testing a Hypothesis Using a Confidence Interval

Given the range of plausible values

- Testing the hypothesis that a coefficient equals zero or some other particular value:
 - Is the hypothesized value in the confidence interval?
 - Is the hypothesized value within the range of plausible values?

If not, reject the hypothesis.

Test About One Parameter

Is the price of public transportation really 'relevant?' H_0 : $\beta_6 = 0$.

Confidence interval: $b_6 \pm t(.95,27) \times Standard error$ = .11571 ± 2.052(.07859)

 $= .11571 \pm .16127 = (-.045557, .27698)$

Contains 0.0. Do not reject hypothesis H_0 : $\beta_6 = 0$.

Variable	Coefficient	Standard Error	t-ratio	P[T >t]	Mean of X
Constant	-6.95326***	1.29811	-5.356	.0000	
LY	1.35721***	.14562	9.320	.0000	9.11093
LPG	50579***	.06200	-8.158	.0000	. 67409
LPNC	01654	.19957	083	.9346	. 44320
LPUC	12354*	.06568	-1.881	.0708	.66361
LPPT	. 11571	.07859	1.472	.1525	.77208
LPN	1.10125***	.26840	4.103	.0003	. 60539
LPD	.92018***	.27018	3.406	.0021	. 43343
LPS	-1.09213***	.30812	-3.544	.0015	.68105

Test a Hypothesis About a Coefficient Confidence intervals are often displayed in results

Ordinary LHS=logG Regressic Residual Total Fit Model tes	least square Mean Standard dev No. of obser on Sum of Squar Sum of Squar Sum of Squar Sum of Squar R-squared st F[6, 29	s regression iation = vations = es = es = or of e = =] =	5. 2. .10522 2. 990.	39299 24878 36 15567 7E-01 16619 01905 99514 14814	DegFreedom 6 29 35 Root MSE R-bar squared Prob F > F*	Mean square .35928 .00036 .06189 .01710 1 .99414 .00000
logG	Coefficient	Standard Error	t	Prob. t >T*	. 95% Con • Inte	nfidence erval
Constant YEAR logPG logY logPN logPD logPS	-23.9398* .00902 47878*** 1.27365*** 1.13036*** .79402*** -1.19347***	12.19453 .00677 .06162 .15010 .18906 .22581 .20592	-1.96 1.33 -7.77 8.49 5.98 3.52 -5.80	.0593 .1931 .0000 .0000 .0000 .0015 .0000	$\begin{array}{r} -48.8804 \\00483 \\60482 \\ .96666 \\ .74369 \\ .33217 \\ -1.61462 \end{array}$	1.0008 .02287 35275 1.58064 1.51703 1.25586 77233
Note: ***	*, ** , * ==> Sig	nificance at	1%, 5%,	10% le	evel.	

This model does not contain the micro price indices (PNC, PUC, PPT).

11-28/78

A Distance Measure

Testing more generally about a single parameter.

Sample estimate is b_k Sample estimated standard error is v_k .

Hypothesized value is β_k

How far is β_k from b_k ? If too far, the hypothesis is inconsistent with the sample evidence. Measure distance in standard error units

t = $(b_k - \beta_k)$ /Estimated v_k.

If t is "large" (larger than critical value), reject the hypothesis. The critical value is obtained in a table (computed) for the t distribution.

Ordinary LHS=logG Regression Residual Total Fit Model test	least squares Mean Standard dev: No. of observ Sum of Square Sum of Square Standard erro R-squared FI 6 29	s regression iation = vations = es = es = or of e = 1 =	5. 2. .10522 2.	39299 24878 36 15567 7E-01 16619 01905 99514 14814	DegFreedom 6 29 35 Root MSE R-bar squared Prob F > F*	Mean square .35928 .00036 .06189 .01710 i .99414 .0000
logG (Constant YEAR logPG logY logPN logPD logPS Note: ***, *	Coefficient -23.9398* .00902 47878*** 1.27365*** 1.13036*** .79402*** -1.19347*** **, * ==> Sign	Standard Error 12.19453 .00677 .06162 .15010 .18906 .22581 .20592 nificance at	t -1.96 1.33 -7.77 8.49 5.98 3.52 -5.80 1%, 5%,	Prob t >T .0593 .1931 .0000 .0000 .0000 .0015 .0000 10% 1e	+ 95% Cor ► Inte -48.8804 00483 60482 .96666 .74369 .33217 -1.61462 evel.	1.0008 .02287 35275 1.58064 1.51703 1.25586 77233

Test Statistic Based on Fit Measures

For the fit measures, use a normalized measure of the loss of fit:

$$\mathbf{F}[\mathbf{J},\mathbf{n}-\mathbf{K}] = \frac{\left(\mathbf{R}_{u}^{2}-\mathbf{R}_{r}^{2}\right)/J}{\left(1-\mathbf{R}_{u}^{2}\right)/(\mathbf{n}-\mathbf{K})} \ge 0 \text{ since } \mathbf{R}_{u}^{2} \ge \mathbf{R}_{r}^{2}$$

Often useful

$$R_u^2 = 1 - \frac{\mathbf{e}'_u \mathbf{e}_u}{S_{yy}}$$
 and $R_r^2 = 1 - \frac{\mathbf{e}'_r \mathbf{e}_r}{S_{yy}}$

Insert these in F and it becomes

$$\mathsf{F}[\mathsf{J},\mathsf{n}-\mathsf{K}] = \frac{\left(\mathbf{e}_{\mathrm{r}}'\mathbf{e}_{\mathrm{r}} - \mathbf{e}_{\mathrm{u}}'\mathbf{e}_{\mathrm{u}}\right)/\mathsf{J}}{\left(\mathbf{e}_{\mathrm{u}}'\mathbf{e}_{\mathrm{u}}\right)/(\mathsf{n}-\mathsf{K})} \ge 0 \text{ since } \mathbf{e}_{\mathrm{r}}'\mathbf{e}_{\mathrm{r}} \ge \mathbf{e}_{\mathrm{u}}'\mathbf{e}_{\mathrm{u}}$$

11-30/78

Part 11: Hypothesis Testing - 2

Hypothesis Test: Sum of Coefficients = 0?

Ord	inary	least squar	es regression .			
LHS	=LG	Mean	=	5.39299	•	
		Standard de	viation =	.24878	3	
		Number of o	bservs. =	36	5	
Mod	el sizo	e Parameters	=	9	•	
		Degrees of	freedom =	27	7	
Res	iduals	Sum of squa	res =	. 00855	5 <*****	*
		Standard er	ror of e =	.01780)	
Fit		R-squared	=	. 99605	5 <*****	*
		Adjusted R-	squared =	. 99488	3	
Var	iable	Coefficient	Standard Error	t-ratio	P[T >t]	Mean of X
Con	stant	-6.95326***	1.29811	-5.356	.0000	
	LY	1.35721***	.14562	9.320	.0000	9.11093
	LPG	50579***	.06200	-8.158	.0000	.67409
	LPNC	01654	.19957	083	.9346	. 44320
	LPUC	12354*	.06568	-1.881	.0708	.66361
r	LPPT	.11571	. 07859	1.472	.1525	.77208
	LPN	1.10125***	.26840	4.103	.0003	. 60539
	LPD	.92018***	.27018	3.406	.0021	. 43343
	LPS	-1.09213***	. 30812	-3.544	.0015	.68105
		Sum = 0.929	3. Significant	y differen	t from 0.(0000?

Restricted Regression

Linearly re	estricted regro	ession					
LHS=LG	Mean	=	5.392989				
	Standard de	viation =	.2487794				
	Number of o	bservs. =	36				
Model size	Parameters	=	8	<***	9 - 1 r	estriction	
	Degrees of	freedom =	28				
Residuals	Sum of squa	res =	.0112599	<***	With th	e restrictio	n
Residuals	Sum of squa	res =	.0085531	<***	Without	the restric	ction
Fit	R-squared	=	.9948020				
Restrictns.	.F[1, 2	7] (prob) =	8.5(.01)				
Not using C	LS or no cons	tant.R2 & F m	may be < 0				
Not using (DLS or no cons	tant.R2 & F 1	may be < 0				
Not using (+ Variable (OLS or no cons Coefficient	tant.R2 & F n Standard Erm	may be < 0 ror t-rati	.o P[T >t]	Mean of X	
Not using (+ Variable (+ Constant	DLS or no cons Coefficient -10.1507***	tant.R2 & F n Standard Ern .78756	may be < 0 ror t-rati 	.o P[89 .	T >t] 0000	Mean of X	
Not using C + Variable C + Constant LY	DLS or no cons Coefficient -10.1507*** 1.71582***	tant.R2 & F 1 Standard Er: .78756 .08839	may be < 0 ror t-rati -12.8 19.4	.o P[899.	T >t] 0000 0000	Mean of X 9.11093	
Not using C + Variable C + Constant LY LPG	DLS or no cons Coefficient -10.1507*** 1.71582*** 45826***	tant.R2 & F n Standard Ern .78756 .08839 .06741	may be < 0 ror t-rati -12.8 19.4 -6.7	.o P[889 . 12 . '98 .	T >t] 0000 0000 0000	Mean of X 9.11093 .67409	
Not using C + Variable C + Constant LY LPG LPNC	DLS or no const Coefficient -10.1507*** 1.71582*** 45826*** .46945***	tant.R2 & F n Standard Ern .78756 .08839 .06741 .12439	may be < 0 ror t-rati -12.8 19.4 -6.7 3.7	.o P[889 . 12 . 98 . 74 .	T >t] 0000 0000 0000 0000 0008	Mean of X 9.11093 .67409 .44320	
Not using C + Variable C + Constant LY LPG LPNC LPUC	DLS or no cons Coefficient -10.1507*** 1.71582*** 45826*** .46945*** 01566	tant.R2 & F m Standard Erm .78756 .08839 .06741 .12439 .06122	may be < 0 ror t-rati -12.8 19.4 -6.7 3.7 2	.o P[889 . 12 . 98 . 74 .	T >t] 0000 0000 0000 0000 0008 8000	Mean of X 9.11093 .67409 .44320 .66361	
Not using C + Variable C + Constant LY LPG LPNC LPUC LPPT	DLS or no const Coefficient -10.1507*** 1.71582*** 45826*** .46945*** 01566 .24223***	tant.R2 & F m Standard Erm .78756 .08839 .06741 .12439 .06122 .07391	may be < 0 ror t-rati -12.8 19.4 -6.7 3.7 2 3.2	.0 P[889 . 12 . 98 . 74 . 56 .	T >t] 0000 0000 0000 0000 0008 8000 0029	Mean of X 9.11093 .67409 .44320 .66361 .77208	
Not using C + Variable C + Constant LY LPG LPNC LPUC LPPT LPN	DLS or no cons Coefficient -10.1507*** 1.71582*** 45826*** .46945*** 01566 .24223*** 1.39620***	tant.R2 & F r Standard Er .78756 .08839 .06741 .12439 .06122 .07391 .28022	may be < 0 ror t-rati -12.8 19.4 -6.7 3.7 2 3.2 4.9	.0 P[889 . 12 . 78 . 74 . 256 . 277 .	T >t] 0000 0000 0000 0000 0008 8000 0029 0000	Mean of X 9.11093 .67409 .44320 .66361 .77208 .60539	
Not using C Variable C Constant LY LPG LPNC LPUC LPPT LPN LPD	DLS or no const Coefficient -10.1507*** 1.71582*** 45826*** .46945*** 01566 .24223*** 1.39620*** .23885	tant.R2 & F m Standard Err .78756 .08839 .06741 .12439 .06122 .07391 .28022 .15395	<pre>may be < 0 ror t-rati</pre>	O P[889 . 12 . 78 . 298 . 274 . 256 . 277 . 83 . 551 .	T >t] 0000 0000 0000 0008 8000 0029 0000 1324	Mean of X 9.11093 .67409 .44320 .66361 .77208 .60539 .43343	

11-32/78

Joint Hypotheses

Joint hypothesis: Income elasticity = +1, Own price elasticity = -1. The hypothesis implies that b2 = 1 and b3 = -1.

 $\log G = \beta_1 + \log Y - \log Pg + \beta_4 \log PNC + \dots$

Strategy: Regress $\log G - \log Y + \log Pg$ on the other variables and compare the sums of squared residualss

With two re	strictions imposed		
Residuals	Sum of squares	=	.0286877
Fit	R-squared	=	.9979006
Unrestricte	d		
Residuals	Sum of squares	=	.0085531
Fit	R-squared	=	.9960515

 $\mathbf{F} = ((.0286877 - .0085531)/2) / (.0085531/(36-9)) = 31.779951$

The critical F for 95% with (2,27) degrees of freedom is 3.354. The hypothesis is rejected.

11-33/78

Basing the Test on R²

Based on R²s,

F = ((.9960515 - .997096)/2)/((1-.9960515)/(36-9)) = -3.571166 (!)

What's wrong? The unrestricted model used LHS = logG. The restricted one used logG - logY + logPG. The regressions have different LHS variables.

The calculation is always safe using the sums of squared residuals. The calculation is OK if the dependent variable is the same in the two regressions.

An important relationship between t and F

 $F = \frac{\text{Chi} - \text{Squared}[J] / J}{\text{Chi} - \text{squared}[n - K] / (n - K)}$ where the two chi-squared variables are independent. If J = 1, i.e., testing a single restriction, $F = \frac{\text{Chi} - \text{Squared}[1] / 1}{\text{Chi} - \text{squared}[n - K] / (n - K)}$ $= \frac{(N[0,1])^2}{\text{Chi} - \text{squared}[n - K] / (n - K)}$ $= \left\{\frac{N[0,1]}{\sqrt{\text{Chi} - \text{squared}[n - K] / (n - K)}}\right\}^2 = \left\{t[1]\right\}^2$

For a single restriction, F[1,n-K] is the square of the t ratio.

11-35/78

Part 11: Hypothesis Testing - 2

For one restriction, $F = t^2$

Ordinary	least squar	es regress	ion			
LHS=LG	Mean		=	5.3929	9	
	Standard de	viation	=	.2487	3	
	Number of o	bservs.	=	3	6	
Residuals	Sum of squa	res	=	.0085	5	
	Standard er	ror of e	=	.0178	0	
Fit .	R-squared		=	. 9960	5 🔶	
Variable	Coefficient	Standard	Error	t-ratio	P[T >t]	Mean of X
Constant	-6.95326***	1.298	11	-5.356	.0000	
LY	1.35721***	.145	62	9.320	.0000	9.11093
LPG	50579***	.062	00	-8.158	.0000	. 67409
LPNC	01654	.199	57	083	.9346	. 44320
LPUC	12354*	.065	68	-1.881	.0708	. 66361
LPPT	.11571	.078	59	1.472	.1525	.77208
LPN	1.10125***	.268	40	4.103	.0003	. 60539
LPD	.92018***	.270	18	3.406	.0021	. 43343
LPS	-1.09213***	. 308	12	-3.544	.0015	. 68105

Regression fit if drop? Without LPPT, R-squared = 0.99573 Compare R², was 0.99605, F(1,27) = [(.99605 - .99573)/1]/[(1-.99605)/(36-9)]= 2.187 = 1.472² (with some rounding difference)

11-36/78

Part 11: Hypothesis Testing - 2
Regression Analysis: Expenditure versus Year, GasPrice, Income, P_NewCars, ...

 $F-Value = T-Value^2$

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Regression	9	168558	18728.7	5355.77	0.000
Year	1	42	41.7	11.91	0.001
GasPrice	1	1348	1347.7	385.39	0.000
Income	1	91	90.6	25.91	0.000
P_NewCars	1	30	30.0	8.57	0.006
P_UsedCars	1	47	47.5	13.57	0.001
<pre>P_PublicTrans</pre>	1	0	0.1	0.03	0.865
P_Durables	1	188	187.6	53.65	0.000
P_Nondurables	1	1	1.3	0.37	0.544
P_Services	1	6	5.6	1.60	0.212
Error	42	147	3.5		•
Total	51	168705			

Model Summary

S R-sq R-sq(adj) R-sq(pred) 1.87000 99.91

Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	1596	467	3.42	0.001	
Year	-0.840	0.243	-3.45	0.001	198.49
GasPrice	1.3404	0.0683	19.63	0.000	64.62
Income	0.004522	0.000888	5.09	0.000	354.84
P_NewCars	0.645	0.220	2.93	0.006	974.93
P_UsedCars	0.3079	0.0836	3.68	0.001	265.78
P_PublicTrans	0.0142	0.0830	0.17	0.865	481.06
P_Durables	-1.494	0.204	-7.32	0.000	820.66
P_Nondurables	0.132	0.216	0.61	0.544	1614.88
P_Services	0.174	0.137	1.27	0.212	1229.94

11-37/78

Part 11: Hypothesis Testing - 2

The Wald Statistic

Many test statistics are Wald distance measures

- W = (random vector hypothesized value)' times
 [Variance of difference]⁻¹ times
 (random vector hypothesized value)
 - = Normalized distance measure

 $= (\mathbf{q} - \theta)' [Var(\mathbf{q} - \theta)]^{-1} (\mathbf{q} - \theta)$

Under the null hypothesis that $E[\mathbf{q}] = \theta$, W is exactly distributed as chi-squared(J) if

(1) the distance, **q**, is normally distributed and

(2) the variance matrix is the true one, not the estimate.

Wald Test Statistics

W = $\mathbf{m'}[\text{Est.Var}(\mathbf{m})]^{-1}\mathbf{m}$

For a single restriction, $m = \mathbf{r'b} - q$. The variance is $\mathbf{r'}(Var[\mathbf{b}])\mathbf{r}$

The distance measure is

 $(m / \text{standard deviation of } m)^2$. Example: The standard t test that bk = 0, Wald = $[(b_k - 0)/\text{standard error}]^2$. t^2 is the Wald statistic.

General Result for the Wald Statistic Full Rank Quadratic Form

A crucial distributional result (exact): If the random vector **x** has a K-variate normal distribution with mean vector μ and covariance matrix Σ , then the random variable $W = (\mathbf{x} - \mu)'\Sigma^{-1}(\mathbf{x} - \mu)$ has a chi-squared distribution with K degrees of freedom.

(See text, Appendix B11.6, Theorem B.11.)

Building the Wald Statistic-1

Suppose that the same normal distribution assumptions hold, but instead of the parameter matrix Σ we do the computation using a matrix \mathbf{S}_n which has the property plim $\mathbf{S}_n = \Sigma$. The exact chi-squared result no longer holds, but the limiting distribution is the same as if the true Σ were used.

Building the Wald Statistic-2

Suppose the statistic is computed not with an \mathbf{x} that has an exact normal distribution, but with an \mathbf{x}_n which has a **limiting normal distribution**, but whose finite sample distribution might be something else. Our earlier results for functions of random variables give us the result

$$(\mathbf{x}_{n} - \mu) \ '\mathbf{S}_{n}^{-1}(\mathbf{x}_{n} - \mu) \
e \chi^{2}[K]$$

(!!!)VVIR! Note that in fact, nothing in this relies on the normal distribution. What we used is consistency of a certain estimator (S_n) and the central limit theorem for x_n .

General Result for Wald Distance

The Wald distance measure: If plim $\mathbf{x}_n = \mu$, \mathbf{x}_n is asymptotically normally distributed with a mean of μ and variance Σ , and if \mathbf{S}_n is a consistent estimator of Σ , then the Wald statistic, which is a generalized distance measure between \mathbf{x}_n converges to a chisquared variate.

$$(\mathbf{x}_{n} - \mu) \ \mathbf{S}_{n}^{-1}(\mathbf{x}_{n} - \mu) \ \mathbf{i} \mathbf{S}_{n}^{2}[\mathsf{K}]$$

Test Statistics

We have established the asymptotic distribution of **b**. We now turn to the construction of test statistics. In particular,

 $F[J,n-K] = (1/J)(Rb - q)'[R s^{2}(X'X)^{-1}R']^{-1}(Rb - q)$

This is the usual test statistic for testing linear hypotheses in the linear regression model, distributed exactly as F if the disturbances are normally distributed. We now obtain some general results that will let us construct test statistics in more general situations.

JF is a Wald Statistic

$$\begin{split} \mathsf{F}[\mathsf{J},\mathsf{n}\mathsf{-}\mathsf{K}] &= (1/\mathsf{J}) \times (\mathsf{Rb}_{\mathsf{n}} - \mathsf{q})'[\mathsf{R} \ \mathsf{s}^2(\mathsf{X}'\mathsf{X})^{-1} \ \mathsf{R}']^{-1} \ (\mathsf{Rb}_{\mathsf{n}} - \mathsf{q}). \\ \text{Write } \mathbf{m} &= (\mathsf{Rb}_{\mathsf{n}} - \mathsf{q}). \ \text{Under the hypothesis, plim } \mathbf{m} = \mathbf{0}. \\ \sqrt{\mathsf{n}} \ \mathbf{m} \rightarrow \mathsf{N}[\mathsf{0}, \ \mathsf{R}(\sigma^2/\mathsf{n})\mathsf{Q}^{-1}\mathsf{R}'] \\ \text{Estimate the variance with } \mathsf{R}(\mathsf{s}^2/\mathsf{n})(\mathsf{X}'\mathsf{X}/\mathsf{n})^{-1}\mathsf{R}'] \\ \text{Then, } (\sqrt{\mathsf{n}} \ \mathbf{m})' \ [\mathsf{Est.Var}(\sqrt{\mathsf{n}} \ \mathbf{m})]^{-1} \ (\sqrt{\mathsf{n}} \ \mathbf{m} \) \\ \text{fits exactly into the apparatus developed earlier. If plim } \mathbf{b}_{\mathsf{n}} \\ &= \beta, \ \mathsf{plim} \ \mathsf{s}^2 = \sigma^2, \ \mathsf{and the other asymptotic results we } \end{split}$$

developed for least squares hold, then

 $\mathsf{JF}[\mathsf{J},\mathsf{n}\mathsf{-}\mathsf{K}] \rightarrow \chi^2[\mathsf{J}].$

The Wald Statistic is Robust

- Estimate the variance with **R V R**' where **V** is any appropriate (conventional, heteroscedasticity robust, cluster corrected, etc.)
 - Then, $(\sqrt{n} \mathbf{m})'$ [Est.Var $(\sqrt{n} \mathbf{m})$]⁻¹ $(\sqrt{n} \mathbf{m})$
 - fits exactly into the apparatus developed earlier. If plim $\mathbf{b}_n = \beta$, and the other asymptotic results we developed for least squares hold, then, specifically for the linear regression model,

$$\mathsf{JF}[\mathsf{J},\mathsf{n}\mathsf{-}\mathsf{K}] \rightarrow \chi^2[\mathsf{J}].$$

(Use JF and critical values for χ^2 [J] for tests.

Hypothesis Test: Sum of Coefficients

Do the three aggregate price elasticities sum to zero? $H_0:\beta_7 + \beta_8 + \beta_9 = 0$ $\mathbf{R} = [0, 0, 0, 0, 0, 0, 1, 1, 1], \mathbf{q} = [0]$

Variable	e Coefficient	Standard Error	t-ratio	P[T >t]	Mean of X
LPN	1.10125***	.26840	4.103	.0003	. 60539
LPD	.92018***	.27018	3.406	.0021	.43343
LPS	-1.09213***	.30812	-3.544	.0015	.68105

	1	2	3	4	5	6	7	8	9
1	1.6851	-0.189024	-0.0256198	-0.218091	-0.0240267	-0.0295907	-0.0261772	0.197857	0.176068
2	-0.189024	0.0212045	0.00290895	0.0243971	0.00269963	0.0032894	0.00280174	-0.0222154	-0.0195876
3	-0.0256198	0.00290895	0.00384368	-0.000682307	-0.000413822	-0.00176052	-0.0114883	-0.0044953	0.0108144
4	-0.218091	0.0243971	-0.000682307	0.0398293	0.00350897	0.00824835	0.0236143	-0.0311143	-0.0453555
5	-0.0240267	0.00269963	-0.000413822	0.00350897	0.00431411	0.001419	0.00979376	-0.0118214	-0.00970482
6	-0.0295907	0.0032894	-0.00176052	0.00824835	0.001419	0.00617673	0.0134911	-0.00740557	-0.0198458
7	-0.0261772	0.00280174	-0.0114883	0.0236143	0.00979376	0.0134911	0.0720371	-0.0335608	-0.0705545
8	0.197857	-0.0222154	-0.0044953	-0.0311143	-0.0118214	-0.00740557	-0.0335608	0.0729982	0.0346625
9	0.176068	-0.0195876	0.0108144	-0.0453555	-0.00970482	-0.0198458	-0.0705545	0.0346625	0.0949391

11-47/78

Wald Test

m = b7 + b8 + b9 = 0.9293. $Var[m] = R \times Var[b] \times R' = [0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1]$ $\sum_{i=1}^{9} \sum_{j=1}^{9} R_i R_j Cov(b_i, b_j) = 0.10107$ $m' [Var(m)]^{-1} m = 8.5446 \text{ (See slide 31)}$

The critical chi squared with 1 degree of freedom is 3.84, so the hypothesis is rejected.

Wald Statistic for 2 Restrictions

Joint hypothesis: b(LY) = 1b(LPG) = -1

Variable	Coefficient	Standard Error
Constant	-6.95326***	1.29811
LX	1.35721***	.14562
LPG	50579***	.06200
LPNC	01654	.19957
LPUC	12354*	.06568
LPPT	.11571	.07859
LPN	1.10125***	.26840
TbD	.92018***	.27018
LPS	-1.09213***	.30812

	1	2	3	
1	1.6851	-0.189024	-0.0256198	
2	-0.189024	0.0212045	0.00290895	
3	-0.0256198	0.00290895	0.00384368	-0
4	-0.218091	0.0243971	-0.000682307	
5	-0.0240267	0.00269963	-0.000413822	

Matrix ; R = [0, 1, 0, 0, 0, 0, 0, 0, 0, 0]0,0,1,0,0,0,0,0,0]\$ Matrix ; q = [1/-1]\$ Matrix ; list ; m = R*b - q \$Matrix m has 2 rows and 1 columns. 1 +----+ 1| .35721 2| .49421 +----+ Matrix : list : vm = R*varb*R' \$ Matrix VM has 2 rows and 2 columns. 1 2 1| .02120 .00291 2| .00291 .00384 +-----+ Matrix ; list ; w = m'<vm>m \$ Matrix W has 1 rows and 1 columns. 1 1 63.55962 +----+

11-49/78

Part 11: Hypothesis Testing - 2

Example: Panel Data on Spanish Dairy Farms

N = 247 farms, T = 6 years (1993-1998)

	Units	Mean	Std. Dev.	Minimum	Maximum
Output Milk	Milk production (liters)	131,107	92,584	14,410	727,281
Input Cows	# of milking cows	22.12	11.27	4.5	82.3
Input Labor	# man-equivalent units	1.67	0.55	1.0	4.0
Input Land	Hectares of land devoted to pasture and crops.	12.99	6.17	2.0	45.1
Input Feed	Total amount of feedstuffs fed to dairy cows (Kg)	57,941	47,981	3,924.14	376,732

Application

 $\Box y = \log output$

- **x** = Cobb douglas production: $\mathbf{x} = 1, x_1, x_2, x_3, x_4$ = constant and logs of 4 inputs (5 terms)
- **z** = Translog terms, x_1^2 , x_2^2 , etc. and all cross products, x_1x_2 , x_1x_3 , x_1x_4 , x_2x_3 , etc. (10 terms)
- □ w = (x,z) (all 15 terms)
- Null hypothesis is Cobb Douglas, alternative is translog = Cobb-Douglas plus second order terms.

Translog Regression Model

	Ordinary	least squares Mean	regressio	n	57749		
	110-111	Standard down	ation -		64344		
		Me of choom	ations -		1402	DogEnoodom	Maan aguana
	Democratics	No. of Observ	acions -	50	4 969	Degrieedom	Mean square
	Regression	Sum of Square		50	4.000	14	41.77630
	Residual	Sum of Square	- 88	28	.2836	1467	.01928
	lotal	Sum of Square	es -	61	3.152	1481	.41401
		Standard erro	profe =		13885	ROOT MSE	.13815
	Fit	R-squared			95387	R-bar square	d .95343
\rightarrow	Model test	F[14, 1467]	-	2166.	83407	Prob F > F*	.00000
	i i		Standard		Prob	. 95% Co	nfidence
	YIT	Coefficient	Error	z	z >Z4	• Int	erval
	Constant	11.5689***	.00727	1591.61	.0000	11.5546	11.5831
	X1	.60693***	.02186	27.76	.0000	.56408	.64978
ß –	X2	.01352	.01169	1.16	.2476	00940	.03643
$\mathbf{p}_{\mathbf{x}}$	X3	.02385*	.01356	1.76	.0786	00273	.05042
• *	X41	.45379***	.01199	37.84	.0000	.43029	.47730
	X11	.47329***	.14310	3.31	.0009	.19282	.75376
	X22j	08046	.04930	-1.63	.1026	17708	.01615
	X33j	04840	.09251	52	.6008	22972	.13292
	X44 j	.17969***	.04556	3.94	.0001	.09040	.26897
L .6 _0 _	X12j	08380	.06167	-1.36	.1742	20467	.03707
$n_0.p_7 = 0$	X13j	.18430**	.07248	2.54	.0110	.04225	.32635
012	X14j	28574***	.07560	-3.78	.0002	43391	13757
	X23j	00816	.04326	19	.8505	09295	.07664
	X24	.05222*	.03096	1.69	.0916	00846	.11290
	X34	05821	.04041	-1.44	.1497	13741	.02099

11-52/78

Wald Tests

- r(b,q)= close to zero?
- Wald distance function:
- $\Box \mathbf{r}(\mathbf{b},\mathbf{q})^{\prime}\{\operatorname{Var}[\mathbf{r}(\mathbf{b},\mathbf{q})]\}^{-1} \mathbf{r}(\mathbf{b},\mathbf{q}) \rightarrow \chi^{2}[J]$
- □ Use the delta method to estimate Var[r(b,q)]
 - Est.Asy.Var[b]=s²(X'X)⁻¹
 - Est.Asy.Var[$\mathbf{r}(\mathbf{b},\mathbf{q})$]= $\mathbf{R}(\mathbf{b},\mathbf{q})$ {s²($\mathbf{X}'\mathbf{X}$)⁻¹} $\mathbf{R}'(\mathbf{b},\mathbf{q})$
- □ The standard F test is a Wald test; $JF = \chi^2[J]$.

Coefficient	Wald= $(\mathbf{b}_{\mathbf{z}})$	- 0) ['] { Va	${\bf r}[{\bf b}_{z} - 0]\}^{-1}$	(b _z	-0)=4	42.122
11.5689*** .60693*** .01352 .02385* .45379***		-> name;qua -> regr;lhs ;test:qu Ordinary LHS=YIT	adtrms=x11,x22,x33,x44 s=yit;rhs=one,x1,x2,x3 adtrms\$ least squares regres Mean	(,x12,x),x4,x sion	x13,x14,x23,x2 11,x22,x33,x44 	
.47329*** 08046 04840 .17969*** 08380 .18430**	Close to 0?	Regression Residual Total Fit Model test	Standard deviation No. of observations Sum of Squares Sum of Squares Standard error of e R-squared F[14, 1467]		.64344 1482 584.868 28.2836 613.152 .13885 .95387 2166.83407	
28574*** 00816 .05222* 05821	W=J*F	Wald Test: F Test:	Log likelihood Restricted (b=0) Chi squared [14] Chi-squared [10] F ratio[10, 1467]	= = = =	830.65291 -1448.90834 4559.12249 42.122 4.212	

	1		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	11.5689	1	5.28332e-005	6.96257e-006	1.04789e-005	-1.94441e-005	-9.66005e-006	-0.000323157	-0.000137561	-0.000428489	-0.000111405	9.94147e-005	4.33792e-005	0.000142739	3.10224e-005	-7.35643e-006	2.50147e-005
2	0.606931	2	6.96257e-006	0.000478015	-0.000136173	-6.55597e-005	-0.000215724	0.000129724	8.43757e-005	-0.000134389	-0.000211085	-0.000202012	0.000148986	0.000190158	5.367e-006	1.21626e-005	-7.76451e-005
3	0.0135194	3	1.04789e-005	-0.000136173	0.000136698	7.10173e-006	2.8566e-005	-0.000176969	-5.66131e-005	-8.05683e-005	2.29923e-006	6.98727e-005	-5.99719e-006	1.27587e-005	-1.81797e-006	2.19949e-005	1.46691e-005
4	0.0238475	4	-1.94441e-005	-6.55597e-005	7.10173e-006	0.000183839	-7.47345e-006	0.000130347	-2.61419e-006	0.000358916	5.22235e-005	5.52519e-006	-5.55825e-005	-8.44398e-005	-6.08703e-005	1.36967e-005	6.63415e-006
5	0.453793	5	-9.66005e-006	-0.000215724	2.8566e-005	-7.47345e-006	0.000143842	0.000174599	6.52814e-006	4.78466e-005	0.000176518	3.07544e-005	-7.48148e-005	-0.000211884	5.81279e-006	4.85042e-006	3.92685e-005
6	0.473292	6	-0.000323157	0.000129724	-0.000176969	0.000130347	0.000174599	0.0204774	0.00112112	0.000849242	0.00432806	-0.00525622	-0.00228512	-0.00959475	0.00033393	0.00258622	0.0010118
7	-0.080464	7	-0.000137561	8.43757e-005	-5.66131e-005	-2.61419e-006	6.52814e-006	0.00112112	0.00243	0.000415515	-0.00014612	-0.00181973	-0.000110673	0.000117885	0.000176107	8.50701e-005	-4.33862e-005
8	-0.0484005	8	-0.000428489	-0.000134389	-8.05683e-005	0.000358916	4.78466e-005	0.000849242	0.000415515	0.00855839	0.000347859	-0.000236149	-0.00118828	-0.000295217	-0.000378138	4.69664e-005	-0.000431011
9	0.179687	9	-0.000111405	-0.000211085	2.29923e-006	5.22235e-005	0.000176518	0.00432806	-0.00014612	0.000347859	0.00207531	-0.000489744	0.000508287	-0.0030555	-0.00017862	0.000461235	-0.000360587
10	-0.0837999	10	9.94147e-005	-0.000202012	6.98727e-005	5.52519e-006	3.07544e-005	-0.00525622	-0.00181973	-0.000236149	-0.000489744	0.00380299	0.000242724	0.00164627	-0.000516602	-0.00132111	2.32476e-005
11	0.184303	11	4.33792e-005	0.000148986	-5.99719e-006	-5.55825e-005	-7.48148e-005	-0.00228512	-0.000110673	-0.00118828	0.000508287	0.000242724	0.00525273	-1.40947e-005	-0.00148866	0.000206776	-0.00230405
12	-0.28574	12	0.000142739	0.000190158	1.27587e-005	-8.44398e-005	-0.000211884	-0.00959475	0.000117885	-0.000295217	-0.0030555	0.00164627	-1.40947e-005	0.00571481	0.000318155	-0.00130629	-0.000119702
13	-0.00815564	13	3.10224e-005	5.367e-006	-1.81797e-006	-6.08703e-005	5.81279e-006	0.00033393	0.000176107	-0.000378138	-0.00017862	-0.000516602	-0.00148866	0.000318155	0.00187157	-0.000215743	0.000297747
14	0.0522221	14	-7.35643e-006	1.21626e-005	2.19949e-005	1.36967e-005	4.85042e-006	0.00258622	8.50701e-005	4.69664e-005	0.000461235	-0.00132111	0.000206776	-0.00130629	-0.000215743	0.000958453	-2.92597e-005
15	-0.0582137	15	2.50147e-005	-7.76451e-005	1.46691e-005	6.63415e-006	3.92685e-005	0.0010118	-4.33862e-005	-0.000431011	-0.000360587	2.32476e-005	-0.00230405	-0.000119702	0.000297747	-2.92597e-005	0.00163286
_															/ 1		
																	-

Score or LM Test: General

- Maximum Likelihood (ML) Estimation, Adapted to LS.
- A hypothesis test
 - H₀: Restrictions on parameters are true
 - H₁: Restrictions on parameters are not true
- Basis for the test: \mathbf{b}_0 = parameter estimate under H_0 (i.e., restricted), \mathbf{b}_1 = unrestricted
- Derivative results: For the likelihood function under H₁,
 - $(\partial \log L_1 / \partial \beta | \beta = b_1) = 0$ (derivatives = 0 exactly, by definition)
 - $(\partial \log L_1 / \partial \beta | \beta = b_0) \neq 0$. Is it close? If so, the restrictions look reasonable

Restricted regression and derivatives for the LM Test

Restricte LHS=YIT Regressic Residual Total Fit Model tes Restricti	ed least squar Mean Standard de No. of obse on Sum of Squa Sum of Squa Sum of Squa Sum of Squa Standard er R-squared st F[4, 147 .ons F[10, 146	es regressio viation = res = res = ror of e = 7] = 7] =	on 11.5 .6 584 29. 613 .1 .9 7412.1 4.2	7749 4344 1482 .056 0957 .152 4035 5255 8529 1224	DegFreedom 4 1477 1481 Root MSE R-bar squared Prob F > F* Prob F > F*	Mean square 146.01403 .01970 .41401 .14012 1 .95242 .00000 .00001
YIT	Coefficient	Standard Error	z	Prob z >Zª	. 95% Con * Inte	nfidence erval
Constant X1 X2 X3 X4 X11 X22 X33 X44 X12 X13 X14 X23 X24 X34	11.5775*** .59518*** .02319* .45176*** 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	.00365 .01958 .01122 .01303 .01078 (Fixed (Fixed (Fixed (Fixed (Fixed (Fixed (Fixed (Fixed (Fixed (Fixed (Fixed	3175.52 30.39 2.05 1.78 41.89 Parameter) Parameter) Parameter) Parameter) Parameter) Parameter) Parameter) Parameter) Parameter) Parameter)	.0000 .0400 .0751 .0000	11.5703 .55679 .00105 00235 .43062	11.5846 .63356 .04505 .04873 .47290

Derivatives are

$$\mathbf{g} = \begin{bmatrix} \mathbf{X'e} / s^2 \\ \mathbf{Z'e} / s^2 \end{bmatrix}$$

1	0.000000
2	0.000000
3	0.000000
4	0.000000
5	0.000000
6	110.38257
7	-54.32128
8	25.48239
9	226.05471
101	37.93753
11	177.16378
121	258.29646
13	87.61102
14	42.35517
151	205.07842

Are the residuals from regression of y on X alone uncorrelated with Z?

11-56/78

Part 11: Hypothesis Testing - 2

Computing the LM Statistic Testing $\beta_z = 0$ in $y=X\beta_x+Z\beta_z+\mathcal{E}$ Statistic computed from regression of y on X alone

- **1.** Compute Restricted Regression (y on X alone) and compute residuals, e₀
- 2. Regress e_0 on (X,Z). LM = NR² in this regression. (Regress e_0 on the RHS of the unrestricted regression.

Application of the Score Test

Linear Model: $\mathbf{Y} = \mathbf{X}\beta + \mathbf{Z}\delta + \mathbf{\varepsilon} = \mathbf{W}\theta + \mathbf{\varepsilon}$

- Test H₀: δ=0
- Restricted estimator is [b',0']'

```
NAMELIST; X = a list...; Z = a list ...; W = X,Z 
REGRESS ; Lhs = y; Rhs = X; Res = e 
CALC ; List; LM = N * Rsq(W,e)
```

Regression Specification Tests

Ordinary LHS-YIT Regression Residual Total Fit Model test	least squares Mean Standard devi No. of observ Sum of Square Sum of Square Sum of Square Standard erro R-squared F[14, 1467]	ation = ation = s = s = or of e = = =	n 11. 58 28 61 2166.	57749 64344 1482 4.868 .2836 3.152 13885 95387 83407	DegFreedom 14 1467 1481 Root MSE R-bar square Prob F > F*	Mean square 41.77630 .01928 .41401 .13815 d .95343 .00000	Restricte LHS=VIT Regressic Residual Total Fit Model tes Restricti	ed least squar Mean Standard de No. of obse on Sum of Squa Sum of Squa Standard er R-squared st F[4, 147 .ons F[10, 146	res regression eviation = ervations = ares = ares = rror of e = error of e = 57] =	on 11. 58 29 61 7412. 4.	57749 64344 1482 34.056 0.0957 13.152 14035 95255 18529 21224	DegFreedom 4 1477 1481 Root MSE R-bar squared Prob F > F* Prob F > F*	Mean square 146.01403 .01970 .41401 14012 1.95242 .00000 .00001
YIT	Coefficient	Standard Error	z	Prob z >Z	. 95% Co * Int	nfidence erval	YIT	Coefficient	Standard Error	z	Prob z >Z	. 95% Cor * Inte	nfidence erval
Constant X1 X2 X3 X4 X11 X22 X33 X44 X12 X13 X14 X23 X24 X34	11.5689*** .60693*** .01352 .02385* .45379*** .47329*** 08046 .04840 .17969*** 08380 .18430** 28574*** 00816 .05222* 05821	.00727 .02186 .01169 .14310 .04930 .04930 .04956 .06167 .07248 .07560 .04326 .03096 .04041	$1591.61 \\ 27.76 \\ 1.16 \\ 1.76 \\ 37.84 \\ 3.31 \\ -1.63 \\52 \\ 3.94 \\ -1.36 \\ 2.54 \\ -3.78 \\19 \\ 1.69 \\ -1.44$.0000 .0000 .2476 .0786 .0000 .0009 .1026 .6008 .0001 .1742 .0110 .0002 .8505 .0916 .1497	11.5546 .56408 00940 00273 .43029 .19282 17708 22972 .09040 20467 .04225 43391 09295 00846 13741	11.5831 .64978 .03643 .05042 .47730 .75376 .01615 .13292 .26897 .03707 .32635 -13757 .07664 .11290 .02099	Constant X1 X2 X3 X4 X11 X22 X33 X44 X12 X13 X14 X13 X14 X23 X24 X34	11.5775*** .59518*** .02305** .45176*** 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	.00365 .01958 .01122 .01303 .01078 (Fixed (Fixed (Fixed (Fixed (Fixed (Fixed (Fixed (Fixed (Fixed (Fixed (Fixed	3175.52 30.39 2.05 1.78 Parameter Parameter Parameter Parameter Parameter Parameter Parameter Parameter Parameter	.0000 .0000 .0400 .0751 .0000 	11.5703 .55679 .00105 00235 .43062	11.5846 .63356 .04505 .04873 .47290

LM		=	41.365
Wald Test:	Chi-squared [10]	=	42.122
F Test:	F ratio[10, 1467]	=	4.212

The Spanish dairy data are a 6 period panel. We robustify our test by using the cluster corrected covariance matrix. We were misled by the conventional covariance matrix! Use WALD with a robust covariance matrix for the test.

Ordinary LHS=YIT Regression Residual Total Fit	least square: Mean Standard dev No. of obser Sum of Squar Sum of Squar Standard err R-squared	s regression iation = vations = es = or of e =	11. 58 28 61	57749 64344 1482 4.868 .2836 3.152 13885 95387	DegFreedom 14 1467 1481 Root MSE R-bar squared	Mean square 41.77630 .01928 .41401 .13815 1 .95343
Model test	F[14, 1467		2166.	83407	Prob $F > F*$.00000
YIT	Coefficient	Standard Error	z	Prob z >Z	. 95% Con * Inte	nfidence erval
Constant X1 X2 X3 X4 X11 X22 X33 X44 X12 X13 X14 X14 X23 X24 X24 X34	11.5689*** .60693*** .01352 .02385* .45379*** .47329*** -08046 -04840 .17969*** -08380 .18430** -28574*** -00816 .05222* -05821	.00727 .02166 .01169 .01356 .01199 .14310 .04930 .09251 .04556 .06167 .07248 .07560 .04326 .03096 .04041	1591.61 27.76 1.16 37.84 3.31 -1.63 52 3.94 -1.36 2.54 -3.78 -3.78 -19 1.69 -1.44	.0000 .0000 .2476 .0786 .0009 .1026 .6008 .0001 .1742 .0110 .0002 .8505 .0916 .1497	11.5546 .56408 00940 00273 .43029 .19282 17708 22972 .09040 20467 .04225 43391 09295 00846 13741	11.5831 .64978 .03643 .05042 .47730 .75376 .01615 .13292 .26897 .03707 .32635 13757 .07664 .11290 .02099

Wald statistic based on robust covariance matrix = 10.365. P = 0.409!! Wald test based on conventional standard errors: Chi-squared [10] = 42.122, P = 0.00001

Ordinary	least squares							
LHS=VIT	Mean	= 109103310H	11	57749				
	Standard dev:	iation =		64344				
	 No. of observ 	vations =		1482	DegFreedom Mean squar			
Regressio	n Sum of Square	es =	58	4.868	- 14	41.77630		
Residual	Sum of Square	- 25	28	.2836	1467	.01928		
Total	Sum of Square	es =	61	3.152	1481	. 41401		
	 Standard error 	or of e =		13885	Root MSE	.13815		
Fit	R-squared	=		95387	R-bar squared			
Model tes	t F[14, 1467]] =	2166.	83407	Prob F > F* .00000			
Wald Test	: Chi-squared		1	0.365	Prob $C2 \rightarrow C2$	* = .40903		
F Test:	F ratio[10, 3	1497] =	`	1.037	Prob $F \rightarrow F^*$	= .40974		
		Clustered	7	Prob	. 95% Cc	nfidence		
YIT	Coefficient	Std.Error	Z	z >Z	* Int	erval		
Constant	11.5689***	.01432	807.62	. 0000	11.5408	11.5969		
X1	.60693***	.83718	16.33	. 0000	.53407	.67979		
X2	.01352	.01969	. 69	. 4924	02508	.05211		
X3	.02385	.02228	1.07	. 2844	01982	.06751		
X4	.45379***	.02148	21.13	. 0000	. 41169	. 49589		
X11	. 47329	.29243	1.62	.1056	09985	1.04644		
X22	08046	.08137	99	. 3227	23994	.07901		
X33	04840	.16114	30	.7639	36423	.26743		
X44	.17969*	.09343	1.92	.0544	00343	.36280		
X12	08380	.11935	70	. 4826	31772	.15012		
A13 V14	.18430	.11/8/	1.55	.1179	04672	.41533		
X14 V22	205/4*	.15386	-1.85	.0633	58/30	.01582		
AZ3 V24	00816	.06074	13	.0932	12/21	.11090		
A24 V24	. 05222	.00327	. 03	2604	- 19504	.1/023		
A34	05021	.00472		.3004	10500	.00003		

Part 11: Hypothesis Testing - 2

11-60/78

Structural Change Test

11-61/78

Part 11: Hypothesis Testing - 2

Application: Wald Tests

Year	, G ,	Pg,	Y	, Pnc	, Puc	, Ppt	, Pd ,	Pn,	Ps \$
1960	129.7	. 925	6036	1.045	.836	.810	.444	.331	.302
1961	131.3	.914	6113	1.045	.869	.846	.448	.335	.307
1962	137.1	.919	6271	1.041	.948	.874	.457	.338	.314
1963	141.6	.918	6378	1.035	.960	.885	.463	.343	.320
1964	148.8	.914	6727	1.032	1.001	.901	.470	.347	.325
1965	155.9	.949	7027	1.009	. 994	.919	.471	.353	.332
1966	164.9	.970	7280	.991	.970	. 952	.475	.366	.342
1967	171.0	1.000	7513	1.000	1.000	1.000	.483	.375	.353
1968	183.4	1.014	7728	1.028	1.028	1.046	.501	.390	.368
1969	195.8	1.047	7891	1.044	1.031	1.127	.514	.409	.386
1970	207.4	1.056	8134	1.076	1.043	1.285	.527	.427	.407
1971	218.3	1.063	8322	1.120	1.102	1.377	.547	.442	.431
1972	226.8	1.076	8562	1.110	1.105	1.434	.555	.458	.451
1973	237.9	1.181	9042	1.111	1.176	1.448	.566	.497	.474
1974	225.8	1.599	8867	1.175	1.226	1.480	.604	.572	.513
1975	232.4	1.708	8944	1.276	1.464	1.586	. 659	.615	.556
1976	241.7	1.779	9175	1.357	1.679	1.742	. 695	. 638	.598
1977	249.2	1.882	9381	1.429	1.828	1.824	.727	.671	.648
1978	261.3	1.963	9735	1.538	1.865	1.878	.769	.719	.698
1979	248.9	2.656	9829	1.660	2.010	2.003	.821	.800	.756
1980	226.8	3.691	9722	1.793	2.081	2.516	.892	.894	.839
1981	225.6	4.109	9769	1.902	2.569	3.120	. 957	.969	.926
1982	228.8	3.894	9725	1.976	2.964	3.460	1.000	1.000	1.000
1983	239.6	3.764	9930	2.026	3.297	3.626	1.041	1.021	1.062
1984	244.7	3.707	10421	2.085	3.757	3.852	1.038	1.050	1.117
1985	245.8	3.738	10563	2.152	3.797	4.028	1.045	1.075	1.173
1986	269.4	2.921	10780	2.240	3.632	4.264	1.053	1.069	1.224

Regression Model

Based on the gasoline data: The regression equation is

 $g = \beta_1 + \beta_2 y + \beta_3 pg + \beta_4 pnc + \beta_5 puc +$

 $\beta_6 ppt + \beta_7 pd + \beta_8 pn + \beta_9 ps + \beta_{10} t + \varepsilon$

All variables are logs of the raw variables, so that coefficients are elasticities. The new variable, t, is a time trend, $0,1,\ldots,26$, so that β_{10} is the autonomous yearly proportional growth in G.

Structural Change

Time series regression,

$$LogG = \beta_1 + \beta_2 logY + \beta_3 logPG + \beta_4 logPNC + \beta_5 logPUC + \beta_6 logPPT + \beta_7 logPN + \beta_8 logPD + \beta_9 logPS + \epsilon$$

A significant event occurs in October 1973. We will be interested to know if the model 1960 to 1973 is the same as from 1974 to 1995.

Data Setup

Create; G = log(G);Pg=log(PG); y = log(y);pnc=log(pnc); puc=log(puc); ppt=log(ppt); pd=log(pd); pn=log(pn); ps=log(ps); t=year-1960\$ **Namelist;**X=one,y,pg,pnc,puc,ppt,pd,pn,ps,t\$ **Regress;**Ihs=g;rhs=X\$

Least Squares Results

Ordinary LHS=G Regressio Residual Residual Residual Total Fit Model tes	least squares Mean Standard devia No. of observa n Sum of Squares Sum of Squares Sum of Squares Sum of Squares Sum of Squares andard erros R-squared t F[9, 17]	regression ation = ations = s = s = s = r of e = = =	5. .37769 .41258 .13438 1.	30862 23135 27 38783 4E-02 0E-04 (2E-03 (39160 01491 99729 06710	DegFreedom 9 17 Using years Using years 26 Root MSE R-bar square Prob F > F*	Mean square .15420 .00022 1960 - 1973) 1974 - 1986) .05352 .01183 d .99585 .00000
G	Coefficient	Standard Error	t	Prob. t >T*	95% Co Int	nfidence erval
Constant Y PG PNC PUC PPT PD PN PS T	-5.97984** 1.39438*** 58144*** 29477 20154** .08051 1.50607*** .99947*** 81789* 01251	2.50176 .27825 .06111 .25798 .07416 .08707 .29746 .27033 .46198 .01264	$\begin{array}{r} -2.39\\ 5.01\\ -9.51\\ -1.14\\ -2.72\\ .92\\ 5.06\\ 3.70\\ -1.77\\99\end{array}$.0287 .0001 .0000 .2690 .0146 .3681 .0001 .0018 .0946 .3359	-11.25810 .80734 71038 83906 35799 10319 .87849 .42913 -1.79259 03917	70158 1.98143 45250 .24952 04508 .26420 2.13364 1.56982 .15680 .01415

11-66/78

Covariance Matrix

🖽 Matri	x - VARB										×
[10, 10]	Cell:										
	1	2	3	4	5	6	7	8	9	10	•
1	6.25882	-0.685584	0.0159666	-0.252511	-0.0992025	-0.121959	0.0767857	-0.210285	0.41674	0.0204969	
2	-0.685584	0.0774203	-0.00186804	0.016999	0.00926198	0.0115885	0.000248256	0.0170407	-0.0291785	-0.00269606	\geq
3	0.0159666	-0.00186804	0.00373485	-0.00287659	-0.00105386	-0.00248163	-0.00607819	-0.0112643	0.0145609	0.000101201	\geq
4	-0.252511	0.016999	-0.00287659	0.0665533	0.00947888	0.0132049	-0.0406975	0.0418232	-0.0988791	0.00126402	\geq
5	-0.0992025	0.00926198	-0.00105386	0.00947888	0.00549911	0.00358764	-0.00915534	0.0135477	-0.0226984	-6.24541e-005	NE.
6	-0.121959	0.0115885	-0.00248163	0.0132049	0.00358764	0.00758068	-0.00443961	0.0175285	-0.0319759	-0.000146502	21
7	0.0767857	0.000248256	-0.00607819	-0.0406975	-0.00915534	-0.00443961	0.0884802	-0.0267256	0.0314479	-0.00121354	
8	-0.210285	0.0170407	-0.0112643	0.0418232	0.0135477	0.0175285	-0.0267256	0.0730773	-0.103791	0.000193505	
9	0.41674	-0.0291785	0.0145609	-0.0988791	-0.0226984	-0.0319759	0.0314479	-0.103791	0.213425	-0.00168906	
10	0.0204969	-0.00269606	0.000101201	0.00126402	-6.24541e-005	-0.000146502	-0.00121354	0.000193505	-0.00168906	0.000159658	
											\mathbb{Z}

Chow Test

Structural change test – The CHOW test. Is the regression model the same in the two subperiods, before and after 1973. Use 3 regressions to find out.

Pooled sum of squares = 0.0037769400 = ss01 1960-1973 = 0.0000412580 = ss0 1974-1986 = 0.0001343820 = ss1

F[10, 27 - 20] = [(ss01 - (ss0 + ss1))/K] / [(ss0 + ss1)/(n0 + n1 - 2K]]= 14.353

The critical value is 3.637. The hypothesis of no structural change is rejected.

Residuals Show the Implication of the Restriction of Equal Coefficients. Loss of fit in the first period.

11-69/78

Algebra for the Chow Test

Unrestricted regression is

 $\begin{pmatrix} \mathbf{y}_{1960-1973} \\ \mathbf{y}_{1974-1995} \end{pmatrix} = \begin{pmatrix} \mathbf{X}_{1960-1973} & \mathbf{0} \\ \mathbf{0} & \mathbf{X}_{1974-1995} \end{pmatrix} \begin{pmatrix} \boldsymbol{\beta}_1 \\ \boldsymbol{\beta}_2 \end{pmatrix} + \begin{pmatrix} \boldsymbol{\varepsilon}_{1960-1973} \\ \boldsymbol{\varepsilon}_{1974-1995} \end{pmatrix}$ Restricted regression is $\begin{pmatrix} \mathbf{y}_{1960-1973} \\ \mathbf{y}_{1074-1995} \end{pmatrix} = \begin{pmatrix} \mathbf{X}_{1960-1973} \\ \mathbf{X}_{1974-1995} \end{pmatrix} \boldsymbol{\beta} + \begin{pmatrix} \boldsymbol{\epsilon}_{1960-1973} \\ \boldsymbol{\epsilon}_{1974-1995} \end{pmatrix}$ In the unrestricted model, $\mathbf{R} = [\mathbf{I}, -\mathbf{I}], \mathbf{q} = \mathbf{0}$. **Rb** - $q = b_1 - b_2;$ $\mathbf{R}[Var(\mathbf{b}_1, \mathbf{b}_2)]\mathbf{R'} = Var[\mathbf{b}_1] + Var[\mathbf{b}_2]$ (no covariance)

Structural Change Test

11-71/78

Application – Health and Income

German Health Care Usage Data, 7,293 Individuals, Varying Numbers of Periods Variables in the file are

Data downloaded from Journal of Applied Econometrics Archive. This is an unbalanced panel with 7,293 individuals. There are altogether 27,326 observations. The number of observations ranges from 1 to 7 per family. (Frequencies are: 1=1525, 2=2158, 3=825, 4=926, 5=1051, 6=1000, 7=987). The dependent variable of interest is

DOCVIS = number of visits to the doctor in the observation period

- HHNINC = household nominal monthly net income in German marks / 10000. (4 observations with income=0 were dropped)
- HHKIDS = children under age 16 in the household = 1; otherwise = 0
- EDUC = years of schooling
- AGE = age in years

MARRIED=marital status

WHITEC = 1 if has "white collar" job

11-72/78
Men

+					
Ordinary	/ least squar	res regres	sion		
LHS=HHN	INC Mean	2	=	.3590541	i i
	Standard o	deviation	=	.1735639	i i
I	Number of	observs.	=	14243	i i
Model si	ize Parameters	5	=	5	i i
l	Degrees of	f freedom	=	14238	
Residual	ls Sum of squ	ares	=	379.8470 ┥	
I	Standard e	error of e	=	.1633352	
Fit	R-squared		=	.1146423	1
I	Adjusted H	R-squared	=	.1143936	1
+					+
+ Variable	Coefficient	Standard	Error	-+ b/St.Er.	+ P[Z >:
+		+		-+	+
Constant	.04169***	.00	894	4.662	.0000
AGE	.00086***	.00	013	6.654	.0000
EDUC	.02044***	.00	058	35.528	.0000
MARRIED	.03825***	.00	341	11.203	.0000
WHITEC	.03969***	.00	305	13.002	.0000

Women

Ordinary	least squar	es regress	sion			
LHS=HHNINC	Mean		= .	3444951	l l	
	Standard d	leviation	= .	1801790	l l	
	Number of	observs.	=	13083	l l	
Model size	Parameters	•	=	5	l l	
	Degrees of	freedom	=	13078		
Residuals	Sum of squ	lares	= 3	863.8789 ┥	←	
	Standard e	error of e	= .	1668045	- T	
Fit	R-squared		= .	1432098	l I	
	Adjusted F	-squared	. =	1429477	 ++	
Variable Co	efficient	Standard	Error	b/St.Er.	+	+ Mean of X
Constant	+ .01191	.011	 L58	-+ 1.029	. 3036	+
AGE	.00026*	.000)14	1.875	.0608	44.4760
EDUC	.01941***	.000)72	26.803	.0000	10.8764
MARRIED	.12081***	.003	343	35.227	.0000	.75151

11-74/78

All

+					+	
' Ordinary	least square	es regres:	sion		· ·	
LHS=HHNI	NC Mean		=	.3520836	I.	
1	Standard d	eviation	=	.1769083	1	
1	Number of	observs.	=	27326	1	
Model si	ze Parameters		=	5	1	
1	Degrees of	freedom	=	27321	1	
Residual	s Sum of squa	ares	= '	752.4767	All •	—
Residual	s Sum of squa	ares	= :	379.8470	Men	
Residual	s Sum of squa	ares	= :	363.8789	Womer	1
+					+	
Variable	Coefficient	Standard	Error	b/St.Er.	P[Z >z]	Mean of X
++ Constant	.04186***	. 00'	704	5.949	++ . 0000	+
AGE	.00030***	.9195	81D-04	3.209	.0013	43.5257
EDUC	.01967***	.00	045	44.180	.0000	11.3206
MARRIED	.07947***	. 00:	239	33.192	.0000	.75862
WHITEC	.04819***	.00	225	21.465	.0000	.29960
++						+

F Statistic for Chow Test

> Calc		; $k = col(x)$
		; List; dfd = $(tm + tf - 2*k)$
		; Chowtest = $((sall - sm - sf)/k) /$
		((sm+sf)/dfd)
		; FCrit = Ftb(.95,k,dfd) $\$$
DFD	=	27316.000000
CHOWTEST	=	64.281630

FCRIT	=	2.214100

Use Dummy Variables (and Base the Test on a Robust Covariance Matrix)

Ordinary LHS=HHNIM Regressic Residual Total Fit Model tes Wald Test F Test:	least squares NC Mean Standard devia NO. of observa on Sum of Squares Sum of Squares Sum of Squares R-squared st F[9, 27316] Chi-squared [F ratio[5,27]	regression ation = ations = s = s = r of e = = 5] = 316] =		35208 17691 27326 1.452 3.726 5.178 16501 13033 82993 40815 28163	DegFreedom 9 27316 27325 Root MSE R-bar square Prob F > F* Prob C2 > C2 F*	Mean square 12.38354 .02723 .03130 .16498 d .13004 .00000 * = .00000 = .00000	
HHNINC	Coefficient	Standard Error	z	Prob z >Z*	. 95% Co: • Inte	nfidence erval	
Constant AGE EDUC MARRIED WHITEC FEMALE _ntrct01 _ntrct02 _ntrct03 _ntrct04	.04169*** .00086*** .02044*** .03825*** .03969*** 02978** Interaction FEMAL 00060*** Interaction FEMAL .08256*** Interaction FEMAL .08256***	.00903 .00013 .00058 .00345 .01459 E*AGE .00019 E*EDUC .00092 E*MARRIED .00484 E*WHITEC .00452	$\begin{array}{r} 4.62 \\ 6.59 \\ 35.17 \\ 11.09 \\ 12.87 \\ -2.04 \\ -3.21 \\ -1.11 \\ 17.07 \\ 5.48 \end{array}$.0000 .0000 .0000 .0000 .0000 .0412 .0013 .2678 .0000 .0000	.02399 .00060 .01930 .03149 .03365 05837 00097 00283 .07308 .01591	.05940 .00111 .02158 .04501 .04574 00119 00023 .00079 .09205 .03362	
Note: *** , ** , * ==> Significance at 1%, 5%, 10% level.							

Specification Test: Normality of &

- Specification test for distribution
- Standard tests:
 - Kolmogorov-Smirnov: compare empirical cdf of X to normal with same mean and variance
 - Bowman-Shenton: Compare third and fourth moments of X to normal, 0 (no skewness) and 3σ⁴ (meso kurtosis)
- Bera-Jarque adapted Bowman/Shenton to linear regression residuals

Testing for Normality

Normality Test for Random Variable e

$$s = \sqrt{\frac{\sum_{i=1}^{n} (e_i - \overline{e})^2}{N}}, \ m_j = \frac{\sum_{i=1}^{n} (e_i - \overline{e})^j}{N},$$

 $\overline{\mathbf{e}} = 0$ for regression residuals

Chi-squared[2] =
$$\frac{(m_3 / s^3)^2}{6} + \frac{[(m_4 / s^4) - 3]^2}{20}$$

The Stochastic Frontier Model

$$y_{i} = f(\mathbf{x}_{i})TE_{i}e^{v_{i}}$$

$$\ln y_{i} = \alpha + \beta'\mathbf{x}_{i} + v_{i} - u_{i}$$

$$= \alpha + \beta'\mathbf{x}_{i} + \varepsilon_{i}.$$

 $u_i > 0$, usually assumed to be $|N[0,\sigma]|$ v_i may take any value.

A symmetric distribution, such as the normal distribution, is usually assumed for v_i .

$$\sigma_v = \sigma_u = 1$$

Part 11: Hypothesis Testing - 2

11-82/78

Application to Spanish Dairy Farms

N = 247 farms, T = 6 years (1993-1998)

Input	Units	Mean	Std. Dev.	Minimum	Maximum
Milk	Milk production (liters)	131,108	92,539	14,110	727,281
Cows	# of milking cows	2.12	11.27	4.5	82.3
Labor	# man-equivalent units	1.67	0.55	1.0	4.0
Land	Hectares of land devoted to pasture and crops.	12.99	6.17	2.0	45.1
Feed	Total amount of feedstuffs fed to dairy cows (tons)	57,941	47,981	3,924.1 4	376,732

Stochastic Frontier Model

Ordinary LHS=YIT Regressio Residual Total Fit Model tes	least squares Mean Standard devia - No. of observa on Sum of Squares Sum of Squares Sum of Squares - Standard erros R-squared st F[4, 1477]	regression ation = ations = s = s = r of e = = =	11. 11. 58 29 61 7412.	57749 64344 1482 4.056 .0957 3.152 14035 95255 18529	DegFreedom 4 1477 1481 Root MSE R-bar square Prob F > F*	Mean square 146.01403 .01970 .41401 .14012 d .95242 .00000
YIT	Coefficient	Standard Error	z	Prob z >Z•	. 95% Co: • Int:	nfidence erval
Constant X1 X2 X3 X4	11.5775*** .59518*** .02305** .02319* .45176***	.00365 .01958 .01122 .01303 .01078	3175.52 30.39 2.05 1.78 41.89	.0000 .0000 .0400 .0751 .0000	11.5703 .55679 .00105 00235 .43062	11.5846 .63356 .04505 .04873 .47290
Note: ***	, ** , * ==> Sign	ificance at	: 1%, 5%,	10% le	evel.	

11-85/78

Appendix Miscellaneous Results

11-87/78

Part 11: Hypothesis Testing - 2

Nonlinear Restrictions

I am interested in testing the hypothesis that certain ratios of elasticities are equal. In particular,

$$\phi_1 = \beta_4 / \beta_5 - \beta_7 / \beta_8 = 0$$

$$\phi_2 = \beta_4 / \beta_5 - \beta_9 / \beta_8 = 0$$

Setting Up the Wald Statistic

To do the Wald test, I first need to estimate the asymptotic covariance matrix for the sample estimates of ϕ_1 and ϕ_2 . After estimating the regression by least squares, the estimates are

$$f_1 = b_4/b_5 - b_7/b_8$$

$$f_2 = b_4/b_5 - b_9/b_8.$$

Then, using the delta method, I will estimate the asymptotic variances of f_1 and f_2 and the asymptotic covariance of f_1 and f_2 . For this, write $f_1 = f_1(\mathbf{b})$, that is a function of the entire 10×1 coefficient vector. Then, I compute the 1×10 derivative vectors, $\mathbf{d}_1 = \partial f_1(\mathbf{b})/\partial \mathbf{b}'$ and $\mathbf{d}_2 = \partial f_2(\mathbf{b})/\partial \mathbf{b}'$ These vectors are

Wald Statistics

Then, **D** = the 2×10 matrix with first row d_1 and second row d_2 . The estimator of the asymptotic covariance matrix of $[f_1, f_2]'$ (a 2×1 column vector) is $\mathbf{V} = \mathbf{D} \times s^2 (\mathbf{X'X})^{-1} \times \mathbf{D'}$. Finally, the Wald test of the hypothesis that $\phi = 0$ is carried out by using the chisquared statistic $W = (f-0)'V^{-1}(f-0)$. This is a chi-squared statistic with 2 degrees of freedom. The critical value from the chi-squared table is 5.99, so if my sample chisquared statistic is greater than 5.99, I reject the hypothesis.

Wald Test

In the example below, to make this a little simpler, I computed the 10 variable regression, then extracted the 5×1 subvector of the coefficient vector $\mathbf{c} = (b_4, b_5, b_7, b_8, b_9)$ and its associated part of the 10×10 covariance matrix. Then, I manipulated this smaller set of values.

Application of the Wald Statistic

? Extract subvector and submatrix for the test matrix;list ; c =b(4:9)]\$ matrix;list ; vc=varb(4:9,4:9) ? Compute derivatives calc ;list ; g11=1/c(2); g12=-c(1)*g11*g11; g13=-1/c(4) ; g14=c(3)*g13*g13 ; g15=0 ; g21= g11 ; g22=g12 ; g23=0 ; g24=c(5)/c(4)^2 ; g25=-1/c(4)\$? Move derivatives to matrix matrix;list; dfdc=[g11,g12,g13,g14,g15 / g21,g22,g23,g24,g25]\$? Compute functions, then move to matrix and compute Wald statistic calc;list ; f1=c(1)/c(2) - c(3)/c(4) ; f2=c(1)/c(2) - c(5)/c(4) \$ matrix ; list; f = [f1/f2]\$ matrix ; list; vf=dfdc * vc * dfdc' \$ matrix ; list ; wald = f' * <vf> * f\$

Computations

Matrix C is 5 rows by 1 columns. 1 1 -0.2948 -0.2015 1.506 0.9995 -0.8179 5 rows by Matrix VC is 5 columns. 1 2 3 4 5 0.6655E-01 0.9479E-02 -0.4070E-01 1 0.4182E-01 -0.9888E-01 2 0.9479E-02 0.5499E-02 -0.9155E-02 0.1355E-01 -0.2270E-01 -0.4070E-01 -0.9155E-02 0.8848E-01 -0.2673E-01 0.3145E-01 3 0.4182E-01 0.1355E-01 -0.2673E-01 0.7308E-01 -0.1038 4 5 -0.9888E-01 -0.2270E-01 0.3145E-01 -0.1038 0.2134 G11 = -4.96184G12 = 7.25755G13= -1.00054 G14 1.50770 G15 = 0.000000 G21 = -4.96184G22 = 7.25755G23 = 0G24 = -0.818753G25 = -1.00054DFDC=[G11,G12,G13,G14,G15/G21,G22,G23,G24,G25] Matrix DFDC 5 columns. is 2 rows by 1 2 3 5 4 1 -4.962 7.258 -1.0011.508 0.0000 -4.962 7.258 0.0000 -0.81882 -1.001F1= -0.442126E-01 F2= 2.28098 F = [F1/F2]VF=DFDC*VC*DFDC' Matrix VF 2 columns. is 2 rows by 1 2 1 0.9804 0.7846 2 0.7846 0.8648 WALD Matrix Result is 1 rows by 1 columns. 1 1 22.65

Noninvariance of the Wald Test

I also did a second test (using the built-in procedure) to illustrate a problem with Wald tests. Note that the hypothesis can be written a bit differently. An equivalent way to write them

$$\gamma_1 = \beta_5 \beta_7 - \beta_4 \beta_8 = 0$$

$$\gamma_2 = \beta_4 \beta_8 - \beta_5 \beta_9 = 0$$

In a small sample, one can get a different answer depending on how they write the hypothesis.

+ WALD pr Wald St Prob. f	ocedure. Estima atistic rom Chi-squared	ates and standar = 10.6 1[2] = 0.0	d errors 8662 0478	USING PRODU	JCTS
' Variable 	Coefficient	Standard Error	z=b/s.e.	P[¦Z¦=z]	
Fncn(1) Fncn(2)	-0.8905728E-02 0.4594581	2 0.20022 0.18578	-0.044 2.473	0.96452 0.01339	

Unlike likelihood ratio tests and Lagrange multiplier tests, the Wald test is not invariant to such transformations.

11-94/78

Nonnested Regression Models

- Davidson and MacKinnon: If model A is correct, then predictions from model B will not add to the fit of model A to the data.
- Vuong: If model A is correct, then the likelihood function will generally favor model A and not model B

Davidson and MacKinnon Strategy

- Obtain predictions from model A = AFit
- Obtain predictions from model B = Bfit
- If A is correct, in the combined model (A,Bfit), Bfit should not be significant.
- If B is correct, in the combined model (B,Afit), Afit should not be significant.
- Unfortunately), all four combinations of significance and not are possible.

Application

```
Model A
   LogG(t) = \beta_1 + \beta_2 logY(t) + \beta_3 logPG(t)
             + \beta_4 \log PNC(t) + \beta_5 \log PUC(t) + \beta_6 \log PPT(t)
             + \beta_7 \log G(t-1) + \epsilon
Model B
   LogG(t) = \alpha_1 + \alpha_2 logY(t) + \alpha_3 logPG(t)
             + \alpha_4 \log PNC(t) + \alpha_5 \log PUC(t) + \alpha_6 \log PPT(t)
             + \alpha_7 \log Y(t-1) + w
```

B does not add to Model A

Ordinary LHS=LG Regressic Residual Total Fit Model tes Model was	least squares Mean Standard devi No. of observ on Sum of Square Sum of Square Sum of Square Standard erro R-squared st F[7, 27] s estimated on Jul	s regression ation = vations = es = es = or of e = = = . 24, 2012 a	4. .6 .13831 .6 190. t 07:04:	61092 14303 35 81767 4E-01 95598 02263 98012 12276 54 PM	DegFreedom 7 27 34 Root MSE R-bar squared Prob F > F*	Mean square .09740 .00051 .02046 .01988 1 .97496 .00000
IG	Coefficient	Standard Error	t	Prob t >T∉	. 95% Con * Inte	nfidence erval
Constant LY LPG LPNC LPUC LPUC LAGG BFIT Note: ***	-12.7218 2.15927 18067** 34024** .13004 16018 .74018*** -1.18185 *, **, * ==> Sign	9.72682 1.62750 .08418 .13119 .08385 .16024 .13752 1.10554	-1.31 1.33 -2.15 -2.59 1.55 -1.00 5.38 -1.07 1%, 5%,	.2019 .1957 .0410 .0152 .1326 .3264 .0000 .2945 10% 1e	-31.7860 -1.03057 34566 59736 03430 47424 .47064 -3.34867	6.3424 5.34911 01567 08312 .29439 .15388 1.00972 .98498

A Does Add to Model B

Ordinary LHS=LG Regressio Residual Total Fit Model tes Model was	least squares Mean Standard devia No. of observa on Sum of Squares Sum of Squares Sum of Squares - Standard erros R-squared st F[7, 27] s estimated on Jul	regression ation = ations = s = s = r of e = 24, 2012 at	4.6 .138314 .69 .190.2 07:05:0	61092 14303 35 81767 4E-01 95598 02263 98012 12276 07 PM	DegFreedom 7 27 34 Root MSE R-bar squared Prob F > F*	Mean square .09740 .00051 .02046 .01988 1 .97496 .00000
LG	Coefficient	Standard Error	t	Prob. t >T*	95% Con • Inte	nfidence erval
Constant LY LPG LPNC LPUC LPUC LPPT LAGY AFIT	.82775 .25746 .02190 .04991 05097 .02833 39154 1.07855***	1.98775 .38092 .03341 .12108 .07715 .06749 .36626 .20039	.42 .68 .66 .41 66 .42 -1.07 5.38	.6804 .5049 .5178 .6835 .5144 .6780 .2945 .0000	-3.06817 48912 04359 18740 20219 10396 -1.10939 .68579	4.72367 1.00404 .08739 .28722 .10025 .16062 .32631 1.47131
Note: ***	, ** , * ==> Sign	ificance at 1	L%, 5%,	10% le	evel.	

Voung

- Log density for an observation is

 L_i = -.5*[log(2π) + log(s²) + e_i²/s²]
 Compute Li(A) and Li(B) for each observation
 Compute D_i = L_i(A) L_i(B)

 Test hypothesis that mean of D, equals zero
- Test hypothesis that mean of D_i equals zero using familiar "z" test.
- Test statistic > +2 favors model A, < -2 favors model B, in between is inconclusive.

```
namelist ; x = one,ly,lpg,lpnc,lpuc,lppt$
regress ; lhs = lq ; rhs = x \$
create ; lagy = ly[-1] $
create ; lagg = lg[-1] $
namelist ; modelA = x,lagg $
namelist ; modelB = x,lagy $
sample ; 2 - 36 $
regress ; lhs = lg ; rhs = modela ; keep = afit
        ; res = ea $
calc ; sa2=sumsqdev/n$
regress ; lhs = lg ; rhs = modelb ; keep = bfit
        ; res = eb $
calc ; sb2=sumsqdev/n$
create ; la = -.5*(log(2*pi)+log(sa2)+ea*ea/sa2) $
create ; lb = -.5*(log(2*pi)+log(sb2)+eb*eb/sb2) $
create ; v = la-lb $
calc ; list ; vuong = sqr(n)*xbr(v)/sdv(v)$
```

```
|-> create ; la = -.5*(log(2*pi)+log(sa2)+ea*ea/sa2) $
|-> create ; lb = -.5*(log(2*pi)+log(sb2)+eb*eb/sb2) $
|-> create ; v = la-lb $
|-> calc ; list ; vuong = sqr(n)*xbr(v)/sdv(v)$
[CALC] VUONG = 2.6745922
```

11-101/78

Oaxaca Decomposition

Two groups, two regression models: (Two time periods, men vs. women, two countries, etc.)

 $y_1 = X_1\beta_1 + \varepsilon_1$ and $y_2 = X_2\beta_2 + \varepsilon_2$ Consider mean values,

 $\begin{array}{lll} y_1{}^* = & E[y_1| \text{mean } x_1] & = & x_1{}^{*\prime} & \beta_1 \\ y_2{}^* = & E[y_2| \text{mean } x_2] & = & x_2{}^{*\prime} & \beta_2 \\ \text{Now, explain why } y_1{}^* & \text{is different from } y_2{}^*. & (\text{I.e., departing from } y_2, & \text{why is } y_1 & \text{different?}) & (\text{Could reverse the roles of 1 and 2.}) \end{array}$

$$y_{1}^{*} - y_{2}^{*} = \mathbf{x}_{1}^{*'} \beta_{1} - \mathbf{x}_{2}^{*'} \beta_{2}$$

= $\mathbf{x}_{1}^{*'} (\beta_{1} - \beta_{2})$ + $(\mathbf{x}_{1}^{*} - \mathbf{x}_{2}^{*})' \beta_{2}$
(change in model) (change in conditions)

The Oaxaca Decomposition

Two groups (e.g., men=1, women=2) **Regression predictions:** $\hat{\mathbf{y}}_1 = \overline{\mathbf{x}}_1' \mathbf{b}_1, \ \hat{\mathbf{y}}_2 = \overline{\mathbf{x}}_2' \mathbf{b}_2$ (e.g., wage equations) Explain $\hat{y}_1 - \hat{y}_2$. $\hat{\mathbf{y}}_1 - \hat{\mathbf{y}}_2 = \overline{\mathbf{x}}_1'(\mathbf{b}_1 - \mathbf{b}_2) + (\overline{\mathbf{x}}_1' - \overline{\mathbf{x}}_2')\mathbf{b}_2$ discrimination + qualifications Var $[\bar{\mathbf{x}}_{1}'(\mathbf{b}_{1} - \mathbf{b}_{2})] = \bar{\mathbf{x}}_{1}' \{\sigma_{1}^{2} (\mathbf{X}_{1}' \mathbf{X}_{1})^{-1} + \sigma_{2}^{2} (\mathbf{X}_{2}' \mathbf{X}_{2})^{-1}\} \bar{\mathbf{x}}_{1}$ Wald: W= $(\bar{\mathbf{x}}_{1}'(\mathbf{b}_{1} - \mathbf{b}_{2}))^{2} / [\bar{\mathbf{x}}_{1}' \{\sigma_{1}^{2}(\mathbf{X}_{1}'\mathbf{X}_{1})^{-1} + \sigma_{2}^{2}(\mathbf{X}_{2}'\mathbf{X}_{2})^{-1}\}\bar{\mathbf{x}}_{1}]$ What is the hypothesis?

11-103/78

Application - Income

German Health Care Usage Data, 7,293 Individuals, Varying Numbers of Periods

Variables in the file are

Data downloaded from Journal of Applied Econometrics Archive. This is an unbalanced panel with 7,293 individuals. They can be used for regression, count models, binary choice, ordered choice, and bivariate binary choice. This is a large data set. There are altogether 27,326 observations. The number of observations ranges from 1 to 7. (Frequencies are: 1=1525, 2=2158, 3=825, 4=926, 5=1051, 6=1000, 7=987).

```
HHNINC = household nominal monthly net income in German marks / 10000.
(4 observations with income=0 were dropped)
HHKIDS = children under age 16 in the household = 1; otherwise = 0
EDUC = years of schooling
AGE = age in years
MARRIED = 1 if married, 0 if not
FEMALE = 1 if female, 0 if male
```

Regression: Female=0 (Men)

Subsample a	analyzed for thi	s command is	FEMALE	=	0	
Ordinary LHS=HHNINC	least squares Mean Standard devi	regression ation =		5905 7356		
Regression Residual Total Fit Model test Diagnostic Model was a	NO. OF ODSERV Sum of Square Sum of Square Standard erro R-squared F[4, 14238] Log likelihoo Restricted (b Chi squared [estimated on Aug	ations = s = s = r of e = = d = e0) = 4] = 25, 2011 at	45. 383 429 .1 417.8 5523.4 4733.0 1580.8 10:00:1	.4243 0724 .960 .032 .6422 .0506 .4403 .7748 .3242 .9012 .5 AM	R-bar squared Prob F > F* Akaike I.C. Bayes I.C. Prob C2 > C2*	eedom = .10480 = .00000 = -3.61278 = -3.61013 = .00000
HHNINC	Coefficient	Standard Error	z	Prob z >Z#	. 95% Con * Inte	fidence rval
Constant AGE EDUC MARRIED HHKIDS	.04679*** .00056*** .02190*** .04800*** 01255***	.00931 .00014 .00057 .00387 .00327	5.03 3.94 38.61 12.39 -3.84	.0000 .0001 .0000 .0000 .0000	.02855 .00028 .02079 .04040 01896	.06504 .00084 .02301 .05559 00614
Note: ***,	**, * ==> Sign	ificance at	1%, 5%,	10% le	evel.	

Regression Female=1 (Women)

Subsample	e analyzed for thi	s command is	FEMALE	=	1	-
Ordinary LHS=HHNIN	least squares IC Mean Standard devi	regression ation =		34450 18018		
Regressic Residual Total Fit Model tes Diagnosti	No. of observ on Sum of Square Sum of Square Standard erro R-squared st F[4, 13078] c Log likelihoo Restricted (b Chi squared [s estimated on Aug	<pre>vations = vs = vs = vs = var of e = vd = vd = vation = vation</pre>	51 37 42 449. 4700. 3858. 1684. 10:00:	13083 .3061 3.394 4.700 16897 12081 24453 44519 23327 42384 15 AM	Pegrees of fr 4 13078 13082 R-bar squared Prob F > F* Akaike I.C. Bayes I.C. Prob C2 > C2*	reedom 1 = .12054 = .00000 = -3.55567 = -3.55281 € = .00000
HHNINC	Coefficient	Standard Error	z	Prob z >Z≇	. 95% Con * Inte	nfidence erval
Constant AGE EDUC MARRIED HHKIDS	.06737*** 00070*** .02087*** .11790*** 01941***	.01241 .00015 .00073 .00357 .00354	5.43 -4.52 28.62 33.06 -5.49	.0000 .0000 .0000 .0000 .0000	.04304 00100 .01944 .11091 02634	.09170 00039 .02230 .12490 01247
Note: ***	*, **, * ==> Sign	ificance at	1%, 5%,	10% 10	evel.	

Pooled Regression

Full pooled sample is used for this iteration.									
Ordinary LHS=HHNIN	least squares IC Mean Standard devi	regression = ation =	· · · · · · · · · · · · · · · · · · ·	35208 17691	Denne of freedom				
Regressic Residual Total Fit Model tes Diagnosti	NO. OF ODSERV. on Sum of Square Sum of Square Standard erro R-squared st F[4, 27321] c Log likelihoo Restricted (b Chi squared [s estimated on Aug	ations = s = s = r of e = = d = d = 4] = 25, 2011 at	91 76 85 	2/326 .9565 3.221 5.178 16714 10753 94044 92716 60603 64227 15 AM	4 27321 27325 R-bar squared = .10740 Prob F > F* = .00000 Akaike I.C. = -3.57768 Bayes I.C. = -3.57618 Prob C2 > C2* = .00000				
HHNINC	Coefficient	Standard Error	z	Prob z >Z	. 95% Confidence * Interval				
Constant AGE EDUC MARRIED HHKIDS	.06617*** 00028*** .02122*** .08691*** 01987***	.00741 .00010 .00044 .00260 .00238	8.93 -2.75 47.99 33.40 -8.35	.0000 .0060 .0000 .0000 .0000	.05165 .08070 0004800008 .02035 .02208 .08181 .09201 0245301520				
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.									

Application

```
namelist ; X = one,age,educ,married,hhkids$
? Get results for females
                                                 Subsample females
include ; new ; female=1$
       ; lhs=hhninc;rhs=x$
                                                 Regression
regr
matrix ; bf=b ; vf = varb ; xbarf = mean(x) $ Coefficients, variance, mean X
        ; meanincf = bf'xbarf $
                                                 Mean prediction for females
calc
? Get results for males
include ; new ; female=0$
                                                 Subsample males
       ; lhs=hhninc;rhs=x$
                                                 Regression
regr
matrix ; bm=b ; vm = varb ; xbarm = mean(x) $ Coefficients, etc.
         ; meanincm = bm'xbarm $
                                                 Mean prediction for males
calc
? Examine difference in mean predicted income
calc
        : list
         ; meanincm ; meanincf
                                                 Display means
         ; diff = xbarm'bm - xbarf'bf $
                                                 Difference in means
         ; vdiff = xbarm'[vm]xbarm + xbarf'[vf]xbarf $ Variance of difference
matrix
         ; list ; diffwald = diff^2 / vdiff $
                                                       Wald test of difference = 0
calc
? "Discrimination" component of difference
matrix
       ; db = bm-bf ; discrim = xbarm'db
                                                 Difference in coeffs., discrimination
         : vdb = vm+vf : vdiscrim = xbarm'[vdb]xbarm $ Variance of discrimination
         ; list ; discrim ; dwald = discrim<sup>2</sup> / vdiscrim $ Walt test that D = 0.
calc
? "Difference due difference in X"
       ; dx = xbarm - xbarf $
                                                 Difference in characteristics
matrix
         ; qual = dx'bf ; vqual = dx'[vf]dx $ Contribution to total difference
matrix
         ; list ; qual ; qualwald = qual^2/vqual $ Wald test.
calc
```

11-108/78
Results

+		+				
Listed Calculator Results						
+		+				
MEANINCM	=	.359054				
MEANINCF	=	.344495				
DIFF	=	.014559				
DIFFWALD	=	52.006502				
DISCRIM	=	005693				
DWALD	=	7.268757				
QUAL	=	.020252				
QUALWALD	=	1071.053640				

Decompositions

Decomposition of Changes in Average Function: Model Used in Computations = Linear Regression	s on Function							
Sample is FEMALE = 0 Estimates Based on (0) FEMALE = 0 (a) .359054 (a,0) FEMALE = 1 (b) .364747 (b,0) Pooled =** (*) .361349 (*,0)	FEMALE = 1 Sample (1) Size .341020 (a,1) 14243 .344495 (b,1) 13083 .341996 (*,1) 27326							
Wald Test of Difference in the Two Coefficient VectorsChi squared[5] = 211.9299. P Value = .0000								
Total Change in Function (a,0) - (b,1) =	.014559 (100.00%)							
Oaxaca Due to data is (a,0) - (a,1) = Blinder Due to beta is (a,1) - (b,1) =	.018034 (123.87%) 003475 (-23.87%)							
Daymont Due to data is (b,0) - (b,1) = Andrisani Due to beta is (a,0) - (b,0) =	.020252 (139.10%) 005693 (-39.10%)							
Daymont Due to data is $(b,0) - (b,1) =$ Andrisani Due to beta is $(a,1) - (b,1) =$ (3 Fold) Due to function $(a,0) - (b,0) -$ (a,1) - (b,1) =	.020252 (139.10%) 003475 (-23.87%) - 002218 (-15.24%)							
Ransom Due to data is (*,1) - (*,1) = Oaxaca Due to beta is (a,0) - (*,0) + Neumark (*,1) - (b,1)	.019353 (132.93%) 004794 (-32.93%)							

11-110/78

Likelihood Ratio Test

- The normality assumption
- Does it work 'approximately?'
- For any regression model y_i = h(x_i,β)+ε_i where ε_i ~N[0,σ²], (linear or nonlinear), at the linear (or nonlinear) least squares estimator, however computed, with or without restrictions,

 $\log L(\hat{\beta} \text{ and } \hat{\sigma}^2 = \hat{\epsilon}'\hat{\epsilon}/N) = -(N/2)[1 + \log 2\pi + \log \hat{\sigma}^2]$

This forms the basis for likelihood ratio tests.

$$2[\log \mathcal{L}(\hat{\beta}_{unrestricted}) - \log \mathcal{L}(\hat{\beta}_{restricted})] \\= \operatorname{Nlog} \frac{\hat{\sigma}_{restricted}^{2}}{\hat{\sigma}_{unrestricted}^{2}} \xrightarrow{d} \chi^{2}[\mathcal{J}]$$

11-111/78

Likelihood Ratio Test

Ordinary LHS=VIT Regressic Residual Total Fit Model tes Diagnosti	least squares Mean Standard devi- No. of observ- m Sum of Squares Sum of Squares Sum of Squares Standard erros R-squared st F[4, 1477] c Log likelihoo Restricted (b Chi squared [regressic ation = ations = s = s = r of e = = d = 4] =	n	57749 64344 1482 04.056 0.0957 .3.152 14035 95255 18529 67609 90834 16885
YIT	Coefficient	Standard Error	z	Prob. z >Z *
Constant X1 X2 X3 X4	11.5775*** .59518*** .02305** .02319* .45176***	.00365 .01958 .01122 .01303 .01078	3175.52 30.39 2.05 1.78 41.89	.0000 .0000 .0400 .0751 .0000

LR = 2(830.653 - 809.676) = 41.954

)	Ordinary LHS=YIT Regressic Residual Total Fit Model tes Diagnosti	least squares Mean Standard devi No. of observ on Sum of Square Sum of Square Sum of Square Sum of Square Standard erro R-squared st F[14, 1467] ic Log likelihoo Restricted (b Chi squared [regressio ation = ations = s = s = r of e = ed = (=0) = 14] =	n 11. 58 28 61 2166. 830. -1448. 4559.	57749 64344 1482 4.868 .2836 3.152 13885 95387 83407 65291 90834 12249
	YIT	Coefficient	Standard Error	z	Prob. z >Z *
	Constant X1 X2 X3 X4 X11 X22 X33 X44 X12 X13 X14 X23 X24 X34	11.5689*** .60693*** .01352 .02385* .45379*** .47329*** 08046 04840 .17969*** 08380 .18430** 28574*** 00816 .05222* 05821	.00727 .02186 .01169 .01356 .01199 .14310 .04930 .09251 .04556 .06167 .07248 .07560 .04326 .03096 .04041	$\begin{array}{c} 1591.61\\ 27.76\\ 1.16\\ 1.76\\ 37.84\\ 3.31\\ -1.63\\52\\ 3.94\\ -1.36\\ 2.54\\ -3.78\\19\\ 1.69\\ -1.44 \end{array}$.0000 .0000 .2476 .0786 .0000 .0009 .1026 .6008 .0001 .1742 .0110 .0002 .8505 .0916 .1497