
Econometrics I

Professor William Greene Stern School of Business Department of Economics

Econometrics I

Part 12 – Endogeneity and IV Estimation

12-2/54

Sources of "Endogeneity"

Omitted Variables
Ignored "Heterogeneity"
Measurement Error
Endogenous "Treatment Effects"
Nonrandom Sampling (or Attrition)

Source of Endogeneity: Omitted Variable Aggregate Data and Multinomial Choice: The Model of Berry, Levinsohn and Pakes

Automobile Prices in Market Equilibrium Author(s): Steven Berry, James Levinsohn and Ariel Pakes Source: *Econometrica*, Vol. 63, No. 4 (Jul., 1995), pp. 841-890 Published by: <u>The Econometric Society</u> Stable URL: <u>http://www.jstor.org/stable/2171802</u> Accessed: 08/12/2014 22:40

Theoretical Foundation

Consumer market for J differentiated brands of a good

- j =1,..., J_t brands or types
- i = 1,..., N consumers
- t = i,...,T "markets" (like panel data)
- Consumer i's utility for brand j (in market t) depends on
 - p = price
 - x = observable attributes
 - f = unobserved attributes
 - w = unobserved heterogeneity across consumers
 - ε = idiosyncratic aspects of consumer preferences
- Observed data consist of aggregate choices, prices and features of the brands.

BLP Automobile Market

	J _t	Ν	Ρ	TABLE 1 Descriptive Statistics				X			
Year	No. of Models	Quantity	Price	Domestic	Japan	European	HP/Wt	Size	Air	MPG	MP\$
1971	92	86.892	7.868	0.866	0.057	0.077	0.490	1.496	0.000	1.662	1.850
1972	89	91.763	7.979	0.892	0.042	0.066	0.391	1.510	0.014	1.619	1.875
1973	86	92.785	7.535	0.932	0.040	0.028	0.364	1.529	0.022	1.589	1.819
1974	72	105.119	7.506	0.887	0.050	0.064	0.347	1.510	0.026	1.568	1.453
1975	93	84.775	7.821	0.853	0.083	0.064	0.337	1.479	0.054	1.584	1.503
1976	99	93.382	7.787	0.876	0.081	0.043	0.338	1.508	0.059	1.759	1.696
1977	95	97.727	7.651	0.837	0.112	0.051	0.340	1.467	0.032	1.947	1.835
1978	95	99.444	7.645	0.855	0.107	0.039	0.346	1.405	0.034	1.982	1.929
1979	102	82.742	7.599	0.803	0.158	0.038	0.348	1.343	0.047	2.061	1.657
1980	103	71.567	7.718	0.773	0.191	0.036	0.350	1.296	0.078	2.215	1.466
1981	116	62.030	8.349	0.741	0.213	0.046	0.349	1.286	0.094	2.363	1.559
1982	110	61.893	8.831	0.714	0.235	0.051	0.347	1.277	0.134	2.440	1.817
1983	115	67.878	8.821	0.734	0.215	0.051	0.351	1.276	0.126	2.601	2.087
1984	113	85.933	8.870	0.783	0.179	0.038	0.361	1.293	0.129	2.469	2.117
1985	136	78.143	8.938	0.761	0.191	0.048	0.372	1.265	0.140	2.261	2.024
1986	130	83.756	9.382	0.733	0.216	0.050	0.379	1.249	0.176	2.416	2.856
1987	143	67.667	9.965	0.702	0.245	0.052	0.395	1.246	0.229	2.327	2.789
1988	150	67.078	10.069	0.717	0.237	0.045	0.396	1.251	0.237	2.334	2.919
1989	147	62.914	10.321	0.690	0.261	0.049	0.406	1.259	0.289	2.310	2.806
1990	131	66.377	10.337	0.682	0.276	0.043	0.419	1.270	0.308	2.270	2.852
All	2217	78.804	8.604	0.790	0.161	0.049	0.372	1.357	0.116	2.099	2.086

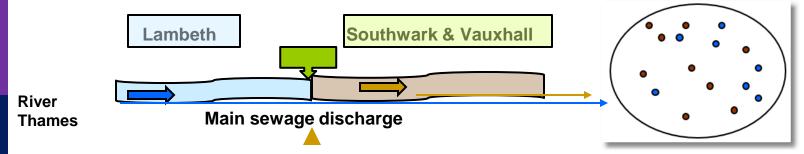
Note: The entry in each cell of the last nine columns is the sales weighted mean.

Random Utility Model

- □ Utility: $U_{ijt}=U(w_i,p_{jt},\mathbf{x}_{jt},f_{jt},\varepsilon_{ijt} | \boldsymbol{\theta}), i = 1,...,(large) N, j=1,...,J$
 - w_i = individual heterogeneity; time (market) invariant. w has a continuous distribution across the population.
 - p_{jt}, x_{jt}, f_{jt}, = price, observed attributes, unobserved features of brand j; all may vary through time (across markets)
- Revealed Preference: Choice j provides maximum utility
- Across the population, given market t, set of prices p_t and features (X_t,f_t), there is a set of values of w_i that induces choice j, for each j=1,...,J_t; then, s_j(p_t,X_t,f_t|θ) is the market share of brand j in market t.
- There is an outside good that attracts a nonnegligible market share, j=0. Therefore, $\sum_{i=1}^{J_t} s_j(\mathbf{p}_t, \mathbf{X}_t, \mathbf{f}_t | \mathbf{\theta}) < 1$

Endogenous Prices: Demand side

$$\Box U_{ijt} = U(w_i, p_{jt}, \mathbf{x}_{jt}, f_{jt}, \varepsilon_{ijt} | \boldsymbol{\theta}) = \mathbf{x}_{jt} | \boldsymbol{\beta}_i - \alpha \mathbf{p}_j | + \mathbf{f}_{jt} + \varepsilon_{ijt}$$


- f_{it} is unobserved features of model j
- Utility responds to the unobserved f_{it}
- Price p_{it} is partly determined by features f_{it}.
- In a choice model based on observables, price is correlated with the unobservables that determine the observed choices.

An Early Study of an Endogeneity Problem

(Snow, J., On the Mode of Communication of Cholera, 1855) http://www.ph.ucla.edu/epi/snow/snowbook3.html

- London Cholera epidemic, ca 1853-4
- **D** Cholera = $f(Water Purity, u) + \varepsilon$.
 - 'Causal' effect of water purity on cholera?
 - Purity=f(cholera prone environment (poor, garbage in streets, rodents, etc.). Regression does not work.

Two London water companies

Paul Grootendorst: A Review of Instrumental Variables Estimation of Treatment Effects... http://individual.utoronto.ca/grootendorst/pdf/IV_Paper_Sept6_2007.pdf

A review of instrumental variables estimation in the applied health sciences. *Health Services and Outcomes Research Methodology* 2007; 7(3-4):159-179.

12-9/54

Part 12: Endogeneity

Cornwell and Rupert Data

Cornwell and Rupert Returns to Schooling Data, 595 Individuals, 7 Years Variables in the file are

EXP	= work experience

- WKS = weeks worked
- OCC = occupation, 1 if blue collar,
- IND = 1 if manufacturing industry
- SOUTH = 1 if resides in south
- SMSA = 1 if resides in a city (SMSA)
- MS = 1 if married
- FEM = 1 if female
- UNION = 1 if wage set by union contract
- ED = years of education

LWAGE = log of wage = dependent variable in regressions

These data were analyzed in Cornwell, C. and Rupert, P., "Efficient Estimation with Panel Data: An Empirical Comparison of Instrumental Variable Estimators," Journal of Applied Econometrics, 3, 1988, pp. 149-155. See Baltagi, page 122 for further analysis. The data were downloaded from the website for Baltagi's text.

12-10/54

Specification: Quadratic Effect of Experience

Ordinary LHS=LWAGE Regressio Residual Total Fit Model tes	- Standard devi - No. of observ n Sum of Square Sum of Square Sum of Square - Standard erro R-squared	ation = vations = es = es = or of e = =	6. 37 51 88	 67635 46151 4165 0.955 5.950 6.905 35243 41826 66153	DegFreedom 10 4154 4164 Root MSE R-bar squared Prob F > F*	Mean square 37.09546 .12421 .21299 .35196 1 .41686 .00000
LWAGE	Coefficient	Standard Error	z	Prob z >Z		nfidence erval
Constant	5.24547***	07170	73.15			5.38600
ED	.05654***	.00261	21.64	.0000	.05142	.06166
EXP EXP*EXP		.00217 .4783D-04	18.61 -14.24	.0000	.03619 00077	.04471 00059
WKS OCC SOUTH SMSA MS FEM UNION	.00449*** 14053*** 07210*** .13901*** .06736*** 38922*** .09015***	.00109 .01472 .01249 .01207 .02063 .02518 .01289	4.12 -9.54 -5.77 11.51 3.26 -15.46 6.99	.0000 .0000 .0000 .0011 .0000 .0000	.00235 16939 09658 .11534 .02692 43857 .06488	.00662 11167 04762 .16267 .10779 33987 .11542
	* ==> Significan					

The Effect of Education on LWAGE

LWAGE = $\beta_1 + \beta_2$ **EDUC** + β_3 **EXP** + β_4 **EXP**² + ... + ϵ What is ϵ ? Ability,... + everything else **EDUC** = f(**GENDER**, **SMSA**, **SOUTH**, Ability,...,u)

12-12/54

Part 12: Endogeneity

What Influences LWAGE?

```
LWAGE = \beta_1 + \beta_2 EDUC(X, Ability,...)+ \beta_3 EXP + \beta_4 EXP^2 + ...+ \epsilon(Ability)
```

Increased Ability is associated with increases in **EDUC**(**X**, Ability,...,u) and ε (Ability) What looks like an effect due to increase in **EDUC** may be an increase in Ability. The estimate of β_2 picks up the effect of **EDUC** and the hidden effect of Ability.

$\begin{aligned} & \textbf{An Exogenous Influence} \\ & \textbf{LWAGE} = \beta_1 + \beta_2 \textbf{EDUC}(\textbf{X}, \textbf{Z}, \textbf{Ability}, ...) \\ & + \beta_3 \textbf{EXP} + \beta_4 \textbf{EXP}^2 + ... \\ & + \epsilon(\textbf{Ability}) \end{aligned}$

Increased Z is associated with increases in EDUC(X, Z, Ability,...,u) and not ε (Ability) An effect due to the effect of an increase Z on EDUC will only be an increase in EDUC. The estimate of β_2 picks up the effect of EDUC only.

Z is an Instrumental Variable

Instrumental Variables

Structure

- LWAGE (ED,EXP,EXPSQ,WKS,OCC, SOUTH,SMSA,UNION)
- **ED (MS, FEM)**
- Reduced Form: LWAGE[ED (MS, FEM), EXP,EXPSQ,WKS,OCC, SOUTH,SMSA,UNION]

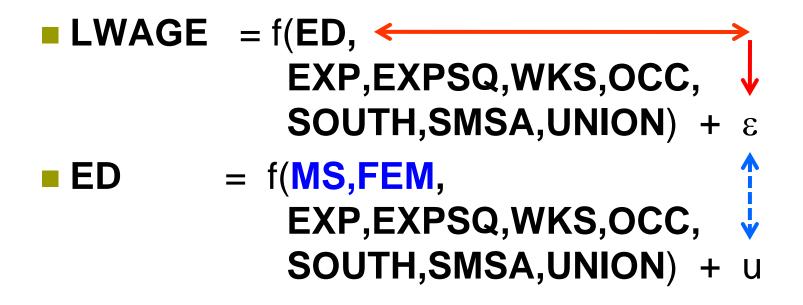
Two Stage Least Squares Strategy

Reduced Form: LWAGE[ED (MS, FEM,X), EXP,EXPSQ,WKS,OCC, SOUTH,SMSA,UNION]

Strategy

- (1) Purge ED of the influence of everything but MS, FEM (and the other variables). Predict ED using all exogenous information in the sample (X and Z).
- (2) Regress LWAGE on this prediction of ED and everything else.
- Standard errors must be adjusted for the predicted ED

OLS


Ordinary LHS=LWAGE Regression Residual Total Fit Model test	Sum of Squar Sum of Squar Standard err R-squared	iation = vations = es = es = or of e = =	6. - 29 59 88	67635 46151 4165 1.042 5.863 6.905 37865 32815 74283	DegFreedom 8 4156 4164 Root MSE R-bar square Prob F > F*	Mean square 36.38019 .14337 .21299 .37824 d .32686 .00000
LWAGE	Coefficient	Standard Error	z	Prob z >Z		nfidence erval
Constant EXP EXPSQ WKS OCC SOUTH SMSA UNION ED	4.97986*** .04308*** 00070*** .00760*** 11578*** 08207*** .09885*** .12891*** .06365***	.07430 .00232 .5128D-04 .00116 .01578 .01341 .01285 .01374 .00279	67.02 18.54 -13.68 6.53 -7.34 -6.12 7.69 9.38 22.82	.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000	.03853 00080 .00532 14672 10835 .07367	5.12549 .04764 00060 .00988 08485 05578 .12403 .15584 .06911

Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

	Mean Standard devi Number of obs e Parameters Degrees of fr	= lation = servs. = reedom = es = pr of e = = uared =	6. -6. -6. F may b	67635 46151 4165 9 4156 21.67 29053 82120 83625 e < 0 t01 WKS	1	The weird results for the coefficient on ED happened because the instruments, MS and FEM are dummy variables. There is not enough variation in these variables.
<u>0CC</u> +-	SOUTH SMSA	UNION Standard		Prob.	95%_Confidence	
LWAGE	Coefficient	Error	Z	z >Z *	Interval	
Constant EXP EXP*EXP WKS OCC SOUTH SMSA UNION ED	-4.38670*** .06447*** 00058*** .01533*** 1.71424*** .31274*** 13695** .37025*** .65029***	1.40197 .00852 .00018 .00413 .27473 .07394 .05588 .05879 ◀ .08689	-3.13 7.56 -3.32 3.72 6.24 4.23 -2.45 6.30 7.49	.0018 .0000 .0009 .0002 .0000 .0000 .0142 .0000 .0000	-7.13451 -1.63889 .04777 .08117 0009300024 .00725 .02342 1.17578 2.25270 .16782 .45767 2464702744 .25502 .48548 .48080 .82059	4.97986*** .04308*** 00070*** .00760*** 11578*** 08207*** .09885*** .12891*** .06365***

12-18/54

The Ultimate Source of Endogeneity

Remove the Endogeneity

• LWAGE = $f(ED, \leftarrow EXP, EXPSQ, WKS, OCC, \cup SOUTH, SMSA, UNION) + u + \varepsilon$

Strategy

Estimate u

Add u to the equation. ED is uncorrelated with ε when u is in the equation.

Auxiliary Regression for ED to Obtain Residuals

	Ordinary LHS=ED Regressic Residual Total Fit Model tes	Sum of Square Sum of Square - Standard erro R-squared	ation = ations = s = s = r of e = =	12. 2. 14 18 32 2.	84538 78800 4165 162.8 203.6 366.4 09312 43758 18746	DegFreedom 9 4155 4164 Root MSE R-bar square Prob F > F*	
	ED	Coefficient	Standard Error	z	Prob z >Z*		nfidence erval
IVs - Exog. Vars -	Constant MS FEM EXP EXP*EXP WKS OCC SOUTH SMSA UNION	16.0756*** .27698** 46653*** 04189*** 00014 01810*** -3.12102*** 65003*** .46655*** 47323***	.34520 .12245 .14937 .01290 .00028 .00647 .07282 .07349 .07134 .07621	$\begin{array}{r} 46.57\\ 2.26\\ -3.12\\ -3.25\\50\\ -2.80\\ -42.86\\ -8.85\\ 6.54\\ -6.21 \end{array}$.0000 .0237 .0018 .0012 .6181 .0051 .0000 .0000 .0000 .0000	15.3990 .03698 75929 06716 00070 03078 -3.26376 79407 .32672 62260	.51698
	***, **, 	* ==> Significan	ce at 1%, 5	%, 10% 1	evel.		

OLS with Residual (Control Function) Added

Ordinary LHS=LWAGE Regressic Residual Total Fit Model tes	No. of observ on Sum of Square Sum of Square Sum of Square Standard erro R-squared	ation = ations = s = s = r of e = =	6. 36 51 88	67635 46151 4165 7.888 9.017 6.905 35343 41480 23700	DegFreedom 9 4155 4164 Root MSE R-bar square Prob F > F*	Mean square 40.87643 .12491 .21299 .35301 d .41353 .00000		
LWAGE	Coefficient	Standard Error	z	Prob z >Z∮		nfidence erval		
Constant EXP EXP*EXP WKS OCC SOUTH SMSA UNION ED U	-4.38670*** .06447*** 00058*** .01533*** 1.71424*** .31274*** 13695*** .37025*** .65029*** 59376***	.38395 .00233 .4810D-04 .00113 .07524 .02025 .01530 .01610 .02380 .02394	-11.43 27.62 -12.13 13.57 22.78 15.44 -8.95 23.00 27.33 -24.80	.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000	-5.13923 .05990 00068 .01312 1.56678 .27305 16695 .33869 .60366 64068	-3.63417 .06904 00049 .01755 1.86171 .35243 10696 .40180 .69693 54684		

-4.38670***
.06447 ***
00058 ***
.01533 ***
1.71424***
.31274***
13695 **
.37025***
.65029 ***

A Warning About Control Function Estimators: The standard errors must be adjusted.

Two stage	e least square: Standard erre		1.	 29053	
LWAGE	Coefficient	Standard Error	z	Prob. z >Z ≭	95% Confidence Interval
Constant EXP EXP*EXP WKS OCC SOUTH SMSA UNION ED	-4.38670*** .06447*** 00058*** .01533*** 1.71424*** .31274*** 13695** .37025*** .65029***	1.40197 .00852 .00018 .00413 .27473 .07394 .05588 .05879 .08689	$\begin{array}{r} -3.13 \\ 7.56 \\ -3.32 \\ 3.72 \\ 6.24 \\ 4.23 \\ -2.45 \\ 6.30 \\ 7.48 \end{array}$.0018 .0000 .0009 .0002 .0000 .0000 .0142 .0000 .0000	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Residual	augmented least : - Standard erro		ession .	35343	$0.38395 \times \frac{1.29053}{0.35343} = 1.40197$
LWAGE	Coefficient	Standard Error	z	Prob. z >Z ≭	95% Confidence Interval
Constant EXP EXP*EXP WKS OCC SOUTH SMSA UNION ED U	-4.38670*** .06447*** 00058*** .01533*** 1.71424*** .31274*** 13695*** .37025*** .65029*** 59376***	.38395 .00233 .4810D-04 .00113 .07524 .02025 .01530 .01610 .02380 .02394	$\begin{array}{r} -11.43\\ 27.62\\ -12.13\\ 13.57\\ 22.78\\ 15.44\\ -8.95\\ 23.00\\ 27.33\\ -24.80\end{array}$.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

12-23/54

Part 12: Endogeneity

I am here to ask a little help for endogeneity.

I have a main regression, in which the independent variabels are lagged 1 year (this is an unbalanced panel dataset); I use fixed effect, xtreg:

Main Regression: Yt = Xt-1 + Qt-1 + Z3t-1

I suspect endogeneity: variable X may be itself determined by prior-year Y. As a solution, I read this strategy: regress the endogenous variable Xt-1 on the dependent variable (Yt-2) and other independent variables (i.e., Qt-2 and Zt-2); these Y Q and Z are all **in year t-2**, while X is in t-1. Then, from this regression, calculate the "**predicted**" values for X, and include them as a control-forendogeneity (e.g., a variable named "Endogeneity-control") in the main regression above.

Question 1: in the Main Regression above, when including the control for endogeneity (i.e., the variable "Endogeneity-control"), do I have to lag its value? That is, do I have to include Endogeneity-control in t-1? or just the predicted values, without lagging?

12-24/54

Part 12: Endogeneity

The two stage LS strategy: (The two stage button in your software.) The software regresses EDUC on all independent variables plus the two instrumental variables (stage 1), then takes the predicted value on education and regresses lwage on that predicted value plus the original independent variables (stage 2). Is this correct?

Then the second method you showed is the same except the predicted residuals are included in the second stage OLS.

Is one method preferred over another? They produce the same results.

The General Problem

 $y = X_1\beta + X_2\delta + \varepsilon$ Cov $(X_1, \varepsilon) = 0$, K₁ variables Cov $(X_2, \varepsilon) \neq 0$, K₂ variables X₂ is endogenous

OLS regression of y on (X_1, X_2) cannot estimate (β, δ) consistently. Some other estimator is needed.

Additional structure:

 $\mathbf{X}_2 = \mathbf{Z} \mathbf{\Pi} + \mathbf{V}$ where $Cov(\mathbf{Z}, \boldsymbol{\varepsilon}) = \mathbf{0}$.

An **instrumental variable (IV)** estimator based on (X_1, X_2, Z) may be able to estimate (β, δ) consistently.

Instrumental Variables

Fully General Framework: **y** = **X**β + ε, K variables in **X**.
 There exists a set of M=K variables, **Z** such that

 $plim(\mathbf{Z'X/n}) \neq \mathbf{0}$ but $plim(\mathbf{Z'}\epsilon/n) = \mathbf{0}$

The variables in Z are called instrumental variables.
 An alternative (to least squares) estimator of β is

 $\mathbf{b}_{\mathrm{IV}} = (\mathbf{Z'X})^{-1}\mathbf{Z'y}$

- We consider the following:
 - Why use this estimator?
 - What are its properties compared to least squares?
- We will also examine an important application

IV Estimators

Consistent

$$\begin{split} \mathbf{b}_{\text{IV}} &= (\mathbf{Z}'\mathbf{X})^{-1}\mathbf{Z}'\mathbf{y} \\ &= (\mathbf{Z}'\mathbf{X}/\text{n})^{-1} (\mathbf{Z}'\mathbf{X}/\text{n})\mathbf{\beta} + (\mathbf{Z}'\mathbf{X}/\text{n})^{-1}\mathbf{Z}'\mathbf{\epsilon}/\text{n} \\ &= \mathbf{\beta} + (\mathbf{Z}'\mathbf{X}/\text{n})^{-1}\mathbf{Z}'\mathbf{\epsilon}/\text{n} \rightarrow \mathbf{\beta} \\ \text{Asymptotically normal (same approach to proof for OLS)} \end{split}$$

Inefficient – to be shown.

as

The General Result

By construction, the IV estimator is consistent. So, we have an estimator that is consistent when least squares is not.

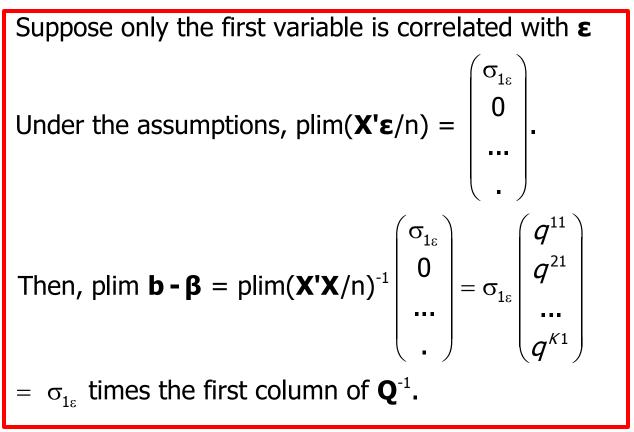
LS as an IV Estimator

The least squares estimator is $(X'X)^{-1}X'y = (X'X)^{-1}\Sigma_i x_i y_i$ $= \beta + (X'X)^{-1}\Sigma_i x_i \varepsilon_i$ If plim(X'X/n) = Q nonzero plim(X' ε /n) = 0 Under the usual assumptions LS is an IV estimator

X is its own instrument.

IV Estimation

Why use an IV estimator? Suppose that X and ε are *not* uncorrelated. Then least squares is neither unbiased nor consistent.


Recall the proof of consistency of least squares:

$$\mathbf{b} = \boldsymbol{\beta} + (\mathbf{X}'\mathbf{X}/n)^{-1}(\mathbf{X}'\boldsymbol{\varepsilon}/n).$$

Plim $\mathbf{b} = \beta$ requires plim($\mathbf{X}' \epsilon / n$) = 0. If this does not hold, the estimator is inconsistent.

A Popular Misconception

A popular misconception. If only one variable in **X** is correlated with ε , the other coefficients are consistently estimated. False.

The problem is "smeared" over the other coefficients.

12-32/54

Asymptotic Covariance Matrix of **b**_{IV}

$$\begin{aligned} \mathbf{b}_{IV} &- \boldsymbol{\beta} = (\mathbf{Z'X})^{-1} \mathbf{Z'\varepsilon} \\ (\mathbf{b}_{IV} - \boldsymbol{\beta})(\mathbf{b}_{IV} - \boldsymbol{\beta})' &= (\mathbf{Z'X})^{-1} \mathbf{Z'\varepsilon\varepsilon'Z(X'Z)^{-1}} \\ \mathbf{E}[(\mathbf{b}_{IV} - \boldsymbol{\beta})(\mathbf{b}_{IV} - \boldsymbol{\beta})' \mid \mathbf{X, Z}] &= \sigma^2 (\mathbf{Z'X})^{-1} \mathbf{Z'Z(X'Z)^{-1}} \end{aligned}$$

Asymptotic Efficiency

Asymptotic efficiency of the IV estimator. The variance is larger than that of LS. (A large sample type of Gauss-Markov result is at work.)

- (1) It's a moot point. LS is inconsistent.
- (2) Mean squared error is uncertain:

MSE[estimator $|\beta$]=Variance + square of bias.

IV may be better or worse. Depends on the data

Two Stage Least Squares

How to use an "excess" of instrumental variables

- X is K variables. Some (at least one) of the K variables in X are correlated with ε.
- (2) Z is now M > K variables. Some of the variables in
 Z are also in X, some are not. None of the variables in Z are correlated with ε.
- (3) Which K variables to use to compute **Z'X** and **Z'y?**

Choosing the Instruments

- □ Choose K randomly?
- Choose the included Xs and the remainder randomly?
- Use all of them? How?
- A theorem: (Brundy and Jorgenson, ca. 1972) There is a most efficient way to construct the IV estimator from this subset:
 - (1) For each column (variable) in X, compute the predictions of that variable using all the columns of Z.
 - (2) Linearly regress **y** on these K predictions.
- □ This is two stage least squares

Algebraic Equivalence

Two stage least squares is equivalent to

- (1) each variable in X that is also in Z is replaced by itself.
- (2) Variables in X that are not in Z are replaced by predictions of that X with all the variables in Z.
 Coefficients in augmented regression are added to match 2SLS. (They match if residuals are used instead of predictions.)

 $Wks_{it} = \beta_1 + \beta_2 \ln Wage_{it} + \beta_3 Ed_i + \beta_4 Union_{it} + \beta_5 Fem_i + \varepsilon_{it},$ $\ln Wage_{it} = \gamma_1 + \gamma_2 Ind_{it} + \gamma_3 Ed_i + \gamma_3 Union_{it} + \gamma_4 Fem_i + \gamma_5 SMSA_{it} + u_i,$

name;w=one,ed,union,fem,ind,smsa\$
name;x=one,lwage,ed,union,fem\$
name;z=one,ind,ed,union,fem,smsa\$
regr;lhs=lwage;rhs=one,ind,ed,union,fem,smsa
;keep=lwageh;res=u\$
regr;lhs=wks;rhs=x,lwageh\$
2sls;lhs=wks;rhs=x;inst=z\$

	Ordinary LHS=WKS Regression Residual Total Fit Model tes	Sum of Square Sum of Square - Standard erro R-squared	= ation = ations = s = s = r of e = =	5. 46 10 10 5.	81152 12910 4165 40.01 4905. 9545. 02231 04236 79103	5 4159 4164 Root MSE	
	WKS	Coefficient	Standard Error	z	Prob z >Z•		nfidence erval
Sum=2sls —	Constant LWAGE ED UNION FEM LWAGEH	30.7044*** .59245*** 31997*** -2.19398*** 23784 2.55937***	4.90997 .20262 .06489 .18262 .45954 .86588	6.25 2.92 -4.93 -12.01 52 2.96		.19533 44714 -2.55191	40.3277 .98958 19280 -1.83604 .66284 4.25646
		least squares tal Variables: IND ED	regression UNION	FEM		1SA	
	WKS	Coefficient	Standard Error	z	Prob. z >Z*		nfidence erval
	Constant LWAGE ED UNION FEM	30.7044*** 3.15182*** 31997*** -2.19398*** 23784	4.99966 .85722 .06607 .18596 .46793	6.14 3.68 -4.84 -11.80 51	.0000 .0002 .0000 .0000 .6113	20.9052 1.47171 44947 -2.55845 -1.15497	40.5035 4.83193 19048 -1.82951 .67929

12-38/54

Part 12: Endogeneity

2SLS Algebra

 $\hat{\mathbf{X}} = \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{X}$ $\mathbf{b}_{2SLS} = (\hat{\mathbf{X}}'\hat{\mathbf{X}})^{-1}\hat{\mathbf{X}}'\mathbf{y}$ But, $\mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{X} = (\mathbf{I} - \mathbf{M}_{z})\mathbf{X} \text{ and } (\mathbf{I} - \mathbf{M}_{z}) \text{ is idempotent.}$ $\hat{\mathbf{X}}'\hat{\mathbf{X}} = \mathbf{X}'(\mathbf{I} - \mathbf{M}_{z})(\mathbf{I} - \mathbf{M}_{z})\mathbf{X} = \mathbf{X}'(\mathbf{I} - \mathbf{M}_{z})\mathbf{X} \text{ so}$ $\mathbf{b}_{2SLS} = (\hat{\mathbf{X}}'\mathbf{X})^{-1}\hat{\mathbf{X}}'\mathbf{y} = \text{ a real IV estimator by the definition.}$ Note, plim $(\hat{\mathbf{X}}'\epsilon/n) = \mathbf{0}$ since columns of $\hat{\mathbf{X}}$ are linear combinations of the columns of \mathbf{Z} , all of which are uncorrelated with ϵ .

 $\mathbf{b}_{2SLS} = [\mathbf{X}'(\mathbf{I} - \mathbf{M}_{z})\mathbf{X}]^{-1}\mathbf{X}'(\mathbf{I} - \mathbf{M}_{z})\mathbf{y}$

Part 12: Endogeneity

12-39/54

Asymptotic Covariance Matrix for 2SLS

General Result for Instrumental Variable Estimation $E[(\mathbf{b}_{IV} - \boldsymbol{\beta})(\mathbf{b}_{IV} - \boldsymbol{\beta})' | \mathbf{X}, \mathbf{Z}] = \sigma^{2}(\mathbf{Z'X})^{-1}\mathbf{Z'Z(X'Z)^{-1}}$ Specialize for 2SLS, using $\mathbf{Z} = \hat{\mathbf{X}} = (\mathbf{I} - \mathbf{M}_{\mathbf{Z}})\mathbf{X}$ $E[(\mathbf{b}_{2SLS} - \boldsymbol{\beta})(\mathbf{b}_{2SLS} - \boldsymbol{\beta})' | \mathbf{X}, \mathbf{Z}] = \sigma^{2}(\hat{\mathbf{X}'X})^{-1}\hat{\mathbf{X}}'\hat{\mathbf{X}}(\mathbf{X'X})^{-1}$ $= \sigma^{2}(\hat{\mathbf{X}'X})^{-1}\hat{\mathbf{X}}'\hat{\mathbf{X}}(\hat{\mathbf{X}'X})^{-1}$ $= \sigma^{2}(\hat{\mathbf{X}'X})^{-1}$

2SLS has larger variance (around its mean) than LS has around its mean.

A comparison to OLS Asy.Var[2SLS]= $\sigma^2(\hat{\mathbf{X}}'\hat{\mathbf{X}})^{-1}$ Neglecting the inconsistency, Asy.Var[LS] = $\sigma^2 (\mathbf{X}'\mathbf{X})^{-1}$ (This is the variance of LS around its mean, not β) Asy.Var[2SLS] \geq Asy.Var[LS] in the matrix sense. To prove, compare the inverses: {Asy.Var[LS]}⁻¹ - {Asy.Var[2SLS]}⁻¹ = $(1 / \sigma^2)$ [**X**'**X** - **X**'**X**] $= (1 / \sigma^2) [X'X - X'(I - M_z)X] = (1 / \sigma^2) [X'M_zX]$ This matrix is nonnegative definite. (Not positive definite as it might have some rows and columns which are zero.)

Implication for "precision" of 2SLS: Possibly very large variances.

The problem of "Weak Instruments"

Estimating σ^2

Estimating the asymptotic covariance matrix -

a caution about estimating σ^2 .

Since the regression is computed by regressing y on $\hat{\mathbf{x}}$, one might use

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{y}_i - \hat{\mathbf{x}}^{*} \mathbf{b}_{2sls})$$

This is inconsistent. Use

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{y}_i - \mathbf{x'b}_{2sls})$$

(Degrees of freedom correction is optional. Conventional, but not necessary.)

Two Problems with 2SLS

- Z'X/n may not be sufficiently large. The covariance matrix for the IV estimator is Asy.Cov(b) = σ²[(Z'X)(Z'Z)⁻¹(X'Z)]⁻¹
 - If Z'X/n -> 0, the variance explodes.
 - Additional problems:
 - 2SLS biased toward plim OLS
 - Asymptotic results for inference fall apart.
- When there are many instruments, x̂ is too close to x; 2SLS becomes OLS.

Weak Instruments

- Symptom: The relevance condition, plim Z'X/n not zero, but is close to being violated.
- **Detection**:
 - Standard F test in the regression of x_k on Z. F < 10 suggests a problem.</p>
 - F statistic based on 2SLS see text p. 274.
- **Remedy:**
 - Not much most of the discussion is about the condition, not what to do about it.
 - Use LIML? Requires a normality assumption. Probably not too restrictive.

Cornwell and Rupert Data

Cornwell and Rupert Returns to Schooling Data, 595 Individuals, 7 Years Variables in the file are

- EXP = work experience
- WKS = weeks worked
- OCC = occupation, 1 if blue collar,
- IND = 1 if manufacturing industry
- SOUTH = 1 if resides in south
- SMSA = 1 if resides in a city (SMSA)
- MS = 1 if married
- FEM = 1 if female
- UNION = 1 if wage set by union contract
- ED = years of education
- LWAGE = log of wage = dependent variable in regressions

These data were analyzed in Cornwell, C. and Rupert, P., "Efficient Estimation with Panel Data: An Empirical Comparison of Instrumental Variable Estimators," Journal of Applied Econometrics, 3, 1988, pp. 149-155. See Baltagi, page 122 for further analysis. The data were downloaded from the website for Baltagi's text.

$$Wks_{it} = \beta_1 + \beta_2 \ln Wage_{it} + \beta_3 Ed_i + \beta_4 Union_{it} + \beta_5 Fem_i + \varepsilon_{it},$$

$$\ln Wage_{it} = \gamma_1 + \gamma_2 Ind_{it} + \gamma_3 Ed_i + \gamma_3 Union_{it} + \gamma_4 Fem_i + \gamma_5 SMSA_{it} + u_i,$$

Endogenous

Instruments

l-> regr;lhs=lwage;rhs=z;test:ind=0,smsa=0\$

Ordinary LHS=LWAGE	least square Mean Standard dev	=	6.	67635 46151		
Regression Residual Total Fit Model test Wald Test: F Test:	No. of obser Sum of Squar Sum of Squar Sum of Squar Standard err R-squared F[5, 4159	vations = es = es = or of e =] = [2] =	27 61 88	4165 2.516 4.389 6.905 38435 30727 94981 0.932 0.466	DegFreedom 5 4159 4164 Root MSE R-bar square Prob $F > F*$ Prob C2 > C2 Prob $F > F*$	Mean square 54.50318 .14773 .21299 .38407 d .30643 .00000 * = .00000 = .00000
LWAGE	Coefficient	Standard Error	z	Prob. z >Z*		nfidence erval
Constant IND ED UNION	5.71494*** .08134*** .06547*** .05859***	.03299 .01278 .00232 .01303	173.25 6.36 28.24 4.50	.0000 .0000 .0000 .0000	5.65028 .05629 .06093 .03305	5.77959 .10640 .07002 .08414
FEM SMSA	47009*** .18329***	.01939 .01287	-24.24 14.24	.0000	50810 .15807	43208 .20851

8.4.3 LIMITED INFORMATION MAXIMUM LIKELIHOOD⁶

We have considered estimation of the two equation model,

$$Wks_{it} = \beta_1 + \beta_2 \ln Wage_{it} + \beta_3 Ed_i + \beta_4 Union_{it} + \beta_5 Fem_i + \varepsilon_{it},$$

$$\ln Wage_{it} = \gamma_1 + \gamma_2 Ind_{it} + \gamma_3 Ed_i + \gamma_3 Union_{it} + \gamma_4 Fem_i + \gamma_5 SMSA_{it} + u_i,$$

using 2SLS. In generic form, the equations are

$$y = \mathbf{x}_1'\boldsymbol{\beta} + x_2\boldsymbol{\lambda} + \boldsymbol{\varepsilon}_1$$
$$x_2 = \mathbf{z}'\boldsymbol{\gamma} + u.$$

The control function estimator is always identical to 2SLS. They use exactly the same information contained in the moments and the two conditions, relevance and exogeneity. If we add to this system an assumption that (ε, u) have a bivariate normal density, then we can construct another estimator, the limited information maximum likelihood estimator. The estimator is formed from the joint density of the two variables, $(y, x_2 | \mathbf{x}_1, \mathbf{z})$. We can write this as $f(\varepsilon, u | \mathbf{x}_1, \mathbf{z})$ abs $|\mathbf{J}|$ where \mathbf{J} is the Jacobian of the transformation from (ε, u) to (y, x_2) ,⁷ abs $|\mathbf{J}| = 1$, $\varepsilon = (y - \mathbf{x}_1'\boldsymbol{\beta} + x_2\lambda)$, and $u = (x_2 - \mathbf{z}'\boldsymbol{\gamma})$. The joint normal distribution with correlation ρ can be written $f(\varepsilon, u | \mathbf{x}_1, \mathbf{z}) = f(\varepsilon | u, \mathbf{x}_1, \mathbf{z})f(u | \mathbf{x}_1, \mathbf{z})$, where $u \sim N[0, \sigma_u^2]$ and $\varepsilon | u \sim N[(\rho \sigma_{\varepsilon}/\sigma_u)u, (1 - \rho^2)\sigma_{\varepsilon}^2]$. (See Appendix B.9.) For convenience, write the second of these as $N[\tau u, \sigma_w^2]$. Then, the log of the joint density for an observation in the sample will be

$$\ln f_i = \ln f(\varepsilon_i | u_i) + \ln f(u_i) = -(1/2) \ln \sigma_w^2 - (1/2) \{ [y_i - \mathbf{x}_1' \boldsymbol{\beta} - x_{2i} \lambda - \tau (x_{2i} - \mathbf{z}_i' \gamma)] / \sigma_w \}^2$$
(8-17)

$$- (1/2) \ln \sigma_u^2 - (1/2) \{ [x_{2i} - \mathbf{z}'_i \gamma] / \sigma_u \}^2.$$

Note, this suggests a two step estimator: (1) Estimate $[\gamma, \sigma_u]$ by LS regression of \mathbf{x}_2 on \mathbf{Z} then compute $\hat{\mathbf{u}} = (\mathbf{x}_2 - \mathbf{Z}\hat{\gamma})/\hat{\sigma}_u$. (2) Estimate $[\beta, \lambda, \tau]$ by regression of y on $(\mathbf{X}, \mathbf{x}_2, \hat{\mathbf{u}})$. This would be consistent, but would not be the same as 2SLS.

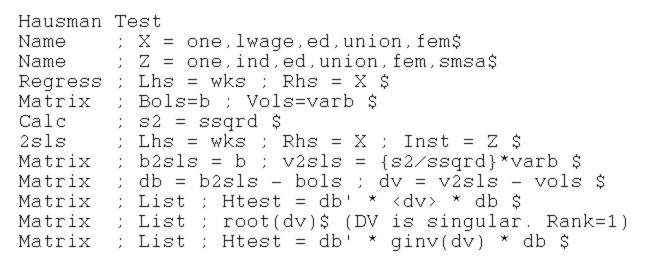
12-47/54

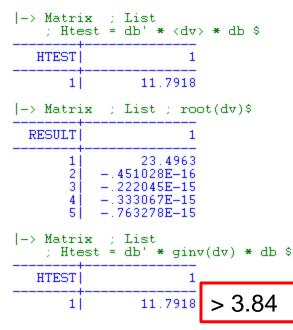
Part 12: Endogeneity

TABLE 8.2 Estimated Labor Supply Equation

	251	LS	LIN	1L
Variable	Estimated Parameter	Standard Error ^a	Estimated Parameter	Standard Error ^a
Constant	30.7044	8.25041	30.6392	5.05118
ln Wage	3.15182	1.41058	3.16303	0.87325
Education	-0.31997	0.11453	-0.32074	0.06755
Union	-2.19398	0.30507	-2.19490	0.19697
Female	-0.23784	0.79781	-0.23269	0.46572
σ_w	5.01870 ^b		5.01865	0.03339
Constant			5.71303	0.03316
Ind			0.08364	0.01284
Education			0.06560	0.00232
Union			0.05853	0.01448
Female			-0.46930	0.02158
SMSA			0.18225	0.01289
σ_u			0.38408	0.00384
au			-2.57121	0.90334

^a Standard errors are clustered at the individual level using (8-8c).


^b Based on mean squared residual.


12-48/54

Endogeneity Test? (Hausman)						
	Exogenous	Endogenous				
OLS	Consistent, Efficient	Inconsistent				
2SLS	Consistent, Inefficient	Consistent				
Base a test on $\mathbf{d} = \mathbf{b}_{2SLS} - \mathbf{b}_{OLS}$ Use a Wald statistic, $\mathbf{d}'[Var(\mathbf{d})]^{-1}\mathbf{d}$ What to use for the variance matrix? Hausman: $\mathbf{V}_{2SLS} - \mathbf{V}_{OLS}$						

Ordinary	least square:	s regression			
WKS	Coefficient	Standard Error	z	Prob. z >Z *	95% Confidence Interval
Constant LWAGE ED UNION FEM	44.7665*** .73260*** 15318*** -1.99604*** -1.34978***	1.21528 .19718 .03206 .17006 .26417	36.84 3.72 -4.78 -11.74 -5.11	.0000 .0002 .0000 .0000 .0000	42.3846 47.1484 .34614 1.11906 2160109034 -2.32935 -1.66273 -1.8675583200
Two stage Instrumen ONE	e least squares ital Variables: IND ED	s regression UNION	FEM	 SMS	A
₩ KS	Coefficient	Standard Error	z	Prob. z >Z *	95% Confidence Interval
Constant LWAGE ED UNION FEM	30.7044*** 3.15182*** 31997*** -2.19398*** 23784	4.99966 .85722 .06607 .18596 .46793	6.14 3.68 -4.84 -11.80 51	.0000 .0002 .0000 .0000 .6113	20.9052 40.5035 1.47171 4.83193 4494719048 -2.55845 -1.82951 -1.15497 .67929

12-50/54

The matrix is not positive definite. It has a negative characteristic root. The matrix is indefinite. (Software such as Stata and NLOGIT find this problem and either use a generalized inverse or refuse to proceed.)

(Rank is not obvious by inspection.)

Matrix - DV							
[5, 5]	Cell: 22.6757	7	✓ ×				
	1	2	3	4	5		
1	22.6757	-3.90108	0.268964	0.319184	-1.79304	2	
2	-3.90108	0.671132	-0.0462719	-0.0549116	0.30847	3.	
3	0.268964	-0.0462719	0.00319027	0.00378594	-0.0212678	Ν.	
4	0.319184	-0.0549116	0.00378594	0.00449284	-0.0252388	2	
5	-1.79304	0.30847	-0.0212678	-0.0252388	0.141781	ξ.	
	111111111						

12-51/54

Part 12: Endogeneity

Hausman Test: One coefficient at a Time? No, use the full vector.

	fficients (b) Prior	(B) Current	(b-B) sqr Difference	ct(diag(V_b-V_B)) S.E.
lpop eud emud	.5473182 2723743 9780319	1.477494 .0097496 -1.025233	9301754 2821239 .0472016 .0121716	.0350914 .0050788
B= fully Test: H chi2(5	efficient es o: differenc	stimates obt ce in coeffi V_b-V_B)^(-1	ined previous ained from xt cients not sy)](b-B)= 16	ystematic

Endogeneity Test: Wu

- Considerable complication in Hausman test (text, pp. 275-276)
- □ Simplification: Wu test.
- Regress y on X and X[^] estimated for the endogenous part of X. Then use an ordinary Wald test.

Wu Test

l-> regr;lhs=wks;rhs=x,lwageh\$

Ordinary LHS=WKS Regression Residual Total	least squares Mean Standard dev: No. of observ Sum of Square Sum of Square Sum of Square	iation = vations = es = es =	5. 46 10	81152 12910 4165 40.01 4905. 9545.	DegFreedom 5 4159 4164	Mean square 928.00292 25.22362 26.30765
Fit Model test	 Standard error R-squared 	or of e = =	5.	02231 04236 79103 Prob. z >Z*	Root MSE R-bar squared Prob F > F* 95% Con	5.01869
Constant LWAGE ED UNION FEM	30.7044*** .59245*** 31997*** -2.19398*** -23784	4.90997 .20262 .06489 .18262 .45954	6.25 2.92 -4.93 -12.01	.0000 .0035 .0000 .0000 .0000	21.0810 .19533 44714 -2.55191 -1.13852	40.3277 .98958 19280 -1.83604 .66284
LWAGEH	2.55937***	.86588	2.96	.0031	.86227	4.25646