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Sources of “Endogeneity” 

 Omitted Variables 

 Ignored “Heterogeneity” 

 Measurement Error 

 Endogenous “Treatment Effects” 

 Nonrandom Sampling (or Attrition) 
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Source of Endogeneity: Omitted Variable 

Aggregate Data and Multinomial Choice:  

The Model of Berry, Levinsohn and Pakes 
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Theoretical Foundation 

 Consumer market for J differentiated brands of a good 

 j =1,…, Jt brands or types 

 i = 1,…, N consumers 

 t = i,…,T “markets”  (like panel data) 

 Consumer i’s utility for brand j (in market t) depends on 

 p = price 

 x = observable attributes 

 f  = unobserved attributes 

 w = unobserved heterogeneity across consumers 

 ε = idiosyncratic aspects of consumer preferences  

 Observed data consist of aggregate choices, prices and features of 

the brands. 
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BLP Automobile Market 
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Random Utility Model 

 Utility:  Uijt=U(wi,pjt,xjt,fjt,ijt |), i = 1,…,(large) N,  j=1,…,J 

 wi = individual heterogeneity; time (market) invariant.  w has a continuous 

distribution across the population. 

 pjt, xjt, fjt, = price, observed attributes, unobserved features of brand j; all 

may vary through time (across markets) 

 Revealed Preference:  Choice j provides maximum utility 

 Across the population, given market t, set of prices pt and 

features (Xt,ft), there is a set of values of wi that induces 

choice j, for each j=1,…,Jt; then, sj(pt,Xt,ft|) is the market 

share of brand j in market t. 

 There is an outside good that attracts a nonnegligible market 

share, j=0.  Therefore,    <  j t t t
tJ

j=1
s ( , , | ) 1p X f θ
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Endogenous Prices: Demand side 

 Uijt=U(wi,pjt,xjt,fjt,ijt |) = xjt'βi – αpj + fjt + εijt 

 fjt is unobserved features of model j 

 Utility responds to the unobserved fjt  

 Price pjt is partly determined by features fjt. 

 In a choice model based on observables, price is 

correlated with the unobservables that determine 

the observed choices. 
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An Early Study of an Endogeneity Problem 
(Snow, J., On the Mode of Communication of Cholera, 1855) 

http://www.ph.ucla.edu/epi/snow/snowbook3.html 

 London Cholera epidemic, ca 1853-4 

 Cholera = f(Water Purity,u) + ε. 

 ‘Causal’ effect of water purity on cholera? 

 Purity=f(cholera prone environment (poor, garbage in streets, 

rodents, etc.). Regression does not work. 

    Two London water companies 

         Lambeth                   Southwark & Vauxhall 

                                     

               Main sewage discharge 

Paul Grootendorst: A Review of Instrumental Variables Estimation of Treatment Effects… 

http://individual.utoronto.ca/grootendorst/pdf/IV_Paper_Sept6_2007.pdf 

A review of instrumental variables estimation in the applied health sciences. Health Services 

and Outcomes Research Methodology 2007; 7(3-4):159-179. 

River 

Thames 
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Cornwell and Rupert Data 
Cornwell and Rupert Returns to Schooling Data, 595 Individuals, 7 Years 
Variables in the file are 

EXP  = work experience 
WKS  = weeks worked 
OCC  = occupation, 1 if blue collar,  
IND  = 1 if manufacturing industry 
SOUTH  = 1 if resides in south 
SMSA = 1 if resides in a city (SMSA) 
MS  = 1 if married 
FEM  = 1 if female 
UNION  = 1 if wage set by union contract 
ED  = years of education 
LWAGE  = log of wage = dependent variable in regressions 

These data were analyzed in Cornwell, C. and Rupert, P., "Efficient Estimation with Panel 
Data: An Empirical Comparison of Instrumental Variable Estimators," Journal of Applied 
Econometrics, 3, 1988, pp. 149-155.  See Baltagi, page 122 for further analysis.  The 
data were downloaded from the website for Baltagi's text.  
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Specification: Quadratic Effect of Experience 
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The Effect of Education on LWAGE 
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What Influences LWAGE? 
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An Exogenous Influence 
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Instrumental Variables 

 Structure 

 LWAGE (ED,EXP,EXPSQ,WKS,OCC, 

               SOUTH,SMSA,UNION) 

 ED (MS, FEM) 

 

 Reduced Form:  

    LWAGE[ ED (MS, FEM), 

                 EXP,EXPSQ,WKS,OCC, 

                  SOUTH,SMSA,UNION ] 
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Two Stage Least Squares Strategy 

 Reduced Form:  

       LWAGE[ ED (MS, FEM,X), 

                    EXP,EXPSQ,WKS,OCC, 

                     SOUTH,SMSA,UNION ] 

 Strategy  

 (1)  Purge ED of the influence of everything but MS, 

FEM (and the other variables). Predict ED using all 

exogenous information in the sample (X and Z). 

 (2)  Regress LWAGE on this prediction of ED and 

everything else. 

 Standard errors must be adjusted for the predicted ED 
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OLS 
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The weird results for the 

coefficient on ED happened 

because the instruments, 

MS and FEM are dummy 

variables.  There is not 

enough variation in these 

variables. 
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The Ultimate Source of Endogeneity 

 LWAGE   = f(ED, 

                     EXP,EXPSQ,WKS,OCC, 

                     SOUTH,SMSA,UNION)  +   

 ED          =  f(MS,FEM, 

                     EXP,EXPSQ,WKS,OCC, 

                     SOUTH,SMSA,UNION)  +  u 
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Remove the Endogeneity 

 LWAGE   = f(ED, 

                     EXP,EXPSQ,WKS,OCC, 

                     SOUTH,SMSA,UNION)  + u +   

 

 Strategy 

 Estimate u 

 Add u to the equation.  ED is uncorrelated with  when u is in 

the equation. 
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Auxiliary Regression for  

ED to Obtain Residuals 

IVs 

Exog. 
Vars 
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OLS with Residual (Control Function) Added 

2SLS 
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A Warning About Control Function Estimators: 

The standard errors must be adjusted. 

1.29053
0.38395 1.40197

0.35343
 
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I am here to ask a little help for endogeneity. 

 

I have a main regression, in which the independent variabels are lagged 1 year 

(this is an unbalanced panel dataset); I use fixed effect, xtreg: 

 

Main Regression:  Yt = Xt-1 + Qt-1  +  Z3t-1   

 

I suspect endogeneity: variable X may be itself determined by prior-year Y. 

As a solution, I read this strategy: regress the endogenous variable Xt-1 on the 

dependent variable (Yt-2) and other independent variables (i.e., Qt-2 and Zt-2); 

these Y Q and Z are all in year  t-2, while X is in t-1.  Then, from this regression, 

calculate the “predicted” values for X, and include them as a control-for-

endogeneity (e.g., a variable named “Endogeneity-control”) in the main 

regression above. 

 

Question 1: in the Main Regression above, when including the control for 

endogeneity (i.e., the variable  “Endogeneity-control”), do I have to lag its value? 

That is, do I have to include Endogeneity-control in  t-1? or just the predicted 

values, without lagging? 
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The two stage LS strategy:  (The two stage button in your software.) 

The software regresses EDUC on all independent variables plus the 

two instrumental variables (stage 1), then takes the predicted value on 

education and regresses lwage on that predicted value plus the 

original independent variables (stage 2). Is this correct?  

 

 

Then the second method you showed is the same except the 

predicted residuals are included in the second stage OLS. 

 

Is one method preferred over another? They produce the same 

results.  
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The General Problem 
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Instrumental Variables 

 Fully General Framework: y   =   X  +  , K variables in X. 

 There exists a set of M=K variables, Z such that  
 

           plim(Z’X/n)  0  but  plim(Z’/n) = 0 
 

 The variables in Z are called instrumental variables. 

 An alternative (to least squares) estimator of  is  
 

            bIV  =  (Z’X)-1Z’y 
 

 We consider the following: 

 Why use this estimator? 

 What are its properties compared to least squares? 

 We will also examine an important application 
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IV Estimators 

Consistent 

 bIV = (Z’X)-1Z’y  

         = (Z’X/n)-1 (Z’X/n)β+ (Z’X/n)-1Z’ε/n 

         = β+ (Z’X/n)-1Z’ε/n  β 

Asymptotically normal (same approach to proof as 

for OLS) 

Inefficient – to be shown. 
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The General Result 

 

 

By construction, the IV estimator is consistent.  So, 

we have an estimator that is consistent when 

least squares is not. 
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LS as an IV Estimator 

The least squares estimator is  

       (XX)-1Xy  =  (XX)-1ixiyi   

                        =    + (XX)-1ixiεi  

If plim(X’X/n) = Q nonzero 

   plim(X’ε/n)  = 0  

Under the usual assumptions LS is an IV estimator  

X is its own instrument. 
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IV Estimation 

Why use an IV estimator?  Suppose that X and  
are not uncorrelated.  Then least squares is 
neither unbiased nor consistent. 

Recall the proof of consistency of least squares:   

 

      b  =    +  (X’X/n)-1(X’/n).   

 

Plim b =  requires plim(X’/n) = 0.  If this does not 
hold, the estimator is inconsistent. 
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A Popular Misconception 

A popular misconception.  If only one variable in X is correlated with , 

the other coefficients are consistently estimated.  False.   
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Asymptotic Covariance Matrix of bIV 

1
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Asymptotic Efficiency 

Asymptotic efficiency of the IV estimator.  The variance is 
larger than that of LS.  (A large sample type of Gauss-
Markov result is at work.) 

(1)  It’s a moot point.  LS is inconsistent. 

(2)  Mean squared error is uncertain: 

 

MSE[estimator|β]=Variance + square of bias. 

 

IV may be better or worse.  Depends on the data 
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Two Stage Least Squares 

How to use an “excess” of instrumental variables 

(1)  X is K variables.  Some (at least one) of the K 

      variables in X are correlated with ε. 

(2)  Z is now M > K variables.  Some of the variables in 

      Z are also in X, some are not.  None of the 

      variables in Z are correlated with ε. 

(3)  Which K variables to use to compute Z’X and Z’y? 
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Choosing the Instruments 

 Choose K randomly? 

 Choose the included Xs and the remainder randomly? 

 Use all of them?  How? 

 A theorem: (Brundy and Jorgenson, ca. 1972) There is a 

most efficient way to construct the IV estimator from this 

subset: 

 (1)  For each column (variable) in X, compute the predictions of 

that variable using all the columns of Z. 

 (2)  Linearly regress y on these K predictions. 

 This is two stage least squares 
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Algebraic Equivalence 

 Two stage least squares is equivalent to 

 (1) each variable in X that is also in Z is replaced by 

itself. 

 (2) Variables in X that are not in Z are replaced by 

predictions of that X with all the variables in Z. 

Coefficients in augmented regression are added to 

match 2SLS.  (They match if residuals are used  

instead of predictions.) 
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Sum=2sls 
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2SLS Algebra 
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Asymptotic Covariance Matrix for 2SLS 
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2SLS has larger variance (around its  

mean) than LS has around its mean. 







2 -1

2 -1

A comparison to OLS

ˆ ˆAsy.Var[2SLS]= ( ' )

Neglecting the inconsistency,

Asy.Var[LS]    = ( ' )

(This is the variance of LS around its mean, not )

Asy.Var[2SLS]  Asy.Var[LS] in the matrix sense.

To

X X

X X
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 prove, compare the inverses:

ˆ ˆ{Asy.Var[LS]}  - {Asy.Var[2SLS]} (1 / )[ ' ' ]

(1 / )[ ' '( ) ] = (1 / )[ ' ]

This matrix is nonnegative definite. (Not positive definite

as it might have some

X X - X X

X X - X I M X X M X

 rows and columns which are zero.)

Implication for "precision" of 2SLS: Possibly very large variances.

The problem of "Weak Instruments"
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Estimating σ2 
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Two Problems with 2SLS 

 Z’X/n may not be sufficiently large.  The 

covariance matrix for the IV estimator is 

Asy.Cov(b ) = σ2[(Z’X)(Z’Z)-1(X’Z)]-1 

 If Z’X/n -> 0, the variance explodes. 

 Additional problems: 

 2SLS biased toward plim OLS 

 Asymptotic results for inference fall apart. 

 When there are many instruments,    is too close 

to x; 2SLS becomes OLS. 

X̂
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Weak Instruments 

 Symptom: The relevance condition, plim Z’X/n not zero, but is 

close to being violated. 

 Detection:  

 Standard F test in the regression of xk on Z. F < 10 suggests a 

problem. 

 F statistic  based on 2SLS – see text p. 274. 

 Remedy: 

 Not much – most of the discussion is about the condition, not 

what to do about it. 

 Use LIML? Requires a normality assumption. Probably not too 

restrictive. 
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Cornwell and Rupert Data 
Cornwell and Rupert Returns to Schooling Data, 595 Individuals, 7 Years 
Variables in the file are 

EXP  = work experience 
WKS  = weeks worked 
OCC  = occupation, 1 if blue collar,  
IND  = 1 if manufacturing industry 
SOUTH  = 1 if resides in south 
SMSA = 1 if resides in a city (SMSA) 
MS  = 1 if married 
FEM  = 1 if female 
UNION  = 1 if wage set by union contract 
ED  = years of education 
LWAGE  = log of wage = dependent variable in regressions 

These data were analyzed in Cornwell, C. and Rupert, P., "Efficient Estimation with Panel 
Data: An Empirical Comparison of Instrumental Variable Estimators," Journal of Applied 
Econometrics, 3, 1988, pp. 149-155.  See Baltagi, page 122 for further analysis.  The data 
were downloaded from the website for Baltagi's text.  
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Endogenous               Exogenous                 Instruments 
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2 2
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Endogeneity Test? (Hausman) 

                Exogenous                      Endogenous 
 
OLS      Consistent, Efficient        Inconsistent 
       
2SLS     Consistent, Inefficient     Consistent 
 

               Base a test on  d  =  b2SLS -  bOLS 
           Use a Wald statistic, d’[Var(d)]-1d 

                 What to use for the variance matrix? 
           Hausman:  V2SLS  -  VOLS   
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The matrix is not positive definite.  It has a 

negative characteristic root.  The matrix is 

indefinite.  (Software such as Stata and 

NLOGIT find this problem and either use a 

generalized inverse or refuse to proceed.) 

 

(Rank is not obvious by inspection.) 

> 3.84 



Part 12: Endogeneity 12-52/54 

Hausman Test: One coefficient at a Time? 

No, use the full vector. 
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Endogeneity Test:  Wu 

 Considerable complication in Hausman test 

(text, pp. 275-276) 

 Simplification:  Wu test. 

 Regress y on X and X^ estimated for the 

endogenous part of X.  Then use an ordinary 

Wald test. 
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Wu Test 


