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Generalized Regression Model 

Setting:  The classical linear model assumes that 

E[]  =  Var[]  =  2I.  That is, observations are 

uncorrelated and all are drawn from a 

distribution with the same variance.  The 

generalized regression (GR) model allows the 

variances to differ across observations and 

allows correlation across observations.  
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Generalized Regression Model 

 The generalized regression model:   

         y = X + ,  

 E[|X] = 0, Var[|X]  =  2.  

         Regressors are well behaved. 

Trace  = n.   

 This is a ‘normalization.’  

 Mimics tr(2 I) = n2. Needed since  

 Leading Cases 

 Simple heteroscedasticity 

 Autocorrelation 

 Panel data and heterogeneity more generally.  

 SUR Models for Production and Cost 

 VAR models in Macroeconomics and Finance 
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Implications of GR Assumptions 

 The assumption that Var[] = 2I is used to derive the 
result Var[b] = 2(XX)-1.  If it is not true, then the use of 
s2(XX)-1 to estimate Var[b] is inappropriate. 

 The assumption was also used to derive the t and F 
test statistics, so they must be revised as well. 

 Least squares gives each observation a weight of 1/n.  
But, if the variances are not equal, then some 
observations are more informative than others. 

 Least squares is based on simple sums, so the 
information that one observation might provide about 
another is never used. 
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Implications for Least Squares 
 Still unbiased. (Proof did not rely on ) 

 

 For consistency, we need the true variance of b,  

 

                   Var[b|X]  = E[(b-β)(b-β)’|X] 

                                  = (X’X)-1 E[X’εε’X] (X’X)-1  

                                  =  2 (X’X)-1 XX (X’X)-1 . 

        

        (Sandwich form of the covariance matrix.) 

 

       Divide all 4 terms by n. If the middle one converges to a finite matrix of 
constants, we have mean square consistency, so we need to examine   

 

                   (1/n)XX  =  (1/n)ij  ij xi xj.   

 

       This will be another assumption of the model. 

 

 Asymptotic normality?  Easy for heteroscedasticity case, very difficult 
for autocorrelation case.  
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Robust Covariance Matrix 

 Robust estimation: Generality 

 How to estimate  

          Var[b|X] = (X’X)-1 X(2 )X(X’X)-1 for the LS b?   

 The distinction between estimating  

                 2 an nn matrix 

      and estimating the KK matrix 

                 2 XX  = 2 ijij xi xj 

 NOTE……   VVVIRs for modern applied econometrics.  

 The White estimator 

 Newey-West estimator. 
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The White Estimator 
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 Meaning of “robust” in this context 

 Robust standard errors; (b is not “robust”)  

 Robust to: Heteroscedasticty 

 Not robust to: (all considered later) 

 Correlation across observations 

 Individual unobserved heterogeneity 

 Incorrect model specification 

 Robust inference means hypothesis tests and confidence 

intervals using robust covariance matrices 
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Inference Based on OLS  

    What about s2(XX)-1 ?  Depends on XX - XX.  If they 

are nearly the same, the OLS covariance matrix is OK.  

When will they be nearly the same?  Relates to an 

interesting property of weighted averages.  Suppose i  

is randomly drawn from a distribution with E[i] = 1.  
 

     Then, (1/n)ixi
2  E[x2]  and  (1/n)iixi

2  E[x2].  
 

 This is the crux of the discussion in your text. 
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Inference Based on OLS 

VIR:  For the heteroscedasticity to be substantive wrt estimation and 

inference by LS, the weights must be correlated with x and/or x2.  

(Text, page 305.) 

 

If the heteroscedasticity is substantive. Then, b is inefficient. 

 

The White estimator.   ROBUST estimation of the variance of b. 

Implication for testing hypotheses.  We will use Wald tests. 

 

(ROBUST TEST STATISTICS) 
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Finding Heteroscedasticity 

The central issue is whether E[2]  =  2i is related 

to the xs or their squares in the model.   

Suggests an obvious strategy.  Use residuals to 

estimate disturbances and look for relationships 

between ei
2 and xi and/or xi

2.  For example, 

regressions of squared residuals on xs and their 

squares. 
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Procedures 

White’s general test:  nR2 in the regression of ei
2 on all unique xs, 

squares, and cross products.  Chi-squared[P] 
 

Breusch and Pagan’s Lagrange multiplier test.  Regress  

        {[ei
2 /(ee/n)] – 1} on Z (may be X).   

Chi-squared. Is nR2 with degrees of freedom rank of Z. 
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A Heteroscedasticity Robust Covariance Matrix 

Note the conflict: Test favors heteroscedasticity.  

                               Robust VC matrix is essentially the same. 

Uncorrected 
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Groupwise Heteroscedasticity 

Gasoline Demand Model 

Regression of log of per capita gasoline use on log of per capita income, 

gasoline price and number of cars per capita for 18 OECD countries for 19 

years. The standard deviation varies by country.  The efficient estimator is 

“weighted least squares.” 

Countries 

are ordered 

by the 

standard 

deviation of 

their 19 

residuals. 
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White Estimator  
(Not really appropriate for groupwise heteroscedasticity) 

 

+--------+--------------+----------------+--------+--------+----------+ 

|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 

+--------+--------------+----------------+--------+--------+----------+ 

 Constant|    2.39132562       .11693429    20.450   .0000 

 LINCOMEP|     .88996166       .03580581    24.855   .0000  -6.13942544 

 LRPMG   |    -.89179791       .03031474   -29.418   .0000   -.52310321 

 LCARPCAP|    -.76337275       .01860830   -41.023   .0000  -9.04180473 

------------------------------------------------- 

White heteroscedasticity robust covariance matrix   

------------------------------------------------- 

 Constant|    2.39132562       .11794828    20.274   .0000 

 LINCOMEP|     .88996166       .04429158    20.093   .0000  -6.13942544 

 LRPMG   |    -.89179791       .03890922   -22.920   .0000   -.52310321 

 LCARPCAP|    -.76337275       .02152888   -35.458   .0000  -9.04180473 
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Autocorrelated Residuals 
logG=β1 + β2logPg + β3logY + β4logPnc + β5logPuc + ε  
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Newey-West Estimator 
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Newey-West Estimate 

--------+------------------------------------------------------------- 

Variable| Coefficient    Standard Error  t-ratio  P[|T|>t]   Mean of X 

--------+------------------------------------------------------------- 

Constant|   -21.2111***       .75322      -28.160   .0000 

      LP|    -.02121          .04377        -.485   .6303      3.72930 

      LY|    1.09587***       .07771       14.102   .0000      9.67215 

    LPNC|    -.37361**        .15707       -2.379   .0215      4.38037 

    LPUC|     .02003          .10330         .194   .8471      4.10545 

--------+------------------------------------------------------------- 

--------+------------------------------------------------------------- 

Variable| Coefficient    Standard Error  t-ratio  P[|T|>t]   Mean of X 

Robust VC    Newey-West, Periods  = 10 

--------+------------------------------------------------------------- 

Constant|   -21.2111***      1.33095      -15.937   .0000 

      LP|    -.02121          .06119        -.347   .7305      3.72930 

      LY|    1.09587***       .14234        7.699   .0000      9.67215 

    LPNC|    -.37361**        .16615       -2.249   .0293      4.38037 

    LPUC|     .02003          .14176         .141   .8882      4.10545 

--------+------------------------------------------------------------- 
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Generalized Least Squares Approach 

Aitken theorem.  The Generalized Least Squares 

estimator, GLS.  Find P such that 

                 Py  =  PX + P     

                  y*  =  X* + *. 

                 E[**’|X*]= σ2I 

Use ordinary least squares in the transformed 

model.  Satisfies the Gauss – Markov theorem. 

                b* = (X*’X*)-1X*’y* 
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Generalized Least Squares – Finding P 

A transformation of the model:    

       P  =  -1/2. PP = -1     

      Py  =  PX + P  or   

      y*  =  X* + *. 

 

We need a noninteger power of a matrix: -1/2. 
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(Digression) Powers of a Matrix 

 (See slides 7:41-42) 

 Characteristic Roots and Vectors 

   =  CC 

 C  =  Orthogonal matrix of  

         characteristic vectors. 

   =  Diagonal matrix of  

         characteristic roots 

 For positive definite matrix, elements of  are all positive. 

 General result for a power of a matrix: a = CaC. 

Characteristic roots are powers of elements of . C is the same. 

 Important cases: 

 Inverse: -1 = C-1C 

 Square root: 1/2 = C1/2C 

 Inverse of square root: -1/2 = C-1/2C 

 Matrix to zero power: 0 = C0C = CIC  =  I 

 



Part 14: Generalized Regression 14-22/59 

Generalized Least Squares – Finding P 

      (Using powers of the matrix) 

      E[**’|X*]  = PE[ | X*]P 

                        = PE[ |X]P 

                        = σ2PP = σ2 -1/2   -1/2 = σ2 0  

                        = σ2I 
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Generalized Least Squares 

Efficient estimation of  and, by implication, the 
inefficiency of least squares b. 

 

                   = (X*’X*)-1X*’y* 

                    = (X’P’PX)-1 X’P’Py 

                   = (X’Ω-1X)-1 X’Ω-1y 

 

     ≠ b.      is efficient, so by construction, b is not.  

β̂

β̂ β̂
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Asymptotics for GLS 

Asymptotic distribution of GLS.  (NOTE.  We apply 

the full set of results of the classical model to 

the transformed model.) 

  Unbiasedness 

  Consistency - “well behaved data” 

  Asymptotic distribution 

  Test statistics 
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Unbiasedness 
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Consistency 
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Asymptotic Normality 
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Asymptotic Normality (Cont.) 
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Test Statistics (Assuming Known Ω) 

 With known Ω, apply all familiar results to the 

transformed model: 

 With normality, t and F statistics apply to least 

squares based on Py and PX 

 With asymptotic normality, use Wald statistics 

and the chi-squared distribution, still based on 

the transformed model. 
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Unknown  

  would be known in narrow heteroscedasticity cases. 

  is usually unknown.  For now, we will consider two 
methods of estimation 
 

 Two step, or feasible estimation.  Estimate  first, then do 
GLS. Emphasize - same logic as White and Newey-West.  We 
don’t need to estimate .  We  need to find a matrix that 
behaves the same as (1/n)X-1X. 
 

 Full information estimation of , 2, and  all at the same 
time. Joint estimation of all parameters.  Fairly rare.  Some 
generalities. 
 

 We will examine Harvey’s model of heteroscedasticity 
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Specification 

  must be specified first. 

 A full unrestricted  contains n(n+1)/2 - 1 parameters.  

(Why minus 1?  Remember, tr() = n, so one element is 

determined.) 

  is generally specified in terms of a few parameters.  

Thus,  = () for some small parameter vector .   It 

becomes a question of estimating . 
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Two Step Estimation 

The general result for estimation when  is 

estimated. 

GLS uses   [X-1X]X -1 y   which converges in 

probability to . 

We seek a vector which converges to the same 

thing that this does. Call it “Feasible GLS” or 

FGLS, based on [X     X]X     y     

The object is to find a set of parameters such that  

    [X     X]X     y   -   [X-1X]X-1y     0  

-1Ω̂ -1Ω̂

-1Ω̂ -1Ω̂
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Two Step Estimation of the  

Generalized Regression Model 

    Use the Aitken (Generalized Least Squares - GLS) 

estimator with an estimate of  

 

 1.   is parameterized by a few estimable parameters. 

         Examples, the heteroscedastic model 

 2.  Use least squares residuals to estimate the  

     variance functions 

 3.  Use the estimated  in GLS - Feasible GLS, or FGLS 

   [4.  Iterate?  Generally no additional benefit.] 
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FGLS vs. Full GLS 

VVIR  (Theorem 9.5) 

To achieve full efficiency, we do not 

need an efficient estimate of the 

parameters in , only a consistent 

one. 
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Heteroscedasticity 

Setting:  The regression disturbances have unequal variances, but are 
still not correlated with each other: 

Classical regression with hetero-(different) scedastic (variance) 
disturbances. 

  

    yi  =  xi + i,  E[i]  =  0,  Var[i]  =  2 i, i > 0.   
 

A normalization:  i i = n.  The classical model arises if i = 1. 
 

A characterization of the heteroscedasticity:  Well defined estimators 
and methods for testing hypotheses will be obtainable if the 
heteroscedasticity is “well behaved” in the sense that no single 
observation becomes dominant. 
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Generalized (Weighted) Least Squares 

Heteroscedasticity Case 
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Estimation: WLS form of GLS 

General result - mechanics of weighted least squares. 

Generalized least squares - efficient estimation.  Assuming 

weights are known. 

Two step generalized least squares: 

 Step 1:  Use least squares, then the residuals to 

estimate the weights. 

 Step 2:  Weighted least squares using the estimated 

weights. 

 (Iteration: After step 2, recompute residuals and return to 

step 1. Exit when coefficient vector stops changing.) 
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FGLS – Harvey’s Model 

Feasible GLS is based on finding an estimator which has the 

same properties as the true GLS. 

 

 Example Var[i|zi] =  2 [Exp(zi)]
2.  

 

True GLS would regress  yi/[Exp(zi)] on the same 

transformation of xi.  With a consistent estimator of [,], say 

[s,c], we do the same computation with our estimates. 

 

So long as plim [s,c] = [,], FGLS is as “good” as true GLS. 

         Consistent 

         Same Asymptotic Variance 

         Same Asymptotic Normal Distribution 
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Harvey’s Model of Heteroscedasticity 

 Var[i | X]  =  2 exp(zi)      

 Cov[i,j | X]  =  0 

     e.g.:  zi  =  firm size 

     e.g.:  zi  =  a set of dummy variables (e.g., countries) 

(The groupwise heteroscedasticity model.) 

 [2 ]  =  diagonal [exp( + zi)],   

              = log(2) 
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Harvey’s Model 

Methods of estimation: 

Two step FGLS:  Use the least squares residuals to estimate 

(,),  then use   

 

 

Full maximum likelihood estimation.  Estimate all parameters 

simultaneously. 

A handy result due to Oberhofer and Kmenta - the “zig-zag” 

approach. Iterate back and forth between (,) and .  
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Harvey’s Model for Groupwise 

Heteroscedasticity 

Groupwise sample, yig, xig,… 

N groups, each with ng observations. 

Var[εig] = σg
2 

Let dig = 1 if observation i,g is in group g, 0 else. 

           = group dummy variable. (Drop the first.) 

Var[εig]  =   σg
2 exp(θ2d2 + … θGdG) 

Var1 = σg
2 , Var2 = σg

2 exp(θ2) and so on.  

 



Part 14: Generalized Regression 14-42/59 

Estimating Variance Components 

 OLS is still consistent: 

 Est.Var1 = e1’e1/n1 estimates σg
2  

 Est.Var2 = e2’e2/n2 estimates σg
2 exp(θ2), etc. 

 Estimator of θ2  is ln[(e2’e2/n2)/(e1’e1/n1)] 

 (1)  Now use FGLS – weighted least squares 

 Recompute residuals using WLS slopes 

 (2) Recompute variance estimators 

 Iterate to a solution… between (1) and (2) 
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Baltagi and Griffin’s Gasoline Data 

World Gasoline Demand Data, 18 OECD Countries, 19 years 
Variables in the file are 
 

COUNTRY = name of country  
YEAR = year, 1960-1978 
LGASPCAR = log of consumption per car 
LINCOMEP = log of per capita income 
LRPMG = log of real price of gasoline  
LCARPCAP = log of per capita number of cars  
 
See Baltagi (2001, p. 24) for analysis of these data. The article on which the 
analysis is based is Baltagi, B. and Griffin, J., "Gasoline Demand in the OECD: An 
Application of Pooling and Testing Procedures," European Economic Review, 22, 
1983, pp. 117-137.  The data were downloaded from the website for Baltagi's 
text.  
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Least Squares First Step 

---------------------------------------------------------------------- 

Multiplicative Heteroskedastic Regression Model... 

Ordinary     least squares regression ............ 

LHS=LGASPCAR Mean                 =        4.29624 

             Standard deviation   =         .54891 

             Number of observs.   =            342 

Model size   Parameters           =              4 

             Degrees of freedom   =            338 

Residuals    Sum of squares       =       14.90436 

B/P LM statistic [17 d.f.] =        111.55 (.0000)  (Large) 

Cov matrix for b is sigma^2*inv(X'X)(X'WX)inv(X'X)  (Robust) 

--------+------------------------------------------------------------- 

Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X 

--------+------------------------------------------------------------- 

Constant|    2.39133***       .20010       11.951   .0000 

LINCOMEP|     .88996***       .07358       12.094   .0000     -6.13943 

   LRPMG|    -.89180***       .06119      -14.574   .0000      -.52310 

LCARPCAP|    -.76337***       .03030      -25.190   .0000     -9.04180 

--------+------------------------------------------------------------- 
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Variance Estimates = ln[e(i)’e(i)/T] 

   Sigma|     .48196***       .12281        3.924   .0001 

      D1|   -2.60677***       .72073       -3.617   .0003       .05556 

      D2|   -1.52919**        .72073       -2.122   .0339       .05556 

      D3|     .47152          .72073         .654   .5130       .05556 

      D4|   -3.15102***       .72073       -4.372   .0000       .05556 

      D5|   -3.26236***       .72073       -4.526   .0000       .05556 

      D6|    -.09099          .72073        -.126   .8995       .05556 

      D7|   -1.88962***       .72073       -2.622   .0087       .05556 

      D8|     .60559          .72073         .840   .4008       .05556 

      D9|   -1.56624**        .72073       -2.173   .0298       .05556 

     D10|   -1.53284**        .72073       -2.127   .0334       .05556 

     D11|   -2.62835***       .72073       -3.647   .0003       .05556 

     D12|   -2.23638***       .72073       -3.103   .0019       .05556 

     D13|    -.77641          .72073       -1.077   .2814       .05556 

     D14|   -1.27341*         .72073       -1.767   .0773       .05556 

     D15|    -.57948          .72073        -.804   .4214       .05556 

     D16|   -1.81723**        .72073       -2.521   .0117       .05556 

     D17|   -2.93529***       .72073       -4.073   .0000       .05556 
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OLS vs. Iterative FGLS 

Looks like a substantial gain in reduced standard errors 

--------+------------------------------------------------------------- 

Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X 

--------+------------------------------------------------------------- 

        |Ordinary Least Squares 

        |Robust Cov matrix for b is sigma^2*inv(X'X)(X'WX)inv(X'X) 

Constant|    2.39133***       .20010       11.951   .0000 

LINCOMEP|     .88996***       .07358       12.094   .0000     -6.13943 

   LRPMG|    -.89180***       .06119      -14.574   .0000      -.52310 

LCARPCAP|    -.76337***       .03030      -25.190   .0000     -9.04180 

--------+------------------------------------------------------------- 

        |Regression (mean) function 

Constant|    1.56909***       .06744       23.267   .0000 

LINCOMEP|     .60853***       .02097       29.019   .0000     -6.13943 

   LRPMG|    -.61698***       .01902      -32.441   .0000      -.52310 

LCARPCAP|    -.66938***       .01116      -59.994   .0000     -9.04180 



Part 14: Generalized Regression 14-47/59 

Seemingly Unrelated Regressions 

The classical regression model, yi = Xii +  i.  Applies to 

each of M equations and T observations.  Familiar 

example:  The capital asset pricing model: 

 (rm - rf) =  mi +  m( rmarket – rf )  +  m 

Not quite the same as a panel data model.  M is usually 

small - say 3 or 4.  (The CAPM might have M in the 

thousands, but it is a special case for other reasons.)  
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Formulation 

Consider an extension of the groupwise heteroscedastic 

model:  We had  

  yi = Xi +  i with E[i|X]  =  0, Var[i|X] = i
2I.  

Now, allow two extensions: 

 Different coefficient vectors for each group, 

 Correlation across the observations at each specific 

point in time (think about the CAPM above.  Variation in 

excess returns is affected both by firm specific factors 

and by the economy as a whole).    

Stack the equations to obtain a GR model.  
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SUR Model 
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OLS and GLS 

Each equation can be fit by OLS ignoring all others.  Why do GLS?  
Efficiency improvement. 

Gains to GLS: 

 None if identical regressors - NOTE THE CAPM ABOVE! 

        Implies that GLS is the same as OLS.  This is an application of a 
strange special case of the GR model.  “If the K columns of X are 
linear combinations of K characteristic vectors of , in the GR 
model, then OLS is algebraically identical to GLS.”  We will forego 
our opportunity to prove this theorem.  This is our only application.  
(Kruskal’s Theorem) 

Efficiency gains increase as the cross equation correlation increases 
(of course!). 
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The Identical X Case 

Suppose the equations involve the same X matrices.  (Not just the 

same variables, the same data.  Then GLS is the same as equation 

by equation OLS. 

Grunfeld’s investment data are not an example - each firm has its own 

data matrix. (Text, p. 371, Example 10.3, Table F10.4)  

The 3 equation model on page 344 with Berndt and Wood’s data give 

an example.  The three share equations all have the constant and 

logs of the price ratios on the RHS.  Same variables, same years.  

The CAPM is also an example.  

(Note, because of the constraint in the B&W system (the same δ 

parameters in more than one equation), the OLS result for identical 

Xs does not apply.) 
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Estimation by FGLS 

Two step FGLS is essentially the same as the groupwise 

heteroscedastic model. 

 (1)  OLS for each equation produces residuals ei. 

 (2)  Sij  =  (1/n)eiej then do FGLS 

Maximum likelihood estimation for normally distributed 

disturbances:  Just iterate FLS. 

(This is an application of the Oberhofer-Kmenta result.) 
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Vector Autoregression 

   The vector autoregression (VAR) model is one of the most successful, flexible, 

and easy to use models for the analysis of multivariate time series. It is 

a natural extension of the univariate autoregressive model to dynamic multivariate 

time series. The VAR model has proven to be especially useful for 

describing the dynamic behavior of economic and financial time series and 

for forecasting. It often provides superior forecasts to those from univariate 

time series models and elaborate theory-based simultaneous equations 

models. Forecasts from VAR models are quite flexible because they can be 

made conditional on the potential future paths of specified variables in the 

model. 

     In addition to data description and forecasting, the VAR model is also 

used for structural inference and policy analysis. In structural analysis, certain 

assumptions about the causal structure of the data under investigation 

are imposed, and the resulting causal impacts of unexpected shocks or 

innovations to specified variables on the variables in the model are summarized. 

These causal impacts are usually summarized with impulse response 

functions and forecast error variance decompositions. 
Eric Zivot: http://faculty.washington.edu/ezivot/econ584/notes/varModels.pdf 
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VAR 
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1 11 1 112 2 13 3 1
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VAR Formulation
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2

2

Impulse Response

(t) = (t-1)  +  x(t)  +  (t)

By backward substitution or using the lag operator (text, 1022-1024)

(t)  x(t) x(t-1) x(t-2) +... (ad infinitum)

          + (t) (t-1)  (
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[  must converge to  as P increases.  Roots inside unit circle.]
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Effect in period t is 0.   is not in the y1 equation.  

 affects y2 in period t, which affects y1 in period t+1. Effect is 

In period t+2, the effect from 2 periods back is ( )

... and
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 so on.
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Zivot’s Data 
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Impulse Responses 
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Appendix: Autocorrelation in Time Series 
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Autocorrelation 

      The analysis of “autocorrelation” in the narrow sense of correlation 
of the disturbances across time largely parallels the discussions 
we’ve already done for the GR model in general and for 
heteroscedasticity in particular.  One difference is that the relatively 
crisp results for the model of heteroscedasticity are replaced with 
relatively fuzzy, somewhat imprecise results here.  The reason is 
that it is much more difficult to characterize meaningfully  “well 
behaved” data in a time series context.  Thus, for example, in 
contrast to the sharp result that produces the White robust 
estimator, the theory underlying the Newey-West robust estimator is 
somewhat ambiguous in its requirement of a bland statement about 
“how far one must go back in time until correlation becomes 
unimportant.” 
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Autocorrelation Matrix 
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Autocorrelation 

     t  =  t-1  +  ut    

    (‘First order autocorrelation.’  How does this come 
about?)   

 Assume -1 <  < 1.  Why? 

 ut  =  ‘nonautocorrelated white noise’ 

 t   = t-1 + ut  (the autoregressive form) 

        = (t-2  +  ut-1)  +  ut 

           = ... (continue to substitute) 

  =  ut + ut-1 + 2ut-2 + 3ut-3 + ... 

  = (the moving average form)  
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Autocorrelation 
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Autocovariances 
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Generalized Least Squares 
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GLS and FGLS 

Theoretical result for known  - i.e., known .  

Prais-Winsten vs. Cochrane-Orcutt. 

FGLS estimation:  How to estimate ?  OLS 

residuals as usual - first autocorrelation. 

Many variations, all based on correlation of et and 

et-1 
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The Autoregressive Transformation 
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Estimated AR(1) Model 
---------------------------------------------------------------------- 

AR(1) Model:     e(t) = rho * e(t-1) + u(t) 

Initial value of rho       =         .87566 

Maximum iterations         =              1 

Method = Prais - Winsten 

Iter=  1, SS=       .022, Log-L=    127.593 

Final value of Rho    =             .959411 

Std. Deviation:  e(t) =             .076512 

Std. Deviation:  u(t) =             .021577 

Autocorrelation: u(t) =             .253173 

N[0,1] used for significance levels 

--------+------------------------------------------------------------- 

Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X 

--------+------------------------------------------------------------------------- 

Constant|   -20.3373***       .69623      -29.211   .0000                  FGLS 

      LP|    -.11379***       .03296       -3.453   .0006      3.72930 

      LY|     .87040***       .08827        9.860   .0000      9.67215 

    LPNC|     .05426          .12392         .438   .6615      4.38037 

    LPUC|    -.04028          .06193        -.650   .5154      4.10545 

     RHO|     .95941***       .03949       24.295   .0000 

--------+------------------------------------------------------------------------- 

Constant|   -21.2111***       .75322      -28.160   .0000                  OLS 

      LP|    -.02121          .04377        -.485   .6303      3.72930 

      LY|    1.09587***       .07771       14.102   .0000      9.67215 

    LPNC|    -.37361**        .15707       -2.379   .0215      4.38037 

    LPUC|     .02003          .10330         .194   .8471      4.10545 
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The Familiar AR(1) Model 

                t  =  t-1  +  ut, || < 1. 

 

This characterizes the disturbances, not the regressors. 

  A general characterization of the mechanism producing   

     history + current innovations 

 Analysis of this model in particular.  The mean and variance 
and autocovariance   

 Stationarity.  Time series analysis.   

 Implication:  The form of 2;  Var[] vs. Var[u]. 

 Other models for autocorrelation - less frequently used –  
AR(1) is the workhorse. 
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Building the Model 

 Prior view:  A feature of the data 

 “Account for autocorrelation in the data.” 

 Different models, different estimators 

 

 Contemporary view:  Why is there autocorrelation? 

 What is missing from the model? 

 Build in appropriate dynamic structures 

 Autocorrelation should be “built out” of the model 

 Use robust procedures (Newey-West) instead of elaborate 

models specifically for the autocorrelation. 
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Model Misspecification 
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Implications for Least Squares 

Familiar results:  Consistent, unbiased, inefficient, asymptotic normality 

The inefficiency of least squares:   
  Difficult to characterize generally.  It is worst in “low frequency” 
    i.e., long period (year) slowly evolving data.   
  Can be extremely bad.  GLS vs. OLS, the efficiency ratios can 
    be 3 or more. 

A very important exception - the lagged dependent variable 

 

   yt  =  xt  +  yt-1 + t. t  =  t-1  +  ut,.   

 

Obviously, Cov[yt-1 ,t ]  0, because of the form of t.    

   How to estimate?  IV 

   Should the model be fit in this form?  Is something missing? 

Robust estimation of the covariance matrix - the Newey-West 
estimator. 
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Testing for Autocorrelation 

A general proposition:  There are several tests.  All are functions of the 
simple autocorrelation of  the least squares residuals.  Two used 
generally, Durbin-Watson and Lagrange Multiplier 

 

The Durbin - Watson test.  d    2(1 - r).  Small values of d lead to 
rejection of  

 NO AUTOCORRELATION:  Why are the bounds necessary? 

 

Godfrey’s LM test.  Regression of et on et-1 and xt.  Uses a “partial 
correlation.” 
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Consumption “Function” 

Log real consumption vs. Log real disposable income 

(Aggregate U.S. Data, 1950I – 2000IV. Table F5.2 from text) 

---------------------------------------------------------------------- 

Ordinary     least squares regression ............ 

LHS=LOGC     Mean                 =        7.88005 

             Standard deviation   =         .51572 

             Number of observs.   =            204 

Model size   Parameters           =              2 

             Degrees of freedom   =            202 

Residuals    Sum of squares       =         .09521 

             Standard error of e  =         .02171 

Fit          R-squared            =         .99824  <<<*** 

             Adjusted R-squared   =         .99823 

Model test   F[  1,   202] (prob) =114351.2(.0000) 

--------+------------------------------------------------------------- 

Variable| Coefficient    Standard Error  t-ratio  P[|T|>t]   Mean of X 

--------+------------------------------------------------------------- 

Constant|    -.13526***       .02375       -5.695   .0000 

    LOGY|    1.00306***       .00297      338.159   .0000      7.99083 

--------+------------------------------------------------------------- 
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Least Squares Residuals: r = .91 
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Conventional vs. Newey-West 

+---------+--------------+----------------+--------+---------+----------+ 

|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 

+---------+--------------+----------------+--------+---------+----------+ 

 Constant      -.13525584      .02375149    -5.695   .0000 

 LOGY          1.00306313      .00296625   338.159   .0000    7.99083133 

+---------+--------------+----------------+--------+---------+----------+ 

|Newey-West Robust Covariance Matrix 

|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 

+---------+--------------+----------------+--------+---------+----------+ 

 Constant      -.13525584      .07257279    -1.864   .0638 

 LOGY          1.00306313      .00938791   106.846   .0000    7.99083133 
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FGLS 
+---------------------------------------------+ 

| AR(1) Model:     e(t) = rho * e(t-1) + u(t) | 

| Initial value of rho       =         .90693 | <<<*** 

| Maximum iterations         =            100 | 

| Method = Prais - Winsten                    | 

| Iter=  1, SS=       .017, Log-L= 666.519353 | 

| Iter=  2, SS=       .017, Log-L= 666.573544 | 

| Final value of Rho    =             .910496 | <<<*** 

| Iter=  2, SS=       .017, Log-L= 666.573544 | 

| Durbin-Watson:   e(t) =             .179008 | 

| Std. Deviation:  e(t) =             .022308 | 

| Std. Deviation:  u(t) =             .009225 | 

| Durbin-Watson:   u(t) =            2.512611 | 

| Autocorrelation: u(t) =            -.256306 | 

| N[0,1] used for significance levels         | 

+---------------------------------------------+ 

+---------+--------------+----------------+--------+---------+----------+ 

|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| 

+---------+--------------+----------------+--------+---------+----------+ 

 Constant      -.08791441      .09678008     -.908   .3637 

 LOGY           .99749200      .01208806    82.519   .0000    7.99083133 

 RHO            .91049600      .02902326    31.371   .0000 
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Sorry to bother you again, but an important issue has come up.  I am using 

LIMDEP to produce results for my testimony in a utility rate case.  I have a 

time series sample of 40 years, and am doing simple OLS analysis using a 

primary independent variable and a dummy.  There is serial correlation 

present.  The issue is what is the BEST available AR1 procedure in LIMDEP 

for a sample of this type??  I have tried Cochrane-Orcott, Prais-Winsten, and 

the MLE procedure recommended by Beach-MacKinnon, with slight but 

meaningful differences. 

 

By modern constructions, your best choice if you are comfortable 

with AR1 is Prais-Winsten.  Noone has ever shown that iterating it is better or 

worse than not.  Cochrance-Orcutt is inferior because it discards information 

(the first observation).  Beach and MacKinnon would be best, but it assumes 

normality, and in contemporary  treatments, fewer assumptions is better.  If 

you are not comfortable with AR1, use OLS with Newey-West and 3 or 4 

lags. 
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Feasible GLS 

For FGLS estimation, we do not seek an estimator of 

such that

ˆ                    

ˆThis makes no sense, since  is nxn and does not "converge" to

anything.  We seek a matrix such that

          



Ω

Ω - Ω 0

Ω

Ω 

ˆ (1/n) (1/n)

For the asymptotic properties, we will require that

ˆ            (1/ n) (1/n)

Note in this case, these are two random vectors, which we require

to converge



 

-1 -1

-1 -1

X'Ω X -  X'Ω X 0

X'Ω  -  X'Ω  0

 to the same random vector.


