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Generalized Regression Model

Setting: The classical linear model assumes that
E[ee'] = Var[e] = o?l. Thatis, observations are
uncorrelated and all are drawn from a
distribution with the same variance. The
generalized regression (GR) model allows the
variances to differ across observations and
allows correlation across observations.
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Generalized Regression Model

The generalized regression model:
y =Xp +¢,

E[e|X] = 0, Var[g|X] = c°Q.
Regressors are well behaved.
Trace €2 =n.

This is a ‘normalization.’
Mimics tr(c?l) = no?. Needed since (czc)(%njmzﬂ for any c.
Leading Cases

Simple heteroscedasticity

Autocorrelation

Panel data and heterogeneity more generally.

SUR Models for Production and Cost

VAR models in Macroeconomics and Finance
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Implications of GR Assumptions

O The assumption that Var[e] =

= o4l is used to derive the

result Var[b] c?(X'X)L. Ifitis not true, then the use of

s2(X'X)1 to estimate Var[b_

IS inappropriate.

O The assumption was also used to derive the t and F
test statistics, so they must be revised as well.

O Least squares gives each observation a weight of 1/n.
But, if the variances are not equal, then some
observations are more informative than others.

O Least squares is based on simple sums, so the
Information that one observation might provide about

another Is never used.
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Implications for Least Squares

o Stillunbiased. (Proof did not rely on Q)

O  For consistency, we need the true variance of b,

Var[b|X] = E[(b-B)(b-B)’|X]
(X’X) L E[X’ge’X] (X’X)2
o2 (X’X) L X'QX (X’X)L .

(Sandwich form of the covariance matrix.)

Divide all 4 terms by n. If the middle one converges to a finite matrix of
constants, we have mean square consistency, so we need to examine

(LU/N)X'QX = (1UN)ZZ o X; X'
This will be another assumption of the model.

Asymptotic normality? Easy for heteroscedasticity case, very difficult

O
for autocorrelation case.

Part 14: Generalized Regression

14-6/59



Robust Covariance Matrix

O Robust estimation: Generality

O How to estimate
Var[b|X] = (X’X)* X'(c? Q)X(X’X)* for the LS b?

O The distinction between estimating
c2Q) an nxn matrix
and estimating the KxK matrix
o2 X'QX = 62 ZZim; X; X
o NOTE...... VVVIRs for modern applied econometrics.

= The White estimator
= Newey-West estimator.
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The White Estimator

Est.Var[b] = (X"X) [Z[‘: 1 e?xixi'] (X'X)™

(Heteroscedasticity robust covariance matrix.)

O Meaning of “robust” in this context
O Robust standard errors; (b is not “robust”)
= Robust to: Heteroscedasticty
= Not robust to: (all considered later)
Correlation across observations
Individual unobserved heterogeneity
Incorrect model specification

O Robust inference means hypothesis tests and confidence
Intervals using robust covariance matrices
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Inference Based on OLS

What about s?(X'X)1 ? Depends on X'QX - X'X. If they
are nearly the same, the OLS covariance matrix is OK.
When will they be nearly the same? Relates to an
Interesting property of weighted averages. Suppose o,
IS randomly drawn from a distribution with E[w] = 1.

Then, (1/n)Zx? > E[x?] and (1/n)Z.ox? 2> E[X?].

This is the crux of the discussion in your text.
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Inference Based on OLS

VIR: For the heteroscedasticity to be substantive wrt estimation and
inference by LS, the weights must be correlated with x and/or x2.
(Text, page 305.)

If the heteroscedasticity is substantive. Then, b is inefficient.

The White estimator. ROBUST estimation of the variance of b.
Implication for testing hypotheses. We will use Wald tests.

(ROBUST TEST STATISTICS)
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Finding Heteroscedasticity

The central issue is whether E[¢?] = c?w; is related
to the xs or their squares in the model.

Suggests an obvious strategy. Use residuals to
estimate disturbances and look for relationships
between e? and x; and/or x2. For example,
regressions of squared residuals on xs and their
squares.
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Procedures

White’s general test: nR? in the regression of e on all unique xs,
sqguares, and cross products. Chi-squared[P]

Breusch and Pagan’s Lagrange multiplier test. Regress
{[e? /(e'e/n)] — 1} on Z (may be X).
Chi-squared. Is nR? with degrees of freedom rank of Z.

FIGURE 9.2 Plot of Residuals against Load Factor.
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A Heteroscedasticity Robust Covariance Matrix

Note the conflict: Test favors heteroscedasticity.
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Robust VC matrix is essentially the same.

Ordinary lea=t =guares regres=sion ... ... ... ...
LHS=LWAGE Hean = b. 67635
Standard deviation = 46151
Humber of obssrvs. = 4165
Hodel =ize Farameters= = 11
Degres=s of fresedon = 4154
Feszidual= Sum of =gquares = 515 4950
Standard error of e = .35243
Fit F—=quared = 41826
Adju=sted F-=guared = 41686
Hodel te=t F[ 10 415471 i{probh = 298 Y 00004
White heteroscedasticity robust covarliance matri=.
Fr./]?agan IM Chi-=g [ 10] (prob) = 105.%71 (.0000) UncorreCted
Standard Frob. 95% Confidence Standard
LWAGE Cosfficient Error = |z | »Z% Interwval Error =
Con=tant L. 24547 %%% 07567 69,32 0000 §.0971%5 L.39379 07170 73 .15
ED L0565 4xxx 00273 €= 2OT7ITTC U000 TS USITY T TUBRIET T > p0zZel 21 64
EXF .04045%%x .onoz219 18 .46 0000 03616 04474 .ooz217 19 .61
EXP=EXP — . 000Eg%xxx .4893D-04 -13.92 0000 —.Qoove —.ooogs9 4783004 —14. 24
WES L0044 9% .0011e 3.85 0001 .onzzn L00R77 Qooi09 4 12
QCC —. 1405 3%%% .01508 -9, 32 ooono —.17009 —.11098 01472 —9 G4
SOUTH — . 07210%%% 01274 -5 BB ooon —. 09707 —. 04714 01249 -5 77
SHSA 13901 =% .01z200 11.59 ooono 115510 16252 n1iznv 11 51
M5 OR736%xx .02099 321 no13 n2e22 10849 02063 1 76
FEH — . JE92 2xxx 02395 —-16.25 ooono —. 43817 —. 34227 02518 —-15 4%
THIOH L09015%x= 01246 7023 ooon COAE72 .11458 Oiza9 £ 99
nnnnn . D-xx or D4xx =: multiply by 10 to —=xx or +xx.
*%¥%, 6 %% ¥ ==3 Significance at 1%, 5%, 10% lewvel.




Countries
are ordered
by the
standard
deviation of
their 19
residuals.
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Groupwise Heteroscedasticity
Gasoline Demand Model

Country Residuals from Gasoline Use Regression

20+

[ER

RESIDUAL
8

=20

Regression of log of per capita gasoline use on log of per capita income,
gasoline price and number of cars per capita for 18 OECD countries for 19
years. The standard deviation varies by country. The efficient estimator is

“weighted least squares.”
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- e T o - +-——————- +-——————- +-——m - +
|Variable| Coefficient Standard Error |t-ratio |P[|T|>t]| Mean of X|
- e T o - +-——————- +-——————- +-——m - +
Constant| 2.39132562 .11693429 20.450 0000
LINCOMEP | .88996166 .03580581 24 .855 0000 -6.13942544
LRPMG | -.89179791 .03031474 -29.418 0000 -.52310321
LCARPCAP | -.76337275 .01860830 -41.023 0000 -9.04180473
White heteroscedasticity robust covariance matrix
Constant| 2.39132562 .11794828 20.274 .0000
LINCOMEP | .88996166 .04429158 20.093 .0000 -6.13942544
LRPMG -.89179791 .03890922 -22.920 .0000 -.52310321
LCARPCAP | -.76337275 02152888 -35.458 .0000 -9.04180473
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White Estimator

(Not really appropriate for groupwise heteroscedasticity)
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Autocorrelated Residuals
logG=B, + B,logPg + BslogY + B,logPnc + B:logPuc + €
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Autocorrelated Residuals from Gasoline Regression
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Newey-West Estimator

Heteroscedasticity Component - Diagonal Elements

Autocorrelation Component - Off Diagonal Elements

1 L n
S, = n Z|:1 thm wee, (XX +X_X;)

w,=1- L "Bartlett weight”
L+1
N N
Est.Var[b]=1(x X] [S, + sl](x Xj
N N N
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Newey-West Estimate

________ +_____________________________________________________________
Variable| Coefficient Standard Error t-ratio P[|T|>t] Mean of X
________ +_____________________________________________________________
Constant| -21.2111**%* .75322 -28.160 .0000
LP| -.02121 .04377 -.485 .6303 3.72930
LY| 1.09587*** .07771 14.102 .0000 9.67215
LPNC| -.37361*%* .15707 -2.379 .0215 4.38037
LPUC| .02003 .10330 .194 .8471 4.10545
________ +_____________________________________________________________
________ +_____________________________________________________________
Variable| Coefficient Standard Error t-ratio P[|T|>t] Mean of X
Robust VC Newey-West, Periods = 10
________ +_____________________________________________________________
Constant| -21.2111**%* 1.33095 -15.937 .0000
LP| -.02121 .06119 -.347 .7305 3.72930
LY| 1.09587*** .14234 7.699 .0000 9.67215
LPNC| -.37361*%* .16615 -2.249 .0293 4.38037
LPUC| .02003 .14176 .141 .8882 4.10545
________ +_____________________________________________________________
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Generalized Least Squares Approach

Aitken theorem. The Generalized Least Squares
estimator, GLS. Find P such that

Py = PXB + Pe
y* — X*B + g*.
E[e*e™’|X*]= 07
Use ordinary least squares in the transformed
model. Satisfies the Gauss — Markov theorem.
b* — (X*ax*)-jo*ay*
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Generalized Least Squares — Finding P

A transformation of the model:
P=Q12 pp=Q1
Py = PXB + Pg or
y* — X*B + g*.

We need a noninteger power of a matrix: Q12
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(Digression) Powers of a Matrix

O (See slides 7:41-42) =

1 [ 2 [ 3 [ 4| 5 [ 6 | ~
C h t . t- R t d V t 1 0.735578 0.808202 0.924205 0.903309 0.886308
O aracteristic ROOts an ecClors | R | M R e

0924205 0812462 0.963605 1 0.5930828 0.983062

= O = CAC’ o — b s
= C = Orthogonal matrix of R=CAC'=>" icgc
characteristic vectors. , A=

;|| s fw|re (=

1 0359548] 0121884 0895708 00406948 0127852  0.0722466 1T 5 53961

. . 2 0377093 0840502  0.067397 0177137 0035565 0337768 | 2| 29845

[ ] A = D | ag O n al m atrlx Of 3 0420955 0198986 0132743 0413014 0104492  -07e4252| 3| 13847
4 0419333 0.2568255 0101987  0.0247916 0.862514 ooso1z3| 4| 01478

. . 5 0.416351 028231 0222397 0750782 -0.325211 o1eens| S .00608

C h aracteristic roots G 0414441 0345 0314 04e1765 03487 osteoss| Ol 100260

O For positive definite matrix, elements of A are all positive.

O General result for a power of a matrix: Q& = CA2C’.
Characteristic roots are powers of elements of A. C is the same.

O Important cases:
= Inverse: Q' = CAC
= Square root: Q12 = CAY2C’
= Inverse of square root: Q12 = CAV2C’
= Matrix to zero power: Q° = CA°C' = CIC' = |

14-21/59 Part 14: Generalized Regression



Generalized Least Squares — Finding P

(Using powers of the matrix)

E[e*e™'|X*] = PE[eg’ | X*]P’
= PEJeg" | X]P’
= 0%PQP’ = 02Q12 Q 12 = g2 QY
= o?l
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Generalized Least Squares

Efficient estimation of B and, by implication, the
Inefficiency of least squares b.

é — (X*’X*)'1X*’y*
= (X’P’PX)1 X’P’Py
= (X'QIX)L X'Qly

N N

B #b. B is efficient, so by construction, b is not.
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Asymptotics for GLS

Asymptotic distribution of GLS. (NOTE. We apply
the full set of results of the classical model to

the transformed model.)
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Unbiasedness
Consistency - “well behaved data”

Asymptotic distribution
Test statistics
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Unblasedness

N

B _ (xln-lx)—lxln-ly
- B+ (X'QIX)IX'Q e

E[B | X]=B + (X'Q'X) ' X'QE[e | X]

=B if E[e|X]=0
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Consistency

Use Mean Square

n 2 1~n-1 -1
Var[[s|x1=‘; (xs{: xj 507

143-1

Requires ( X] to be "well behaved"

n
Either converge to a constant matrix or diverge.

Heteroscedasticity case: Easy to establish

XQ'X 1. lon 1
— = E O xx'==2) —xx'

Autocorrelation case: Complicated. Need assumptions

19-1
s ‘:] = - %Zlnl 2?21 (ﬂ'l)ijxixj'. n2 terms.
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Asymptotic Normality

n 191 -1
Jn(B-B) - Jﬁ[x T XJ Ixae
Converge to normal with a stable variance O(1)?

11 -
(X ‘I: X) — a constant matrix? Assumed.

%X'Q‘ls — a mean to which we can apply the central limit theorem?

Heteroscedasticity case?
2 xi

1 .
“X'Qle= Var = o°,—= is just data.
n X Jor [f } (ﬁ j Jo,

Apply Lindeberg-Feller.

Autocorrelation case? More complicated.

Part 14: Generalized Regression



Asymptotic Normality (Cont.)

For the autocorrelation case

1

tev-1m 1 n n i
EX Q'e= HZiﬂ Zj=1QJ Xg;

Does the double sum converge? Uncertain. Requires elements

of Q' to become small as the distance between i and j increases.
(Has to resemble the heteroscedasticity case.)
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Test Statistics (Assuming Known Q)

o With known Q, apply all familiar results to the
transformed model:

O With normality, t and F statistics apply to least
squares based on Py and PX

O With asymptotic normality, use Wald statistics
and the chi-squared distribution, still based on
the transformed model.
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Unknown Q2

o  Qwould be known in narrow heteroscedasticity cases.

o Qs usually unknown. For now, we will consider two
methods of estimation

o Two step, or feasible estimation. Estimate Q first, then do
GLS. Emphasize - same logic as White and Newey-West. We
don’t need to estimate Q. We need to find a matrix that
behaves the same as (1/n)X'Q1X.

=  Full information estimation of B, o2, and Q all at the same
time. Joint estimation of all parameters. Fairly rare. Some
generalities.

o We will examine Harvey’'s model of heteroscedasticity
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Specification

O Q must be specified first.

O A full unrestricted Q contains n(n+1)/2 - 1 parameters.
(Why minus 1? Remember, tr(2) = n, so one element is
determined.)

O Qs generally specified in terms of a few parameters.
Thus, Q = Q(0) for some small parameter vector 6. |t
becomes a question of estimating 0.
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Two Step Estimation

The general result for estimation when Q Is
estimated.

GLS uses [X'QX]X'Qtly which converges in
probability to .
We seek a vector which converges to the same

thing that this does. Call it "Feasible GLS" or
FGLS, based on [X'QX]X'Q1y

The object is to find a set of parameters such that
X'QIXIX'Qly - [XQIX]X'Qly >0
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Two Step Estimation of the
Generalized Regression Model

Use the Aitken (Generalized Least Squares - GLS)
estimator with an estimate of Q

1. Qs parameterized by a few estimable parameters.
Examples, the heteroscedastic model

2. Use least squares residuals to estimate the
variance functions

3. Use the estimated Q in GLS - Feasible GLS, or FGLS
[4. Iterate? Generally no additional benefit.]
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FGLS vs. Full GLS

VVIR (Theorem 9.5)

To achieve full efficiency, we do not
need an efficient estimate of the
parameters in Q, only a consistent
one.
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Heteroscedasticity

Setting: The regression disturbances have unequal variances, but are
still not correlated with each other:

Classical regression with hetero-(different) scedastic (variance)
disturbances.

y. = B'X; +¢, E[g] = 0, Var[g] = o? », o; >0.
A normalization: %, o; = n. The classical model arises if o, = 1.

A characterization of the heteroscedasticity: Well defined estimators
and methods for testing hypotheses will be obtainable if the
heteroscedasticity is “well behaved” in the sense that no single
observation becomes dominant.
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Generalized (Weighted) Least Squares
Heteroscedasticity Case

(o, O 0
0O o, ... 0
V X1 = 620 = &2 2
arls[X]=c'Q=0c"1 0 g
_0 0o ... ®, |
_1/@ 0o ..
| 0 1o
0 0 0
o0 e

n

B-0co0 oearty) - T x| (27 e |

.
2 |

o’ =

n-K
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Estimation: WLS form of GLS

General result - mechanics of weighted least squares.

Generalized least squares - efficient estimation. Assuming
weights are known.

Two step generalized least squares:

O Step 1: Use least squares, then the residuals to
estimate the weights.

O Step 2: Weighted least squares using the estimated
weights.

O (Iteration: After step 2, recompute residuals and return to
step 1. Exit when coefficient vector stops changing.)
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FGLS — Harvey’s Model

Feasible GLS is based on finding an estimator which has the
same properties as the true GLS.

Example Var[g|z] = o? [Exp(y'Z)]>.

True GLS would regress yi/[cExp(y'z;)] on the same
transformation of x;. With a consistent estimator of [c,y], say
[s,c], we do the same computation with our estimates.

So long as plim [s,c] = [o,y], FGLS is as “good” as true GLS.
e Consistent
e Same Asymptotic Variance
e Same Asymptotic Normal Distribution
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Harvey's Model of Heteroscedasticity

O Varlg | X] = o2 exp(y'z)
o Covlg,g | X] = 0
e.g.: z; = firm size
e.g.. z; = a set of dummy variables (e.g., countries)
(The groupwise heteroscedasticity model.)
O [02 Q] = diagonal [exp(6 + y'z)],
0 = log(c?)
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Harvey's Model

Methods of estimation:

Two step FGLS: Use the least squares residuals to estimate
(0,y), then use

b=[x[a(64)] x| x[a(er)]

Full maximum likelihood estimation. Estimate all parameters
simultaneously.

A handy result due to Oberhofer and Kmenta - the “zig-zag”
approach. lterate back and forth between (0,y) and B.
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Harvey’'s Model for Groupwise
Heteroscedasticity

Groupwise sample, yi,, Xig,- -

N groups, each with n; observations.

Var[e;, ] = 0°

Let di; = 1 if observation i,g Is in group g, O else.

= group dummy variable. (Drop the first.)
Varg, ] = 04%exp(0,d, + ... 6dg)
Var, =g, Var, = 04% exp(,) and so on.
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Estimating Variance Components

0 OLS is still consistent:

O Est.Var, = e,’e;/n, estimates o,°

0 Est.Var, = e,’'e,/n, estimates 02 exp(0,), etc.
0O Estimator of 0, is In[(e,’e,/n,)/(e,'e,/n,)]

O (1) Now use FGLS — weighted least squares
0 Recompute residuals using WLS slopes

0 (2) Recompute variance estimators

O Iterate to a solution... between (1) and (2)
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Baltagi and Griffin’'s Gasoline Data

World Gasoline Demand Data, 18 OECD Countries, 19 years

Variables in the file are

Country Residuals from

COUNTRY = name of country o
YEAR = year, 1960-1978
LGASPCAR = log of consumption per car o .
LINCOMEP = log of per capita income
LRPMG = log of real price of gasoline B
LCARPCAP = log of per capita number of cars

See Baltagi (2001, p. 24) for analysis of these data. The article on which the
analysis is based is Baltagi, B. and Griffin, J., "Gasoline Demand in the OECD: An
Application of Pooling and Testing Procedures,”" European Economic Review, 22,

1983, pp. 117-137. The data were downloaded from the website for Baltagi's
text.
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Least Squares First Step

Multiplicative Heteroskedastic Regression Model. ..

Ordinary least squares regression ............
LHS=LGASPCAR Mean = 4.29624

Standard deviation = .54891

Number of observs. = 342
Model size Parameters = 4

Degrees of freedom = 338
Residuals Sum of squares = 14.90436
B/P LM statistic [17 4d.f.] = 111.55 (.0000) (Large)
Cov matrix for b is sigma”2*inv(X'X) (X'WX)inv (X'X) (Robust)
________ +_____________________________________________________________
Variable| Coefficient Standard Error b/St.Er. P[|Z]|>z] Mean of X
________ +_____________________________________________________________
Constant| 2.39133*%*x* .20010 11.951 .0000
LINCOMEP | .88996*** .07358 12.094 .0000 -6.13943

LRPMG | -.89180*** .06119 -14.574 .0000 -.52310

LCARPCAP | -.76337*** .03030 -25.190 .0000 -9.04180
________ +_____________________________________________________________
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Sigma |
D1 |
D2 |
D3 |
D4 |
D5 |
D6 |
D7 |
D8 |
DI |

D10 |
D11 |
D12 |
D13
D14 |
D15
D16 |
D17 |
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Variance Estimates = In[e(i)'e(i)/T]

.481960***
L6067 7x**
.52919**
.47152
.15102***
L206230%**
.09099
.88962***
.60559
.56624**
.53284x*x*
.62835%**
.23638***
77641
L277341%
.57948
.81723**
.93529*x*

.12281
.72073
.72073
.72073
.72073
.72073
.72073
.72073
.72073
.72073
.72073
. 72073
.72073
.72073
.72073
.72073
. 72073
. 712073

.924
.617
122
.654
.372
.526
.126
.622
.840
.173
127
.647
.103
.077
L7677
.804
.521
.073

.0001
.0003
.0339
.5130
.0000
.0000
.8995
.0087
.4008
.0298
.0334
.0003
.0019
.2814
L0773
.4214
.0117
.0000
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OLS vs. lterative FGLS

Looks like a substantial gain in reduced standard errors
________ +_____________________________________________________________

Variable| Coefficient

Standard Error b/St.Er.

P[|Z]|>z]

Mean of X

________ 4$4--———————eererrr e = =

|Ordinary Least Squares

|Robust Cov matrix for b is sigma”“2*inv(X'X) (X'WX)inv (X'X)

.20010
.07358
.06119
.03030

11.
12
-14.
-25.

951

.094

574
190

________ +_____________________________________________________________
| Regression (mean) function

Constant| 2.39133*%**
LINCOMEP | .88996***

LRPMG | -.89180***
LCARPCAP| —.76337**%*
Constant| 1.569090***
LINCOMEP | .60853**%*

LRPMG | -.61698***
LCARPCAP | -.66938***
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.06744
.02097
.01902
.01116

23.
29.
-32.
-59.

267
019
441
994

.0000

.0000 -6.13943
.0000 -.52310
.0000 -9.04180
.0000

.0000 -6.13943
.0000 -.52310
.0000 -9.04180
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Seemingly Unrelated Regressions

The classical regression model, y; = X8, + . Applies to
each of M equations and T observations. Familiar
example: The capital asset pricing model:

(rm B Iff) = OLmi t Bm( [ market — rf) T ey

Not quite the same as a panel data model. M is usually
small - say 3 or 4. (The CAPM might have M in the
thousands, but it is a special case for other reasons.)

14-47/59 Part 14: Generalized Regression



Formulation

Consider an extension of the groupwise heteroscedastic
model: We had

yi = XiB + & with E[g|X] = 0, Var[g]|X] = ol
Now, allow two extensions:
Different coefficient vectors for each group,

Correlation across the observations at each specific
point in time (think about the CAPM above. Variation in
excess returns is affected both by firm specific factors
and by the economy as a whole).

Stack the equations to obtain a GR model.
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SUR Model

Two Equation System

yi=XP, +¢& or {Y1}:|:X1 0 }[ﬁlj+|:81}
Y, =X,B, +&, Y, 0 X, |\ B, €,

y = Xp +e¢
0 €& &E& c.l ol
Ele|X]=| |, Eleg'|X]=E| ~, “Z2|X|=| * *
0 €,€, &,8, o, ol
= 6°Q
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OLS and GLS

Each equation can be fit by OLS ignoring all others. Why do GLS?
Efficiency improvement.

Gains to GLS:
None if identical regressors - NOTE THE CAPM ABOVE!

Implies that GLS is the same as OLS. This is an application of a
strange special case of the GR model. “If the K columns of X are
linear combinations of K characteristic vectors of Q, in the GR
model, then OLS is algebraically identical to GLS.” We will forego
our opportunity to prove this theorem. This is our only application.
(Kruskal's Theorem)

Efficiency gains increase as the cross equation correlation increases
(of coursel).

14-50/59 Part 14: Generalized Regression



The Identical X Case

Suppose the equations involve the same X matrices. (Not just the
same variables, the same data. Then GLS is the same as equation
by equation OLS.

Grunfeld’s investment data are not an example - each firm has its own
data matrix. (Text, p. 371, Example 10.3, Table F10.4)

The 3 equation model on page 344 with Berndt and Wood'’s data give
an example. The three share equations all have the constant and
logs of the price ratios on the RHS. Same variables, same years.
The CAPM is also an example.

(Note, because of the constraint in the B&W system (the same &
parameters in more than one equation), the OLS result for identical
Xs does not apply.)
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Estimation by FGLS

Two step FGLS is essentially the same as the groupwise
heteroscedastic model.

(1) OLS for each equation produces residuals e..
(2) S; = (1/n)e'e; then do FGLS

Maximum likelihood estimation for normally distributed
disturbances: Just iterate FLS.

(This is an application of the Oberhofer-Kmenta result.)
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Example 10.3 A Cost Function for U.S. Manufacturing
A number of studies using the translog methodology have used a four-factor model, with
capital K, labor L, energy E, and materials M, the factors of production. Among the studies to
employ this methodology was Berndt and Wood's (1975) estimation of a translog cost function
for the U.S. manufacturing sector. The three factor shares used to estimate the model are

Sk
Y=|5SL |
L SE
i 0
X=10 i
10 0

Sk = BK + ‘SKK In(p—K) + ‘SKI_ In(p—L) +
Pm Pum

Pe
Sic In| — |,
HE (PM)

Pk Pr Pe
s =B +8Inl— )+, Inl—= ]+ §egin|l — |,
LA “ (PM) t (PM) - (PM)

Pk PL PE
Sg = + 6kelnl — ) + i elnl — | + SeeInf — |.
e e “E (Pm) t (PM) & (PM)

Berndt and Wood’s data are reproduced in Appendix Table F10.2. Constrained FGLS
estimates of the parameters presented in Table 10.4 were obtained by constructing the pooled
regression in (10-20) with data matrices

In Pe/Py

0
0

InP/Py InPe/Py
In Pu/Py 0
0 In Px/Py

B' = (B, Bw: Be: Sk, OkL Oke: O11, S1E, Oep)-

In P/Py

0

In Pe/Py
In P/Pu

(10-35)

0
o |

In Pe/Pw

TABLE 10.5 Parameter Estimates for Aggregate Translog Cost Function (Standard errors in

parentheses)

Constant Capital Labor Energy Materials
Capital 0.05689 0.02949 —0.00005 —0.01067 —0.01877*

(0.00135) (0.00580) (0.00385) (0.00339) (0.00971)
Labor 0.25344 0.07543 —0.00476 —0.07063*

(0.00223) (0.00676) (0.00234) (0.01060)
Energy 0.04441 0.01835 —0.00294°%*

(0.00085) (0.00499) (0.00800)
Materials 0.64526* 0.09232*

(0.00330) (0.02247)
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Vector Autoregression

The vector autoregression (VAR) model is one of the most successful, flexible,
and easy to use models for the analysis of multivariate time series. It is
a natural extension of the univariate autoregressive model to dynamic multivariate
time series. The VAR model has proven to be especially useful for
describing the dynamic behavior of economic and financial time series and
for forecasting. It often provides superior forecasts to those from univariate
time series models and elaborate theory-based simultaneous equations
models. Forecasts from VAR models are quite flexible because they can be
made conditional on the potential future paths of specified variables in the
model.

In addition to data description and forecasting, the VAR model is also

used for structural inference and policy analysis. In structural analysis, certain
assumptions about the causal structure of the data under investigation
are imposed, and the resulting causal impacts of unexpected shocks or
innovations to specified variables on the variables in the model are summarized.
These causal impacts are usually summarized with impulse response

functions and forecast error variance decompositions.
Eric Zivot: http://faculty.washington.edu/ezivot/econ584/notes/varModels.pdf
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VAR

Yi(0) =y Ya (0 =) + v, Y, (0 =1) +v15 V5 (E—1) + 75, Y, (E 1) +8,x(t) + &, (1)

Yo (1) = Yo Vi (0 =D) + 7, Y, (T =1) + 7,5 Y5 (t 1) + v, Y, (£ 1) + 3, X() + £, (t)

Va(0) =YY (0 =) + 75 Y, (E —1) + 735 Ya (0 —2) + 75, Y, (t = 1)+ 8,X() + &5 (1)

Ya(©) = v Yo (0 =1) + 72, Y, (€ =1) + 7,5 Y5 (T 1) + 74, y5 (t —1) + 8,x(t) + &, (t)

(In Zivot's examples,

1. Exchange rates

2. y(t)=stock returns, interest rates, indexes of industrial production, rate of inflation
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VAR Formulation

y(t) =Ty(t-1) + ox(t) + &(t)

SUR with identical regressors.

Granger Causality: Nonzero off diagonal elements in I

Vi) = v Vi (C=D) + v, Vo (T =1) + vy Vs (T =1) + v, Y, (T —1) + 6, X(1) + &, (1)
Yo (1) =75 Vo (E=1) + v, Yo (6 =1) + 7,5 Y5 (T =1) + 7, Y, (£ =1) + 5,x(t) + &, (t)
Ya(t) =7 Vi (t=1) + 75, Y, (T=1) + 55 Y5 (t =1) + 75, Y, (T =1) + 35X(t) + &5(t)
Vo) = v Vi (t =D+ 7, Y, (E =) + 7,55t =1) +7,,Ys (t —1) +8,X(t) +&,(t)
Hypothesis: y, does not Granger causey,: y,,=0
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Impulse Response
y(t) =Ty(t-1) + ox(t) + &(t)
By backward substitution or using the lag operator (text, 1022-1024)
y(t) = Sx(t) + TdxX(t-1) + [°8x(t-2) +... (ad infinitum)

+g(t) +Te(t-1) +Ig(t-2) +...
[T" must converge to 0 as P increases. Roots inside unit circle.]
Consider a one time shock (impulse) in the system, A= Ag, in period t
Consider the effect of the impulse on y, (s), s=t, t+1,...
Effect in period tis 0. €, is not in the y1 equation.
Ag, affects y2 in period t, which affects y1 in period t+1. Effect is y,, x A

In period t+2, the effect from 2 periods back is (I'*),, x A
... and so on.
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Zivot's Data

Real Return on Market Real Interest Rate

0.3

0.005
S NN N
=
—
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L
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[
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-0.015
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2

|
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-0.10
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Impulse Response
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Appendix: Autocorrelation in Time Series
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Autocorrelation

The analysis of “autocorrelation” in the narrow sense of correlation
of the disturbances across time largely parallels the discussions
we’ve already done for the GR model in general and for
heteroscedasticity in particular. One difference is that the relatively
crisp results for the model of heteroscedasticity are replaced with
relatively fuzzy, somewhat imprecise results here. The reason is
that it is much more difficult to characterize meaningfully “well
behaved” data in a time series context. Thus, for example, in
contrast to the sharp result that produces the White robust
estimator, the theory underlying the Newey-West robust estimator is
somewhat ambiguous in its requirement of a bland statement about
“how far one must go back in time until correlation becomes
unimportant.”
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Autocorrelation Matrix

1 p p2 pT_l

2Pl p

Gzﬂ:(j__:fj p2 P 1 pT—3
I pT—l pT.—Z pT—3 1 |

(Note, trace Q = n as required.)
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St —
(‘First order autocorrelation.

Autocorrelation

P&y t U

about?)

Assume -1 < p <1. Why?

U, = ‘nonautocorrelated white noise’
= pg., + U, (the autoregressive form)

St

14-63/59

=p(pep + Upg) + U

= ... (continue to substitute)

= U+ pUpy + p2U, + poUg + ...
= (the moving average form)

* How does this come
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Autocorrelation

Var[e,]= Var[u, +pu, , +p°U,_, +...]

= Var[Z;io p‘ut_iJ
_Z| op Gzp

An easier way: Since Var[e ] = Var[e, ,] and ¢, = pg,_, +U,

Var[e,] = p*Var[e, , ]+ Var[u, ]+ 2pCov[e, ,,u,]
=p°Var[e, ]+ o’
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Autocovariances

Continuing...
Covle,, ¢,,] = Cov[pe,, +U,, & ]
= pCovle,_,,&,,]+ Cov[u,,e, ]
= pVarl[e,,] = pVar[e,]
_ PO,
(1-p?)
Cov[e,, e_,] = Cov[pe,_, +U, €. ,]

= pCoV[e, ,, ¢, ,]+ Cov[u,, e, ]

= pCovle,, ¢, ,]
2 2

_ P9,

= - o)) and so on.
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Generalized Least Squares

1-p2 0 0 0
—p 1 0 0
Q' = o0 5 1 0

Y, —PY,

-1/2 —_
2 y Y3 _pY2

Yt —Pr
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GLS and FGLS

Theoretical result for known Q - i.e., known p.
Prais-Winsten vs. Cochrane-Orcutt.

FGLS estimation: How to estimate p? OLS
residuals as usual - first autocorrelation.

Many variations, all based on correlation of e, and
€1
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The Autoregressive Transformation

| ]
Yo = xtB+ St & = P&y + U,

Y =Yy = (Xe —pXey)'B + (8, —pe )
Yi = PYiq = (xt - pxt-1)'B + U,

(Where did the first observation go?)
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Estimated AR(1) Model

AR (1) Model: e(t) =
Initial wvalue of rho
Maximum iterations

rho * e(t-1)

Method = Prais - Winsten

Iter= 1, SS= .022, Log-L=
Final value of Rho =

Std. Deviation: e(t)

Std. Deviation: u(t) =

Autocorrelation: u(t) =
N[O,1] used for significance levels

+ u(t)
.87566
1

127.593
.959411
.076512
.021577
.253173

Er.

P[|Z]|>z]

Mean of X

3.72930
9.67215
4.38037
4.10545

.72930

.38037

________ +_____________________________________________________________
Variable| Coefficient Standard Error b/St.
Constant| -20.3373**%* 69623 -29
LP| -.11379%*x* 03296 -3.
LY| .87040*** 08827
LPNC| .05426 12392
LPUC| -.04028 06193 -
RHO | .95941**%* 03949 24
Constant| -21.2111%%** 75322 -28
LP| -.02121 04377 -
LY| 1.09587**%* 07771 14.
LPNC| -.37361** 15707 -2.
LPUC| .02003 10330
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3
9.67215
4
4

.10545
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The Familiar AR(1) Model

& = pgy + Uy |p| < 1.

This characterizes the disturbances, not the regressors.
e A general characterization of the mechanism producing ¢
history + current innovations

e Analysis of this model in particular. The mean and variance
and autocovariance

e Stationarity. Time series analysis.
e Implication: The form of 62Q; Var[e] vs. Var[ul.

e Other models for autocorrelation - less frequently used —
AR(1) is the workhorse.
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Building the Model

O Prior view: A feature of the data

“Account for autocorrelation in the data.”

m Different models, different estimators

O Contemporary view: Why is there autocorrelation?

14-71/59

What is missing from the model?
Build in appropriate dynamic structures

Autocorrelation should be “built out” of the model
Use robust procedures (Newey-West) instead of elaborate

models specifically for the autocorrelation.
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Model Misspecification

Residuals. Bars mark mean res and +/— 2sie) Residuals. Bars mark mean res.and +/— 2s(e)
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Implications for Least Squares

Familiar results: Consistent, unbiased, inefficient, asymptotic normality

The inefficiency of least squares:
e Difficult to characterize generally. It is worst in “low frequency”
l.e., long period (year) slowly evolving data.
e Can be extremely bad. GLS vs. OLS, the efficiency ratios can
be 3 or more.

A very important exception - the lagged dependent variable

Yi = PX; t YWer T &g = pgg t Uy,

Obviously, Covly,, & ] # 0, because of the form of «..
e How to estimate? IV
e Should the model be fit in this form? Is something missing?

Robust estimation of the covariance matrix - the Newey-West
estimator.
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Testing for Autocorrelation

A general proposition: There are several tests. All are functions of the
simple autocorrelation of the least squares residuals. Two used
generally, Durbin-Watson and Lagrange Multiplier

The Durbin - Watson test. d ~ 2(1-r). Small values of d lead to
rejection of

NO AUTOCORRELATION: Why are the bounds necessary?

Godfrey’s LM test. Regression of e, on e, ; and x,. Uses a “partial
correlation.”
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Consumption “Function”
Log real consumption vs. Log real disposable income
(Aggregate U.S. Data, 19501 — 20001V. Table F5.2 from text)

Ordinary least squares regression ............
LHS=LOGC Mean = 7.88005
Standard deviation = .51572
Number of observs. = 204
Model size Parameters = 2
Degrees of freedom = 202
Residuals Sum of squares = .09521
Standard error of e = .02171
Fit R-squared = .90824 <<<*x*k
Adjusted R-squared = .99823
Model test F[ 1, 202] (prob) =114351.2(.0000)
________ +_____________________________________________________________
Variable| Coefficient Standard Error t-ratio P[|T|>t] Mean of X
________ +_____________________________________________________________
Constant| -.13526*** .02375 -5.695 .0000
LOGY | 1.00306*** .00297 338.159 .0000 7.99083
________ +_____________________________________________________________
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Least Squares Residuals: r = .91
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Residual

i '
RHTAW.YO h

Unstandardized Residuals, Bars mark

mean res, and +- 2s{e)
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Conventional vs. Newey-West

- - o - - - +-————— - e +
|Variable | Coefficient | Standard Error |t-ratio |P[|T|>t] | Mean of X|
- - o - +-——————- +-————— - e +
Constant -.13525584 .02375149 -5.695 .0000

LOGY 1.00306313 .00296625 338.159 .0000 7.99083133

t-—m— - tm—mmm - t-———mmm—— == +-——————- - - t-—m— +

| Newey-West Robust Covariance Matrix

|Variable | Coefficient | Standard Error |t-ratio |P[|T|>t] | Mean of X|

- - domm e - e +-———————- +-—— - +

Constant -.13525584 .07257279 -1.864 .0638

LOGY 1.00306313 .00938791 106.846 .0000 7.99083133
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et e e e e e e e e e P P P e +
| AR(1) Model: e(t) = rho * e(t-1) + u(t) |
| Initial value of rho = .90693 | <<<***x
| Maximum iterations 100 |
| Method = Prais - Winsten |
| Iter= 1, SS= .017, Log-L= 666.519353 |
| Iter= 2, SS= .017, Log-L= 666.573544 |
| Final value of Rho = .910496 | <<<***
| Iter= 2, SS= .017, Log-L= 666.573544 |
| Durbin-Watson: e(t) = .179008 |
| Std. Deviation: e(t) = .022308 |
| Std. Deviation: u(t) = .009225 |
| Durbin-Watson: u(t) = 2.512611 |
| Autocorrelation: u(t) = -.256306 |
| N[O,1] used for significance levels |
o - +
- - o - - +-————— - e it +
|Variable | Coefficient | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X|
- - o - - +-————— - e it +
Constant -.08791441 .09678008 -.908 .3637
LOGY .99749200 .01208806 82.519 .0000 7.99083133
RHO .91049600 .02902326 31.371 .0000
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Sorry to bother you again, but an important issue has come up. | am using
LIMDEP to produce results for my testimony in a utility rate case. | have a
time series sample of 40 years, and am doing simple OLS analysis using a
primary independent variable and a dummy. There is serial correlation
present. The issue is what is the BEST available AR1 procedure in LIMDEP
for a sample of this type?? | have tried Cochrane-Orcott, Prais-Winsten, and
the MLE procedure recommended by Beach-MacKinnon, with slight but
meaningful differences.

By modern constructions, your best choice if you are comfortable

with AR1 is Prais-Winsten. Noone has ever shown that iterating it is better or
worse than not. Cochrance-Orcutt is inferior because it discards information
(the first observation). Beach and MacKinnon would be best, but it assumes
normality, and in contemporary treatments, fewer assumptions is better. If
you are not comfortable with AR1, use OLS with Newey-West and 3 or 4
lags.
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Feasible GLS

For FGLS estimation, we do not seek an estimator of Q
such that

n

Q-Q->0

This makes no sense, since Q is nxn and does not "converge" to
anything. We seek a matrix Q such that

(1/MX'QIX - (1/n)X'QX >0
For the asymptotic properties, we will require that

(1/JdnM)X'Q e - (1/n)X'Q%: -0
Note in this case, these are two random vectors, which we require
to converge to the same random vector.

14-80/59 Part 14: Generalized Regression



