Econometrics I

Professor William Greene Stern School of Business Department of Economics

Econometrics I

Part 15 – Panel Data-1

Part 15: Panel Data-1

Panel Data Sets

Longitudinal data

- British household panel survey (BHPS)
- Panel Study of Income Dynamics (PSID)
- many others
- Cross section time series
 - Penn world tables
- Financial data by firm, by year
 - $r_{it} r_{ft} = \beta_i(r_{mt} r_{ft}) + \epsilon_{it}$, i = 1,...,many; t=1,...many
 - Exchange rate data, essentially infinite T, large N

Benefits of Panel Data

- Time and individual variation in behavior unobservable in cross sections or aggregate time series
- Observable and unobservable individual heterogeneity
- Rich hierarchical structures
- More complicated models
- Features that cannot be modeled with only cross section or aggregate time series data alone
- Dynamics in economic behavior

OFFICE OF FAIR TRADING

Evaluation of an OFT intervention

Independent fee-paying schools

May 2012

In this context, the OFT's evaluation team has evaluated the impact of the intervention addressing the anti-competitive practice of 50 independent fee-paying schools in the setting of fees during academic years 2001/02 to 2003/04. This research has been carried out by OFT economists and independently reviewed by Professor Stephen Davies.¹

The main aim is to understand whether the OFT intervention had an impact, and to estimate this impact in terms of reduced school fees. To do so we have collected data on the evolution of school fees and other variables before and after the OFT's intervention.

www.oft.gov.uk/shared_oft/reports/Evaluating-OFTs-work/oft1416.pdf

15-5/65

Part 15: Panel Data-1

A national study of socioeconomics and health over lifetimes and across generations

STUDIES | DOCUMENTATION | DATA | PUBS, MEETINGS & MEDIA | PEOPLE | NEWS

Home

RECENT PUBLICATIONS

 Neighborhood Effects in Temporal Perspective: The Impact of Long-Term Exposure to Concentr...

- Multigenerational Households and the School Readiness of Children Born to Unmarried Mother...
- Cumulative Effects of Job Characteristics on Health
- Essays on the Empirical Implications of Performance Pay Contracts

The Panel Study of Income Dynamics - PSID - is the longest running longitudinal household survey in the world.

The study began in 1968 with a nationally representative sample of over 18,000 individuals living in 5,000 families in the United States. Information on these individuals and their descendants has been collected continuously, including data covering employment, income, wealth, expenditures, health, marriage, childbearing, child development, philanthropy, education, and numerous other topics. The PSID is directed by faculty at the University of Michigan, and the data are available on this website without cost to researchers and analysts.

The data are used by researchers, policy analysts, and teachers around the globe. Over 3,000 peer-reviewed publications have been based on the PSID. Recognizing the importance of the data, numerous countries have created their own PSID-like studies that now facilitate crossnational comparative research. The National Science Foundation recognized the PSID as one of the 60 most significant advances funded by NSF in its 60 year history.

© 2011 PSID

Measuring America-People, Places, and Our Economy

Home → BHPS

British Household Panel Survey BHPS

The British Household Panel Survey began in 1991 and is a multi-purpose study whose unique value resides in the fact that:

BHPS British Household Panel Survey

Part 15: Panel Data-1

- it follows the same representative sample of individuals – the panel – over a period of years;
- · it is household-based, interviewing every adult member of sampled households;
- it contains sufficient cases for meaningful analysis of certain groups such as the elderly or lone parent families.

The wave 1 panel consists of some 5,500 households and 10,300 individuals drawn from 250 areas of Great Britain. Additional samples of 1,500 households in each of Scotland and Wales were added to the main sample in 1999, and in 2001 a sample of 2,000 households was added in Northern Ireland, making the panel suitable for UK-wide research.

• BHPS wave 18 data and documentation are available from the UK Data Archive.

15-8/65

BHPS Has Evolved

FACULTY OF **BUSINESS &** ECONOMICS THE UNIVERSITY OF MELBOURNE

Melbourne Institute

The Household, Income and Labour Dynamics in Australia (HILDA) Survey

	HILDA Home
The Household, Income and Labour Dynamics in Australia (HILDA) Survey is a household-based panel study which began in 2001. It has the following key features:	News
It collects information about economic and subjective well-being, labour market dynamics and family dynamics.	Ordering the Data
 Special questionnaire modules are included each wave. The wave 1 panel consisted of 7,682 households and 19,914 individuals. In wave 11 this was topped up with an additional 2,153 households and 5,477 individuals. 	Documentation and Support
 Interviews are conducted annually with all adult members of each household. The panel members are followed over time. 	HILDA Publications
 The funding has been guaranteed for sixteen waves, though the survey is designed to continue for longer than this. Academic and other researchers can apply to use the General Release datasets for their research. 	Research Conference

A A A	Deutsch Sitemap	Newsletter	Contact In	nprint Data Prot	ection DIW Berlin	Suche
S•EP			4	About SOEP	Research Center SC	Data DEP
	About S	OEP				
	The SOEP Ser	vice Group				
	SOEP Quicklin	nks:				
	7 SOEPinfo	7 S	OEPlit		→ SOEPnewsle	tter
	→ SOEPmonito	or 🔸 S	OEPdata E	ocuments	→ SOEPdata F	AQ
	About SOEP >					
Team	& Short Descrin	tion				
Contact	Services of the	e Research I	Data Center	SOEP		
SOEP-Overview	Organization	& Financing				
Mission	Short Descrin	tion				
SOEP Survey Committee	Short Descrip	uon				
	The German Social longitudinal study Research, DIW Be 20,000 persons sa	o-Economic F of private hou erlin. Every ye ampled by the	Panel Study (iseholds, loc ear, there we fieldwork or	(SOEP) is a wide ated at the Gern re nearly 11,000 ganization TNS	e-ranging represent nan Institute for Eco households, and n Infratest Sozialforso	ative pnomic nore than chung.
	The data provide i the Old and New (Panel was started	nformation or German State in 1984.	n all househo s, Foreigner	old members, co s, and recent Im	nsisting of German migrants to Germai	s living in ny. The
	Some of the many employment, earn	topics includ ings, health a	e household nd satisfacti	l composition, oc on indicators.	cupational biograp	nies,

15-11/65

15-12/65

(3) UNITED STATES D	EPARTMENT OF LABOR A to Z Index FAQs About BLS Contact Us Subscribe to E-mail Updates GO
# BUREAU	OF LABOR STATISTICS
Home Subject Are	as Databases & Tools Publications Economic Releases Beta
National Lo	ngitudinal Surveys Share on: 🖬 🗉 🛅 NLS 🔜 FONT SIZE: 🕀 PRINT: 🚔
BROWSE NLS	The National Longitudinal Surveys (NLS) are a set of surveys designed to gather information at multiple points in time on the labor
NLS HOME	market activities and other significant life events of several groups of men and women. For more than 4 decades, NLS data have served
NLS GENERAL OVERVIEWS	as an important tool for economists, sociologists, and other researchers.
NLS NEWS RELEASES	
NLS TABLES	On This Page
NLS PUBLICATIONS	» <u>NLS General Overviews</u> » <u>NLS Publications</u>
NLS FAQS	» <u>NLS News Releases</u> » <u>NLS FAQs</u> » <u>NLS Tables</u> » <u>NLS Related Links</u>
CONTACT NLS	» <u>NLS Data</u> » <u>Contact NLS</u>
SEARCH NLS	
NLS TOPICS	NLS General Overviews
NLSY97	
NLSY79	 National Longitudinal Survey of Youth 1997 (NLSY97) Survey of young men and women born in the years 1980-84;
NLSY79 CHILD & YOUNG	respondents were ages 12-17 when first interviewed in 1997.
ADULT	 <u>National Longitudinal Survey of Youth 1979 (NLSY79)</u> Survey of men and women born in the years 1957-64; respondents
NLS ORIGINAL COHORTS	were ages 14-22 when first interviewed in 1979.
	 <u>NLSY79 Children and Young Adults</u> Survey of the biological children of women in the NLSY79.
DOCUMENTATION	 National Longitudinal Surveys of Young Women and Mature Women (NLSW) The Young Women's survey includes women who were ages 14-24 when first interviewed in 1969. The Mature Women's survey includes women who were ages 20-44 when
	first interviewed in 1967. These surveys were discontinued in 2003
	 National Longitudinal Surveys of Young Men and Older Men The Young Men's survey, which was discontinued in 1981.
	includes men who were ages 14-24 when first interviewed in 1966. The Older Men's survey, which was discontinued in 1990,
	includes men who were ages 45-59 when first interviewed in 1966.

15-14/65

About CIC Penn World Table About ICP Research Papers Contact Us

Center for International Comparisons at the University of Pennsylvania

Center for International Comparisons of Production, Income and Prices University of Pennsylvania 3718 Locust Walk Philadelphia, PA 19104-6297 (215) 898-7624 ©

15-15/65

Part 15: Panel Data-1

ARMS Farm Financial and Crop Production Practices

Overview
Tailored Reports
What Is ARMS?
Update & Revision History
Documentation
Contact Us
Questionnaires & Manuals

Overview

The annual Agricultural Resource Management Survey (ARMS) is USDA's primary source of information on the financial condition, production practices, and resource use of America's farm businesses and the economic well-being of America's farm households. ARMS data are essential to USDA, congressional, administration, and industry decision makers when weighing alternative policies and programs that touch the farm sector or affect farm families.

Sponsored jointly by ERS and the National Agricultural Statistics Service (NASS), ARMS is the only national survey that provides observations of field-level farm practices, the economics of the farm businesses operating the field (or dairy herd, green house, nursery, poultry house, etc.), and the characteristics of farm operators and their households (age, education, occupation, farm and off-farm work, types of employment, family living expenses, etc.)--all collected in a representative sample. Information about crop production, farm production, business, and households includes data for selected surveyed States where available. See more background on ARMS....

15-17/65

Dairy Farm Data, N = 247, T = 6 Variables FARM = Farm ID YEAR = yearInputs COWS, X1 = log of, deviations from means (logs) LAND, X2 = same LABOR, X3 = same FEED, X4 = same Translog terms, X11, X22, X33, X44, X12, X13, X14, X23, X24, X34 = squares and cross products YEAR93,..., YEAR98 = year dummy variables Output MILK = farm output YIT = log of MILK production

Panel Data on 247 Spanish Dairy Farms Over 6 Years

			Da	ta Editor					23
29/900 Vars;	11111 Rows: 148	32 Ob: Cell: 1		<u> </u>	×				
	FARM	AGEL	YEAR	COWS	LAND	MILK	LABOR	FEED	
1 »	1	10	93	15.3	8	73647	2	33435.7	
2 »	1	10	94	18.1	8	91260	2	36869	
3 »	1	10	97	17.1	7	110419	2	51013.6	
4 »	1	10	96	17.3	8	111454	2	50711.6	
5 »	1	10	95	17.8	8	118498	2	54153.6	
6 »	1	10	98	19.5	7.2	131197	2	59038.7	
7 »	2	10	93	20.3	9	118149	2	53875.9	
8 »	2	10	94	20.3	10.4	127742	2	51991	
9 »	2	10	95	22	10.7	146490	2	61379.3	
10 »	2	10	96	23.3	10.7	163434	2	71093.8	
11 »	2	10	97	23.3	10.6	163603	2	69204.1	
12 »	2	10	98	25	9.4	169540	3	73580.4	
13 »	3	10	93	19.6	11	102445	2.5	42412.2	
14 »	3	10	94	22.2	11	129938	2.5	63149.9	
15 »	3	10	96	24.7	11	132594	2.5	54893.9	
16 »	3	10	95	25.4	12	134282	2.5	58681.2	
17 »	3	10	97	25.3	13.5	140581	2.5	55810.7	
18 »	3	10	98	26.1	14.5	182037	2.5	93567	
19 »	4	10	93	55.4	22	405042	2.5	196445	
20 »	4	10	94	63.5	22	489134	2.5	212773	
91	A	10	OF	K C3	22	ECCOEA	25	207701	• //

Cornwell and Rupert Data

Cornwell and Rupert Returns to Schooling Data, 595 Individuals, 7 Years (Extracted from NLSY.) **Variables in the file are**

EXP	= work experience
WKS	= weeks worked
OCC	= occupation, 1 if blue collar,
IND	= 1 if manufacturing industry
SOUTH	= 1 if resides in south
SMSA	= 1 if resides in a city (SMSA)
MS	= 1 if married
FEM	= 1 if female
UNION	= 1 if wage set by union contract
ED	= years of education
LWAGE	= log of wage = dependent variable in regressions

These data were analyzed in Cornwell, C. and Rupert, P., "Efficient Estimation with Panel Data: An Empirical Comparison of Instrumental Variable Estimators," Journal of Applied Econometrics, 3, 1988, pp. 149-155. See Baltagi, page 122 for further analysis. The data were downloaded from the website for Baltagi's text.

15-19/65

🖩 Data Editor 📃 🗖 🔀							
28/900 Vars; 11111 Rows: 4165 Ob; Cell: 0							
	LOGWAGE	EDUC					
1 »	5.56068	9					
2 »	5.72031	9					
3 »	5.99645	9					
4 »	5.99645	9					
5 »	6.06146	9					
6 »	6.17379	9					
7 »	6.24417	9					
8 »	6.16331	11					
9 »	6.21461	11					
10 »	6.2634	11					
11 »	6.54391	11					
12 »	6.69703	11					
13 »	6.79122	11					
14 »	6.81564	11					
15 »	5.65249	12					
16 »	6.43615	12					
17 »	6.54822	12					
18 »	6.60259	12					
19 »	6.6958	12					
20 »	6.77878	12					
21 »	6.86066	12					
20	C 15C00	10					

Balanced and Unbalanced Panels

- Distinction: Balanced vs. Unbalanced Panels
- A notation to help with mechanics

$$z_{i,t}, i = 1,...,N; t = 1,...,T_i$$

- The role of the assumption
 - Mathematical and notational convenience:
 - □ Balanced, n=NT
 - Unbalanced: $n = \sum_{i=1}^{N} T_i$
 - Is the fixed T_i assumption ever necessary? Almost never.
- Is unbalancedness due to nonrandom attrition from an otherwise balanced panel? This would require special considerations.

Application: Health Care Usage

German Health Care Usage Data, 7,293 Individuals, Varying Numbers of Periods

This is an unbalanced panel with 7,293 individuals. There are altogether 27,326 observations. The number of observations ranges from 1 to 7.

(Frequencies are: 1=1525, 2=2158, 3=825, 4=926, 5=1051, 6=1000, 7=987).

(Downloaded from the JAE Archive)

Variables in the file are

DOCTOR = 1(Number of doctor visits > 0) **HOSPITAL** = 1(Number of hospital visits > 0) HSAT = health satisfaction, coded 0 (low) - 10 (high) = number of doctor visits in last three months DOCVIS HOSPVIS = number of hospital visits in last calendar year PUBLIC = insured in public health insurance = 1; otherwise = 0 ADDON = insured by add-on insurance = 1; otherswise = 0 HHNINC = household nominal monthly net income in German marks / 10000. (4 observations with income=0 were dropped) HHKIDS = children under age 16 in the household = 1; otherwise = 0EDUC = years of schooling AGE = age in years MARRIED = marital status

An Unbalanced Panel: RWM's GSOEP Data on Health Care

A Basic Model for Panel Data

Unobserved individual effects in regression: E[y_{it} | x_{it}, c_i]

Notation: $\mathbf{y}_{it} = \mathbf{x}'_{it}\mathbf{\beta} + \mathbf{C}_{i} + \varepsilon_{it}$ $\mathbf{x}_{i} = \begin{bmatrix} \mathbf{x}'_{i1} \\ \mathbf{x}'_{i2} \\ \vdots \\ \mathbf{x}'_{iT_{i}} \end{bmatrix}$ T_i rows, K columns

Linear specification:

Fixed Effects: $E[c_i | \mathbf{X}_i] = g(\mathbf{X}_i)$. $Cov[\mathbf{x}_{it}, c_i] \neq \mathbf{0}$ effects are correlated with included variables.

Random Effects: $E[c_i | \mathbf{X}_i] = 0$. $Cov[\mathbf{x}_{it}, c_i] = \mathbf{0}$

15-24/65

Convenient Notation

Fixed Effects – the 'dummy variable model'

$$\mathbf{y}_{it} = \alpha_i + \mathbf{x}'_{it}\mathbf{\beta} + \varepsilon_{it}$$

Individual specific constant terms.

Random Effects – the 'error components model'

$$y_{it} = \mathbf{x}'_{it}\mathbf{\beta} + \varepsilon_{it} + u_i$$

Compound ("composed") disturbance

15-25/65

Explaining Fixed Effects: Random Effects modelling of Time-Series Cross-Sectional and Panel Data

Andrew Bell and Kelvyn Jones

School of Geographical Sciences

Centre for Multilevel Modelling

University of Bristol

Last updated: 11th Sept 2013

http://people.stern.nyu.edu/wgreene/Econometrics/Bell-Jones-Fixed-vs-Random-Sept-2013.pdf

15-26/65

Part 15: Panel Data-1

Estimating β

 $\square \beta$ is the partial effect of interest

- Can it be estimated (consistently) in the presence of (unmeasured) c_i?
 - Does pooled least squares "work?"
 - Strategies for "controlling for c_i" using the sample data

Assumptions for Asymptotics

- Convergence of moments involving cross section X_i.
- **D** N increasing, T or T_i assumed fixed.
 - "Fixed T asymptotics" (see text, p. 348)
 - Time series characteristics are not relevant (may be nonstationary – relevant in Penn World Tables)
 - If T is also growing, need to treat as multivariate time series.
- Ranks of matrices. X must have full column rank. (X_i may not, if T_i < K.)</p>
- Strict exogeneity and dynamics. If x_{it} contains y_{i,t-1} then x_{it} cannot be strictly exogenous. X_{it} will be correlated with the unobservables in period t-1. (To be revisited later.)
- Empirical characteristics of microeconomic data

The Pooled Regression

Presence of omitted effects

 $y_{it} = \mathbf{x}'_{it}\mathbf{\beta} + c_i + \varepsilon_{it}, \text{ observation for person i at time t}$ $\mathbf{y}_i = \mathbf{X}_i\mathbf{\beta} + c_i\mathbf{i} + \varepsilon_i, T_i \text{ observations in group i}$ $= \mathbf{X}_i\mathbf{\beta} + \mathbf{c}_i + \varepsilon_i, \text{ note } \mathbf{c}_i = (c_i, c_i, \dots, c_i)'$ $\mathbf{y} = \mathbf{X}\mathbf{\beta} + \mathbf{c} + \varepsilon_i, \Sigma_{i=1}^N T_i \text{ observations in the sample}$

Potential bias/inconsistency of OLS – depends on 'fixed' or 'random'

OLS in the Presence of Individual Effects

$\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$

 $= \mathbf{\beta} + \left[(1/N) \Sigma_{i=1}^{N} \mathbf{X}_{i}' \mathbf{X}_{i} \right]^{-1} \left[(1/N) \Sigma_{i=1}^{N} \mathbf{X}_{i}' \mathbf{c}_{i} \right] \text{ (part due to the omitted } \mathbf{c}_{i} \text{)}$

+ $\left[(1/N) \Sigma_{i=1}^{N} \mathbf{X}_{i}' \mathbf{X}_{i} \right]^{-1} \left[(1/N) \Sigma_{i=1}^{N} \mathbf{X}_{i}' \boldsymbol{\varepsilon}_{i} \right]$ (covariance of **X** and $\boldsymbol{\varepsilon}$ will = 0)

The third term vanishes asymptotically by assumption

plim $\mathbf{b} = \mathbf{\beta} + \text{plim} \left[\frac{1}{N} \Sigma_{i=1}^{N} \mathbf{X}_{i}' \mathbf{X}_{i} \right]^{-1} \left[\Sigma_{i=1}^{N} \frac{T_{i}}{N} \mathbf{\overline{x}}_{i} c_{i} \right]$ (left out variable formula) So, what becomes of $\left[\Sigma_{i=1}^{N} w_{i} \mathbf{\overline{x}}_{i} c_{i} \right]$? plim $\mathbf{b} = \mathbf{\beta}$ if the covariance of $\mathbf{\overline{x}}_{i}$ and c_{i} converges to zero.

15-30/65

Estimating the Sampling Variance of **b**

- □ s²(**X**[′]**X**)⁻¹? Inappropriate because
 - Correlation across observations (certainly)
 - Heteroscedasticity (possibly)
- A 'robust' covariance matrix
 - Robust estimation (in general)
 - The White estimator
 - A Robust estimator for OLS.

Cluster Estimator

Robust variance estimator for Var[**b**] Est.Var[**b**]

$$= (\mathbf{X'X})^{-1} \left[\Sigma_{i=1}^{N} (\Sigma_{t=1}^{T_i} \mathbf{x}_{it} \hat{\mathbf{v}}_{it}) (\Sigma_{t=1}^{T_i} \mathbf{x}'_{it} \hat{\mathbf{v}}_{it}) \right] (\mathbf{X'X})^{-1}$$
$$= (\mathbf{X'X})^{-1} \left[\Sigma_{i=1}^{N} (\Sigma_{t=1}^{T_i} \Sigma_{s=1}^{T_i} \hat{\mathbf{v}}_{it} \hat{\mathbf{v}}_{is} \mathbf{x}_{it} \mathbf{x}'_{is}) \right] (\mathbf{X'X})^{-1}$$

 $\hat{v}_{it} = a \text{ least squares residual} = \varepsilon_{it} + C_i$ (If $T_i = 1$, this is the White estimator.)

Ordinary LHS=YIT Regressic Residual Total Fit Model tes	least squares Mean Standard devia No. of observa on Sum of Squares Sum of Squares Sum of Squares Standard erros R-squared st F[4, 1477]	regression ation = ations = s = s = r of e = =	11. 58 29 61 7412.	57749 64344 1482 4.056 .0957 3.152 14035 95255 18529	DegFreedom 4 1477 1481 Root MSE R-bar squared Prob F > F*	Mean square 146.01403 .01970 .41401 .14012 1 .95242 .00000
TIA	Coefficient	Clustered Std.Error	z	Prob. z >Z*	95% Cor Inte	nfidence erval
Constant X1 X2 X3 X4	11.5775*** .59518*** .02305 .02319 .45176***	.01599 .05821 .02692 .02816 .03768	723.88 10.22 .86 .82 11.99	.0000 .0000 .3918 .4102 .0000	11.5461 .48109 02971 03201 .37791	11.6088 .70926 .07581 .07839 .52561
***, **, Standard	<pre>* ==> Significand errors clustered d</pre>	ce at 1%, 5 on AGEL	5%, 10% 1 (7	evel. cluster	's)	
YIT	Coefficient	Standard Error	z	Prob. z >Z*	95% Cor Inte	nfidence erval
Constant X1 X2 X3 X4	11.5775*** .59518*** .02305** .02319* .45176***	.00365 .01958 .01122 .01303 .01078	3175.52 30.39 2.05 1.78 41.89	.0000 .0000 .0400 .0751 .0000	11.5703 .55679 .00105 00235 .43062	11.5846 .63356 .04505 .04873 .47290
***, **,	* ==> Significand	ce at 1%, 5	5%, 10% 1	evel.		

Alternative OLS Variance Estimators

Cluster correction increases SEs

+	Coefficient St	andard Error	+ b/St.Er. +	++ P[Z >z] ++
Constant	5.40159723	.04838934	111.628	.0000
EXP	.04084968	.00218534	18.693	.0000
EXPSQ	00068788	.480428D-04	-14.318	.0000
OCC	13830480	.01480107	-9.344	.0000
SMSA	.14856267	.01206772	12.311	.0000
MS	.06798358	.02074599	3.277	.0010
FEM	40020215	.02526118	-15.843	.0000
UNION	.09409925	.01253203	7.509	.0000
ED	.05812166	.00260039	22.351	.0000
Robust				
Constant	5.40159723	.10156038	53.186	.0000
EXP	.04084968	.00432272	9.450	.0000
EXPSQ	00068788	.983981D-04	-6.991	.0000
OCC	13830480	.02772631	-4.988	.0000
SMSA	.14856267	.02423668	6.130	.0000
MS	.06798358	.04382220	1.551	.1208
FEM	40020215	.04961926	-8.065	.0000
UNION	.09409925	.02422669	3.884	.0001
ED	.05812166	.00555697	10.459	.0000

Namelist ; x=one,exp,expsq,occ,smsa,ms,fem,union,ed\$ Regress ; Lhs = lwage ; rhs=x ; cluster=7\$

15-34/00

Results of Bootstrap Estimation

Results of bootstrap estimation of model.	
Model has been reestimated 20 times.	
Coefficients shown below are the original	
model estimates based on the full sample.	
Bootstrap samples have 4165 observations.	
Estimated parameter vector is B .	
Estimated variance matrix saved as VARB.	

BootStrp	Coefficient	Standard Error	z	Prob. z >Z*	95% Confidence Interval
B001 B002 B003 B004 B005 B006 B006 B007	5.66098*** 11220*** .15504*** .09569*** 39478*** .05688*** .01044***	.05161 .01202 .01497 .01641 .02054 .00327 .00064	109.68 -9.34 10.35 5.83 -19.22 17.38 16.38	.0000 .0000 .0000 .0000 .0000 .0000 .0000	5.55982 5.76214 1357608864 .12570 .18439 .06352 .12786 4350535452 .05046 .06330 .00919 .01169
Constant OCC SMSA MS FEM ED EXP	5.66098*** 11220*** .15504*** .09569*** 39478*** .05688*** .01044***	.04686 .01464 .01234 .02133 .02603 .00268 .00054	120.81 -7.66 12.57 4.49 -15.16 21.24 19.26	.0000 .0000 .0000 .0000 .0000 .0000 .0000	5.56914 5.75282 1409008350 .13086 .17922 .05387 .13751 4458134376 .05163 .06213 .00938 .01150

🎟 Data Editor 📃 🗖 🔀							
28/900 Vars; 11111 Rows: 4165 Obs Cell: 0							
	LOGWAGE	EDUC					
1 »	5.56068	9					
2 »	5.72031	9					
3 »	5.99645	9					
4 »	5.99645	9					
5 »	6.06146	9					
6 »	6.17379	9					
7 »	6.24417	9					
8 »	6.16331	11					
9 »	6.21461	11					
10 »	6.2634	11					
11 »	6.54391	11					
12 »	6.69703	11					
13 »	6.79122	11					
14 »	6.81564	11					
15 »	5.65249	12					
16 »	6.43615	12					
17 »	6.54822	12					
18 »	6.60259	12					
19 »	6.6958	12					
20 »	6.77878	12					
21 »	6.86066	12					
22	C 15CQ0	10					

Bootstrap variance for a panel data estimator

- Panel Bootstrap = Block Bootstrap
- Data set is N groups of size T_i
- Bootstrap sample is N groups of size T_i drawn with replacement.
|
LWAGE | Coefficient | Standard
Error | z | Prob.
 z >Z * | 95% Cor
Inte | nfidence
erval |
015 |
|--|--|--|--|---|---|---|---|
| Constant
OCC
SMSA
MS
FEM
ED
EXP | 5.66098***
11220***
.15504***
.09569***
39478***
.05688***
.01044*** | .04686
.01464
.01234
.02133
.02603
.00268
.00054 | 120.81-7.6612.574.49-15.1621.2419.26 | .0000
.0000
.0000
.0000
.0000
.0000
.0000 | 5.56914
14090
.13086
.05387
44581
.05163
.00938 | 5.75282
08350
.17922
.13751
34376
.06213
.01150 | Destature |
| B001
B002
B003
B004
B005
B006
B007 | 5.66098***
11220***
.15504***
.09569***
39478***
.05688***
.01044*** | .04683
.01326
.01205
.01953
.01863
.00325
.00053 | 120.89
-8.46
12.87
4.90
-21.19
17.52
19.67 | .0000
.0000
.0000
.0000
.0000
.0000
.0000 | 5.56920
13820
.13143
.05742
43129
.05052
.00940 | 5.75276
08620
.17866
.13396
35827
.06324
.01148 | Bootstrap
Assumes no
correlation
within groups |
| Constant
OCC
SMSA
MS
FEM
ED
EXP | 5.66098***
11220***
.15504***
.09569**
39478***
.05688***
.01044*** | .10026
.02653
.02540
.04657
.05319
.00568
.00132 | 56.46
-4.23
6.10
2.05
-7.42
10.01
7.93 | .0000
.0000
.0000
.0399
.0000
.0000
.0000 | 5.46447
16421
.10526
.00442
49904
.04574
.00786 | 5.85750
06020
.20483
.18696
29052
.06802
.01302 | Accounts for
within group
correlation |
| B001
B002
B003
B004
B005
B006
B007 | 5.66098***
11220***
.15504***
.09569***
39478***
.05688***
.01044*** | .09497
.02617
.02351
.03542
.04287
.00536
.00138 | 59.61
-4.29
6.60
2.70
-9.21
10.61
7.57 | .0000
.0000
.0000
.0069
.0000
.0000
.0000 | 5.47484
16349
.10897
.02627
47880
.04637
.00774 | 5.84712
06092
.20112
.16511
31077
.06739
.01314 | Mimics results
of panel
correction |

Using First Differences

 $y_{it} = \mathbf{x}'_{it}\mathbf{\beta} + c_i + \varepsilon_{it}$, observation for person i at time t

Eliminating the heterogeneity

$$\Delta \mathbf{y}_{it} = \mathbf{y}_{it} - \mathbf{y}_{i,t-1} = (\Delta \mathbf{x}'_{it})\mathbf{\beta} + \Delta \mathbf{c}_i + \Delta \mathbf{\varepsilon}_{it}$$
$$= (\Delta \mathbf{x}'_{it})\mathbf{\beta} + \mathbf{w}_{it}$$

Note: Time invariant variables become zero Time trend becomes the constant term

OLS with First Differences

With strict exogeneity of (\mathbf{X}_i, c_i) , OLS regression of Δy_{it} on $\Delta \mathbf{x}_{it}$ is unbiased and consistent but inefficient.

$$\operatorname{Var} \begin{pmatrix} \varepsilon_{i,2} - \varepsilon_{i,1} \\ \varepsilon_{i,3} - \varepsilon_{i,2} \\ \vdots \\ \varepsilon_{i,T_{i}} - \varepsilon_{i,T_{i}-1} \end{pmatrix} = \begin{bmatrix} 2\sigma_{\varepsilon}^{2} & -\sigma_{\varepsilon}^{2} & 0 & 0 \\ -\sigma_{\varepsilon}^{2} & 2\sigma_{\varepsilon}^{2} & -\sigma_{\varepsilon}^{2} & \vdots \\ 0 & -\sigma_{\varepsilon}^{2} & \ddots & -\sigma_{\varepsilon}^{2} \\ 0 & \cdots & -\sigma_{\varepsilon}^{2} & 2\sigma_{\varepsilon}^{2} \end{bmatrix}$$

GLS is unpleasantly complicated. Use OLS in first differences and use Newey-West with one lag.

The Fixed Effects Model

 $\mathbf{y}_{i} = \mathbf{X}_{i}\beta + \mathbf{d}_{i}\alpha_{i} + \boldsymbol{\varepsilon}_{i}, \text{ for each individual}$ $\begin{bmatrix} \mathbf{y}_{1} \\ \mathbf{y}_{2} \\ \vdots \\ \mathbf{y}_{N} \end{bmatrix} = \begin{bmatrix} \mathbf{X}_{1} & \mathbf{d}_{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{X}_{2} & \mathbf{0} & \mathbf{d}_{2} & \mathbf{0} & \mathbf{0} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{X}_{N} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{d}_{N} \end{bmatrix} \begin{bmatrix} \boldsymbol{\beta} \\ \boldsymbol{\alpha} \end{bmatrix} + \boldsymbol{\varepsilon}$ $= [\mathbf{X}, \mathbf{D}] \begin{bmatrix} \boldsymbol{\beta} \\ \boldsymbol{\alpha} \end{bmatrix} + \boldsymbol{\varepsilon}$

$$\begin{split} & \mathsf{E}[\mathsf{c}_i \mid \mathbf{X}_i] = \mathsf{g}(\mathbf{X}_i); & \mathsf{Effects} \text{ are correlated with included variables.} \\ & \mathsf{Cov}[\mathbf{x}_{it},\mathsf{c}_i] \neq \mathbf{0} \end{split}$$

15-40/65

The <u>Within Groups Transformation</u> Removes the Effects

$$\begin{aligned} y_{it} &= \mathbf{x}'_{it}\mathbf{\beta} + c_i + \varepsilon_{it} \\ \overline{y}_i &= \overline{\mathbf{x}}'_i\mathbf{\beta} + c_i + \overline{\varepsilon}_i \\ y_{it} &- \overline{y}_i = (\mathbf{x}_{it} - \overline{\mathbf{x}}_i)'\mathbf{\beta} + (\varepsilon_{it} - \overline{\varepsilon}_i) \\ \end{aligned}$$
Use least squares to estimate **\beta**.

Useful Analysis of Variance Notation

Decomposition of Total variation:

$$\Sigma_{i=1}^{N}\Sigma_{t=1}^{T_{i}}(z_{it}-\overline{\overline{z}})^{2} = \Sigma_{i=1}^{N}\left[\Sigma_{t=1}^{T_{i}}(z_{it}-\overline{z}_{i})^{2}\right] + \Sigma_{i=1}^{N}T_{i}\left[\overline{z}_{i}-\overline{\overline{z}}\right]^{2}$$

Total variation = Within groups variation

+ Between groups variation

WHO Data

The model used by the researchers at WHO was

In $DALE_{it} = \alpha_i + \beta_1$ In Health Expenditure_{it} + β_2 In Education_{it}

+ $\beta_3 \ln Education_{it}^2$ + ϵ_{it}

The analysis of variance for a variable x_{it} is based on the decomposition

$$\sum_{i=1}^{n} \sum_{t=1}^{T_i} (x_{it} - \overline{\overline{x}})^2 = \sum_{i=1}^{n} \sum_{t=1}^{T_{i1}} (x_{it} - \overline{x}_{i.})^2 + \sum_{t=1}^{n} T_i (\overline{x}_{i.} - \overline{\overline{x}})^2 .$$

Analysis of Variand	ce for WHO Data on He	ealth Care Attainment
Variable	Within Groups Variation	Between Groups Variation
DALE	5.645%	94.355%
COMP	0.150%	99.850%
Expenditure	0.635%	99.365%
Education	0.178%	99.822%

Baltagi and Griffin's Gasoline Data

World Gasoline Demand Data, 18 OECD Countries, 19 years Variables in the file are

COUNTRY = name of country YEAR = year, 1960-1978 LGASPCAR = log of consumption per car LINCOMEP = log of per capita income LRPMG = log of real price of gasoline LCARPCAP = log of per capita number of cars

See Baltagi (2001, p. 24) for analysis of these data. The article on which the analysis is based is Baltagi, B. and Griffin, J., "Gasolne Demand in the OECD: An Application of Pooling and Testing Procedures," European Economic Review, 22, 1983, pp. 117-137. The data were downloaded from the website for Baltagi's text.

15-44/65

Part 15: Panel Data-1

Analysis of Variance

15-45/65

Part 15: Panel Data-1

Analysis of Variance

т- 1	Analysis of Variance for	I.GASPCAR			- - -
1	Stratification Variable				
1		_SIRAIOM			
I	Observations weighted by	ONE			I
I	Total Sample Size		342		
L	Number of Groups		18		
I	Number of groups with no data		0		I
I	Overall Sample Mean		4.2962420		I
Ι	Sample Standard Deviation		.5489071		I
I	Total Sample Variance		.3012990		I
I					I
I	Source of Variation	Variation	Deg.Fr.	Mean Square	I
I	Between Groups	85.68228007	17	5.04013	I
I	Within Groups	17.06068428	324	.05266	I
I	Total	102.74296435	341	.30130	I
I	Residual S.D.	.22946990			I
I	R-squared	.83394791	MSB/MSW	21.96425	I
I	F ratio	95.71734806	P value	.00000	I

Estimating the Fixed Effects Model

- The FEM is a plain vanilla regression model but with many independent variables
- Least squares is unbiased, consistent, efficient, but inconvenient if N is large.

$$\begin{pmatrix} \mathbf{b} \\ \mathbf{a} \end{pmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}'\mathbf{D} \\ \mathbf{D}'\mathbf{X} & \mathbf{D}'\mathbf{D} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{X}'\mathbf{y} \\ \mathbf{D}'\mathbf{y} \end{bmatrix}$$

Using the Frisch-Waugh theorem

$$\mathbf{b} = [\mathbf{X}'\mathbf{M}_{\mathbf{D}}\mathbf{X}]^{-1}[\mathbf{X}'\mathbf{M}_{\mathbf{D}}\mathbf{y}]$$

Fixed Effects Estimator (cont.)

$$\begin{split} \mathbf{M}_{\mathbf{D}} &= \begin{bmatrix} \mathbf{M}_{\mathbf{D}}^{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{M}_{\mathbf{D}}^{2} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{M}_{\mathbf{D}}^{N} \end{bmatrix} \text{ (The dummy variables are orthogonal)} \\ \mathbf{M}_{\mathbf{D}}^{i} &= \mathbf{I}_{\mathsf{T}_{i}} - \mathbf{d}_{i} (\mathbf{d}_{i}'\mathbf{d}_{i})^{-1} \mathbf{d}_{i}' = \mathbf{I}_{\mathsf{T}_{i}} - (1/\mathsf{T}_{i})\mathbf{d}_{i}\mathbf{d}_{i}' \\ \mathbf{X}'\mathbf{M}_{\mathbf{D}}\mathbf{X} &= \boldsymbol{\Sigma}_{i=1}^{\mathsf{N}} \mathbf{X}_{i}'\mathbf{M}_{\mathbf{D}}^{i}\mathbf{X}_{i}, \quad \left\{ \mathbf{X}_{i}'\mathbf{M}_{\mathbf{D}}^{i}\mathbf{X}_{i} \right\}_{k,l} = \boldsymbol{\Sigma}_{t=1}^{\mathsf{T}_{i}} (\mathbf{X}_{it,k} - \mathbf{\bar{X}}_{i.,k}) (\mathbf{X}_{it,l} - \mathbf{\bar{X}}_{i.,l}) \\ \mathbf{X}'\mathbf{M}_{\mathbf{D}}\mathbf{y} &= \boldsymbol{\Sigma}_{i=1}^{\mathsf{N}} \mathbf{X}_{i}'\mathbf{M}_{\mathbf{D}}^{i}\mathbf{y}_{i}, \quad \left\{ \mathbf{X}_{i}'\mathbf{M}_{\mathbf{D}}^{i}\mathbf{y}_{i} \right\}_{k} = \boldsymbol{\Sigma}_{t=1}^{\mathsf{T}_{i}} (\mathbf{X}_{it,k} - \mathbf{\bar{X}}_{i.,k}) (\mathbf{y}_{it} - \mathbf{\bar{y}}_{i.}) \end{split}$$

If all groups have the same T_i , $M_D = M^0 \otimes I$ where $M^0 = I_T - (1/T)dd'$ $X'M_D X = X'[M^0 \otimes I]X$ and $b = (X'[M^0 \otimes I]X)^{-1} X'[M^0 \otimes I]y$.

15-48/65

Part 15: Panel Data-1

The Within Transformation Removes the Effects

$$\begin{aligned} y_{it} &= \mathbf{x}_{it}' \mathbf{\beta} + C_i + \varepsilon_{it} \\ \overline{y}_i &= \overline{\mathbf{x}}_i' \mathbf{\beta} + C_i + \overline{\varepsilon}_i \\ y_{it} &- \overline{y}_i = (\mathbf{x}_{it} - \overline{\mathbf{x}}_i)' \mathbf{\beta} + (\varepsilon_{it} - \overline{\varepsilon}_i) \\ \overline{y}_{it} &= \mathbf{x}_{it}' \mathbf{\beta} + \mathbf{\varepsilon}_{it} \end{aligned}$$

Wooldridge notation for data in deviations from group means

Least Squares Dummy Variable Estimator

b is obtained by 'within' groups least squares (group mean deviations)

a is estimated using the normal equations: D'Xb+D'Da=D'y

a = (D'D)⁻¹D'(y – Xb)

$$a_i = (1/T_i) \Sigma_{t=1}^{T_i} (y_{it} - \mathbf{x}'_{it}\mathbf{b}) = \overline{e}$$

Inference About LSDV

- Assume strict exogeneity: Cov[ε_{it},(x_{js},c_j)]=0. Every disturbance in every period for each person is uncorrelated with variables and effects for every person and across periods.
- Now, it's just least squares in a classical linear regression model.
- Asy.Var[**b**] = $(\sigma_{\varepsilon}^{2} / \Sigma_{i=1}^{N} T_{i}) \text{plim}[(1 / \Sigma_{i=1}^{N} T_{i}) \Sigma_{i=1}^{N} X_{i}' M_{D}^{i} X_{i}]^{-1}$ which is the usual estimator for OLS $\hat{\sigma}_{\varepsilon}^{2} = \frac{\sum_{i=1}^{N} \Sigma_{t=1}^{T_{i}} (y_{it} - a_{i} - x_{it}' \mathbf{b})^{2}}{(\Sigma_{i=1}^{N} T_{i} - N - K)}$

(Note the degrees of freedom correction)

Application Cornwell and Rupert

+ Panel Data	a Amalysis of	LWAGE [ON	+ E way]
I	Unconditional	ANOVA (No reg	ressors)
Source	Variation	Deg. Free.	Mean Square
Between	646.254	594.	1.08797
Residual	240.651	3570.	.674093E-01
Total	886.905	4164.	.212994

+					+	
OLS Without	: Group Dummy V	ariables				
LHS=LWAGE	Mean	=	- 6.	. 676346	1	
1	Standard dev	iation =	4	4615122		
Model size	Parameters	=	-	5		
I	Degrees of f	reedam =	-	4160	1	
Residuals	Sum of squar	es =	- 6!	51.7870	1	
I	Standard err	orofe =	:	3958277	I	
Fit	R-squared	=	:	2650993	1	
I	Adjusted R-s	quared =	:	2643927	1	
Model test	F[4, 4160	$\hat{\mathbf{j}}$ (prob) =	375	.16 (.0000) i	
+	- ,				+	
+ +	+-			-+	+	-++
Variable C	coefficient	Standard H	rror	b/St.Er.	P[2 >z]	Mean of X
++ OCC	29227536	.01259	221	-23.211	.0000	.51116447
SMSA	.17712491	.01327	104	13.347	.0000	.65378151
MS	. 35695474	.01610	229	22.168	.0000	.81440576
EXP	.00746892	.00057	035	13.095	.0000	19.8537815
Constant	6.27095389	.02041	864	307.119	.0000	

LSDV Results

Least Square:	s with Group Dummy Variables	s			
LHS=LWAGE	Mean = 6	. 676346			
1	Standard deviation =	4615122	Noto hugo	o changes in	
Model size	Parameters =	599	note nuge	e changes in	
1	Degrees of freedom =	3566	the coeffi	cionts SMS	Δ
Residuals	Sum of squares = 83	3.88505			
1	Standard error of e =	1533740	and MS cl	hange signs	
Fit	R-squared = .	9054182			•
Ì	Adjusted R-squared = $.3$	8895573	Significar	ice changes	
Model test	F[598, 3566] (prob) = 57	.08 (.0000)			
+		+	completel	y!	
+		+	•	•	
Panel:Groups	Empty 0, Valid d	ata 595			
 	Smallest 7. Largest	7 1			
i	Average group size	7.00			
• +		+			
++		-+	++		
lVariable Co	efficient Standard Error	b/st Er [P[17]>7]	Mean of XI	Pooled C	DLS
++			-++		
occ	02021384 .01374007	-1.471 .1412	.51116447	29227536	01259221
SMSA	04250645 .01950085	-2.180 .0293	.65378151	.17712491	.01327104
MS	02946444 . 01913652	-1.540 .1236	81440576	. 35695474	.01610229
EXD	09665711 00119162	81.114 .0000	19.8537815	.00746892	.00057035

The Effect of the Effects

+-				Tesi	t Stat	isti	cs for the	 Classi	cal	Mode	 I		+ – I	
i														
Т			Mode	1	1	Log-	Likelihood	Տատ	of	Squar	es	R-squared		
Т	(1)	Co	onsta	nt term	only	_	2688.80597	. 886	9049	390D-	-03	.0000000		
Т	(2)	G	coup	effects	only		27.58464	. 240	6511	943D-	-03	.7286618	I	
T	(3)	х	– va	riables	only	-	2047.35445	. 651	7870	323D-	-03	.2650993		
T	(4)	х	\mathbf{and}	group ef	ffects		2222.33376	. 838	8505	089D-	-02	.9054182		
Т														
Т							Hypothes	is Tes	ts				I	
Т				\mathbf{Likel}	lihood	Rat	io Test	F Tests					I	
T			\mathbf{Ch}	i-square	ed di	. f .	Prob.	\mathbf{F}	n	um.	lenom.	Prob value		
Т	(2)	vs	(1)	5432.78	81 .	594	. 00000	16.	140	594	3570	. 00000		
Т	(3)	vs	(1)	1282.90	03	4	. 00000	375.	157	4	4160	. 00000		
T	(4)	vs	(1)	9822.27	79 .	598	. 00000	57.	085	598	3566	. 00000		
T	(4)	vs	(2)	4389.49	98	4	. 00000	1666.	054	4	3566	. 00000		
1	(4)	vs	(3)	8539.37	76	594	. 00000	40.	643	594	3566	. 00000	1	

Robust Counterpart to White Estimator?

Assumes $Var[\boldsymbol{\epsilon}_i] = \boldsymbol{\Omega}_i \neq \sigma^2 \boldsymbol{I}_{Ti}$ $\boldsymbol{e}_i = \boldsymbol{y}_i - a_i \boldsymbol{i}_{Ti} - \boldsymbol{X}_i \boldsymbol{b} = \boldsymbol{M}_D \boldsymbol{y}_i - \boldsymbol{M}_D \boldsymbol{X}_i \boldsymbol{b}$ (T_i x 1 vector of group residuals)

$$\begin{aligned} \mathsf{Est.Asy.Var}[\mathbf{b}] = & \left[\Sigma_{i=1}^{\mathsf{N}} \mathbf{X}_{i}' \mathbf{M}_{\mathsf{D}}^{\mathsf{i}} \mathbf{X}_{i} \right]^{-1} \left[\Sigma_{i=1}^{\mathsf{N}} (\mathbf{X}_{i}' \mathbf{M}_{\mathsf{D}}^{\mathsf{i}} \mathbf{e}_{i}) (\mathbf{e}_{i}' \mathbf{M}_{\mathsf{D}}^{\mathsf{i}} \mathbf{X}_{i}) \right] \left[\Sigma_{i=1}^{\mathsf{N}} \mathbf{X}_{i}' \mathbf{M}_{\mathsf{D}}^{\mathsf{i}} \mathbf{X}_{i} \right]^{-1} \\ & = \mathbf{H}^{-1} \left[\Sigma_{i=1}^{\mathsf{N}} \left\{ \Sigma_{t=1}^{\mathsf{T}_{i}} (\mathbf{x}_{it} - \overline{\mathbf{x}}_{i}) \mathbf{e}_{it} \right\} \left\{ \Sigma_{t=1}^{\mathsf{T}_{i}} (\mathbf{x}_{it} - \overline{\mathbf{x}}_{i}) \mathbf{e}_{it} \right\}' \right] \mathbf{H}^{-1} \\ & \mathbf{H} = \left[\Sigma_{i=1}^{\mathsf{N}} \Sigma_{t=1}^{\mathsf{T}_{i}} (\mathbf{x}_{it} - \overline{\mathbf{x}}_{i}) (\mathbf{x}_{it} - \overline{\mathbf{x}}_{i})' \right] \end{aligned}$$

Resembles (and is based on) White, but treats a full vector of disturbances at a time. Robust to heteroscedasticity and autocorrelation (within the groups).

LSDV LHS=LWAGE Regression Residual Total Fit Estd. Auto	least squares Mean Standard devi No. of observ Sum of Square Sum of Square Sum of Square Standard erro R-squared poorrelation of e	s with fixed ation = vations = es = es = or of e = = e(i,t) =	effects 6. 80 82 88 1	67635 46151 4165 4.638 .2673 6.905 15199 90724 46506	DegFreedom M 603 3561 4164 Root MSE R-bar squared	lean squar 1.3343 .0231 .2129 .1405 .8915	e 9 0 9 4 4
Panel:Grou Variances Std.Devs. Rho = Within gro R squared Between gr Constant t	ips Empty 0, Smallest 7, Average group Effects a(: 1.06876 1.03381 Residual vari pups variation in based on within roup variation in erm (group 1) [s	Valid o Largest o size in par i) Res i4 10 iation due to n LWAGE group variat n LWAGE se] 5.2942	data t iduals e .0 .1 o ai 97. .2406 tion .6 .6462 2 [.	595 7.00 (i,t) 23102 51994 884% 5D+03 58147 5D+03 0574]			
LWAGE	Coefficient	Standard Error	z	Prob.	95% Conf • Inter	idence val	Clustered Std.Error
EXPS EXPSQ WKS OCC IND SOUTH SMSA MS UNION	.11321*** 00042*** .00084 02148 .01921 00186 04247** 02973 .03278**	.00247 .5459D-04 .00060 .01378 .01545 .03430 .01943 .01898 .01492	$\begin{array}{r} 45.81 \\ -7.66 \\ 1.39 \\ -1.56 \\ 1.24 \\05 \\ -2.19 \\ -1.57 \\ 2.20 \end{array}$.0000 .0000 .1633 .1192 .2136 .9567 .0288 .1174 .0280	.10837 00053 00034 04849 01106 06909 08055 06693 .00354	.11805 00031 .00201 .00554 .04948 .06536 00439 .00748 .06203	.00437 .8905D-04 .00094 .02052 .02450 .09646 .03185 .02902 .02708

The Within (LSDV) Estimator is an IV Estimator

$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + (\mathbf{D}\boldsymbol{\alpha} + \boldsymbol{\epsilon})$

 $= X\beta + w$

Regression of y on X is inconsistent because X is

correlated with w. The data in group mean deviations is

$\mathbf{Z} = \mathbf{M}_{\mathbf{D}}\mathbf{X} = \mathbf{X} - \mathbf{D}(\mathbf{D}'\mathbf{D})^{-1}\mathbf{D}'\mathbf{X}$

The inconsistent OLS estimator is $\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$ (omits \mathbf{D}) The IV estimator $\mathbf{b}_{\mathsf{LSDV}} = (\mathbf{Z}'\mathbf{X})^{-1}\mathbf{Z}'\mathbf{y} = [(\mathbf{X}'\mathbf{M}_{\mathsf{D}})\mathbf{X})]^{-1}[\mathbf{X}'\mathbf{M}_{\mathsf{D}}]\mathbf{y}$. $= [(\mathbf{X}'\mathbf{M}_{\mathsf{D}})(\mathbf{M}_{\mathsf{D}}\mathbf{X})]^{-1}(\mathbf{X}'\mathbf{M}_{\mathsf{D}})(\mathbf{M}_{\mathsf{D}}\mathbf{y})$

This is OLS using data in mean deviations, i.e., LSDV.

LSDV – As Usual

LSDV LHS=LWAGE Regression Residual Total Fit Model test Estd. Autoo	least square Mean Standard dev No. of obser Sum of Squar Sum of Squar Standard err R-squared F[598, 3566	s with fixed iation = vations = es = es = or of e = l = e(i,t) =	effects 6.6 804 82 886 .1 58.0 .14	67635 46151 4165 4.313 .5915 6.905 15219 90688 07241 46762	DegFreedom 598 3566 4164 Root MSE R-bar squared Prob F > F*	Mean square 1.34501 .02316 .21299 .14082 .89126 .00000				
Panel:Groups Empty 0, Valid data 595 Smallest 7, Largest 7 Average group size in panel 7.00 Variances Effects a(i) Residuals e(i,t) 1.068377 .023161 Rho squared: Residual variation due to ai .978781 Within groups variation in LWAGE 240.6512 R squared based on within group variation .656800 Within groups variation in LWAGE 646 2537										
LWAGE	Coefficient	Standard Error	z	Prob z >Z*	. 95% Con • Inte	fidence rval				
WKS EXP EXPSQ OCC	.00087 .11363 *** 00042 *** 01813	.00060 .00247 .5465D-04 .01365	1.45 45.98 -7.72 -1.33	.1476 .0000 .0000 .1841	00031 .10879 00053 04489	.00205 .11847 00032 .00862				

Part 15: Panel Data-1

2SLS Using $Z=M_DX$ as Instruments

<pre>-> create ; devwks=groupdevs(wks,pds=7)\$ -> create ; devexp=groupdevs(exp,pds=7)\$ -> create ; devecc=groupdevs(expsq,pds=7)\$ -> create ; devocc=groupdevs(occ,pds=7)\$ -> name;x=wks,exp,expsq,occ\$ -> name;z=devwks,devexp,devexpsq,devocc\$ -> 2sls;lhs=lwage;rhs=x;inst=z\$</pre>											
<pre>I=> 2s1s; Ihs=Iwage; rhs=x; inst=zs Iwo stage least squares regression LHS=LWAGE Mean = 6.67635 Standard deviation = .46151 Number of observs. = 4165 Model size Parameters = 4 Degrees of freedom = 4161 Residuals Sum of squares = 92801.3 Standard error of e = 4.72257 Fit R-squared = -103.73560 Adjusted R-squared = -103.81111 Not using OLS or no constant. Rsqrd & F may be < 0 Instrumental Variables:</pre>											
LWAGE	Coefficient	Standard Error	z	Prob. z >Z ≭	95% Con Inte	Confidence nterval					
WKS EXP EXPSQ OCC	.00087 .11363 00042 01813	.01862 .07669 .00170 .42359	.05 1.48 25 04	.9628 .1384 .8034 .9659	03563 03669 00375 84835	.03737 .26395 .00290 .81209					

A Caution About Stata and R²

Which should appear in the denominator of \mathbb{R}^2

The coefficient estimates and standard errors are the same. The calculation of the R² is different. In the **areg** procedure, you are estimating coefficients for each of your covariates plus each dummy variable for your groups. In the **xtreg**, **fe** procedure the R² reported is obtained by only fitting a mean deviated model where the effects of the groups (all of the dummy variables) are assumed to be fixed quantities. So, all of the effects for the groups are simply subtracted out of the model and no attempt is made to quantify their overall effect on the fit of the model.

Since the SSE is the same, the R²=1-SSE/SST is very different. The difference is real in that we are making different assumptions with the two approaches. In the **xtreg**, **fe** approach, the effects of the groups are fixed and **unestimated quantities are subtracted out of the model** before the fit is performed. In the **areg** approach, the group effects are estimated and affect the total sum of squares of the model under consideration.

15-60/65

Robust Covariance Matrix for LSDV Cluster Estimator for Within Estimator

			_	L							
Variable	Coefficient S	Standard Error	b/St.Er.	P[Z >z]	Mean of X						
OCC 02021 .01374007 -1.471 .1412 .5111645 SMSA 04251** .01950085 -2.180 .0293 .6537815 MS 02946 .01913652 -1.540 .1236 .8144058 EXP .09666*** .00119162 81.114 .0000 19.853782											
<pre>++ Covariance matrix for the model is adjusted for data clustering. Sample of 4165 observations contained 595 clusters defined by 7 observations (fixed number) in each cluster. ++</pre>											
Variable	Coefficient S	Standard Error	+ b/St.Er. +	P[Z >z]	Mean of X						
DOCC DSMSA DMS DEXP	02021 04251 02946 .09666***	.01982162 .03091685 .02635035 .00176599	-1.020 -1.375 -1.118 54.732	.3078 .1692 .2635 .0000	.00000 .00000 .00000 .00000						

15-61/65

A Caution About Stata and Fixed Effects

. xtreg yi	t x1 x2 x3 x4,fe	•					. xtreg yit xi	x2 x3 x4,1e	r				
Fixed-effe Group varia	cts (within) reg able: farm	ression		Number Number	of obs = of groups =	1,482 247	Fixed-effects Group variable	(within) reg : farm	ression		Number Number	of obs = of groups =	1,482 247
R-sq: within betwee overal	n = 0.8359 en = 0.9615 11 = 0.9513			Obs per	r group: min = avg = max =	6 6.0 6	R-sq: within = between = overall =	0.8359 0.9615 0.9513			Obs per	group: min = avg = max =	6 6.0 6
corr(u_i,)	Xb) = 0.1089			F(4,123 Prob >	:1) = F =	1568.11 0.0000	corr(u_i, Xb)	= 0.1089			F(4,246 Prob >) = F =	607.68 0.0000
									(Std	. Err. ad	justed fo	r 247 cluster	s in farm)
¥	it Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]	yit	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
	x1 .6620012 x2 .0373524	.0246784 .0161331	26.83 2.32	0.000	.6135847 .005701	.7104177 .0690038	×1	.6620012	.0341774	19.37	0.000	.5946836	.7293188
	x3 .0303996	.0232078	1.31	0.190	0151316	.0759307	x2	.0373524	.0171459	2.18	0.030	.0035808	.0711239
:	x4 .3825104	.0120169	31.83	0.000	.3589345	.4060862	x3	.0303996	.0243227	1.25	0.213	0175077	.0783069
_co	ns 11.57749	.0021151	5473.85	0.000	11.57334	11.58164	x 4	.3825104	.0172933	22.12	0.000	.3484485	.4165722
							_cons	11.57749	8.40e-11	1.4e+11	0.000	11.57749	11.57749
sigma sigma rl	_u .12198441 _e .08142265 ho .69178541	(fraction	n of varia	nce due t	o u_i)		sigma_u sigma_e rho	.12198441 .08142265 .69178541	(fraction	of varia	nce due t	o u_i)	

F	test	that	all	u_i=0:	F(246,	1231)	= 12.84	
---	------	------	-----	--------	--------	-------	---------	--

Prob > F = 0.0000

LSDV LHS=YIT	least squares Mean	with fixed =	effects 11.	57749			
YIT	Coefficient	Standard Error	z	Prob. z >Z *	95% Conf Inter	idence rval	
X1 X2 X3 X4	.66200 *** .03735 ** .03040 .38251 ***	.02468 .01613 .02321 .01202	26.83 2.32 1.31 31.83	.0000 .0206 .1902 .0000	.61363 .00573 01509 .35896	.71037 .06897 .07589 .40606	

Part 15: Panel Data-1

Time Invariant Regressors

Time invariant x_{it} is defined as invariant for all i. E.g., sex dummy variable, FEM and ED (education in the Cornwell/Rupert data).

If x_{it,k} is invariant for all t, then the group mean deviations are all 0.

FE With Time Invariant Variables

++ There are 2 vars. with no within group variation. FEM ED ++								
+	++ Coefficient ++	Standard Error	-+ b/St.Er.	+ P[Z >z]	++ Mean of X ++			
EXP WKS OCC SMSA FEM ED	.09671227 .00118483 02145609 04454343 .000000 .000000	.00119137 .00060357 .01375327 .01946544 (Fixed (Fixed	81.177 1.963 -1.560 -2.288 Parameter) Parameter)	.0000 .0496 .1187 .0221	19.8537815 46.8115246 .51116447 .65378151			
Test Statistics for the Classical Model								
M (1) Con (2) Gro (3) X - (4) X a	odel stant term only up effects only variables only nd group effects	Log-Likelihood -2688.80597 27.58464 -1688.12010 2223.20087	Sum of 9 880 240 548 83	Squares 1 6.90494 0.65119 8.51596 8.85013	R-squared .00000 .72866 .38154 .90546			

Drop The Time Invariant Variables Same Results

+			++++	+
' Variabl	e Coefficient	Standard Error	b/St.Er. P[Z >z]	Mean of X
EXP WKS OCC SMSA	.09671227 .00118483 02145609 04454343	.00119087 .00060332 .01374749 .01945725	81.211 .0000 1.964 .0495 -1.561 .1186 -2.289 .0221	19.8537815 46.8115246 .51116447 .65378151
 +	Test Statis	tics for the Cla	ssical Model	 +
 (1) Co (2) Gr (3) X (4) X	Model I onstant term only oup effects only - variables only and group effects	Log-Likelihood -2688.80597 27.58464 -1688.12010 2223.20087	Sum of Squares 886.90494 240.65119 548.51596 83.85013	R-squared .00000 .72866 .38154 .90546

No change in the sum of squared residuals

Appendix

Fixed Effects Vector Decomposition

Efficient Estimation of Time Invariant and Rarely Changing Variables in Finite Sample Panel Analyses with Unit Fixed Effects

Thomas Plümper and Vera Troeger Political Analysis, 2007

Introduction

[T]he FE model ... does not allow the estimation of time invariant variables. A second drawback of the FE model ... results from its <u>inefficiency</u> in estimating the effect of variables that have very little within variance.

This article discusses a remedy to the related problems of estimating time invariant and rarely changing variables in FE models with unit effects

The Model

$$y_{it} = \alpha_i + \sum_{k=1}^{K} \beta_k x_{kit} + \sum_{m=1}^{M} \gamma_m z_{mi} + \varepsilon_{it}$$

where α_i denote the N unit effects.

15-69/65

Part 15: Panel Data-1

Fixed Effects Vector Decomposition

Step 1: Compute the fixed effects regression to get the "estimated unit effects." "We run this FE model with the sole intention to obtain estimates of the unit effects, α_i."

$$\hat{\alpha}_{i} = \overline{y}_{i} - \sum_{k=1}^{K} b_{k}^{FE} \overline{x}_{ki}$$

15-70/65

Step 2

Regress a_i on \mathbf{z}_i and compute residuals

$$a_i = \sum_{m=1}^{M} \gamma_m z_{im} + h_i$$

 h_i is orthogonal to z_i (since it is a residual) Vector h_i is expanded so each element h_i is replicated T_i times - h is the length of the full sample.

Step 3

Regress y_{it} on a constant, **X**, **Z** and **h** using ordinary least squares to estimate α , β , γ , δ .

$$y_{it} = \alpha + \sum_{k=1}^{K} \beta_k x_{kit} + \sum_{m=1}^{M} \gamma_m z_{mi} + \delta h_i + \varepsilon_{it}$$

Notice that α_i in the original model has become $\alpha + \delta h_i$ in the revised model.
Step 1 (Based on full sample)

These 2 variables have no within group variation. FEM ED F.E. estimates are based on a generalized inverse.					
+ LWAGE	Coefficient	Standard Error	z	Prob. z> Z	Mean of X
EXP	.09663***	.00119	81.13	.0000	19.8538
WKS	.00114*	.00060	1.88	.0600	46.8115
0000	02496*	.01390	-1.80	.0724	.51116
IND	.02042	.01558	1.31	.1899	.39544
SOUTH	00091	.03457	03	.9791	.29028
SMSA	04581**	.01955	-2.34	.0191	.65378
UNION	.03411**	.01505	2.27	.0234	.36399
FEM	.000	(Fixed	Parameter)	.11261
ED	.000	(Fixed	Parameter	•) • • • • • •	12.8454

Step 2 (Based on 595 observations)

+UHI UHI +	Coefficient	Standard Error	Z	Prob. z> Z	Mean of X
Constant FEM ED	2.88090*** 09963** .14616***	.07172 .04842 .00541	40.17 -2.06 27.02	.0000 .0396 .0000	.11261 12.8454

Step 3!

+					
 LWAGE	Coefficient	Standard Error	Z	Prob. z> Z	Mean of X
Constant	2.88090***	.03282	87.78	.0000	
EXP	.09663***	.00061	157.53	.0000	19.8538
WKS	.00114***	.00044	2.58	.0098	46.8115
0000	02496***	.00601	-4.16	.0000	.51116
IND	.02042***	.00479	4.26	.0000	.39544
SOUTH	00091	.00510	18	.8590	.29028
SMSA	04581***	.00506	-9.06	.0000	. 65378
UNION	.03411***	.00521	6.55	.0000	.36399
FEM	09963***	.00767	-13.00	.0000	.11261
ED	.14616***	.00122	120.19	.0000	12.8454
HI	1.00000***	.00670	149.26	.0000	103D-13

		The Ma	gic stop 3	
5	Step 1		+	
+- LWAGE	Coefficient	Standard Error	 Coefficient +	Standard Error
+-			2.88090***	.03282
EXP	.09663***	.00119	.09663***	.00061
WKS	.00114*	.00060	.00114***	.00044
0001	02496*	.01390	02496***	.00601
IND	.02042	.01558	.02042***	.00479
SOUTH	00091	.03457	00091	.00510
SMSA	04581**	.01955	04581***	.00506
UNION	.03411**	.01505	.03411***	.00521
			09963***	.00767
	Step 2		.14616***	.00122
+		Chan dawd	I	
ן חאדו	Coefficient	Error	1.00000***	.00670
+			+	
Constant	2.88090***	.07172		
FEM	09963**	.04842		
ED	.14616***	.00541		
+				

15-76/65

What happened here?

 $y_{it} = \alpha_i + \sum_{k=1}^{K} \beta_k x_{kit} + \sum_{m=1}^{M} \gamma_m z_{mi} + \varepsilon_{it}$ where α_i denote the N unit effects. An assumption is added along the way $Cov(\alpha_i, Z_i) = 0$. This is exactly the number of orthogonality assumptions needed to identify γ . It is not part of the original model.

http://davegiles.blogspot.com/2012/06/fixed-effects-vector-decomposition.html

15-78/65

Symposium on Fixed-Effects Vector Decomposition

Nathaniel Beck Of Fixed-Effects and Time-Invariant Variables Political Analysis (2011) 19(2): 119-122 doi:10.1093/pan/mpr010

»Extract »Full Text (HTML) »Full Text (PDF) »Permissions

Trevor Breusch, Michael B. Ward, Hoa Thi Minh Nguyen, and Tom Kompas On the Fixed-Effects Vector Decomposition

Political Analysis (2011) 19(2): 123-134 doi:10.1093/pan/mpq026

» Abstract » Full Text (HTML) » Full Text (PDF) » Supplementary Data » Permissions

William Greene Fixed Effects Vector Decomposition: A Magical Solution to the Problem of Time-Invariant Variables in Fixed Effects Models?

Political Analysis (2011) 19(2): 135-146 doi:10.1093/pan/mpq034

»Abstract »Full Text (HTML) »Full Text (PDF) »Permissions

Thomas Plümper and Vera E. Troeger Fixed-Effects Vector Decomposition: Properties, Reliability, and Instruments Political Analysis (2011) 19(2): 147-164 doi:10.1093/pan/mpr008

»Abstract »Full Text (HTML) »Full Text (PDF) »Permissions

Trevor Breusch, Michael B. Ward, Hoa Thi Minh Nguyen, and Tom Kompas FEVD: Just IV or Just Mistaken?

Political Analysis (2011) 19(2): 165-169 doi:10.1093/pan/mpr012

»Abstract »Full Text (HTML) »Full Text (PDF) »Permissions

William Greene
 Reply to Rejoinder by Plümper and Troeger
 Political Analysis (2011) 19(2): 170-172 doi:10.1093/pan/mpr011

»Extract »Full Text (HTML) »Full Text (PDF) »Permissions

	<text><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></text>
 , Symposium on Fixed-Effects	Political
Vector Decomposition > Regular Articles > Cover > Standing Material	Analysis
Find articles in this issue containing these words:	No.1 in Political
Search This Issue	Science

15-79/65