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Maximum Likelihood Estimation 

This defines a class of estimators based on the particular 
distribution assumed to have generated the observed 
random variable.   

 

Not estimating a mean – least squares is not available 

 

Estimating a mean (possibly), but also using information 
about the distribution 
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Setting Up the MLE 

The distribution of the observed random 
variable is written as a function of the 
parameters to be estimated 

     P(yi|data,β) = Probability density | parameters. 

The likelihood function is constructed from the 
density 

       Construction:  Joint probability density function 
of the observed sample of data – generally the 
product when the data are a random sample. 
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(Log) Likelihood Function 

 f(yi|,xi)  =  probability density of observed yi 

given parameter(s) and possibly data, xi. 

 Observations are independent 

 Joint density  =  i f(yi|,xi)   =  L(|y,X) 

 f(yi|,xi) is the contribution of observation i to 

the likelihood. 

 The MLE of  maximizes L(|y,X) 

 In practice it is usually easier to maximize  

                logL(|y,X)  = i logf(yi|,xi)   
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Average Time Until Failure 

Estimating the average time until failure, , of light bulbs.  
         yi = observed life until failure. 

               f(yi|)                              =  (1/)exp(-yi/) 

               L()                                =  Πi f(yi|)= -n exp(-Σyi/) 

              logL()                            =  -nlog () - Σyi/ 

Likelihood equation:  ∂logL()/∂ =  -n/ + Σyi/
2 =0 

Solution:                              MLE  =  Σyi /n.  Note: E[yi]=   

Note,                         ∂logf(yi|)/∂ = -1/ + yi/
2 

Since       E[yi]  = , E[∂logf()/∂]=0. 

Extension: Loglinear Model:    i = exp(xi’) = E[yi|xi] 
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The MLE 

The log-likelihood function:  logL(|data) 

The likelihood equation(s): 

 First derivatives of logL equal zero at the MLE. 

 (1/n)Σi ∂logf(yi|,xi)/∂MLE = 0.  

 (Sample statistic.) (The 1/n is irrelevant.) 

 “First order conditions” for maximization 

Usually a nonlinear estimator. 

A moment condition - its counterpart is the 
fundamental theoretical result E[logL/]  =  0. 
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Properties of the MLE 

 Consistent: Not necessarily unbiased, however 

 Asymptotically normally distributed: Proof 

based on central limit theorems 

 Asymptotically efficient: Among the possible 

estimators that are consistent and asymptotically 

normally distributed – counterpart to Gauss-

Markov for linear regression 

 Invariant:  The MLE of g() is g(the MLE of ) 
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The Linear (Normal) Model 

Definition of the likelihood function - joint density of the 
observed data, written as a function of the parameters 
we wish to estimate. 

Definition of the maximum likelihood estimator as that 
function of the observed data that maximizes the 
likelihood function, or its logarithm. 

For the model: yi  =  xi  +  i, where i ~ N[0,2],  

 the maximum likelihood estimators of  and 2  are   

                              b = (XX)-1Xy  and  s2 =  ee/n.   

 That is, least squares is ML for the slopes, but the 
variance estimator makes no degrees of freedom 
correction, so the MLE is biased. 
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Normal Linear Model 

The log-likelihood function  

 =  i log f(yi|)   

 =  sum of logs of densities.   

For the linear regression model with normally distributed 

disturbances 

       logL  =  i [ -½log 2  - ½log 2  -  ½(yi – xi)2/2 ]. 

                =  -n/2[log2 + log2 + v2/2]  

            v2 =  /n 
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Likelihood Equations 

The estimator is defined by the function of the data that equates  

 log-L/ to 0. (Likelihood equation) 

The derivative vector of the log-likelihood function is the score function.  For the 
regression model, 

 

 g  =  [logL/ , logL/2]’   

     =   logL/  =  i [(1/2)xi(yi - xi) ]                = X/2 . 

     logL/2 = i [-1/(22) +  (yi - xi)2/(24)]  = -n/22 [1 – s2/2] 

 

For the linear regression model, the first derivative vector of logL is 

 

  (1/2)X(y - X)    and     (1/22) i [(yi - xi
)2/2  - 1] 

               (K1)                              (11) 

 

Note that we could compute these functions at any  and 2.  If we compute 
them at b and ee/n, the functions will be identically zero. 
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Maximizer of the log likelihood? 

Use the Information Matrix 

The negative of the second derivatives matrix of the log-

likelihood,  

 

   -H  = 

 

For a maximizer, -H is positive definite.   

-H forms the basis for estimating the variance of the MLE. 

It is usually a random matrix. –H is the information matrix. 
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Hessian for the Linear Model 
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Note that the off diagonal elements have expectation zero. 
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Information Matrix 

    (which should look familiar).  The off diagonal terms go to 

zero (one of the assumptions of the linear model). 
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This can be computed at any vector  and scalar 2.  You 

can take expected values of the parts of the matrix to get 
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Asymptotic Variance 

 The asymptotic variance is {–E[H]}-1  i.e., the inverse of 

the information matrix. 

 

 

 

 There are several ways to estimate this matrix 

 Inverse of negative of expected second derivatives 

 Inverse of negative of actual second derivatives 

 Inverse of sum of squares of first derivatives 

 Robust matrix for some special cases 
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Computing the Asymptotic Variance 

We want to estimate {-E[H]}-1  Three ways: 

(1) Just compute the negative of the actual second derivatives matrix 
and invert it. 

(2) Insert the maximum likelihood estimates into the known expected 
values of the second derivatives matrix.  Sometimes (1) and (2) give 
the same answer (for example, in the linear regression model). 

(3) Since E[H] is the variance of the first derivatives, estimate this with 
the sample variance (i.e., mean square) of the first derivatives, then 
invert the result.  This will almost always be different from (1) and 
(2).   

Since they are estimating the same thing, in large samples, all three will 
give the same answer.  Current practice in econometrics often 
favors (3).   Stata rarely uses (3).  Others do. 
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Model for a Binary Dependent Variable 

 Binary outcome. 

 Event occurs or doesn’t (e.g., the person adopts green 

technology, the person enters the labor force, etc.) 

 Model the probability of the event. P(x)=Prob(y=1|x) 

 Probability responds to independent variables 

 Requirements for a probability 

 0 < Probability < 1 

 P(x) should be monotonic in x – it’s a CDF 
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Behavioral Utility Based Approach 

 Observed outcomes partially reveal underlying preferences 

 There exists an underlying preference scale defined over 

alternatives, U*(choices) 

 Revelation of preferences between two choices labeled 0 and 1 

reveals the ranking of the underlying utility 

      U*(choice 1) >  U*(choice 0)               Choose 1 

      U*(choice 1) <  U*(choice 0)               Choose 0 

 Net utility = U = U*(choice 1) - U*(choice 0).  U  > 0  => choice 1 
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Binary Outcome: Visit Doctor 
In the 1984 year of the GSOEP, 2265 of 3874 
 individuals visited the doctor at least once. 
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A Random Utility Model for  

the Binary Choice 

 Yes or No decision |  Visit or not visit the doctor 
 

 Model:  Net utility of visit at least once 

 

 Net utility depends on observables and unobservables 
 

     Udoctor   =  Net utility = U*visit – U*not visit 

 

        Udoctor   =   + 1Age + 2Income + 3Sex +  

     
Choose to visit at least once if net utility is positive 
 

 Observed Data:  X  =  Age, Income, Sex 

            y   =  1 if choose visit,  Udoctor > 0, 0 if not. 

Random Utility 
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Net Utility  Udoctor  =  U*visit – U*not visit 

 

Udoctor   =   + 1 Age + 2 Income + 3 Sex +  

 

Chooses to visit:  Udoctor  >  0 

 

               + 1 Age + 2 Income + 3 Sex +  > 0 

 

Choosing to visit is a random outcome because of  

 

                  >  -( + 1 Age + 2 Income + 3 Sex) 

Modeling the Binary Choice Between  
the Two Alternatives 
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Probability Model for Choice Between Two Alternatives 
People with the same (Age,Income,Sex) will make different choices because  is 
random.  We can model the probability  that the random event  “visits the 
doctor”will occur. 

Event DOCTOR=1 occurs if    >  -(  + 1Age + 2Income + 3Sex) 

We model the probability of this event. 

Probability is 

governed by , 
the random 

part of the 

utility function. 
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An Application 

     27,326 Observations in GSOEP Sample  
 1 to 7 years, panel  

 7,293 households observed  

 We use the 1994 year;  3,337 household observations 



Part 18: Maximum Likelihood 18-24/67 

An Econometric Model 

 Choose to visit iff Udoctor  >  0 

 Udoctor  =  + 1 Age + 2 Income + 3 Sex +   

 Udoctor  > 0      > -( + 1 Age + 2 Income + 3 Sex) 

                           <     + 1 Age + 2 Income + 3 Sex) 

 Probability model: For any person observed by the analyst,  

    Prob(doctor=1)  =  Prob( <  + 1 Age + 2 Income + 3 Sex) 

 Note the relationship between the unobserved  and the 

observed outcome DOCTOR. 
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Index = +1Age + 2 Income + 3 Sex 

Probability = a function of the Index. 
P(Doctor = 1) = f(Index) 

Internally consistent probabilities: 
(1)  (Coherence)     0 < Probability < 1 
(2)  (Monotonicity)  Probability increases with Index. 
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A Fully Parametric Model 

 Index Function: U = β’x + ε 

 Observation Mechanism: y = 1[U > 0] 

 Distribution: ε ~ f(ε); Normal, Logistic, … 

 Maximum Likelihood Estimation: 

 

Max(β) logL = Σi log Prob(Yi = yi|xi) 
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A Parametric Logit Model 

We examine the model components. 
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Parametric Model Estimation 

 How to estimate , 1, 2, 3? 
 
 The technique of maximum likelihood 

 

 

 Prob[doctor=1] = Prob[ > -( + 1 Age + 2 Income + 3 Sex)]  
     

   Prob[doctor=0]  =  1 – Prob[doctor=1]  
 

 Requires a model for the probability 

0 1
Prob[ 0 | ] Prob[ 1| ]

y y
L y y

 
    x  x
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Completing the Model:  F() 

 The distribution 

 Normal:      PROBIT, natural for behavior 

 Logistic:      LOGIT,   allows “thicker tails” 

 Gompertz:  EXTREME VALUE, asymmetric 

 Others… 

 Does it matter? 

 Yes, large difference in estimates 

 Not much, quantities of interest are more stable. 
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Estimated Binary Choice Models for 

Three Distributions 

Log-L(0) = log likelihood for a model that has only a constant term. 

Ignore the t ratios for now. 
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 + 1 (Age+1) + 2 (Income) + 3 Sex   (1 is positive) 

 

Effect on Predicted Probability of an Increase in Age 
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Partial Effects in Probability Models 

 Prob[Outcome]  =  some F(+1Income…) 

 “Partial effect”    =  F(+1Income…) / ”x”    (derivative) 
 
 Partial effects are derivatives 

 Result varies with model 
  

 Logit: F(+1Income…) /x                          =     Prob * (1-Prob)        

 Probit:  F(+1Income…)/x                           =     Normal density       

 Extreme Value:  F(+1Income…)/x             =     Prob * (-log Prob)    
 

 Scaling usually erases model differences 
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Similar computations apply for other models such as probit.
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Estimated Partial Effects  

for Three Models 
(Standard errors to be considered later) 
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Partial Effect for a Dummy Variable Computed  

Using Means of Other Variables 

 Prob[yi = 1|xi,di]  = F(’xi+di) where d is a dummy 

variable such as Sex in our doctor model. 

 For the probit model, Prob[yi = 1|xi,di] = (x+d),   

= the normal CDF. 

 Partial effect of d  

    Prob[yi = 1|xi, di=1]   -   Prob[yi = 1|xi, di=0] 

                                     =    ˆ ˆˆ( )        x xid
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Partial Effect – Dummy Variable 
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Computing Partial Effects 

 Compute at the data means (PEA) 

 Simple 

 Inference is well defined. 

 Not realistic for some variables, such as Sex 

 

 Average the individual effects (APE) 

 More appropriate 

 Asymptotic standard errors are slightly more complicated. 
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Partial Effects 
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  Average Partial  Partial Effects  

     Effects     at Data Means 

    Age       0.00512     0.00527 

    Income   -0.09609    -0.09871 

    Female    0.13792     0.13958 

 

 

The two approaches usually give similar answers, 

though sometimes the results differ substantially. 
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APE vs. Partial Effects at the Mean 

1

Delta Method for Average Partial Effect

1 ˆEstimator of Var PartialEffect
N

iiN 

        
 G Var G
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How Well Does the Model Fit the Data? 

 There is no R squared for a probability model. 

 Least squares for linear models is computed to maximize R2 

 There are no residuals or sums of squares in a binary choice model 

 The model is not computed to optimize the fit of the model to the 

data 

 How can we measure the “fit” of the model to the data? 

 “Fit measures” computed from the log likelihood 

 Pseudo R squared  = 1 – logL/logL0 

 Also called the “likelihood ratio index” 

 Direct assessment of the effectiveness of the model at predicting the 

outcome 
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Pseudo R2 = Likelihood Ratio Index 

 

2

0

log  for the model
Pseudo R  = 1 - 

log  for a model with only a constant term
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The Likelihood Ratio Index 

 Bounded by 0 and a number < 1 

 Rises when the model is expanded 

 Specific values between 0 and 1 have no meaning 

 Can be strikingly low even in a great model 

 Should not be used to compare models 

 Use logL 

 Use information criteria to compare nonnested models 

 Can be negative if the model is not a discrete choice model.  For 

linear regression,  

logL=-n/2(1+log2π+log(e’e/n)]; Positive if e’e/n  <  0.058497 
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Fit Measures Based on LogL 

---------------------------------------------------------------------- 

Binary Logit Model for Binary Choice 

Dependent variable               DOCTOR 

Log likelihood function     -2085.92452       Full model         LogL 

Restricted log likelihood   -2169.26982       Constant term only LogL0 

Chi squared [   5 d.f.]       166.69058 

Significance level               .00000 

McFadden Pseudo R-squared      .0384209       1 – LogL/logL0 

Estimation based on N =   3377, K =   6 

Information Criteria: Normalization=1/N 

              Normalized   Unnormalized 

AIC              1.23892     4183.84905       -2LogL + 2K 

Fin.Smpl.AIC     1.23893     4183.87398       -2LogL + 2K + 2K(K+1)/(N-K-1) 

Bayes IC         1.24981     4220.59751       -2LogL + KlnN 

Hannan Quinn     1.24282     4196.98802       -2LogL + 2Kln(lnN) 

--------+------------------------------------------------------------- 

Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X 

--------+------------------------------------------------------------- 

        |Characteristics in numerator of Prob[Y = 1] 

Constant|    1.86428***       .67793        2.750   .0060 

     AGE|    -.10209***       .03056       -3.341   .0008      42.6266 

   AGESQ|     .00154***       .00034        4.556   .0000      1951.22 

  INCOME|     .51206          .74600         .686   .4925       .44476 

 AGE_INC|    -.01843          .01691       -1.090   .2756      19.0288 

  FEMALE|     .65366***       .07588        8.615   .0000       .46343 

--------+------------------------------------------------------------- 
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Fit Measures Based on Predictions 

 Computation 

 Use the model to compute predicted probabilities 

 P = F(a + b1Age + b2Income + b3Female+…) 

 Use a rule to compute predicted y = 0 or 1 

 Predict y=1 if P is “large” enough 

 Generally use 0.5 for “large” (more likely than not) 

 

 

 Fit measure compares predictions to actuals 

 Count successes and failures 

ˆŷ 1 if P > P*
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Computing test statistics requires the log likelihood 

and/or standard errors based on the Hessian of LogL 
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Robust Covariance Matrix 
(Robust to the model specification? Latent heterogeneity? 

Correlation across observations?  Not always clear) 

11 22

1
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Robust Covariance Matrix  

for Logit Model 
Doesn’t change much. The model is well specified. 

--------+-------------------------------------------------------------------- 

        |                  Standard            Prob.      95% Confidence 

  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 

--------+-------------------------------------------------------------------- 

Conventional Standard Errors 

Constant|    1.86428***      .67793     2.75  .0060      .53557   3.19299 

     AGE|    -.10209***      .03056    -3.34  .0008     -.16199   -.04219 

 AGE^2.0|     .00154***      .00034     4.56  .0000      .00088    .00220 

  INCOME|     .51206         .74600      .69  .4925     -.95008   1.97420 

        |Interaction AGE*INCOME 

_ntrct02|    -.01843         .01691    -1.09  .2756     -.05157    .01470 

  FEMALE|     .65366***      .07588     8.61  .0000      .50494    .80237 

--------+-------------------------------------------------------------------- 

Robust Standard Errors  

Constant|    1.86428***      .68518     2.72  .0065      .52135   3.20721 

     AGE|    -.10209***      .03118    -3.27  .0011     -.16321   -.04098 

 AGE^2.0|     .00154***      .00035     4.44  .0000      .00086    .00222 

  INCOME|     .51206         .75171      .68  .4958     -.96127   1.98539 

        |Interaction AGE*INCOME 

_ntrct02|    -.01843         .01705    -1.08  .2796     -.05185    .01498 

  FEMALE|     .65366***      .07594     8.61  .0000      .50483    .80249 
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The Effect of Clustering 

 Yit must be correlated with Yis across periods 

 Pooled estimator ignores correlation 

 Broadly, yit = E[yit|xit] + wit,  

 E[yit|xit]  =  Prob(yit = 1|xit) 

 wit is correlated across periods 

 Assuming the marginal probability is the same, the 
pooled estimator is consistent.  (We just saw that it might 
not be.) 

 Ignoring the correlation across periods generally leads to 

underestimating standard errors. 
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‘Cluster’ Corrected Covariance Matrix 

1

the number if  clusters

number of  observations  in cluster c

 = negative inverse of  second derivatives matrix

 = derivative of  log density for observation

c

ic

C

n







 

 

H

g



Part 18: Maximum Likelihood 18-54/67 

Cluster Correction: Doctor 
---------------------------------------------------------------------- 

Binomial Probit Model 

Dependent variable               DOCTOR 

Log likelihood function    -17457.21899 

--------+------------------------------------------------------------- 

Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X 

--------+------------------------------------------------------------- 

        | Conventional Standard Errors 

Constant|    -.25597***       .05481       -4.670   .0000 

     AGE|     .01469***       .00071       20.686   .0000      43.5257 

    EDUC|    -.01523***       .00355       -4.289   .0000      11.3206 

  HHNINC|    -.10914**        .04569       -2.389   .0169       .35208 

  FEMALE|     .35209***       .01598       22.027   .0000       .47877 

--------+------------------------------------------------------------- 

        | Corrected Standard Errors 

Constant|    -.25597***       .07744       -3.305   .0009 

     AGE|     .01469***       .00098       15.065   .0000      43.5257 

    EDUC|    -.01523***       .00504       -3.023   .0025      11.3206 

  HHNINC|    -.10914*         .05645       -1.933   .0532       .35208 

  FEMALE|     .35209***       .02290       15.372   .0000       .47877 

--------+------------------------------------------------------------- 
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Hypothesis Tests 

 We consider “nested” models and parametric 

tests 

 Test statistics based on the usual 3 strategies 

 Wald statistics: Use the unrestricted model 

 Likelihood ratio statistics: Based on comparing the 

two models 

 Lagrange multiplier: Based on the restricted model. 

 Test statistics require the log likelihood and/or 

the first and second derivatives of logL 
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Base Model for Hypothesis Tests 
---------------------------------------------------------------------- 

Binary Logit Model for Binary Choice 

Dependent variable               DOCTOR 

Log likelihood function     -2085.92452 

Restricted log likelihood   -2169.26982 

Chi squared [   5 d.f.]       166.69058 

Significance level               .00000 

McFadden Pseudo R-squared      .0384209 

Estimation based on N =   3377, K =   6 

Information Criteria: Normalization=1/N 

              Normalized   Unnormalized 

AIC              1.23892     4183.84905 

--------+------------------------------------------------------------- 

Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X 

--------+------------------------------------------------------------- 

        |Characteristics in numerator of Prob[Y = 1] 

Constant|    1.86428***       .67793        2.750   .0060 

     AGE|    -.10209***       .03056       -3.341   .0008      42.6266 

   AGESQ|     .00154***       .00034        4.556   .0000      1951.22 

  INCOME|     .51206          .74600         .686   .4925       .44476 

 AGE_INC|    -.01843          .01691       -1.090   .2756      19.0288 

  FEMALE|     .65366***       .07588        8.615   .0000       .46343 

--------+------------------------------------------------------------- 

H0: Age is not a significant 

      determinant of  

      Prob(Doctor = 1) 

H0: β2 = β3 = β5 = 0  
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Likelihood Ratio Test 

Null hypothesis restricts the parameter vector 

Alternative relaxes the restriction 

Test statistic: Chi-squared = 

   2 (LogL|Unrestricted model  –  LogL|Restrictions) > 0 

Degrees of freedom = number of restrictions 
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LR Test of H0: β2 = β3 = β5 = 0  

RESTRICTED MODEL 

Binary Logit Model for Binary Choice 

Dependent variable               DOCTOR 

Log likelihood function     -2124.06568 

Restricted log likelihood   -2169.26982 

Chi squared [   2 d.f.]        90.40827 

Significance level               .00000 

McFadden Pseudo R-squared      .0208384 

Estimation based on N =   3377, K =   3 

Information Criteria: Normalization=1/N 

              Normalized   Unnormalized 

AIC              1.25974     4254.13136 

UNRESTRICTED MODEL 

Binary Logit Model for Binary Choice 

Dependent variable               DOCTOR 

Log likelihood function     -2085.92452 

Restricted log likelihood   -2169.26982 

Chi squared [   5 d.f.]       166.69058 

Significance level               .00000 

McFadden Pseudo R-squared      .0384209 

Estimation based on N =   3377, K =   6 

Information Criteria: Normalization=1/N 

              Normalized   Unnormalized 

AIC              1.23892     4183.84905 

Chi squared[3]  =  2[-2085.92452 - (-2124.06568)]  =  77.46456 
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Wald Test of H0: β2 = β3 = β5 = 0  

Unrestricted parameter vector is estimated 

Discrepancy:  q= Rb – m is computed 

(or r(b,m) if nonlinear) 

Variance of discrepancy is estimated: 

                       Var[q] = R V R’ 

Wald Statistic is q’[Var(q)]-1q = q’[RVR’]-1q  
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Chi squared[3]  =  69.0541 

Wald Test 
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Lagrange Multiplier Test of H0: β2 = β3 = β5 = 0  

 Restricted model is estimated 

 Derivatives of unrestricted model and variances of 

derivatives are computed at restricted estimates 

 Wald test of whether derivatives are zero tests the 

restrictions 

 Usually hard to compute – difficult to program the 

derivatives and their variances. 



Part 18: Maximum Likelihood 18-62/67 

LM Test for a Logit Model 

 Compute b0 (subject to restictions)  

(e.g., with zeros in appropriate positions. 

 

 Compute Pi(b0) for each observation. 

 

 Compute ei(b0) = [yi – Pi(b0)] 

 

 Compute gi(b0) = xiei using full xi vector 

 

 LM = [Σigi(b0)]’[Σigi(b0)gi(b0)’]
-1[Σigi(b0)] 
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(There is a built in function for this computation.) 
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Restricted Model 
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I have a question. The question is as follows. We have a probit 

model. We used LM tests to test for the hetercodeaticiy in this 

model and found that there is heterocedasticity in this model... 

 

How do we proceed now?  What do we do to get rid of 

heterescedasticiy? 

 

Testing for heteroscedasticity in a probit model and then getting 

rid of heteroscedasticit in this model is not a common procedure. 

In fact I do not remember seen an applied (or theoretical also) 

works which tests for heteroscedasticiy and then uses a method 

to get rid of it??? 

 

See Econometric Analysis, 7th ed. pages 714-714 
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Appendix 



Part 18: Maximum Likelihood 18-69/67 

Properties of the  

Maximum Likelihood Estimator 
We will sketch formal proofs of these results: 

 The log-likelihood function, again 

 The likelihood equation and the information matrix. 

A linear Taylor series approximation to the first order conditions:   

 

 g(ML)  =  0    g()  +  H() (ML  -  )   

 

(under regularity, higher order terms will vanish in large samples.) 

Our usual approach. Large sample behavior of the left and right hand sides is the same. 

A Proof of consistency.             (Property 1) 

The limiting variance of n(ML  -  ).  We are using the central limit theorem here. 

Leads to asymptotic normality (Property 2).  We will derive the asymptotic variance of 
the MLE. 

Estimating the variance of the maximum likelihood estimator. 

Efficiency (we have not developed the tools to prove this.)  The Cramer-Rao lower 
bound for efficient estimation (an asymptotic version of Gauss-Markov). 

Invariance.  (A VERY handy result.)  Coupled with the Slutsky theorem and the delta 
method,  the invariance property makes estimation of nonlinear functions of 
parameters very easy. 
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Regularity Conditions 

 Deriving the theory for the MLE relies on certain “regularity” 

conditions for the density. 

 What they are 

 1.  logf(.) has three continuous derivatives wrt parameters 

 2.  Conditions needed to obtain expectations of derivatives are met.  

(E.g., range of the variable is not a function of the parameters.) 

 3.  Third derivative has finite expectation. 

 What they mean 

 Moment conditions and convergence.  We need to obtain expectations 

of derivatives. 

 We need to be able to truncate Taylor series. 

 We will use central limit theorems 
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The MLE 

 

      

The results center on the first order conditions for the MLE
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Consistency of the MLE 
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Divide both sums by the sample size.

1 1 1ˆ  =   o

The approximation is now exact because of the higher order term.
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 the regularity conditions.

Therefore, collecting terms,

ˆ ˆ   or   plim  = MLE MLE  0   
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Asymptotic Variance  
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Asymptotic Variance 
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Asymptotic Distribution 
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Efficiency:  Variance Bound 



Part 18: Maximum Likelihood 18-79/67 

Invariance 

The maximum likelihood estimator of a function of 

, say h() is h(MLE).  This is not always true of 

other kinds of estimators.  To get the variance of 

this function, we would use the delta method.  

E.g., the MLE of θ=(β/σ) is b/(ee/n) 



Part 18: Maximum Likelihood 18-80/67 



Part 18: Maximum Likelihood 18-81/67 

The Linear Probability “Model” 

)





Prob(y = 1| ) =

E[y | ] = 0 * Prob(y = 1| ) +1Prob(y = 1| ) = Prob(y = 1|

y = + ε

x β x

x x x x

β x



Part 18: Maximum Likelihood 18-82/67 

The Dependent Variable equals zero for 99.1% of the observations.  In 

the sample of 163,474 observations, the LHS variable equals 1 about 

1,500 times. 
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2SLS for a 

binary 

dependent 

variable. 
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Modeling a Binary Outcome 

 Did firm i produce a product or process innovation in year t ?   

yit : 1=Yes/0=No 

 Observed N=1270 firms for T=5 years, 1984-1988 

 Observed covariates: xit = Industry, competitive pressures, 

size, productivity, etc. 

 How to model? 

 Binary outcome 

 Correlation across time 

 Heterogeneity across firms 
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Application 
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Probit and LPM 
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OLS Coefficients 

OLS approximates the partial effects, “directly,” without bothering with coefficients. 
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Odds Ratios This calculation is not meaningful if 

the model is not a binary logit model 
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Odds Ratio 

 Exp() = multiplicative change in the odds ratio 

when z changes by 1 unit. 

 dOR(x,z)/dx = OR(x,z)*, not exp() 

 The “odds ratio” is not a partial effect – it is not a 

derivative. 

 It is only meaningful when the odds ratio is itself 

of interest and the change of the variable by a 

whole unit is meaningful. 

 “Odds ratios” might be interesting for dummy 

variables 
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Cautions About reported Odds Ratios 
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Model for a Binary Dependent Variable 

 Binary outcome. 

 Event occurs or doesn’t (e.g., the democrat wins, the 

person enters the labor force,… 

 Model the probability of the event. P(x)=Prob(y=1|x) 

 Probability responds to independent variables 

 Requirements 

 0 < Probability < 1 

 P(x) should be monotonic in x – it’s a CDF 
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Two Standard Models 

 Based on the normal distribution: 
 Prob[y=1|x] = (β’x) = CDF of normal distribution 

 The “probit” model 

 Based on the logistic distribution 
 Prob[y=1|x]  =  exp(β’x)/[1+ exp(β’x)] 

 The “logit” model 

 Log likelihood 
 P(y|x) = (1-F)(1-y) Fy where F = the cdf 

 LogL   = Σi (1-yi)log(1-Fi) + yilogFi 

           = Σi F[(2yi-1)β’x] since F(-t)=1-F(t) for both. 
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Coefficients in the Binary Choice Models 

     E[y|x] = 0*(1-Fi) + 1*Fi  =  P(y=1|x) 

               = F(β’x) 

     The coefficients are not the slopes, as usual 

      in a nonlinear model 

 

   ∂E[y|x]/∂x= f(β’x)β 

 

  These will look similar for probit and logit 
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Application: Female Labor Supply 
1975 Survey Data:  Mroz (Econometrica) 753 Observations 

Descriptive Statistics 

Variable     Mean       Std.Dev.     Minimum      Maximum        Cases Missing 

============================================================================== 

All observations in current sample 

--------+--------------------------------------------------------------------- 

LFP     |  .568393      .495630      .000000      1.00000          753       0 

WHRS    |  740.576      871.314      .000000      4950.00          753       0 

KL6     |  .237716      .523959      .000000      3.00000          753       0 

K618    |  1.35325      1.31987      .000000      8.00000          753       0 

WA      |  42.5378      8.07257      30.0000      60.0000          753       0 

WE      |  12.2869      2.28025      5.00000      17.0000          753       0 

WW      |  2.37457      3.24183      .000000      25.0000          753       0 

RPWG    |  1.84973      2.41989      .000000      9.98000          753       0 

HHRS    |  2267.27      595.567      175.000      5010.00          753       0 

HA      |  45.1208      8.05879      30.0000      60.0000          753       0 

HE      |  12.4914      3.02080      3.00000      17.0000          753       0 

HW      |  7.48218      4.23056      .412100      40.5090          753       0 

FAMINC  |  23080.6      12190.2      1500.00      96000.0          753       0 

KIDS    |  .695883      .460338      .000000      1.00000          753       0 
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---------------------------------------------------------------------- 

Binomial Probit Model 

Dependent variable                  LFP 

Log likelihood function      -488.26476  (Probit) 

Log likelihood function      -488.17640  (Logit) 

--------+------------------------------------------------------------- 

Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X 

--------+------------------------------------------------------------- 

        |Index function for probability 

Constant|     .77143          .52381        1.473   .1408 

      WA|    -.02008          .01305       -1.538   .1241      42.5378 

      WE|     .13881***       .02710        5.122   .0000      12.2869 

    HHRS|    -.00019**      .801461D-04    -2.359   .0183      2267.27 

      HA|    -.00526          .01285        -.410   .6821      45.1208 

      HE|    -.06136***       .02058       -2.982   .0029      12.4914 

  FAMINC|     .00997**        .00435        2.289   .0221      23.0806 

    KIDS|    -.34017***       .12556       -2.709   .0067       .69588 

--------+------------------------------------------------------------- 

Binary Logit Model for Binary Choice 

--------+------------------------------------------------------------- 

        |Characteristics in numerator of Prob[Y = 1] 

Constant|    1.24556          .84987        1.466   .1428 

      WA|    -.03289          .02134       -1.542   .1232      42.5378 

      WE|     .22584***       .04504        5.014   .0000      12.2869 

    HHRS|    -.00030**        .00013       -2.326   .0200      2267.27 

      HA|    -.00856          .02098        -.408   .6834      45.1208 

      HE|    -.10096***       .03381       -2.986   .0028      12.4914 

  FAMINC|     .01727**        .00752        2.298   .0215      23.0806 

    KIDS|    -.54990***       .20416       -2.693   .0071       .69588 

--------+------------------------------------------------------------- 

Estimated Choice Models for Labor Force Participation 
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Partial Effects 
---------------------------------------------------------------------- 

Partial derivatives of probabilities with 

respect to the vector of characteristics. 

They are computed at the means of the Xs. 

Observations used are All Obs. 

--------+------------------------------------------------------------- 

Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]  Elasticity 

--------+------------------------------------------------------------- 

        |PROBIT:  Index function for probability 

      WA|    -.00788          .00512       -1.538   .1240      -.58479 

      WE|     .05445***       .01062        5.127   .0000      1.16790 

    HHRS|-.74164D-04**      .314375D-04    -2.359   .0183      -.29353 

      HA|    -.00206          .00504        -.410   .6821      -.16263 

      HE|    -.02407***       .00807       -2.983   .0029      -.52488 

  FAMINC|     .00391**        .00171        2.289   .0221       .15753 

        |Marginal effect for dummy variable is P|1 - P|0. 

    KIDS|    -.13093***       .04708       -2.781   .0054      -.15905 

Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]  Elasticity 

--------+------------------------------------------------------------- 

        |LOGIT:  Marginal effect for variable in probability 

      WA|    -.00804          .00521       -1.542   .1231      -.59546 

      WE|     .05521***       .01099        5.023   .0000      1.18097 

    HHRS|-.74419D-04**      .319831D-04    -2.327   .0200      -.29375 

      HA|    -.00209          .00513        -.408   .6834      -.16434 

      HE|    -.02468***       .00826       -2.988   .0028      -.53673 

  FAMINC|     .00422**        .00184        2.301   .0214       .16966 

        |Marginal effect for dummy variable is P|1 - P|0. 

    KIDS|    -.13120***       .04709       -2.786   .0053      -.15894 

--------+------------------------------------------------------------- 
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Testing Hypotheses – A Trinity of Tests 

The likelihood ratio test: 

 Based on the proposition (Greene’s) that restrictions 
always “make life worse” 

 Is the reduction in the criterion (log-likelihood) large?  
Leads to the LR test. 

The Wald test:  The usual. 

The Lagrange multiplier test: 

 Underlying basis:  Reexamine the first order 
conditions. 

 Form a test of whether the gradient is significantly 
“nonzero” at the restricted estimator. 
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Testing Hypotheses 

Wald tests, using the familiar distance measure 

 

Likelihood ratio tests: 

 LogLU = log likelihood without restrictions 

 LogLR = log likelihood with restrictions 

 LogLU > logLR for any nested restrictions 

 2(LogLU – logLR)  chi-squared [J] 
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Estimating the Tobit Model 
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*Note on the Uniqueness of the MLE in the Tobit Model," Econometrica, 1978.



 


