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Maximum Likelihood Estimation

This defines a class of estimators based on the particular
distribution assumed to have generated the observed
random variable.

Not estimating a mean — least squares is not available

Estimating a mean (possibly), but also using information
about the distribution

18-3/67 Part 18: Maximum Likelihood



Setting Up the MLE

The distribution of the observed random
variable i1s written as a function of the
parameters to be estimated

P(y;|data,B) = Probability density | parameters.

The likelihood function is constructed from the
density

Construction: Joint probability density function
of the observed sample of data — generally the
product when the data are a random sample.
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(Log) Likelihood Function

O f(y;|B,x;) = probability density of observed vy,
given parameter(s) and possibly data, Xx;.

O Observations are independent
0o Joint density = IT. f(y|B,x;) = L(Bly,X)

O f(y;|B,X;) Is the contribution of observation i to
the likelihood.

0 The MLE of B maximizes L(B|y,X)

O In practice it is usually easier to maximize
logL(Bly,X) = % logf(y;[B.x;)
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Average Time Until Failure

Estimating the average time until failure, 0, of light bulbs.
y; = observed life until failure.

f(y;/6) = (1/0)exp(-y/6)
L(6) = 1, f(y0)= 0™ exp(-Zy/6)
logL(0) = -nlog (0) - 2y,/0
Likelihood equation: dlogL(6)/06 = -n/6 + Zy./62 =0
Solution: Oue = 2V;/n. Note: E[y]=6
Note, dlogf(y;|0)/06 = -1/6 + y./6?
Since Ely] =0, E[dlogf(0)/06]=0.

Extension: Loglinear Model:  0; = exp(x;B) = E[y;|X|]
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The MLE

The log-likelihood function: logL(p|data)

The likelihood equation(s):

~irst derivatives of logL equal zero at the MLE.
(1/n)2; dlogf(yilB.x;)/oPu e = O.
(Sample statistic.) (The 1/n is irrelevant.)
“First order conditions” for maximization

Usually a nonlinear estimator.

A moment condition - its counterpart is the
fundamental theoretical result E[clogL/op] = O.
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Properties of the MLE

O Consistent: Not necessarily unbiased, however

O Asymptotically normally distributed: Proof
based on central limit theorems

O Asymptotically efficient: Among the possible
estimators that are consistent and asymptotically
normally distributed — counterpart to Gauss-
Markov for linear regression

O Invariant: The MLE of g(0) is g(the MLE of 0)
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The Linear (Normal) Model

Definition of the likelihood function - joint density of the
observed data, written as a function of the parameters
we wish to estimate.

Definition of the maximum likelihood estimator as that
function of the observed data that maximizes the
likelihood function, or its logarithm.

For the model: y. = B'X; + g, where g ~ N[0,57],
the maximum likelihood estimators of § and ¢ are
b = (X'X)X'y and s?= e’eln.
That is, least squares is ML for the slopes, but the

variance estimator makes no degrees of freedom
correction, so the MLE is biased.
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Normal Linear Model

The log-likelihood function

18-10/67

= 2 log 1(y;|0)

= sum of logs of densities.

For the linear regression model with normally distributed
disturbances

logL

V2

2. [ -Y2log 2nt - Y2log o2 - Ya(y, — X'B)?/c? .
-n/2[log2~n + logc? + v4/c?]

g'e/n
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Likelihood Equations

The estimator is defined by the function of the data that equates

olog-L/d0 to 0. (Likelihood equation)
The derivative vector of the log-likelihood function is the score function. For the

regression model,

[clogL/op , dlogL/oc?]
dlogL/op = =, [(LIc?)Xi(y: - X/B) ] = X'elo? .
dlogL/oc? = 3, [-1/(262) + (Y, - x'B)?/(26%)] = -n/202 [1 — s%/c7]

g

For the linear regression model, the first derivative vector of logL is

(L/c?)X'(y - XB) and (1/262) Z [(y; - X{'B?c? - 1]
(Kx1) (1x1)

Note that we could compute these functions at any g and 2. If we compute
them at b and e’e/n, the functions will be identically zero.
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Maximizer of the log likelihood?
Use the Information Matrix

The negative of the second derivatives matrix of the log-
likelihood,

For a maximizer, -H is positive definite.
-H forms the basis for estimating the variance of the MLE.
It is usually a random matrix. —H is the information matrix.
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Hessian for the Linear Model

~ 0%loglL
0000’

' o%logL  6%logL
OBoB  OBAc
o°logL  &%logL
| 0c°0B'  0c°0c” |

/ 1 !/ |
1 XX ?Zixi(yi - XB)
2

o 1 Ry’ 1 B)
_?Zi(yi = XiB)X; s Zi(yi - XB) |

t

Note that the off diagonal elements have expectation zero.
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Information Matrix

This can be computed at any vector B and scalar 2. You
can take expected values of the parts of the matrix to get

iz PO
-E[H]= | ° ]
0
i 26"

(which should look familiar). The off diagonal terms go to
zero (one of the assumptions of the linear model).

18-14/67 Part 18: Maximum Likelihood



Asymptotic Variance

O The asymptotic variance is {—-E[H]}* i.e., the inverse of
the information matrix.

{-EM]} "=

62[ ixixi']_1 0’

2c”

n

0

CSZ(X'X)_1 o'
4

0 20
n _

O There are several ways to estimate this matrix
Inverse of negative of expected second derivatives
Inverse of negative of actual second derivatives
Inverse of sum of squares of first derivatives
Robust matrix for some special cases
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Computing the Asymptotic Variance

We want to estimate {-E[H]}' Three ways:

(1) Just compute the negative of the actual second derivatives matrix
and invert it.

(2) Insert the maximum likelihood estimates into the known expected
values of the second derivatives matrix. Sometimes (1) and (2) give
the same answer (for example, in the linear regression model).

(3) Since E[H] is the variance of the first derivatives, estimate this with
the sample variance (i.e., mean square) of the first derivatives, then
invert the result. This will almost always be different from (1) and
(2).

Since they are estimating the same thing, in large samples, all three will
give the same answer. Current practice in econometrics often
favors (3). Stata rarely uses (3). Others do.

18-16/67 Part 18: Maximum Likelihood



Model for a Binary Dependent Variable

O Binary outcome.

= Event occurs or doesn’t (e.g., the person adopts green
technology, the person enters the labor force, etc.)

= Model the probability of the event. P(x)=Prob(y=1|x)
= Probability responds to independent variables
O Requirements for a probability
= 0 < Probability <1
= P(x) should be monotonic in x —it's a CDF
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Behavioral Utility Based Approach

O Observed outcomes partially reveal underlying preferences

O There exists an underlying preference scale defined over
alternatives, U*(choices)

O Revelation of preferences between two choices labeled 0 and 1
reveals the ranking of the underlying utility

=  U*(choice 1) > U*(choice 0) ===» Choose 1
= U*(choice 1) < U*(choice 0) ====» Choose 0
O Net utility = U = U*(choice 1) - U*(choice 0). U >0 =>choice 1
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Binary Outcome: Visit Doctor

In the 1984 year of the GSOEP, 2265 of 3874
individuals visited the doctor at least once.

Visited Doctor At Least Once In 1984

TAED -

Frequency for DOCTOR
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A Random Utility Model for
the Binary Choice

Yes or No decision | Visit or not visit the doctor

Model: Net utility of visit at least once

Net utility depends on observables and unobservables

N Random Utility
Udoctor = Net Utlllty - U.kvisit _ U*not visit l'

Ugoctor = @ + B;Age + B,Income + B;Sex + ¢

Choose to visit at least once if net utility is positive

Observed Data: X = Age, Income, Sex
y = lifchoose visit, & Uy,or = 0, O if not.
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Modeling the Binary Choice Between
the Two Alternatives

Net Ut”ity Udoctor = U*visit _ U.knot visit
Ujoctor = @+ B1Age + 3, Income + B;Sex + ¢
Chooses to visit: Uy, > O

o + 3; Age + B, Income + B;Sex + >0
Choosing to visit is a random outcome because of ¢

e > -(a+ B,Age + B, Income + B, Sex)
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Probability Model for Choice Between Two Alternatives

People with the same (Age,Income,Sex) will make different choices because ¢ is
random. We can model the probability that the random event “visits the

doctor”will occur.

" Prabability Density for Random Utility
o _ A, R
H R s H‘h. _____________ I governed by &,
[ v h part of the
utility function.
0 i i | T

Event DOCTOR=1 occursif ¢ > -(a + B,Age + B,Income + B,Sex)

We model the probability of this event.
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An Application

27,326 Observations in GSOEP Sample
= 1to 7 years, panel
= 7,293 households observed
= We use the 1994 year; 3,337 household observations

Descriptive Statistics for

Variahle|

4 wrariahles

________ +_____________________________________________________________________

DOCTOR |

AGE |
INCOME |
FEMALE |

________ +_____________________________________________________________________
e __________________________________________________________________________________________________________________________________________________________________________________________________________________
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Lb374880
42 . 626585
.444764
463429

4744560
11.5854949
.21b586
L4987 35

.034000
0.0

Mazimum Cases Missing
1.0 3377 0

B4.0 3377 0

3.0 3377 0

1.0 3377 0
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An Econometric Model

O ChoosetovisitiffU,,., > 0

= Udoctor = + B, Age + 3, Income + B;Sex + ¢

= Udoctor >0 < ¢ >-(ao + B; Age + 3, Income + ; Sex)
e< a+p,Age + B, Income + B; Sex)

O Probability model: For any person observed by the analyst,
Prob(doctor=1) = Prob(e < a + 3; Age + 3, Income + 3; Sex)

O Note the relationship between the unobserved ¢ and the
observed outcome DOCTOR.
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Index = a+p;Age + B, Income + B3 Sex
Probability = a function of the Index.

P(Doctor

= 1) = f(Index)

Internally consistent probabilities:
(1) (Coherence) 0 < Probability <1
(2) (Monotonicity) Probability increases with Index.

Probability Distribution for Random Utility
—  1.000 i : ]
. R e e ey L L L AL e LR L LY
- :
] '
B :
= :
5 i1 R i e B e e
2 s
s :
T :
B Tt EEETEEEEEETETL PRPPY APETEE R
""" 1 1 T T I
=3 2 1 ] 1 2 2

18-25/67

Part 18: Maximum Likelihood




A Fully Parametric Model

O Index Function: U =f@’x + ¢

O Observation Mechanism: y = 1[U > O]

O Distribution: € ~ f(¢); Normal, Logistic, ...
o Maximum Likelihood Estimation:

Max(B) logL = Z; log Prob(Y, = yi|x)
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A Parametric Logit Model

_____________________________________________________________________________ Pl
Binary Logit Model for Binary Choice
Dependent variahle DOCTOR
Log likelihood function -2097.48109
Festricted log likelihood -21b9. 26952
Chi sguared [ 3](P= .000) 14353.57744
Slgnificance level .ooooo
McFadden Pseudo E-sguared 0330935 .
Fotimation based on N = 3377, E - 4 We examine the model components.
Inf.Cr.AIC = 4203.0 AICAH = 1.24
________ +___________________________ —_——— - e —— =
| mtand Prob. 95% Confidence

DOCTOR| Coefficient or z |z | »<= Interval
________ +__________________ — e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e = e = —
Constant| —.42055%== .15510 -2.b6 .0078 -. 73072 -.11099

AGE | LOZ253p5%x= 00328 7.21  .0000 01722 .03008

IHCOME | —.44195%*x .16936 -2.61 .0091 -.77393 -.11003

FEMALE | .B3E25%«%x .07551 g§.45 .0000 .49026 .78624
———————— F o e T e e e =
®xx  ¥¥ % ==3 Hignificance at 1%, 5%, 10% level. |:J
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Parametric Model Estimation

O How to estimate a, B, B,, B3?

= The technique of maximum likelihood

L= Hy:O Prob[y =0| X] xHyzlProb[y =1|X]

= Prob[doctor=1] = Prob[e > -(a + 3; Age + 3, Income + B; Sex)]

Prob[doctor=0] = 1 — Prob[doctor=1]

O Requires a model for the probability

18-28/67 Part 18: Maximum Likelihood



18-29/67

Completing the Model: F(€)

O The distribution
= Normal: PROBIT, natural for behavior
= Logistic:. LOGIT, allows “thicker tails”
= Gompertz: EXTREME VALUE, asymmetric
= Others...

O Does it matter?
= Yes, large difference in estimates
= Not much, quantities of interest are more stable.
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Estimated Binary Choice Models for
Three Distributions

LOGIT PROBIT
Variable | Estimate Estimate
Constant -0.42085 -0.25179
Age 0.02365 0.01445
Income -0.44198 -0.27128
Sex 0.63825 0.38685
Log-L -2097 .48 -2097.35
Log-L(0) -2169.27 -2169.27

EXTREME VALUE

Estimate

0.00960
0.01878
-0.32343
0.52280

-2098.17
-2169.27

Log-L(0) = log likelihood for a model that has only a constant term.
Ignore the t ratios for now.
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Effect on Predicted Probability of an Increase in Age

Probability Distribution for Random Utility

L] L] "
. L] L] L] L)
B T R e T T

AF(y'x) =7 fy'x) or
Fly's+d) - Fly'x)

Probability that yi = 1

L D00 -
-3 2 1 ] 1 2 3
GAMMA_X
PH{GAMMA_X)

B, (Age+1)| + 3, (Income) + 3; Sex (P4 is positive)
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Partial Effects in Probability Models

o Prob[Outcome] = some F(a+[3;Income...)
o “Partial effect” = oF(a+[3;Income...)/ d’x” (derivative)

m Partial effects are derivatives
m Result varies with model

Logit: oF(o+f,Income...) /ox = Prob*(1-Prob) x P
Probit: 0 F(o+;Income...)/ox = Normal density x 3
Extreme Value: 6 F(a+[,Income...)/ox = Prob * (-log Prob) x 3

m Scaling usually erases model differences
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Partial effect for the logit model
exp(a+B,;Age +3,Income + 3,5€ex)

Prob(doctor=1) =

1+exp(a+B,Age +B,Income + ,Sex)
= A(a+B;Age +B,Income +[3,Sex)
= A(B'x)
The derivative with respect to one of the variables is
aA;':k X) _[A@)][1-AB X)),
(1) A multiple of the coefficient, not the coefficient itself
(2) A function of all of the coefficients and variables
(3) Evaluated using the data and model parts after the model
is estimated.
Similar computations apply for other models such as probit.
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Estimated Partial Effects

for Three Models
(Standard errors to be considered later)

LOGIT PROBIT EXTREME VALUE
Estimate t ratio Estimate t ratio Estimate t ratio
Age 00527 7.235 00527 7.269 .00506 6.291
Income -.09844 -2.611 -.09897 -2.636 - 09711 -2.527
Female 14026 8.663 .13958 8.264 .13539 8.747
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Partial Effect for a Dummy Variable Computed
Using Means of Other Variables

O Probly, = 1|x,,d] = F(B'x;+yd)) where d is a dummy
variable such as Sex in our doctor model.

O For the probit model, Probly; = 1|x;,d]] = ®(B'x+yd), ®
= the normal CDF.

O Partial effect of d
Probly, = 1|x;,, d=1] - Prob|y,= 1|x;, d=0]

= §(d) =c1>([§'>—<+?)—c1>(ﬁ’>—<)
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Partial Effect — Dummy Variable

Partial derivatives of E[yv] = F[*] with
respect to the vector of characteristics
Theyv are computed at the means of the Xs
Observations used for means are All Ohs.

Flasticity

________ +_____________________________________________________________
Variahle| Coefficient standard Error hsSt.Er. P[|Z|»=2]

________ +_____________________________________________________________

| Index function for probahility

Constant | —.0915p**x* 03550 -2.588 L0097
AGE | L0527 %% 00073 7.2B649 L0000
IRCOME | - . 09597 === 03755 -2.b3b L0054
|Marginal effect for dummy wvariable 1= FP|1 - P|D.
FEMALE | .13950%== 01613 g.624 L0000

________ +_____________________________________________________________

BMote: =***, %% % = Significance at 1%, 5%, 10% level.
Flasticity for a binary variahle = marginal effect-Mean.
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Computing Partial Effects

0 Compute at the data means (PEA)
= Simple
= Inference is well defined.
= Not realistic for some variables, such as Sex

O Average the individual effects (APE)
= More appropriate
= Asymptotic standard errors are slightly more complicated.
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Partial Effects

Probability = P =F(B'x,)

Partial Effect = oh _OFB™x) =f(B'x,)xp =d.
OX. OX.

Partial Effect at the Means = f(B'X)xB =f (B'(ZLx, ))xB

n “i=1"%

Average Partial Effect =i30d, = (LZLf(B'X))xB

n =1

Both are estimates of 0 =E[d.] under certain assumptions.
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The two approaches usually give similar answers,
though sometimes the results differ substantially.

Average Partial Partial Effects

Effects at Data Means
Age 0.00512 0.00527
Income -0.09609 -0.09871
Female 0.13792 0.13958
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APE vs. Partial Effects at the Mean

Delta Method for Average Partial Effect

Estimator of Var[%zi'“_lPartiaIEffecti } =G Var [f}]é'

——3» partials ; effect=s: hhnincsfemale ; summary 5

FPartial Effects for Probit Probability Function
Fartial Effect=s Averaged QOwver Obszervations

*®# == Partial Effect for a Binarv Variable
Partial Standard
(Delta method) Ef fect Error |t| 95% Confidence Interwal
HHHINC —. 05496 03762 1.46 —.12889 01877
* FEMALE .14021 .01599 a.77 108826 17155
—>» partials ; effect=s: hhnincrsfemale ; summary ; means$

Partial Effect=s for Probit Probability Function
FPartial Effects Computed at data MHean=

*®# == Partial Effect for a Binarv Variable
Partial Standard
(Delta method) Ef fect Error |t| 95% Confidence Interwal
HHHIHC —. 06374 04009 1.549 —. 14232 01484
FEMALE 15045 01752 g2.549 .11e811 .18479
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Scoiftish Journal of Political Economy, Vol. 57, No. |, February 2010

@ 2010 The Authors

Journal compilation © 2010 Scottish Economic Society. Published by Blackwell Publishing Ltd,
9600 Garsington Road, Oxford, OX4 2DQ, UK and 350 Main St, Malden, MA, 02148, USA

SHEDDING LIGHT ON THE LIGHT BULB
PUZZLE: THE ROLEOF ATTITUDES AND
PERCEPTIONS IN THE ADOPTION OF
ENERGY EFFICIENT LIGHT BULBS

Corrado Di Maria*, Susana Ferreira*™ and Emiliya Lazarova*®

ABSTRACT

Despite the potential energy savings and economic benefits associated with
compact fluorescent light bulbs, their adoption by the residential sector has been
limited to date. In this paper, we present a theoretical model that focuses on the
agents’ ability to perceive the correct cost of lighting and on the role of
environmental attitudes as key determinants of the adoption decision. We use
original data from Ireland to test our theoretical predictions. Our results emphasize
the importance of education, information and environmental awareness in the
adoption decision.
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Table 1
Descriptive stalistics

Standard

Variable N Mean deviation Minimum Maximum
Adoption of energy-efficient light bulbs 1392 0.30 0.46 0 |
Support Kyoto 1469 3.05 0.78 | 4
Importance of Environment 1496 2.51 0.59 | 3
Knowledge of Environment 1500 0.85 0.35 0 1
Education (reference = primary education)

Lower secondary 1500 0.19 0.39 0 1

Upper secondary 1500 0.47 0.50 0 1

University degree 1500 0.17 0.38 0 |
Income (€) 1497 22987 11,644 1852 57,138
Rural dwelling 1500  0.38 0.49 0 1
Own house 1480 0.78 0.41 0 1
Age 1492 43.61 17.10 18 90
Sex (1 =male) 1500 0.48 0.50 0 1
Marital status (1 = married) 1500 0.52 0.50 0 1
Number of dependent children 1500 0.88 1.29 0 8

"“Due to missing observations the final sample in the probit regressions consists of 1339
observations. The effective response rate is 66.6%. The margin of error using the entire sample
is =+ 2.5 percent at a 95% confidence level (see UII, 2001).

Tables 3 and 4 only constitute a partial analysis of their actual behaviour. In order to
investigate in more detail which factors determine the individual decision of adopting
energy-efficient light bulbs, we estimate a probit model in which the probability of
adopting CFLs is modelled as a function of (a vector of) environmental attitudes and
awareness, education, logarithm of income, and other controls:

P(adoption = 1|x) = G(f, + B, education + 3, log(income)
+ y attitudes + y controls),

Part 18: Maximum Likelihood



i

L

SIOqINY SL 010

—
o
c
d
=8
L]
o
E
g=2
=
=
a
=]
2
=
)
(]
o
=
=
m
I
=
g
g
£
=8
=y

18-43/67

Table 5

Adoption of energy-efficient light bulbs, probie regressions

i 2) 3) (4)
Marginal Marginal Mlar ginal Marginal
CoelTicient ellects CoelTicient elficient CoelTicient ellects CoelTicient ellects
Age (003 LAY LA .00 0003 LKV 00013 0001 ]
(0,003) (0.001) (0,003) (0,000 ) (0.003) (0.001) (0.0013) (0,00
Male =071 —(hi24 = (L9 A LEN] — k4 =029 =077 = A6
(0.075) (0.025) (0.076) (0.026) (0.075) (0.025) (0.076) (0.026)
Married 0092 L031 0.076 0.026 0.079 0.027 0.067 0.022
(0096 {0,033) (0,098 (0.033) (0.0935) (0.032) {0.09E) {0033
Mumber of dependant — 0027 — {004 — {0335 — 0012 — 0025 — 008 — 0031 0011
children {0,034 (0.012) {0.033) (0.012) (0.034) (0.011) {0.035) 10.012)
Lower secondary school 0. 168 0.059 0177 0062 0167 0058 0,157 0054
(0.141) {0.050) (0.141) {0.051) {0.140) {0.050) {0.143) {0.051)
Upper secondary school 0,428 0. 146 0,401 0,137 0,368 0.126 0.336 0.114
(0129 (00a4pee (0 12999 (D08 (DI2RR (0084 (0130 (D044
University degree 0.457 0, 166 L1 0,145 0,389 LN E 0,336 0120
(0L I52 (0058 (0 1539 (0058 (0,052 (00578 (00154 (0057
logl Income) 0.294 LN (11 (1. 3 0. 14 0.303 104 {1,285 LIRIL
(0087 (D029 (0087 (0030 (D07 (0030 (DOBE (0.030)F
RFoural — 0,193 — {1005 — 0, v — 0040 —0.210 — 0071 — 10,204 — 00068
(0078 (0026)**  (DOTEP* (D026 (007799 (00260 (0079 (D026)%
Orwn house 0,232 0,070 0,251 0082 0,235 0083 0,243 0079
(0109 (00340 (01097  (D.03M)™  (0.108)* (0033 (01100 (0034
Importance of 0.337 0115
environment (0070 {0,025y
Support for Kyvoto 0,205 0070
(0053 (D018
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How Well Does the Model Fit the Data?

O Thereis no R squared for a probability model.
= Least squares for linear models is computed to maximize R?
= There are no residuals or sums of squares in a binary choice model
= The model is not computed to optimize the fit of the model to the
data
O How can we measure the “fit” of the model to the data?

= “Fit measures” computed from the log likelihood

Pseudo R squared =1 -logL/logLO
Also called the “likelihood ratio index”

= Direct assessment of the effectiveness of the model at predicting the
outcome
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Pseudo R? = Likelihood Ratio Index

log L for the model
log L for a model with only a constant term

Pseudo R* =1 -

The prediction of the model is F = F(ﬁ’xi) = Estimated Prob(y; =1| x,)
Using only the constant term, F(a)

LogL, = . {1~ y;)log[l—F(c)]+y; log F(c)}
= nylog[l-F(a)]+n, logF(a) < O
The log likelihood for the model is larger, but also < 0.
log L
log L,

LRI=1- . Since logL > logL, 0 < LRI <1.
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O O O O 0O

O

The Likelihood Ratio Index

Bounded by 0 and a number < 1

Rises when the model is expanded

Specific values between 0 and 1 have no meaning
Can be strikingly low even in a great model

Should not be used to compare models

= UselogL

= Use information criteria to compare nonnested models

Can be negative if the model is not a discrete choice model. For
linear regression,
logL=-n/2(1+log2tr+log(e’e/n)]; Positive if e’e/n < 0.058497
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Fit Measures Based on LogL

Binary Logit Model for Binary Choice

Dependent variable DOCTOR

Log likelihood function -2085.92452 €@===  Full model LogL
Restricted log likelihood -2169.26982 = Constant term only LogLO0
Chi squared [ 5d.f.] 166.69058

Significance level .00000

McFadden Pseudo R-squared .0384209 €=—= 1 - LogL/logL0
Estimation based on N = 3377, K = 6

Information Criteria: Normalization=1/N
Normalized Unnormalized

AIC 1.23892 4183.84905 -2LogL + 2K
Fin.Smpl.AIC 1.23893 4183.87398 -2LogL + 2K + 2K(K+1)/(N-K-1)
Bayes IC 1.240981 4220.59751 -2LogL + KlnN
Hannan Quinn 1.24282 4196.98802 -2LogL + 2K1ln(1nN)
________ +_____________________________________________________________
Variable| Coefficient Standard Error b/St.Er. P[|Z]|>z] Mean of X
________ +_____________________________________________________________
|]Characteristics in numerator of Prob[Y = 1]
Constant| 1.86428**%* .67793 2.750 .0060
AGE | -.10209*** .03056 -3.341 .0008 42 .6266
AGESQ| .00154**%* .00034 4.556 .0000 1951.22
INCOME | .51206 .74600 .686 .4925 .44476
AGE_INC| -.01843 .01691 -1.090 .2756 19.0288
FEMALE | .65366*** .07588 8.615 .0000 .46343
________ +_____________________________________________________________
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Fit Measures Based on Predictions

0o Computation
= Use the model to compute predicted probabilities
= P=F(a+b,Age + b,Income + b;Female+...)
= Use arule to compute predictedy =0or 1
= Predict y=1if P is “large” enough
= Generally use 0.5 for “large” (more likely than not)

J=1if P>P*

O Fit measure compares predictions to actuals
O Count successes and failures

18-48/67 Part 18: Maximum Likelihood



Computing test statistics requires the log likelihood
and/or standard errors based on the Hessian of LogL

18-49/67

Logit: g =Y - Ai Hi = Ai (1'Ai) E[Hi] - \Pi = Ai (1'Ai)
(@ =2y, -1 z,=qB'%;. A;=exp(z;)/[1+exp(z)])

¢
(Di(l_q)i)

Probit: g, = %d)' H. = Z(‘Ij)‘ +($‘ ] , E[H]=VY, =

b =d(z,), @, =D(z,). Note, g, is a "generalized residual.”
Estimators: Based on H,, E[H.] and g7 all functions evaluated at z,

. -1
Actual Hessian:  Est.Asy.Var[p] = [ZIN: lHiXiXi’}
1-1

Expected Hessian: Est.Asy.Var[B] = [Z.N: Y

BHHH: Est.Asy.Var[f] = [ZN 19?Xixi’_
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Robust Covariance Matrix

(Robust to the model specification? Latent heterogeneity?
Correlation across observations? Not always clear)

"Robust" Covariance Matrix: V = ABA
A = negative inverse of second derivatives matrix

2 -1 2 -1
estimated E| - 9 Iog!_ — _ZN 0 '09 PArObi
opop =L oBop’
B = matrix sum of outer products of first derivatives
dlogL dlog L} -5 dlogProb; dlogProb, |
B P < of op

R R -1
FmakmnmmmLAz[zjlﬂa—Ryaq
B= [Z:il (y; _FA)i)ZXiXi'J:[ZL eiZXiX;:|

(Resembles the White estimator in the linear model case.)
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Robust Covariance Matrix

for Logit Model

Doesn’t change much. The model is well specified.

________ 4$4-—-———————er e e = =

________ 4$4-—-———————er e e = =

________ 4-———_———— e e = =

| Standard
DOCTOR| Coefficient Error
Conventional Standard Errors
Constant| 1.86428**x* .67793
AGE | -.10209*** .03056
AGE”*2.0]| .00154**x* .00034
INCOME | .51206 .74600
| Interaction AGE*INCOME
_ntrct02] -.01843 .01691
FEMALE | .65366*** .07588
Robust Standard Errors
Constant| 1.86428**%* .68518
AGE | -.10209*** .03118
AGE”*2.0]| .00154**x* .00035
INCOME | .51206 .75171
| Interaction AGE*INCOME
_ntrct02] -.01843 .01705
FEMALE | .65366**%* .07594
18-51/67

2

4

.75
-3.
.56
.69

34

95% Confidence

Interval
53557 19299
16199 04219
00088 00220
95008 97420
05157 01470
50494 80237
52135 20721
16321 040098
00086 00222
96127 98539
05185 01498
50483 80249
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The Effect of Clustering

O Y, must be correlated with Y, across periods
O Pooled estimator ignores correlation
0 Broadly, y; = E[yglxi] + w;,

= Elyylxi] = Prob(y; = 1[x;)

= W, IS correlated across periods

O Assuming the marginal probability is the same, the
pooled estimator is consistent. (We just saw that it might
not be.)

O Ignoring the correlation across periods generally leads to
underestimating standard errors.
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‘Cluster’ Corrected Covariance Matrix

C = the number If clusters
n. = number of observations In cluster c

C

H™ = negative inverse of second derivatives matrix
g.. = derivative of log density for observation

v e (e

—

H—l

T
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Cluster Correction: Doctor

Binomial Probit Model
Dependent variable

Log likelihood function

DOCTOR
-17457.21899

________ 4$--————————erererrrr e = =

Variable|

Coefficient

Standard Error b/St.Er. P[|Z]|>z] Mean of X

________ 4$--————————erererrrr e = =

Constant|
AGE |
EDUC |
HHNINC |
FEMALE |

.25597%**
.01469*%**
.01523%**
.10914*x*

.35209%*%*

Conventional Standard Errors

.05481
.00071
.00355
.04569
.01598

20.686 .0000 43.5257

-4.289 .0000 11.3206
-2.389 .0169 .35208
22.027 .0000 .47877

________ 4$--———————— e e = =

Constant|
AGE |
EDUC |
HHNINC |
FEMALE |

18-54/67

.25597*%**
.01469%**
.01523%*%*
.10914*

.35209%**
________ +___________________

Corrected Standard Errors

.07744
.00098
.00504
.05645
.02290

15.065 .0000 43.5257

-3.023 .0025 11.3206
-1.933 .0532 .35208
15.372 .0000 .47877
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Hypothesis Tests

0 We consider “nested” models and parametric
tests

O Test statistics based on the usual 3 strategies

m Wald statistics: Use the unrestricted model

= Likelihood ratio statistics: Based on comparing the
two models

= Lagrange multiplier: Based on the restricted model.

O Test statistics require the log likelihood and/or
the first and second derivatives of logL
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Base Model for Hypothesis Tests

Binary Logit Model for Binary Choice

Dependent wvariable DOCTOR
Log likelihood function -2085.92452 . i i i1 fi
Restricted log likelihood -2169.26982 Ho: Age is .nOt asignificant
Chi squared [ 5 d.f.] 166.69058 determinant of
Significance level .00000 PrOb(DOCtor — 1)
McFadden Pseudo R-squared .0384209
Estimation based on N = 3377, K = 6 . _ _ _
Information Criteria: Normalization=1/N HO' BZ - ‘33 - BS =0
Normalized Unnormalized
AIC 1.23892 4183.84905
________ +_____________________________________________________________
Variable| Coefficient Standard Error b/St.Er. P[|Z]|>z] Mean of X
________ +_____________________________________________________________
|Characteristics in numerator of Prob[Y = 1]
Constant| 1.86428%%** .67793 2.750 .0060
AGE | -.10209**%* .03056 -3.341 .0008 42 .6266
AGESQ| .00154**x* .00034 4.556 .0000 1951.22
INCOME | .51206 .74600 .686 .4925 .44476
AGE_INC| -.01843 .01691 -1.090 .2756 19.0288
FEMALE | .65366%** .07588 8.615 .0000 .46343
________ +_____________________________________________________________
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Likelihood Ratio Test

Null hypothesis restricts the parameter vector
Alternative relaxes the restriction

Test statistic: Chi-squared =
2 (LogL|Unrestricted model — LogL|Restrictions) >0

Degrees of freedom = number of restrictions
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LR Test of Hy: B, = B5 =

UNRESTRICTED MODEL
Binary Logit Model for Binary Choice

Dependent variable DOCTOR
Log likelihood function -2085.92452
Restricted log likelihood -2169.26982
Chi squared [ 5 d.f.] 166.69058

Significance level .00000
McFadden Pseudo R-squared .0384209
Estimation based on N = 3377, K = 6
Information Criteria: Normalization=1/N

RESTRICTED MODEL

Binary Logit Model for Binary Choice

Dependent variable DOCTOR
Log likelihood function -2124.06568
Restricted log likelihood -2169.26982
Chi squared [ 2 d.f.] 90.40827

Significance level .00000
McFadden Pseudo R-squared .0208384
Estimation based on N = 3377, K = 3
Information Criteria: Normalization=1/N

Normalized Unnormalized Normalized Unnormalized
AIC 1.23892 4183.84905 AIC 1.25974 4254 .13136
Chi squared[3] = 2[-2085.92452 - (-2124.06568)] 77.46456
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Wald Test of Hy: B, =Bs =B =0

Unrestricted parameter vector is estimated
Discrepancy: d= Rb —m is computed
(or r(b,m) if nonlinear)

Variance of discrepancy is estimated.:
Var[g]=R VR’

Wald Statistic is g’[Var(g)]'q = q’[RVR’]1q

Part 18: Maximum Likelihood



Wald Test

Rb -

1.86428

-0.102093

q

g 0,001 540104 g
: 0512059 "
0078433 0

0 1 0 0102093
0 0 1 = 0.00154004
0 0 0 0018433
RVR, 0. E53653
0 1 0 0
0 0 1 0
0 0 0 0
0.4505684 0019886 0000199178 -0.231031 000556395 0.00125442 0 0
0019336 0000934022 -998629-00 000516338 -0.00014332  -0.000160159 1 0
0.000196178 | -9.99629¢-006 | 114272007 | -1.03054e-006 | 2.83849¢-007 | 1.56007e-005 0 1
0231031 000516338 -1.03054=-006 0556523  -0.0122686 -0.000805883 0 0
0.00556335  -000014332  283843e-007 -00122686  0.000285847 2 77535e-005 0 0
0.00125442 | 0.000160159 | 1.56007e-006 | -0.000805883 | 277535e-005 0.00575729
0.000934022 | -3.3862%e-006 | -0.00014332
= | -9.99629e-006 1.14272e-007 | 2.83349e-007
0.00014392 | 2.83843e-007 | 0.000285847
0102093 000154004 0018433 | 0.000934022 | -3.98629e-006  -0.00014352 -0.102093 .
-9.99629e-005 | 114272007 2.83049-007 000154004 = 59_0541'
0.00014332  2.83943e-007  0.000285847 -0.018433

= oo oo

Chi squared[3] = 69.0541
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Lagrange Multiplier Test of Hy: B, = B3 =B =0

0 Restricted model is estimated

O Derivatives of unrestricted model and variances of
derivatives are computed at restricted estimates

0 Wald test of whether derivatives are zero tests the
restrictions

O Usually hard to compute — difficult to program the
derivatives and their variances.
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LM Test for a Logit Model

o Compute b, (subject to restictions)
(e.g., with zeros in appropriate positions.

o Compute Pi(b,) for each observation.
0 Compute g(by) = [y; — Pi(by)]
o Compute g;(by) = x;e; using full x; vector

0 LM = [20i(bo)I'[2:9i(b0)gi(be) T [Z9i(by)]
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Y Logit Model with guadratic and interaction

Hameli=st ; x=one.age.age¥*age, 1ncomes,
age¥incomne, femnale 5
Logit D 1f[yvear=1994]
+ Lh= = doctor
Fh= = =
Y Constrained MLE. Force 3 coefficients to = [
cml:b{2)=0,b(3)=0,b(5)=0
Frob = p%
Y Fir=st derivative (=cale part)
Create ;o gli= (doctor — p) ;. gil = gi*gili %S
Y Second deriwvatiwve (=cale part)
Create ;o hi=p*(l-p)%

Y LM =tati=stic based on BHHH e=stimator
Matri=z ;1f[vear=1994] ;: list : G = X'gi %
Matriz ;1f[wvear=1994] ; Li=st ; LH = g'=*{E'[gi1Z2]i:*g &
Y+ LM =tati=stic use=s internal routine
Logit ; 1f[vear=1994] ; Lh==doctor ; Fh===
o Start = b Mazit=0%
Y+ IM =tati=stic based on actual =econd deriwvatives
Matriz ;1f[wyvear=1994] ; Li=st ; ML = g'#{H'[hi]EX:*g %

11

(There is a built in function for this computation.)
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Restricted Model

Binary Logit Model for Binary Cholce

Dependent wvariable DOCTOR
Log likelihood function -2124.065k68
Festricted log likelihood -21b9. 204982
Chi sguared [ 5](F= .000) 90.40827
Slgnificance level Looooo
McFadden Pseudo E-sgquared 0208354
Estimation based on W = 3377, K = 3
Int.Cr.AIC = 4254.1 AICAH = 1.260
Linear constraints imposed 3
________ +____________________________________________________________________
| mtandard Frah. 45% Confidence
DOCTOR| Coefficient Error = |z | 2% Interval
________ +____________________________________________________________________
Constant | D20 %% 05973 5.88  .0000 30227 .70418
AGE | a.o ..., (Fixed Parameter).....
AGE#=AGE | I (Fizxed Parameter).....
IHCOME | —.37810%=* 16741 -2.26 L0239 -.70B23 -. 049495
| Interaction AGE=INCOME
_ntroctlZ| a.o ..., (Fixed Parameter).....
FEMALE | b7 o0exx 07433 9.05 .0000 .03054 .02416B
________ +____________________________________________________________________
®¥%  *®% ¥ == DSignificance at 1%, 5%, 10% level.
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| -» Create

b

; gl= (doctor - p) : giZd = gi*gl S
| - Matriz ;if[vear=19494] ; list ; G = X'gl 5

.239344E-05
2268 .60
212203,

.9683%960E-06
g49,705

.238041E-05

| -» Matriz ;i1f[vear=1994] ; List ; ML = g'=*{'[g12d]xs*g S

| - Matriz ;if[vear=14994] ; List ; ML = g'#*J{X'[hl]X>*g 5

.D28225 L239344E-05

Looooood 22608.60
Looooon 212205,
-.378105 L9683896E-06/
Looooood 849,705

L BF7 500 .238041E-05
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| =% Logit ; if[vear=1994] ; Lhs=doctor ; Ehs=x
: Btart = b o Mazit=0%
Mazimum of 0 iterations. Exit iterations with status=1.
Mazit = 0. Computing LM statistic at starting values.
Ho iterations computed and no parameter update done.

Binary Logit Model {for Binary Choice
Dependent wariahle DOCTOR

LM =tat. at start values 7l.67452 _

LM statistic kept as scalar LM=TAT

Log likelihood function -2124. 06564
Restricted log likelihood -2189_2R4YE2
Chi sguared [ 5] (F= .000) 90.40827
Slgnificance level .ooooon
MeFadden Pseudo R-sguared 0208384
Estimation bhased on W = 3377, K = h
Inf.Cr.AIC = 4260.1 AIC/H = 1.262
________ +____________________________________________________________________
Standard Fraoh. 85% Confidence
DOCTOR|  Coefficient Error = |z | »2%* Interval
________ +____________________________________________________________________
Constant | .02822 .BB7E3 .79 .4F90 -.76069 1.83714
AGE | 0.0 02967 .00 1.0000 -.58161D-01 .58161D-01
AGE=AGE | 0.0 .ooosz .00 1.0000 -.63007D-03 .63007D-03
IMCOME | -.37810 L2928 -.52 .B0O41 -1.80747 1.05126
| Interaction AGE*INCOME
_ntrctlZ| 0.0 01625 .00 1.0000 -.315844D-01 .31844D-01
FEMALE | BT o= LOvs22 9,01 .0000 . 23007 02493
________ +____________________________________________________________________

1] 71.6745
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| have a question. The question is as follows. We have a probit
model. We used LM tests to test for the hetercodeaticiy in this
model and found that there is heterocedasticity in this model...

How do we proceed now? What do we do to get rid of
heterescedasticiy?

Testing for heteroscedasticity in a probit model and then getting
rid of heteroscedasticit in this model is not a common procedure.
In fact | do not remember seen an applied (or theoretical also)
works which tests for heteroscedasticiy and then uses a method
to get rid of it???

See Econometric Analysis, 7" ed. pages 714-714
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Properties of the
Maximum Likelihood Estimator

We will sketch formal proofs of these results:
The log-likelihood function, again
The likelihood equation and the information matrix.
A linear Taylor series approximation to the first order conditions:

9Ow) = 0 =~ g(6) + H(6) By - 6)

(under regularity, higher order terms will vanish in large samples.)

Our usual approach. Large sample behavior of the left and right hand sides is the same.
A Proof of consistency. (Property 1)

The limiting variance of ¥n(8,,, - 0). We are using the central limit theorem here.

Leads to asymptotic normality (Property 2). We will derive the asymptotic variance of
the MLE.

Estimating the variance of the maximum likelihood estimator.

Efficiency (we have not developed the tools to prove this.) The Cramer-Rao lower
bound for efficient estimation (an asymptotic version of Gauss-Markov).

Invariance. (A VERY handy result.) Coupled with the Slutsky theorem and the delta
method, the invariance property makes estimation of nonlinear functions of
parameters very easy.
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Regularity Conditions

O Deriving the theory for the MLE relies on certain “regularity”
conditions for the density.
O What they are
= 1. logf(.) has three continuous derivatives wrt parameters

m 2. Conditions needed to obtain expectations of derivatives are met.
(E.g., range of the variable is not a function of the parameters.)

= 3. Third derivative has finite expectation.

O What they mean
= Moment conditions and convergence. We need to obtain expectations

of derivatives.
= We need to be able to truncate Taylor series.

= We will use central limit theorems
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The MLE

The results center on the first order conditions for the MLE
dlog L (A )
= =0

9MLE

aeMLE
Begin with a Taylor series approximation to the first derivatives:

AN

9(Ouc) =0 ~ g(8) +H(8)(6,.c —8) [+ terms o(L/n) that vanish]

The derivative at the MLE, 0, ., is exactly zero. It is close to zero at the

true , to the extent that 8,, . is a good estimator of 9.
Rearrange this equation and make use of the Slutsky theorem

(6uc-8) = [-H(8)] g (e)

In terms of the original log likelihood

(éMLE —9) ~ |:— inlei (9):|_1 [Zin:lgi (9):|
where g, (6) = 6|0%(ji ©) g H, (6) = & g)sag,(e)
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Consistency of the MLE
(6ne-0) = [-XLH.O)] [ELa(0)

Divide both sums by the sample size.

(bue-0)=[- 210 [257.00) + o}

The approximation is now exact because of the higher order term.
As n — oo, the third term vanishes. The matrices in brackets are sample
means that converge to their expectations.

-1
_% :‘1|—| (e)} —>{—E[Hi(6)]}_1, a positive definite matrix.

%Z:Zlgi (6)} — E|[g;(0) | =0, one of the regularity conditions.

Therefore, collecting terms,
(éMLE —6) —0 or plimé,,. =6
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Asymptotic Variance

Multiply both sides by \j/ﬁ . Thus,

\\'.

i (8w - 8] [ HOYM Vi [2(6)u]

F,

The limiting variance of the thing on the LHS 1g the same as the limiting
variance of the thing on the RHS. Remember that [- H(8)/n]-! converges
to a positive detinite matrix. Supposge that D 12 the limiting variance of

\{H [2(0)n]. Then, the limiting variance of

\H'.

Jn | O - H.‘ will be [- H(Q)/n]-! < D = [- H(0)/n]!,

F,

20 to complete the derrvation, we need to know what D, the limiting covariance
maftrix of the score vector. There 12 a proof 1n your text of the VIR,
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Asymptotic Variance

the limiting variance of ~/n [g(8)/n] iz -(1/n)E[H(0)]

(It bears repeating. The variance of the first derrvatives vector 18
the second derrvatives matrix. Multiplying it out and using our usual
transition from limiting variances to asymptotic variances,

R

Agy. Var ‘ O - 9| = (1/n) [-E[H(0)/n]]-!.

A
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II. Estimating the Asymptotic Covariance Matrix of the Maximum Likelihood

Estimator:

LogL = LogL{8|data) = X logh{v;|x;.0) = I logti(0)
o(8) = dlogL/d® = T, dlogf(yi|x.0)/00 = I, g(0)
H(0) = &logL/000' = T, Plogh(yilx, 0)/0006" = I; H()

(1) Negative mmverse of the expected Hesgian - using estimates of the expectations (when known)

a. Requires knowledge of the expectation of 2logt(v;|x;,0)/0608', -E[H;(8)]
b. Estimator i then computed by ingerting MLE mto these functions

Est Asy. Var[.] = [Z; -E[Hi(8)]]! vsing the MLE
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(2) Negative inverse of the actual Hessian as an estumate of its population counterpart

a. Exact expected value of Hessian might be unknown, but we need to estimate the mean,
20 use the mean of the actual values.
b. Estimator ig just the negative mverse of the actual Hessian

Est. Asy.Var[.] = [Z; -Hi(8)]1 vsing the MLE

(c. There are cases in which the Hessian does not involve the random variable, so that
the actual Heszian equals the expected Hessian. )

(3) Imversze of sum of squares (outer products) of first derrvatives, under the theory that the negative of the
expected Hegsian 18 the variance of the first derivatives.

a. Negative of expected Hessian 1s the variance of the first derivatives. Use an empirical
estimator
b. Estimator 1g the sum of "squares” of the first derrvatives

Est. Asy. Var[.] = [ g(0)g(0)]! vsing the MLE

(This 1s called the BHHH - Berndt, Hall, Hall, Hausman - estimator
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Asymptotic Distribution

You might guess (correctly) normal. Why?

Jn | On - El'| = [- H(0)/n]! Jn [2(0)/n], on the

A

right hand =i1de, 18 a matrix which converges to something times
root n tumes a sample mean. We can invoke the Lindberg-Feller
version of the central linit theorem. The conclusgion 18

(EML) 5 N| ., [-H(8)]! ]
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Efficiency: Variance Bound

It the density of the obzerved random variable satisfies the regularity conditions,
then there 12 a lower bound for the variance of a congistent, normally distributed
estimators. Tl 18 the Crame v - Rao Lower bound for aregular estimator:

i
If 1(v;|0) satisfies the regularity conditions, then, if € 1s an estimator of @ which

1¢ congistent and asymptotically normally digtributed and if V 1g the asymptotic
i

covariance matrix of 0, then V - [-H(0)]! i a nonnegative definite matrix.

That 1g, there 12 no C. A N. estimator which has a variance which 1s smaller than

the inverse of the information matrix.

VVIR: This means that the MLE is efficient among C.A.N. estimators.
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Invariance

The maximum likelihood estimator of a function of
0, say h(0) is h(MLE). This is not always true of
other kinds of estimators. To get the variance of
this function, we would use the delta method.
E.g., the MLE of 8=(B/0) is b/(e’e/n)
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Food Policy 50 (2015) 11-19

journal homepage: www.elsevier.com/locate/foodpol

Contents lists available at ScienceDirect -

Food Policy —

Does SNAP improve your health? @ CrossMark

Christian A. Gregory **, Partha Deb "¢

* Diet, Safety and Health Economics Branch, Food Economics Division, Economic Research Service, USDA, Washington DC, United States
®Dept. of Economics, Hunter College, City University of New York, New York, United States

Table 2
Parameter estimates from ordered and count models.
SAH T
One Vehide Exempt per Adult 0.116"
Female 0.034 (0.049)
(0.021) (0.049)
Black 0.346"~ tanh(p) / A 0.305"
(0.028) (L047)
Hispanic -0018 -
0.029) In(3)
Other Race 0021°
(0.051) R 17.87°""
Married -0217" L il
(0.024) (0.000)
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The Linear Probability “Model”

Prob(y =1| x) =B'x
E[y | x]=0*Prob(y =1| x)+1Prob(y =1| x) =Prob(y =1| x)
y=px+e

ROTTEN APPLES: AN INVESTIGATION OF THE
PREVALENCE AND PREDICTORS
OF TEACHER CHEATING

Brian A. Jacob
Steven D. Levitt

Working Paper 9413
http://www.nber.org/papers/w9413

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge. MA 02138
December 2002
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The Dependent Variable equals zero for 99.1% of the observations. In
the sample of 163,474 observations, the LHS variable equals 1 about
1,500 times.

Table 9: OLS Estimates of the Relationship between Cheating
and Classroom Characteristics
Dependent variable =
Indicator of classroom cheating
Independent vanables (1) (2) (3) (4)
Social motion policy 0.0011 0.0011 0.0015 0.0023
PR (00013)  (00013) _ (0.0013) _  (0.0009)
School probati i 0.0020 0.0019 0.0021 0.0029
TROTPIORRORRRY  (00014)  (00014)  (0.0014)  (0.0013)
Pri la hiew i -0.0047 -0.0023 -0.0016 -0.0028
O e, . (0.0005) __ (0.0005) _ (0.0007) (0.0007)
: S - -0.0045 -0.0051 -0.0046
Socal promouon”classroom achuevement T _(00014) __(0.0014) _ (0.0012)
. - i -0.0070 -0.0070 -0.0064
SChmlpr“b‘m"“ 'fllla“m“m“hmmem T (00013) _ (0.0013) (0.0013)
- -0.0084 -0.0085 -0.0089 -0.0089
Moed grade classroom (0.0007) __(00007)  _ (0.0008) _ (0.0012)
o . ) ) . 0.0252 0.0249 0.0141 0.0131
o of students mcluded n official reporting (0.0031) ____(0.0031)  _ (0.0037) _ (0.0037)
School*Year Fixed Effects No No No Yes
Number of observations 163,474 163 474 163 474 163.474

Notes: The umit of observation 1s classroom®grade®*year®subject and the sample includes years eight vears (1993 to
2000), four subjects (reading comprehension and three math sections) and five grades (three to seven). The
dependent variable is the cheating indicator derived using the 95™ percentile cutoff. Robust standard errors clustered
by school®*year are shown in parenthesis. Other variables included 1n the regressions 1 column 1 and 2 include a
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Table 10: In Cheating Classrooms, for Whom do Teachers Cheat?

Dependent variable =
Teacher cheated for the student

Independent variables (1) (2) (3) (4)
Prior achievement in the bottom . -0.007
quartile % - (0.075) B
Prior achievement in the 2™ qum‘tile( {ggijj ) - (gggg} -
Prior achievement in the 3™ quartile W - L{'l;] F ilz ) --
Prior achievement (linear measure) -- 0.0004 -- 0.0005
(0.0003) (0.0004)
Prior achievement (linear) * High- -0.0007 -0.0007
2SLS for a stakes ” (0.0004) T (0.0005)
zmary Excluded from test reporting ({;]E?;I;) ({;]{;];f) (S{;J;IS} (S{;];S]
ependent -0.009 0.009 -0.014 -0.013
variable. Male (0.004) 0.004) (0.005) (0.005)
Black 0.005 0.006 0.004 0.001
(0.011) ©o11) (0024) (0023
Hispanic -0.010 -0.008 0.006 0.004
(0.010) 0.009) (0023) (0,022
Age -0.010 -0.012 -0.015 -0.017
= (0.004) (0.004) (0.005) (0.005)
Sample Full Low-Achieving Schools
Number of observations 30.216 23.010

18-83/67

Notes: The sample includes only those classrooms that were categorized as cheating based on the 95th percentile
cutoff in a particular subject and year. The dfpﬂﬂdﬂﬂt variable takes on the value of one if a student s answer string
and test score pattern was susplcmus at the 90™ percentile level. suggesting that the teacher had cheated for that

and vear. All models include fixed effects for classroom®*year. Low achieving
chcmls are defined as those 1 whidR fewer than 25% of students met national norms in reading in 1995, The
eqmtmns are estimated using 2515 yhere a student’s test scores at t-2 are used to instrument for the student’s t-1
weyement level. Robust stapdard errors are shown in parenthesis.




Modeling a Binary Outcome

O Did firm i produce a product or process innovation in year t ?
i - 1=Yes/O=No
O Observed N=1270 firms for T=5 years, 1984-1988

O Observed covariates: x;, = Industry, competitive pressures,
Size, productivity, etc.
o How to model?
= Binary outcome
= Correlation across time
= Heterogeneity across firms
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Application

3
Yy = Py +Zxk,fr[3k +8,, ¥ =1 (ys'r = 0) )
=1

i=1,...,1270, f=1984,...,1988.
vy = 1 1f a product innovation was realized by German
manufacturing firm 7 in year £, 0 otherwise,
x2 = Log of industry sales in DM,
‘ X35 = Import share = ratio of industry imports to (industry ‘
sales plug imports),
X1; = Relative firm size = ratio of employment in business
unit to employment in the industry (times 30),
‘ ¥s; — FDI share = Ratio of mndustry foreign direct investment
to (industrv sales. plus imports).
Xxs; = Productivity = Ratio of industry value added to
industry employment,
x7; = Raw matenals sector = 1 if the firm 1s 1n thig sector,
Xg; = Investment goods sector = 1 if the firm 18 1n thig sector
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Probit and LPM

+—— r—————— +- +
| FROEIT | LINEARFH |
Yariable +——"—————— - +
| Estimate t ratio]| Eztimate t ratio]|
+—— r—————— +- +
Constant -1.96031 —8.508 —.10424 -1.244
LOGSALES 17711 7. 966 05198 B.524
THIUTH 1.13384 7.506 45284 8. 065
=1 1.07274 7.549 09492 4 093
FOIUH 2. 85318 7. 096 1.07787 7. 567
FPROD —-2.3411% -3.272 - .GEo12 -2.192
RAWHTL —. 27858 -3 .4572 —. 09861 -3.317
TNV GOOD .18796 4. 793 07879 C.372
Log-L —4114 .05
Log-L{0} —4283 .17
FE=grd 04467
=.d.e(1) 47987
+—— r—————— +- +
| - Maketabl FrobitME, LinsarME %
+—— r—————— +- +
| FROBITHE | LINEARME |
Yariable +————————— - +
| Estimate t ratio| Eztimate t ratio|
+———— yfb———————— +-— +
LOGSALES 06573 g.083 05198 6.524
IMITH LA2080 7. 613 45784 g 065
SP .3981%7 7632 09492 4 093
FDITH 1. 05890 d177 1. 07787 =1:Y
PROD —.BRB87 -3.278 - 55012 —-2.192
RAWHTL —. 105689 —-3.420 —. 09861 -3. 317
IHVGEOOD 07045 4. 774 07879 5372
+————— b———— +-—— +
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OLS approximates the partial effects, “directly,” without bothering with coefficients.

Binomial Probit Model

Dependent wvariable DV

Standard Frob. 95% Confidence
oV Coefficient Error = |z | >Z= Interval

Inde=x function for probability
Constant —2 2327 8%%x .19860 -11.24 0000 —2.62203 -—1.834353
AGE L0105 3%x% .10lse 5.65 0000 .0eaa .01418
EDTC —. 02047% .11095 -1.87 .0ele —. 04193 .aoo99
MARRIED — . 12096%*xx .0de 25 —-2.61 00839 —. 21161 —. 03030
FUBLIC L2982 1%xx .09436 3.16 001 11327 .48314
HEALTHY — BE77E%xx .14959 —-17.30 .0000 —. 95496 —. 76057

*®%%  *¥%, * == Significance at 1%, &%, 10% lewel.

Partial derivatives of E[v] = F[*] with
reszpect to the wvector of characteristics
Awverage partial effects for szample obs.

Partial Standard Frob. 95% Confidence
oV Ef fect Error = |z | >Z= Interval
AGEI NINESES 2 . 7425D-04 5.56 .0000 .noozz? L0056
EDTC —. 00080 Qo043 -1.87 .0e2l —. 00164 .loood4
MARRIED — . 00504%* .aoz20s —2.46 0139 —. 00906 —. Q00103 #
FUBLIC 00919 Qo223 4. .12 0000 .no4daz .01356 #
HEALTHY —. 03140%xx .10lse —-18.92 0000 —. 03503 —. 02776 #
# Partial effect for dummy wvariable i= E[v|x.d=1] - E[v]|=x.d=0]
Drdinary lea=t =guares regression ... ... ... ...
LHS=DV Mean = 01749
Standard deviation = .13110
Fit F—=quared = .01955  FR-bar sguared 01937
I Standard Frob. 95% Confidence
oV Coefficient Error = |z | >Z= Interval
Cnnstantl D227 8%x% .0ed2 3.34 0008 .no942 .03e14
AGE L0044 .7315D-04 5.98 .0oo0o0 .nooz9 .Qooss
EDTC —.Qoos9 .Qoo3z -1.62 1080 —. 00131 .ooo13
MARRIED — . 00520%xx .no1az —2.78 0055 —.Qosaz —. 00153
FUBLIC 007 00%ex .10z2e3 2.66 0077 .no01as .0121%
HEALTHY —. 03261=%x= L0166 -19.59 0000 —. 03538 —. 02935

MLE

Average Partial Effects

OLS Coefficients

- Maximum Likelihood



Odds Ratios This calculation is not

the model is not a binary logit model

meaningful if

Prob(y = 0 x,Zz) = L

Prob(y =1|x,z) = xRS )

1+exp(B'x+vyz)

1+exp(B'x +yz)

Prob(y=1|x,z) exp(B'x+yz)

OR(X,2) = Prob(y=0|x,z) 1
=exp(B'x +yz)
= exp(B'x)exp(yz)

OR(x,z+1) _exp(Bx)exp(yz+7y) _ exp(r)

OR(Xx,2) exp(B'x)exp(yz)
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Odds Ratio

O Exp(y) = multiplicative change in the odds ratio
when z changes by 1 unit.

0 dOR(X,z)/dx = OR(x,z)*B, not exp(p)

O The “odds ratio” is not a partial effect — it is not a
derivative.

O It is only meaningful when the odds ratio is itself
of interest and the change of the variable by a
whole unit is meaningful.

0 “Odds ratios” might be interesting for dummy
variables
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Cautions About reported Odds Ratios

logit grade gpa tuce psi, nolog

Logit estimates Number of obs 32
LR chi?2 (3) = 15.40
Prob > chi?2 0.0015
Log likelihood = -12.885633 Pseudo R2 = 0.3740
grade | Coef. std. Err Z P>|z| [95% Conf. Interval]
_____________ +___________________________________________

gpa | 2.826113 1.262941 2.24 0.025 .3507538 5.301432

tuce | .0951577 1415542 0.67 0.501 —. 1022539 .37120900

psi | 2.378688 1.0645¢64 2.23 0.025 .29218 4.465195
_cons | -13.02135 4.931325 -2.64 0.008 -22.68657 -3.35613

logit grade gpa tuce psi, or noleg

Logit estimates Number of obs 32
LR chiZ2 (3) = 15.40

Prob > chi?2 = 0.0015

Log likelihood = -12.889633 Pseudo R2 0.3740
grade | ©0dds Ratio Std. Err z P>|z| [95% Conf. Interwvall]

_____________ +__ —_—_——————e e —

gpa | 16.87972 21.31809 2.24 0.025 1.420194 200.6239

tuce | o553z TSt o g 0.e7 0.501 PRSI I L TR T—a5T502

psi | 10.79073 11.48743 2.23 0.025 1.339344 86.93802

18-90/6 ¢
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Model for a Binary Dependent Variable

O Binary outcome.

= Event occurs or doesn't (e.g., the democrat wins, the
person enters the labor force,...

= Model the probability of the event. P(x)=Prob(y=1|x)
= Probability responds to independent variables

O Requirements
= 0 < Probability < 1
= P(x) should be monotonic in x —it's a CDF
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Two Standard Models

0 Based on the normal distribution:
= Prob[y=1|x] = ®(B’x) = CDF of normal distribution
= The “probit” model
0O Based on the logistic distribution
= Probly=1[x] = exp(B’x)/[1+ exp(B’x)]
= The “logit” model
O Log likelihood
= P(y|x) = (1-F)@Y FY where F = the cdf
» LogL =2 (1-y)log(1-F; + ylogF;
= 2, F[(2y;-1)B’x] since F(-t)=1-F(t) for both.
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Coefficients in the Binary Choice Models

ElyIX] = 0*(1-F) + 1F; = P(y=1|x)
= F(B'X)

The coefficients are not the slopes, as usual
In a nonlinear model

JE[y|x]/ox=f(B’x)B
These will look similar for probit and logit
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Application: Female Labor Supply

1975 Survey Data: Mroz (Econometrica) 753 Observations
Descriptive Statistics

Variable Mean Std.Dev. Minimum Maximum Cases Missing
All observations in current sample

________ +_____________________________________________________________________
LFP | .568393 .495630 .000000 1.00000 753 0
WHRS | 740.576 871.314 .000000 4950.00 753 0
KL6 | .237716 .523959 .000000 3.00000 753 0
K618 | 1.35325 1.31987 .000000 8.00000 753 0
WA | 42.5378 8.07257 30.0000 60.0000 753 0
WE | 12.2869 2.28025 5.00000 17.0000 753 0
WW | 2.37457 3.24183 .000000 25.0000 753 0
RPWG | 1.84973 2.41989 .000000 9.98000 753 0
HHRS | 2267.27 595.567 175.000 5010.00 753 0
HA | 45.1208 8.05879 30.0000 60.0000 753 0
HE | 12.4914 3.02080 3.00000 17.0000 753 0
HW | 7.48218 4.23056 .412100 40.5090 753 0
FAMINC | 23080.6 12190.2 1500.00 96000.0 753 0
KIDS | .695883 .460338 .000000 1.00000 753 0
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Estimated Choice Models for Labor Force Participation

Binomial Probit Model

(Probit)
(Logit)

________ - e e =

________ - e =

________ e ==

1.466
-1.542
5.014
-2.326
-.408
.986
2.298
.693

Dependent variable LFP
Log likelihood function -488.26476
Log likelihood function -488.17640
Variable| Coefficient Standard Error
| Index function for probability
Constant| .77143 .52381
WA | -.02008 .01305
WE | .13881*** .02710
HHRS | -.00019*~* .801461D-04
HA| -.00526 .01285
HE | -.06136*** .02058
FAMINC| .00997** .00435
KIDS| -.34017*** .12556
Binary Logit Model for Binary Choice
|Characteristics in numerator of Prob[Y =
Constant| 1.24556 .84987
WA | -.03289 .02134
WE | .22584*** .04504
HHRS| -.00030*~* .00013
HA| -.00856 .02098
HE | -.10096*** .03381
FAMINC| .01727** .00752
KIDS| -.54990*** .20416

P[|Z]|>z] Mean of X
1408
1241 42 .5378
0000 12.2869
0183 2267.27
6821 45.1208
0029 12.4914
0221 23.0806
0067 .69588

1]
1428
1232 42 .5378
0000 12.2869
0200 2267.27
6834 45.1208
0028 12.4914
0215 23.0806
0071 .69588

________ e
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Partial Effects

Partial derivatives of probabilities with
respect to the vector of characteristics.
They are computed at the means of the Xs.

Observations used are All Obs.

538

.127
.359
.410
.983
.289

781

P[|Z|>z] Elasticity
.1240 -.58479
.0000 1.16790
.0183 -.29353
.6821 -.16263
.0029 -.52488
.0221 .15753
P|O.

.0054 -.15905

P[|Z|>z] Elasticity

in probability

542

.023

327

.408
.988
.301

786

.1231 -.59546
.0000 1.18097
.0200 -.29375
.6834 -.16434
.0028 -.53673
.0214 .16966
P|O.

.0053 -.15894

________ +_____________________________________________________________
Variable| Coefficient Standard Error b/St.Er.
________ +_____________________________________________________________
|PROBIT: Index function for probability
WA | -.00788 .00512 -1.
WE | .05445%** .01062 5
HHRS|-.74164D-04** .314375D-04 -2
HA| -.00206 .00504 -
HE| -.02407*** .00807 -2
FAMINC| .00391** .00171 2
|[Marginal effect for dummy variable is P|1 -
KIDS| -.13093*** .04708 -2.
Variable| Coefficient Standard Error b/St.Er.
________ +_____________________________________________________________
|LOGIT: Marginal effect for variable
WA| -.00804 .00521 -1.
WE | .05521*** .01099 5
HHRS|-.74419D-04** .319831D-04 -2.
HA| -.00209 .00513 -
HE| -.02468*** .00826 -2
FAMINC| .00422** .00184 2
|[Marginal effect for dummy variable is P|1 -
KIDS| -.13120%*** .04709 -2.
________ +_____________________________________________________________
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Testing Hypotheses — A Trinity of Tests

The likelihood ratio test:

Based on the proposition (Greene’s) that restrictions
always “make life worse”

Is the reduction in the criterion (log-likelihood) large?
Leads to the LR test.

The Wald test: The usual.
The Lagrange multiplier test:

Underlying basis: Reexamine the first order
conditions.

Form a test of whether the gradient is significantly
“nonzero” at the restricted estimator.
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Testing Hypotheses

Wald tests, using the familiar distance measure

Likelihood ratio tests:
LogL, = log likelihood without restrictions
Logly = log likelihood with restrictions
LogL, > logLy for any nested restrictions
2(LogL, — logLg) = chi-squared [J]
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Estimating the Tobit Model

Log likelihood for the tobit model for estimation of B and o :

<2 m[éd{%jﬂ

d=1ify >0, 0ify, = 0. Derivatives are very complicated,
Hessian is nightmarish. Consider the Olsen transformation*:
0=1/c, y=-B/c. (One to one; c=1/6, B=-y/ 6.

logL=>"" log [(1-di) log®(x;y)+d, log (e¢ (By, + xi’y))]
Z:‘zllog[(l—di)logm (xiy)+d(loge+(1/2)log2r—(1/2)(oy, + x;y)z)}

ologL ) <|>(X§Y)_
oy _Zi=1 {(1 di)®(x;y) dieixi

ologL n 1
= d|=-ey.
00 Zi:l ! (e e|y|j

*Note on the Uniqueness of the MLE in the Tobit Model," Econometrica, 1978.

IogL=Zi"_l{(1-di) Iogq)(
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