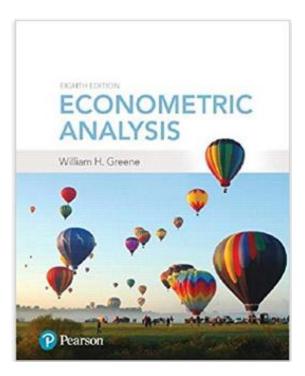
Econometrics I

Professor William Greene Stern School of Business Department of Economics



Econometrics I

Part 18 – Maximum Likelihood

Part 18: Maximum Likelihood

18-2/67

Maximum Likelihood Estimation

This defines a class of estimators based on the particular distribution assumed to have generated the observed random variable.

Not estimating a mean – least squares is not available

Estimating a mean (possibly), but also using information about the distribution

Setting Up the MLE

The distribution of the observed random variable is written as a function of the parameters to be estimated

 $P(y_i|data,\beta) = Probability density | parameters.$

The likelihood function is constructed from the density

Construction: Joint probability density function of the observed sample of data – generally the product when the data are a *random* sample.

(Log) Likelihood Function

- □ $f(y_i|\beta, x_i)$ = probability density of observed y_i given parameter(s) and possibly data, x_i .
- Observations are independent
- **D** Joint density = $\Pi_i f(y_i | \boldsymbol{\beta}, \mathbf{x}_i) = L(\boldsymbol{\beta} | \mathbf{y}, \mathbf{X})$
- f(y_i|β,x_i) is the contribution of observation i to the likelihood.
- **D** The MLE of β maximizes L(β |**y**,**X**)
- □ In practice it is usually easier to maximize $logL(\beta|\mathbf{y},\mathbf{X}) = \Sigma_i logf(y_i|\beta,\mathbf{x}_i)$

Average Time Until Failure

Estimating the average time until failure, θ , of light bulbs. y_i = observed life until failure. $f(y_i|\theta)$ = $(1/\theta) \exp(-y_i/\theta)$ = $\Pi_i f(y_i|\theta) = \theta^{-n} \exp(-\Sigma y_i/\theta)$ $L(\theta)$ = $-n\log(\theta) - \Sigma y_i/\theta$ $logL(\theta)$ Likelihood equation: $\partial \log L(\theta) / \partial \theta = -n/\theta + \Sigma y_i / \theta^2 = 0$ $\theta_{MLF} = \Sigma y_i / n$. Note: $E[y_i] = \theta$ Solution: $\partial \log f(y_i | \theta) / \partial \theta = -1/\theta + y_i / \theta^2$ Note, Since $E[y_i] = \theta, E[\partial \log f(\theta) / \partial \theta] = 0.$ Extension: Loglinear Model: $\theta_i = \exp(\mathbf{x}_i \boldsymbol{\beta}) = E[\mathbf{y}_i | \mathbf{x}_i]$

The MLE

The log-likelihood function: logL(β|data) The likelihood equation(s):

First derivatives of logL equal zero at the MLE. $(1/n)\Sigma_i \partial \log f(y_i | \beta, x_i) / \partial \beta_{MLE} = 0.$ (Sample statistic.) (The 1/n is irrelevant.) "First order conditions" for maximization Usually a nonlinear estimator.

A moment condition - its counterpart is the fundamental theoretical result $E[\partial log L/\partial \beta] = 0$.

Properties of the MLE

- **Consistent**: Not necessarily unbiased, however
- Asymptotically normally distributed: Proof based on central limit theorems
- Asymptotically efficient: Among the possible estimators that are consistent and asymptotically normally distributed – counterpart to Gauss-Markov for linear regression
- **Invariant**: The MLE of $g(\theta)$ is $g(\text{the MLE of }\theta)$

The Linear (Normal) Model

Definition of the likelihood function - joint density of the observed data, written as a function of the parameters we wish to estimate.

Definition of the maximum likelihood estimator as that function of the observed data that maximizes the likelihood function, or its logarithm.

For the model: $y_i = \beta' x_i + \varepsilon_i$, where $\varepsilon_i \sim N[0,\sigma^2]$, the maximum likelihood estimators of β and σ^2 are

 $b = (X'X)^{-1}X'y$ and $s^2 = e'e/n$.

That is, least squares is ML for the slopes, but the variance estimator makes no degrees of freedom correction, so the MLE is biased.

Normal Linear Model

The log-likelihood function

- = $\Sigma_i \log f(y_i|\theta)$
- = sum of logs of densities.

For the linear regression model with normally distributed disturbances

$$\begin{split} \log L &= \sum_{i} \left[-\frac{1}{2} \log 2\pi - \frac{1}{2} \log \sigma^{2} - \frac{1}{2} (y_{i} - \mathbf{x}_{i}' \beta)^{2} / \sigma^{2} \right] \\ &= -\frac{n}{2} [\log 2\pi + \log \sigma^{2} + \frac{v^{2}}{\sigma^{2}}] \\ v^{2} &= \epsilon' \epsilon / n \end{split}$$

Likelihood Equations

The estimator is defined by the function of the data that equates $\partial \log -L/\partial \theta$ to **0**. (Likelihood equation)

The derivative vector of the log-likelihood function is the *score function*. For the regression model,

$$\begin{array}{ll} \textbf{g} &= \left[\frac{\partial \log L}{\partial \beta} , \frac{\partial \log L}{\partial \sigma^2} \right]' \\ &= \left. \frac{\partial \log L}{\partial \beta} \right\} = \sum_i \left[(1/\sigma^2) \textbf{x}_i(\textbf{y}_i - \textbf{x}_i'\beta) \right] \\ &= \frac{\lambda' \epsilon}{\sigma^2} \cdot \frac{\lambda' \epsilon}{\sigma^2} \cdot \frac{\lambda' \epsilon}{\sigma^2} \cdot \frac{\lambda' \epsilon}{\sigma^2} \cdot \frac{\lambda' \epsilon}{\sigma^2} \right] \\ &= \frac{\lambda' \epsilon}{\sigma^2} \cdot \frac{\lambda$$

For the linear regression model, the first derivative vector of logL is

$$(1/\sigma^2)$$
X'(**y** - **X**β) and $(1/2\sigma^2) \Sigma_i [(y_i - x_i'\beta)^{2/\sigma^2} - 1]$
(K×1) (1×1)

Note that we could compute these functions at *any* β and σ^2 . If we compute them at **b** and **e'e**/n, the functions will be identically zero.

Maximizer of the log likelihood? Use the Information Matrix

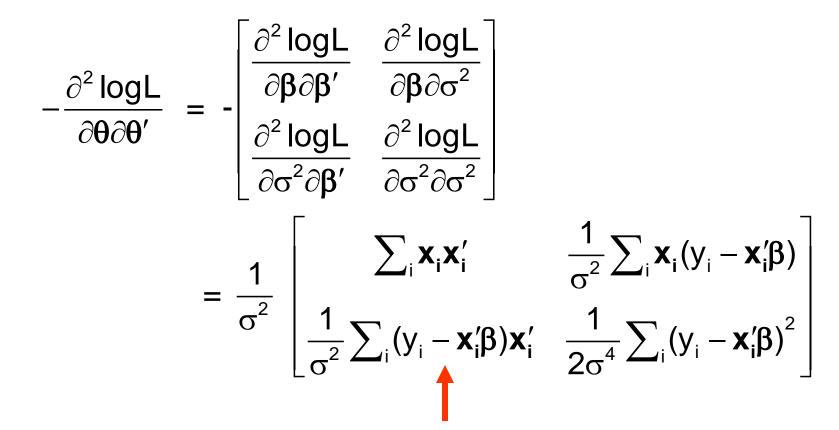
The negative of the second derivatives matrix of the loglikelihood,

$$-\mathbf{H} = -\sum_{i} \frac{\partial^2 \log f_i}{\partial \theta \partial \theta'}$$

For a maximizer, **-H** is positive definite.

-H forms the basis for estimating the variance of the MLE. It is usually a random matrix. –H is the information matrix.

Hessian for the Linear Model



Note that the off diagonal elements have expectation zero.

18-13/67

Information Matrix

This can be computed at any vector β and scalar σ^2 . You can take expected values of the parts of the matrix to get

$$-\mathsf{E}[\mathbf{H}] = \begin{bmatrix} \frac{1}{\sigma^2} \sum_i \mathbf{x}_i \mathbf{x}'_i & \mathbf{0}' \\ \mathbf{0} & \frac{n}{2\sigma^4} \end{bmatrix}$$

(which should look familiar). The off diagonal terms go to zero (one of the assumptions of the linear model).

Asymptotic Variance

The asymptotic variance is {-E[H]}⁻¹ i.e., the inverse of the information matrix.

$$\{-\mathsf{E}[\mathsf{H}]\}^{-1} = \begin{bmatrix} \sigma^2 \left[\sum_i \mathbf{x}_i \mathbf{x}'_i \right]^{-1} & \mathbf{0}' \\ \mathbf{0} & \frac{2\sigma^4}{n} \end{bmatrix} = \begin{bmatrix} \sigma^2 \left(\mathbf{X}'\mathbf{X} \right)^{-1} & \mathbf{0}' \\ \mathbf{0} & \frac{2\sigma^4}{n} \end{bmatrix}$$

- There are several ways to estimate this matrix
 - Inverse of negative of expected second derivatives
 - Inverse of negative of actual second derivatives
 - Inverse of sum of squares of first derivatives
 - Robust matrix for some special cases

Computing the Asymptotic Variance

We want to estimate {-E[**H**]}⁻¹ Three ways:

- (1) Just compute the negative of the actual second derivatives matrix and invert it.
- (2) Insert the maximum likelihood estimates into the known expected values of the second derivatives matrix. Sometimes (1) and (2) give the same answer (for example, in the linear regression model).
- (3) Since E[H] is the variance of the first derivatives, estimate this with the sample variance (i.e., mean square) of the first derivatives, then invert the result. This will almost always be different from (1) and (2).
- Since they are estimating the same thing, in large samples, all three will give the same answer. Current practice in econometrics often favors (3). Stata rarely uses (3). Others do.

Model for a Binary Dependent Variable

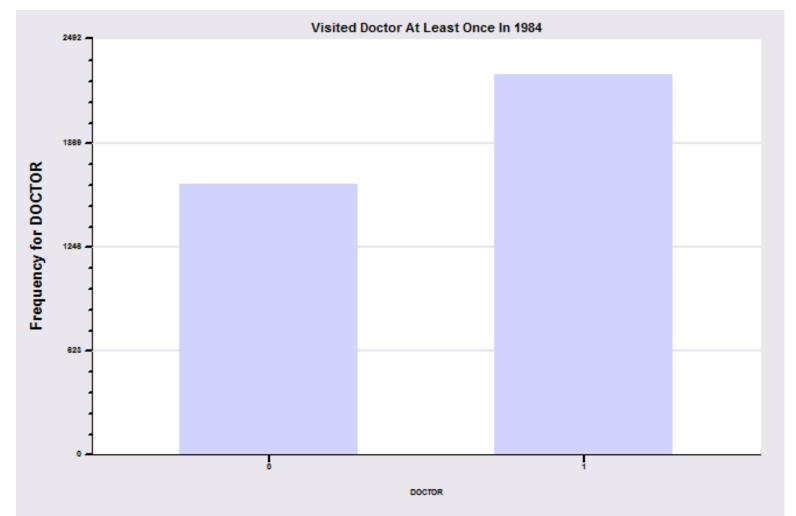
- Binary outcome.
 - Event occurs or doesn't (e.g., the person adopts green technology, the person enters the labor force, etc.)
 - Model the probability of the event. P(x)=Prob(y=1|x)
 - Probability responds to independent variables
- Requirements for a probability
 - 0 < Probability < 1</pre>
 - P(x) should be monotonic in x it's a CDF

Behavioral Utility Based Approach

- Observed outcomes partially reveal underlying preferences
- There exists an underlying preference scale defined over alternatives, U*(choices)
- Revelation of preferences between two choices labeled 0 and 1 reveals the ranking of the underlying utility
 - U*(choice 1) > U*(choice 0) Choose 1
 - $U^*(\text{choice 1}) \leq U^*(\text{choice 0}) \longrightarrow \text{Choose 0}$

□ Net utility = U = U*(choice 1) - U*(choice 0). U > 0 => choice 1

Binary Outcome: Visit Doctor In the 1984 year of the GSOEP, 2265 of 3874 individuals visited the doctor at least once.



18-19/67

A Random Utility Model for the Binary Choice

- Yes or No decision | Visit or not visit the doctor
- Model: Net utility of visit at least once
- Net utility depends on observables and unobservables

 U_{doctor} = Net utility = $U^*_{visit} - U^*_{not visit}$ Random Utility

 $U_{doctor} = \alpha + \beta_1 Age + \beta_2 Income + \beta_3 Sex + \varepsilon$

Choose to visit at least once if net utility is positive

Modeling the Binary Choice Between the Two Alternatives

Net Utility $U_{doctor} = U^*_{visit} - U^*_{not visit}$

 $U_{doctor} = \alpha + \beta_1 \operatorname{Age} + \beta_2 \operatorname{Income} + \beta_3 \operatorname{Sex} + \varepsilon$

Chooses to visit: $U_{doctor} > 0$

 $\alpha + \beta_1 \operatorname{Age} + \beta_2 \operatorname{Income} + \beta_3 \operatorname{Sex} + \varepsilon > 0$

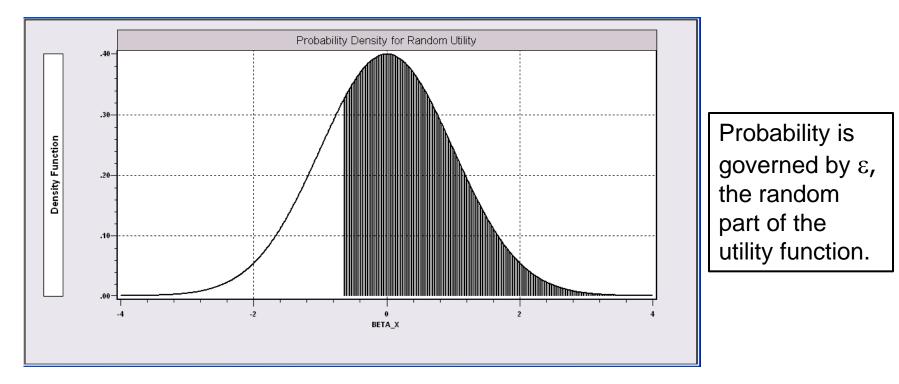
Choosing to visit is a random outcome because of ϵ

$$\epsilon > -(\alpha + \beta_1 \operatorname{Age} + \beta_2 \operatorname{Income} + \beta_3 \operatorname{Sex})$$

18-21/67

Probability Model for Choice Between Two Alternatives

People with the same (Age,Income,Sex) will make different choices because ε is random. We can model the <u>probability</u> that the random event "visits the doctor" will occur.



Event DOCTOR=1 occurs if $\varepsilon > -(\alpha + \beta_1 Age + \beta_2 Income + \beta_3 Sex)$ We model the probability of this event.

18-22/67

An Application

27,326 Observations in GSOEP Sample

- 1 to 7 years, panel
- 7,293 households observed
- We use the 1994 year; 3,337 household observations

Descriptive Statistics for 4 variables							
Variable	Mean	Std.Dev.	Minimum	Maximum	Cases M	lissing	
DOCTOR AGE INCOME FEMALE	.657980 42.62659 .444764 .463429	.474456 11.58599 .216586 .498735	0.0 25.0 .034000 0.0	1.0 64.0 3.0 1.0	3377 3377 3377 3377 3377	0 0 0 0	

An Econometric Model

D Choose to visit iff $U_{doctor} > 0$

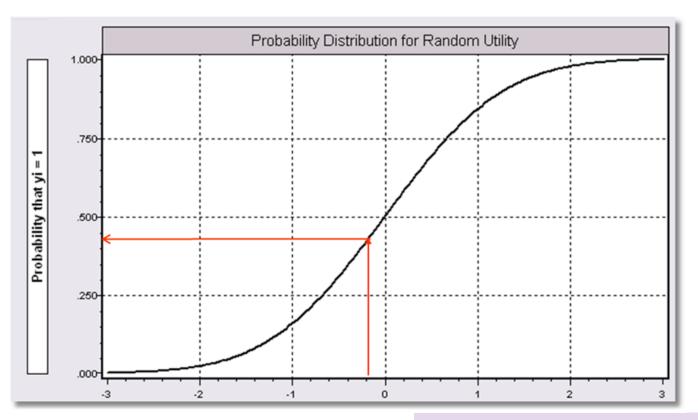
- Udoctor = α + β_1 Age + β_2 Income + β_3 Sex + ε
- Udoctor > 0 ⇔ ϵ > -(α + β_1 Age + β_2 Income + β_3 Sex) ϵ < α + β_1 Age + β_2 Income + β_3 Sex)
- Probability model: For any person observed by the analyst, Prob(doctor=1) = Prob($\varepsilon \le \alpha + \beta_1 \operatorname{Age} + \beta_2 \operatorname{Income} + \beta_3 \operatorname{Sex}$)
- Note the relationship between the unobserved ε and the observed outcome DOCTOR.

Index = $\alpha + \beta_1 Age + \beta_2 Income + \beta_3 Sex$ Probability = a function of the Index. P(Doctor = 1) = f(Index)

Internally consistent probabilities:

(1) (Coherence) 0 < Probability < 1

(2) (Monotonicity) Probability increases with Index.



18-25/67

A Fully Parametric Model

- **I**Index Function: $U = \beta' x + \epsilon$
- □ Observation Mechanism: y = 1[U > 0]
- **Distribution:** $\varepsilon \sim f(\varepsilon)$; Normal, Logistic, ...
- Maximum Likelihood Estimation:

 $Max(\beta) \log L = \Sigma_i \log Prob(Y_i = y_i | x_i)$

A Parametric Logit Model

Dependent Log likeli Restricted Chi square	ihood function d log likelihood ed [3](P= .000)	DOCT -2097.481 -2169.269 143.577	09 82 44				
Estimation	nce level Pseudo R-squared n based on N = C = 4203.0 AIC	3377, K =	35 4	We examin	e the model (components.]
DOCTOR	Coefficient	Standard Error	z	Prob. z >Z*	95% Con Inte	nfidence erval	
Constant AGE INCOME FEMALE	42085*** .02365*** 44198*** .63825***		7.21 -2.61	.0078 .0000 .0091 .0000	.01722	.03008 11003	
+- ***, **, *	* ==> Significan	nce at 1%, 5	%, 10% 1	evel.			

Parametric Model Estimation

□ How to estimate α , β_1 , β_2 , β_3 ?

The technique of maximum likelihood

$$L = \prod_{y=0} \operatorname{Prob}[y=0 | \mathbf{x}] \times \prod_{y=1} \operatorname{Prob}[y=1 | \mathbf{x}]$$

• Prob[doctor=1] = Prob[$\varepsilon > -(\alpha + \beta_1 \operatorname{Age} + \beta_2 \operatorname{Income} + \beta_3 \operatorname{Sex})$]

Prob[doctor=0] = 1 - Prob[doctor=1]

Requires a model for the probability

Completing the Model: F(E)

The distribution

- Normal: PROBIT, natural for behavior
- Logistic: LOGIT, allows "thicker tails"
- Gompertz: **EXTREME VALUE**, asymmetric
- Others...
- Does it matter?
 - Yes, large difference in estimates
 - Not much, quantities of interest are more stable.

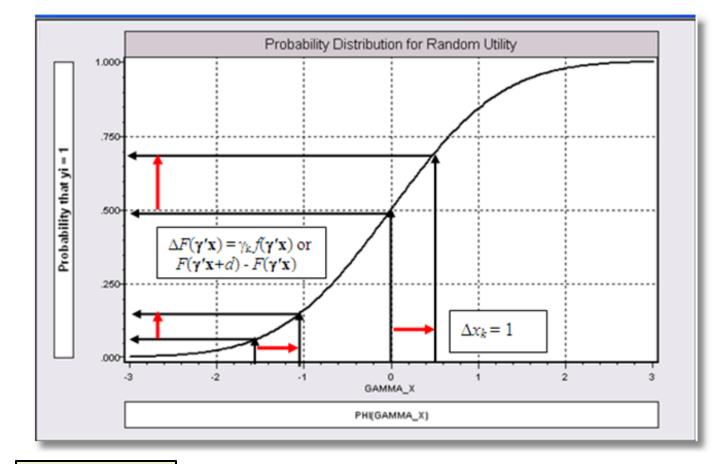
Estimated Binary Choice Models for Three Distributions

	LOGIT		PRO	BIT	EXTREME_VALUE		
Variable	Estimate	t-ratio	Estimate	t-ratio	Estimate	t-ratio	
Constant	-0.42085	-2.662	-0.25179	-2.600	0.00960	0.078	
Age	0.02365	7.205	0.01445	7.257	0.01878	7.129	
Income	-0.44198	-2.610	-0.27128	-2.635	-0.32343	-2.536	
Sex	0.63825	8.453	0.38685	8.472	0.52280	8.407	
Log-L	-2097.48		-2097.35		-2098.17		
Log-L(0)	-2169.27		-216	9.27	7 -2169.27		

Log-L(0) = log likelihood for a model that has only a constant term. Ignore the t ratios for now.

18-30/67

Effect on Predicted Probability of an Increase in Age



 $\alpha + \beta_1 (Age+1) + \beta_2 (Income) + \beta_3 Sex (\beta_1 is positive)$

18-31/67

Partial Effects in Probability Models

- **D** Prob[Outcome] = some $F(\alpha + \beta_1 \text{Income...})$
- "Partial effect" = $\partial F(\alpha + \beta_1 \text{Income...}) / \partial$ "x" (derivative)
 - Partial effects are derivatives
 - Result varies with model
 - □ Logit: $\partial F(\alpha + \beta_1 \text{Income...}) / \partial \mathbf{x}$
 - **Probit:** ∂ F(α + β_1 Income...)/ ∂ **x**
 - **Extreme Value:** $\partial F(\alpha + \beta_1 \text{Income...})/\partial \mathbf{x}$

- = Prob * (1-Prob) $\times \beta$
- = Normal density $\times \beta$
- = Prob * (-log Prob) $\times \beta$
- Scaling usually erases model differences

Partial effect for the logit model

Prob(doctor = 1) =
$$\frac{\exp(a + \beta_1 Age + \beta_2 Income + \beta_3 Sex)}{1 + \exp(a + \beta_1 Age + \beta_2 Income + \beta_3 Sex)}$$
$$= \Lambda(a + \beta_1 Age + \beta_2 Income + \beta_3 Sex)$$
$$= \Lambda(\beta' x)$$

The derivative with respect to one of the variables is

$$\frac{\partial \Lambda(\boldsymbol{\beta}' \boldsymbol{x})}{\partial x_k} = \left[\Lambda(\boldsymbol{\beta}' \boldsymbol{x}) \right] \left[1 - \Lambda(\boldsymbol{\beta}' \boldsymbol{x}) \right] \boldsymbol{\beta}_k$$

(1) A multiple of the coefficient, not the coefficient itself
(2) A function of all of the coefficients and variables
(3) Evaluated using the data and model parts after the model is estimated.

Similar computations apply for other models such as probit.

18-33/67

Estimated Partial Effects for Three Models (Standard errors to be considered later)

	LOGIT		PR	овіт	EXTREME VALUE		
	Estimate	t ratio	Estimate	t ratio	Estimate	t ratio	
Age	.00527	7.235	.00527	7.269	.00506	6.291	
Income	09844	-2.611	09897	-2.636	09711	-2.527	
Female	.14026	8.663	.13958	8.264	.13539	8.747	

Partial Effect for a Dummy Variable Computed Using Means of Other Variables

- □ Prob[$y_i = 1 | \mathbf{x}_i, d_i$] = F($\beta' \mathbf{x}_i + \gamma d_i$) where d is a dummy variable such as Sex in our doctor model.
- For the probit model, $Prob[y_i = 1 | \mathbf{x}_i, d_i] = \Phi(\beta' \mathbf{x} + \gamma d), \Phi$ = the normal CDF.
- Partial effect of d

$$\begin{aligned} \text{Prob}[y_i = 1 | \mathbf{x}_i, \, d_i = 1] & - \quad \text{Prob}[y_i = 1 | \mathbf{x}_i, \, d_i = 0] \\ &= \quad \delta(d_i) = \Phi(\hat{\boldsymbol{\beta}}' \overline{\mathbf{x}} + \hat{\boldsymbol{\gamma}}) - \Phi(\hat{\boldsymbol{\beta}}' \overline{\mathbf{x}}) \end{aligned}$$

Partial Effect – Dummy Variable

Partial derivatives of E[y] = F[*] with respect to the vector of characteristics They are computed at the means of the Xs Observations used for means are All Obs.								
Variable Coefficient Standard Error b/St.Er. P[Z >z]	Elasticity							
Index function for probability Constant 09186*** .03550 -2.588 .0097 AGE .00527*** .00073 7.269 .0000 INCOME 09897*** .03755 -2.636 .0084 Marginal effect for dummy variable is P 1 - P 0. FEMALE .13958*** .01618 8.624 .0000	06632							
Note: ***, **, * = Significance at 1%, 5%, 10% level. Elasticity for a binary variable = marginal effect/Mean.								

Computing Partial Effects

Compute at the data means (PEA)

- Simple
- Inference is well defined.
- Not realistic for some variables, such as Sex

Average the individual effects (APE)

- More appropriate
- Asymptotic standard errors are slightly more complicated.

Partial Effects

 $\begin{array}{lll} \mbox{Probability} &= P_i = F(\beta \, {}^{'} {\bf x}_i) \\ \mbox{Partial Effect} &= \frac{\partial P_i}{\partial {\bf x}_i} = \frac{\partial F(\beta \, {}^{'} {\bf x}_i)}{\partial {\bf x}_i} = f(\beta \, {}^{'} {\bf x}_i) \times \beta = {\bf d}_i \\ \mbox{Partial Effect at the Means} &= f(\beta \, {}^{'} \overline{{\bf x}}) \times \beta = f\left(\beta \, {}^{'} \left(\frac{1}{n} \, \Sigma_{i=1}^n {\bf x}_i\right)\right) \times \beta \\ \mbox{Average Partial Effect} &= \frac{1}{n} \Sigma_{i=1}^n {\bf d}_i &= \left(\frac{1}{n} \, \Sigma_{i=1}^n f(\beta \, {}^{'} {\bf x}_i)\right) \times \beta \\ \mbox{Both are estimates of } \delta = \mbox{E[d_i] under certain assumptions.} \end{array}$

The two approaches usually give similar answers, though sometimes the results differ substantially.

	Average Partial	Partial Effects
	Effects	at Data Means
Age	0.00512	0.00527
Income	-0.09609	-0.09871
Female	0.13792	0.13958

APE vs. Partial Effects at the Mean

Delta Method for Average Partial Effect

Estimator of
$$\operatorname{Var}\left[\frac{1}{N}\sum_{i=1}^{N}\operatorname{PartialEffect}_{i}\right] = \overline{\mathbf{G}} \operatorname{Var}\left[\hat{\boldsymbol{\beta}}\right] \overline{\mathbf{G}}'$$

> partials ; effects: hhninc/female ; summary \$								
Partial Effects for Probit Probability Function Partial Effects Averaged Over Observations * ==> Partial Effect for a Binary Variable								
(Delta method)	Partial Effect	Standard Error	t	95%	Confidence	Interval		
HHNINC * FEMALE		.03762 .01599			12869 .10886	.01877 .17155		
> partials ;	effects: h	hninc/fema	le ; s	sunn	ary ; mean	s\$		
> partials ; Partial Effects Partial Effects (* ==> Partial Effects (for Probit P Computed at	robability H data Means	Junctic		ary ; mean	.s\$ 		
Partial Effects Partial Effects	for Probit P Computed at	robability H data Means inary Variah	Sunctio	on 	ary ; mean Confidence			

18-40/67

Scottish Journal of Political Economy, Vol. 57, No. 1, February 2010 © 2010 The Authors Journal compilation © 2010 Scottish Economic Society. Published by Blackwell Publishing Ltd, 9600 Garsington Road, Oxford, OX4 2DQ, UK and 350 Main St, Malden, MA, 02148, USA

SHEDDING LIGHT ON THE LIGHT BULB PUZZLE: THE ROLE OF ATTITUDES AND PERCEPTIONS IN THE ADOPTION OF ENERGY EFFICIENT LIGHT BULBS

Corrado Di Maria*, Susana Ferreira** and Emiliya Lazarova*

Abstract

Despite the potential energy savings and economic benefits associated with compact fluorescent light bulbs, their adoption by the residential sector has been limited to date. In this paper, we present a theoretical model that focuses on the agents' ability to perceive the correct cost of lighting and on the role of environmental attitudes as key determinants of the adoption decision. We use original data from Ireland to test our theoretical predictions. Our results emphasize the importance of education, information and environmental awareness in the adoption decision.

18-41/67

Variable	N	Mean	Standard deviation	Minimum	Maximum
Adoption of energy-efficient light bulbs	1392	0.30	0.46	0	1
Support Kyoto	1469	3.05	0.78	1	4
Importance of Environment	1496	2.51	0.59	1	3
Knowledge of Environment	1500	0.85	0.35	0	1
Education (reference = primary education	n)				
Lower secondary	1500	0.19	0.39	0	1
Upper secondary	1500	0.47	0.50	0	1
University degree	1500	0.17	0.38	0	1
Income (€)	1497	22,987	11,644	1852	57,138
Rural dwelling	1500	0.38	0.49	0	1
Own house	1480	0.78	0.41	0	1
Age	1492	43.61	17.10	18	90
Sex $(1 = male)$	1500	0.48	0.50	0	1
Marital status $(1 = married)$	1500	0.52	0.50	0	1
Number of dependent children	1500	0.88	1.29	0	8

Table 1 Descriptive statistics

¹⁶ Due to missing observations the final sample in the probit regressions consists of 1339 observations. The effective response rate is 66.6%. The margin of error using the entire sample is ± 2.5 percent at a 95% confidence level (see UII, 2001).

Tables 3 and 4 only constitute a partial analysis of their actual behaviour. In order to investigate in more detail which factors determine the *individual* decision of adopting energy-efficient light bulbs, we estimate a probit model in which the probability of adopting CFLs is modelled as a function of (a vector of) environmental attitudes and awareness, education, logarithm of income, and other controls:

 $P(\text{adoption} = 1 | \mathbf{x}) = G(\beta_0 + \beta_1 \text{ education} + \beta_2 \log(\text{income}) + \chi \text{ attitudes} + \gamma \text{ controls}),$

18-42/67

	(1)		(2)		(3)		(4)	
	Coefficient	Marginal effects	Coefficient	Marginal efficient	Coefficient	Marginal effects	Coefficient	Marginal effects
Age	0.003	0.001	0.003	0.001	0.003	0.001	0.003	0.001
	(0.003)	(0.001)	(0.003)	(0.001)	(0.003)	(0.001)	(0.003)	(0.001)
Male	-0.071	-0.024	-0.079	-0.027	-0.084	-0.029	-0.077	-0.026
	(0.075)	(0.025)	(0.076)	(0.026)	(0.075)	(0.025)	(0.076)	(0.026)
Married	0.092	0.031	0.076	0.026	0.079	0.027	0.067	0.022
	(0.096)	(0.033)	(0.098)	(0.033)	(0.095)	(0.032)	(0.098)	(0.033)
Number of dependant	-0.027	- 0.009	-0.035	- 0.012	-0.025	- 0.008	-0.031	-0.011
children	(0.034)	(0.012)	(0.035)	(0.012)	(0.034)	(0.011)	(0.035)	(0.012)
Lower secondary school	0.168	0.059	0.177	0.062	0.167	0.058	0.157	0.054
	(0.141)	(0.050)	(0.141)	(0.051)	(0.140)	(0.050)	(0.143)	(0.051)
Upper secondary school	0.428	0.146	0.401	0.137	0.368	0.126	0.336	0.114
	(0.129)***	(0.044)***	(0.129)***	(0.044)***	(0.128)***	(0.044)***	(0.131)**	(0.044)**
University degree	0.457	0.166	0.400	0.145	0.389	0.140	0.336	0.120
	(0.152)***	(0.058)***	(0.153)***	(0.058)**	(0.152)**	(0.057)**	(0.154)**	(0.057)**
log(Income)	0.294	0.100	0.306	0.104	0.305	0.104	0.285	0.096
	(0.087)***	(0.029)***	(0.087)***	$(0.030)^{***}$	(0.087)***	(0.030)***	(0.088)***	(0.030)**
Rural	- 0.193	- 0.065	- 0.206	- 0.069	-0.210	-0.071	-0.204	-0.068
	(0.078)**	(0.026)**	(0.078)***	(0.026)***	(0.077)***	(0.026)***	(0.079)***	(0.026)**
Own house	0.232	0.076	0.251	0.082	0.255	0.083	0.243	0.079
	(0.109)**	(0.034)**	(0.109)**	(0.034)**	(0.108)**	(0.033)**	(0.110)**	(0.034)**
Importance of	0.337	0.115						
environment	(0.070)***	(0.023)***						
Support for Kyoto			0.205 (0.053)***	0.070 (0.018)***				

Table 5 Adoption of energy-efficient light bulbs, probit regressions

18-43/67

How Well Does the Model Fit the Data?

There is no R squared for a probability model.

- Least squares for linear models is computed to maximize R²
- There are no residuals or sums of squares in a binary choice model
- The model is not computed to optimize the fit of the model to the data

How can we measure the "fit" of the model to the data?

- "Fit measures" computed from the log likelihood
 - Pseudo R squared = 1 logL/logL0
 - Also called the "likelihood ratio index"
- Direct assessment of the effectiveness of the model at predicting the outcome

Pseudo R² = Likelihood Ratio Index

Pseudo R² = 1 - $\frac{\log L}{\log L}$ for the model log L for a model with only a constant term The prediction of the model is $\hat{F} = F(\hat{\beta}' \mathbf{x}_i) = \text{Estimated Prob}(y_i = 1 | x_i)$ Using only the constant term, $F(\alpha)$

$$\operatorname{LogL}_{0} = \sum_{i=1}^{n} \{ (1 - y_{i}) \log[1 - F(\alpha)] + y_{i} \log F(\alpha) \}$$
$$= n_{0} \log[1 - F(\alpha)] + n_{1} \log F(\alpha) < 0$$

The log likelihood for the model is larger, but also < 0.

LRI = 1 -
$$\frac{\log L}{\log L_0}$$
. Since $\log L > \log L_0$ $0 \le LRI < 1$.

18-45/67

The Likelihood Ratio Index

- Bounded by 0 and a number < 1</p>
- Rises when the model is expanded
- Specific values between 0 and 1 have no meaning
- Can be strikingly low even in a great model
- Should not be used to compare models
 - Use logL
 - Use information criteria to compare nonnested models
- Can be negative if the model is not a discrete choice model. For linear regression, logL=-n/2(1+log2π+log(e'e/n)]; Positive if e'e/n < 0.058497

Fit Measures Based on LogL

Binary Logit Model for Bi	-							
Dependent variable								
Log likelihood function	-2085.92452 ┥							
Restricted log likelihood	l –2169.26982 ┥	Constant ter	m only LogLO					
Chi squared [5 d.f.]	166.69058							
Significance level .00000								
McFadden Pseudo R-squared .0384209 ← 1 - LogL/logL0								
Estimation based on N = 3377 , K = 6								
Information Criteria: Nor	malization=1/N							
Normalized	Unnormalized							
AIC 1.23892	4183.84905	-2LogL + 2K						
Fin.Smpl.AIC 1.23893	4183.87398	-2LogL + 2K	+ 2K(K+1)/(N-K-1)					
Bayes IC 1.24981	4220.59751	-2LogL + Klni	N					
Hannan Quinn 1.24282	4196.98802	-2LogL + 2K1:	n(lnN)					
+								
Variable Coefficient	Standard Error	b/St.Er. P[Z >z]	Mean of X					
+								
Characteristics	in numerator of	Prob[Y = 1]						
Constant 1.86428***	.67793	2.750 .0060						
AGE 10209***	.03056	-3.341 .0008	42.6266					
AGESQ .00154***	.00034	4.556 .0000	1951.22					
INCOME .51206	.74600	.686 .4925	.44476					
AGE_INC 01843	.01691	-1.090 .2756	19.0288					
	.07588	8.615 .0000	.46343					
+								

18-47/67

Fit Measures Based on Predictions

Computation

Use the model to compute predicted probabilities

- $P = F(a + b_1Age + b_2Income + b_3Female+...)$
- Use a rule to compute predicted y = 0 or 1
- Predict y=1 if P is "large" enough
- Generally use 0.5 for "large" (more likely than not)

$$\hat{\mathbf{y}} = 1$$
 if $\hat{\mathbf{P}} > \mathbf{P}^*$

- Fit measure compares predictions to actuals
- Count successes and failures

Computing test statistics requires the log likelihood and/or standard errors based on the Hessian of LogL

Logit:
$$g_i = y_i - \Lambda_i$$
 $H_i = \Lambda_i(1 - \Lambda_i)$ $E[H_i] = \Psi_i = \Lambda_i(1 - \Lambda_i)$
 $(q_i = 2y_i - 1, z_i = q_i \beta' \mathbf{x}_i. \Lambda_i = \exp(z_i)/[1 + \exp(z_i)])$
Probit: $g_i = \frac{q_i \phi_i}{\Phi_i}$ $H_i = \frac{z_i \phi_i}{\Phi_i} + \left(\frac{\phi_i}{\Phi_i}\right)^2$, $E[H_i] = \Psi_i = \frac{\phi_i^2}{\Phi_i(1 - \Phi_i)}$
 $\phi_i = \phi(z_i), \Phi_i = \Phi(z_i)$. Note, g_i is a "generalized residual."
Estimators: Based on H_i , $E[H_i]$ and g_i^2 all functions evaluated at z_i

Actual Hessian: Est.Asy.Var
$$[\hat{\boldsymbol{\beta}}] = \left[\sum_{i=1}^{N} H_i \mathbf{x}_i \mathbf{x}'_i\right]^{-1}$$

Expected Hessian: Est.Asy.Var $[\hat{\boldsymbol{\beta}}] = \left[\sum_{i=1}^{N} \Psi_i \mathbf{x}_i \mathbf{x}'_i\right]^{-1}$
BHHH: Est.Asy.Var $[\hat{\boldsymbol{\beta}}] = \left[\sum_{i=1}^{N} g_i^2 \mathbf{x}_i \mathbf{x}'_i\right]^{-1}$

18-49/67

Robust Covariance Matrix

(Robust to the model specification? Latent heterogeneity? Correlation across observations? Not always clear)

"Robust" Covariance Matrix: $\mathbf{V} = \mathbf{A} \mathbf{B} \mathbf{A}$

 \mathbf{A} = negative inverse of second derivatives matrix

= estimated
$$\operatorname{E}\left[-\frac{\partial^2 \log L}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}'}\right]^{-1} = \left[-\sum_{i=1}^{N} \frac{\partial^2 \log \operatorname{Prob}_i}{\partial \hat{\boldsymbol{\beta}} \partial \hat{\boldsymbol{\beta}}'}\right]^{-1}$$

 \mathbf{B} = matrix sum of outer products of first derivatives

$$= \text{ estimated } \mathbf{E} \left[\frac{\partial \log L}{\partial \boldsymbol{\beta}} \frac{\partial \log L}{\partial \boldsymbol{\beta}'} \right] = \left[\sum_{i=1}^{N} \frac{\partial \log \operatorname{Prob}_{i}}{\partial \hat{\boldsymbol{\beta}}} \frac{\partial \log \operatorname{Prob}_{i}}{\partial \hat{\boldsymbol{\beta}}'} \right]^{-1}$$

For a logit model, $\mathbf{A} = \left[\sum_{i=1}^{N} \hat{P}_{i}(1-\hat{P}_{i})\mathbf{x}_{i}\mathbf{x}_{i}' \right]^{-1}$
 $\mathbf{B} = \left[\sum_{i=1}^{N} (y_{i}-\hat{P}_{i})^{2}\mathbf{x}_{i}\mathbf{x}_{i}' \right] = \left[\sum_{i=1}^{N} e_{i}^{2}\mathbf{x}_{i}\mathbf{x}_{i}' \right]$

(Resembles the White estimator in the linear model case.)

18-50/67

Robust Covariance Matrix for Logit Model Doesn't change much. The model is well specified.

+-						
l.	Standard			Prob.	95% Cor	nfidence
DOCTOR	Coefficient	Error			Inte	erval
Convention	al Standard Err					
Constant	1.86428***	. 67793	2.75	.0060	. 53557	3.19299
AGE	10209***	.03056	-3.34	.0008	16199	04219
AGE^2.0	.00154***	.00034	4.56	.0000	.00088	.00220
INCOME	.51206	.74600	. 69	. 4925	95008	1.97420
[]	Interaction AGE*	INCOME				
_ntrct02	01843	.01691	-1.09	.2756	05157	.01470
	. 65366***				. 50494	.80237
	andard Errors					
Constant	1.86428***	.68518	2.72	.0065	.52135	3.20721
AGE	10209***	.03118	-3.27	.0011	16321	04098
AGE^2.0	.00154***	.00035	4.44	.0000	.00086	.00222
INCOME	.51206	.75171	. 68	. 4958	96127	1.98539
[]	Interaction AGE*	INCOME				
_ntrct02	01843	.01705	-1.08	.2796	05185	.01498
FEMALE	.65366***	.07594	8.61	.0000	.50483	.80249

The Effect of Clustering

- Y_{it} must be correlated with Y_{is} across periods
- Pooled estimator ignores correlation
- **D** Broadly, $y_{it} = E[y_{it}|\mathbf{x}_{it}] + w_{it}$,
 - $E[y_{it}|\mathbf{x}_{it}] = Prob(y_{it} = 1|\mathbf{x}_{it})$
 - w_{it} is correlated across periods
- Assuming the marginal probability is the same, the pooled estimator is consistent. (We just saw that it might not be.)
- Ignoring the correlation across periods generally leads to underestimating standard errors.

'Cluster' Corrected Covariance Matrix

- C = the number if clusters
- n_c = number of observations in cluster c
- \mathbf{H}^{-1} = negative inverse of second derivatives matrix
- \mathbf{g}_{ic} = derivative of log density for observation

$$\mathbf{V} = \mathbf{H}^{-1} \left(\frac{C}{C-1} \right) \left(\sum_{c=1}^{C} \left(\sum_{i=1}^{n_c} \mathbf{g}_{ic} \right) \left(\sum_{i=1}^{n_c} \mathbf{g}_{ic}' \right) \right) \mathbf{H}^{-1}$$

Cluster Correction: Doctor

Dependent	ihood function		DOCTOR 7457.21899					
•	Coefficient			b/St.Er.	P[Z >z]	Mean of X		
	Conventional St							
Constant	25597***	[.05481	-4.670	.0000			
AGE	.01469***		.00071	20.686	.0000	43.5257		
EDUC	01523***		.00355	-4.289	.0000	11.3206		
HHNINC	10914**		.04569	-2.389	.0169	.35208		
FEMALE	.35209***		.01598	22.027	.0000	. 47877		
I	Corrected Stand	dard						
Constant	25597***		.07744	-3.305	.0009			
AGE	.01469***		.00098	15.065	.0000	43.5257		
EDUC	01523***		.00504	-3.023	.0025	11.3206		
HHNINC	10914*		.05645	-1.933	.0532	.35208		
FEMALE	.35209***		.02290	15.372	.0000	. 47877		
+								

Hypothesis Tests

- We consider "nested" models and parametric tests
- Test statistics based on the usual 3 strategies
 - Wald statistics: Use the unrestricted model
 - Likelihood ratio statistics: Based on comparing the two models
 - Lagrange multiplier: Based on the restricted model.
- Test statistics require the log likelihood and/or the first and second derivatives of logL

Base Model for Hypothesis Tests

Binary Logit Model for Binary Choice Dependent variable DOCTOR Log likelihood function -2085.92452 H₀: Age is not a significant Restricted log likelihood -2169.26982 determinant of Chi squared [5 d.f.] 166.69058 .00000 Significance level Prob(Doctor = 1)McFadden Pseudo R-squared .0384209 Estimation based on N =3377, К = 6 $H_0: \beta_2 = \beta_3 = \beta_5 = 0$ Information Criteria: Normalization=1/N Normalized Unnormalized 1.23892 4183.84905 AIC -+-----Variable | Coefficient Standard Error b/St.Er. P[|Z|>z] Mean of X ______ |Characteristics in numerator of Prob[Y = 1] .67793 2.750 1.86428*** Constant .0060 42.6266 AGE -.10209*** .03056 -3.341 .0008 .00154*** AGESQ .00034 4.556 .0000 1951.22 .74600 .686 .4925 INCOME | .51206 .44476 AGE_INC| -.01843 .01691 -1.090 .2756 19.0288 FEMALE| .65366*** .07588 8.615 .0000 .46343

18-56/67

Likelihood Ratio Test

Null hypothesis restricts the parameter vector Alternative relaxes the restriction Test statistic: Chi-squared = 2 (LogL|Unrestricted model – LogL|Restrictions) ≥ 0 Degrees of freedom = number of restrictions

LR Test of H_0 : $\beta_2 = \beta_3 = \beta_5 = 0$

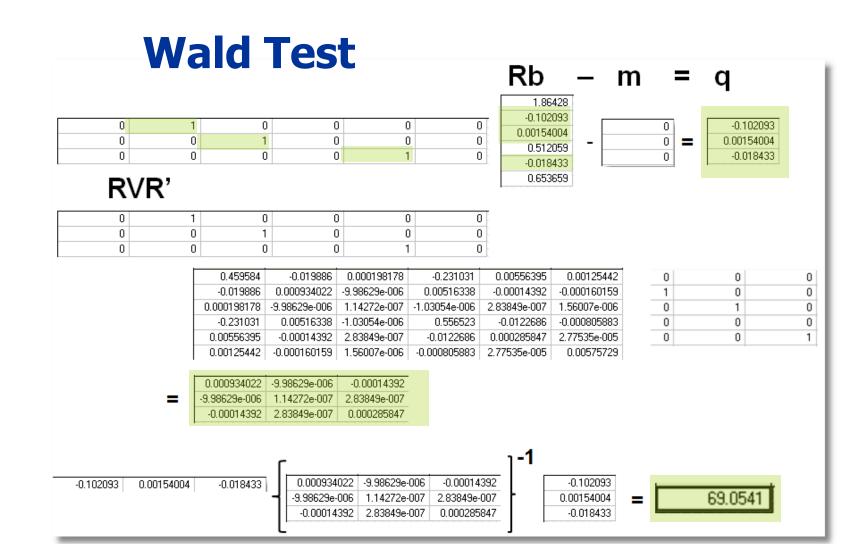
UNRESTRICTED MODEL	RESTRICTED MODEL
Binary Logit Model for Binary Choice	Binary Logit Model for Binary Choice
Dependent variable DOCTOR	Dependent variable DOCTOR
Log likelihood function -2085.92452	Log likelihood function -2124.06568
Restricted log likelihood -2169.26982	Restricted log likelihood -2169.26982
Chi squared [5 d.f.] 166.69058	Chi squared [2 d.f.] 90.40827
Significance level .00000	Significance level .00000
McFadden Pseudo R-squared .0384209	McFadden Pseudo R-squared .0208384
Estimation based on $N = 3377$, $K = 6$	Estimation based on N = 3377 , K = 3
Information Criteria: Normalization=1/N	Information Criteria: Normalization=1/N
Normalized Unnormalized	Normalized Unnormalized
AIC 1.23892 4183.84905	AIC 1.25974 4254.13136

Chi squared[3] = 2[-2085.92452 - (-2124.06568)] = 77.46456

Wald Test of H_0 : $\beta_2 = \beta_3 = \beta_5 = 0$

Unrestricted parameter vector is estimated Discrepancy: **q**= **Rb** – **m** is computed (or **r**(**b**,**m**) if nonlinear) Variance of discrepancy is estimated: Var[**q**] = **R V R**' Wald Statistic is **q**'[Var(**q**)]⁻¹**q** = **q**'[**RVR'**]⁻¹**q**

18-59/67



Chi squared[3] = 69.0541

18-60/67

Lagrange Multiplier Test of H_0 : $\beta_2 = \beta_3 = \beta_5 = 0$

- Restricted model is estimated
- Derivatives of unrestricted model and variances of derivatives are computed at restricted estimates
- Wald test of whether derivatives are zero tests the restrictions
- Usually hard to compute difficult to program the derivatives and their variances.

LM Test for a Logit Model

- Compute b₀ (subject to restictions)
 (e.g., with zeros in appropriate positions.
- **Compute** $P_i(\mathbf{b}_0)$ for each observation.
- **Compute** $e_i(\mathbf{b}_0) = [y_i P_i(\mathbf{b}_0)]$
- **Compute** $\mathbf{g}_i(\mathbf{b}_0) = \mathbf{x}_i \mathbf{e}_i$ using full \mathbf{x}_i vector

 $\square LM = [\Sigma_i \mathbf{g}_i(\mathbf{b}_0)]'[\Sigma_i \mathbf{g}_i(\mathbf{b}_0)\mathbf{g}_i(\mathbf{b}_0)']^{-1}[\Sigma_i \mathbf{g}_i(\mathbf{b}_0)]$

```
? Logit Model with guadratic and interaction
Namelist ; x=one,age,age*age,income,
             age*income,female $
Logit ; if[year=1994]
         : Lhs = doctor
         : Rhs = x
? Constrained MLE. Force 3 coefficients to = 0
         ; cml:b(2)=0,b(3)=0,b(5)=0
         ? First derivative (scale part)
Create ; gi= (doctor - p) ; gi2 = gi*gi $
? Second derivative (scale part)
Create ; hi=p*(1-p)$
? LM statistic based on BHHH estimator
Matrix ;if[year=1994] ; list ; G = X'gi $
Matrix ; if [year=1994] ; List ; LM = g<sup>+</sup>*<X'[gi2]X>*q $
? LM statistic uses internal routine
Logit ; if[year=1994] ; Lhs=doctor ; Rhs=x
       : Start = b : Maxit=0$
? LM statistic based on actual second derivatives
Matrix ; if [year=1994] ; List ; ML = g'*<X'[hi]X>*q $
```

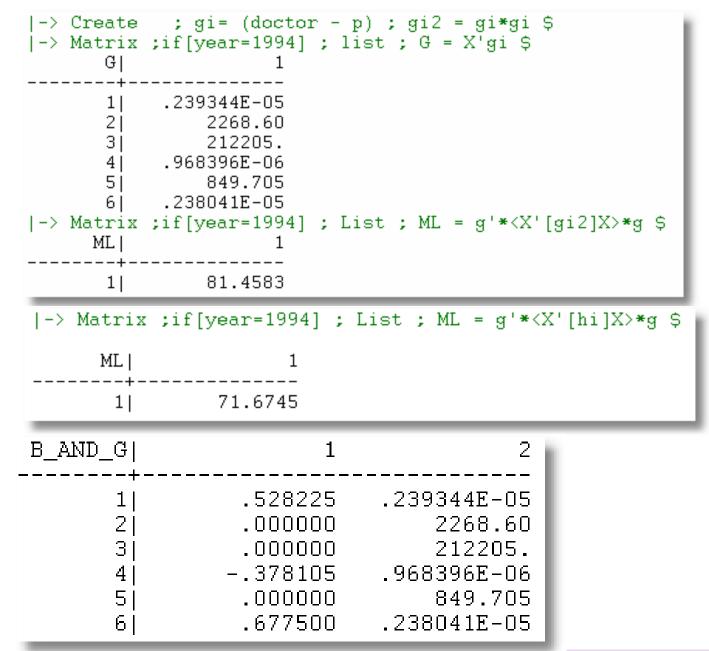
(There is a built in function for this computation.)

18-63/67

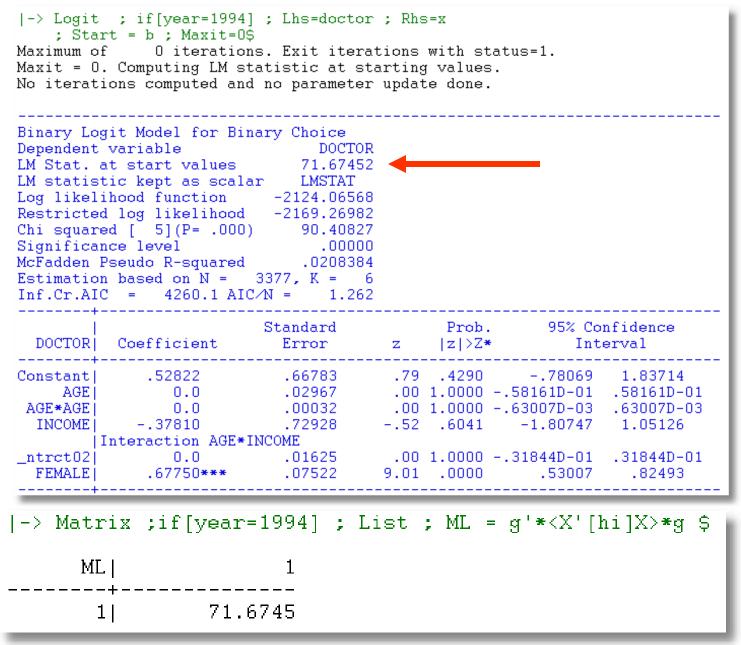
Restricted Model

Binary Logit Model for Binary Choice Dependent variable DOCTOR Log likelihood function -2124.06568 Restricted log likelihood -2169.26982 Chi squared [5](P= .000) 90.40827 Significance level .00000 McFadden Pseudo R-squared .0208384 Estimation based on N = 3377, K = 3 Inf.Cr.AIC = 4254.1 AIC/N = 1.260 Linear constraints imposed 3								
DOCTOR	Coefficient				95% Con Inte			
AGE	.52822*** 0.0 0.0	(Fixed F	arameter)		.35227	.70418		
INCOME	37810** Interaction AGE	.16741 *INCOME	-2.26	.0239	70623	04998		
	0.0 .67750***				.53084	.82416		
***, **,	* ==> Signific	ance at 1%, 5	5%, 10% le	vel.				

18-64/67



18-65/67



18-66/67

I have a question. The question is as follows. We have a probit model. We used LM tests to test for the hetercodeaticiy in this model and found that there is heterocedasticity in this model...

How do we proceed now? What do we do to get rid of heterescedasticiy?

Testing for heteroscedasticity in a probit model and then getting rid of heteroscedasticit in this model is not a common procedure. In fact I do not remember seen an applied (or theoretical also) works which tests for heteroscedasticiy and then uses a method to get rid of it???

See Econometric Analysis, 7th ed. pages 714-714

Appendix

18-68/67

Properties of the Maximum Likelihood Estimator

We will sketch formal proofs of these results:

The log-likelihood function, again

The likelihood equation and the information matrix.

A linear Taylor series approximation to the first order conditions:

 $g(\theta_{\mathsf{ML}}) \ = \ \boldsymbol{0} \ \approx \ g(\theta) \ + \ \mathsf{H}(\theta) \ (\theta_{\mathsf{ML}} \ \textbf{-} \ \theta)$

(under regularity, higher order terms will vanish in large samples.)

Our usual approach. Large sample behavior of the left and right hand sides is the same. **A Proof of consistency**. (Property 1)

The limiting variance of $\sqrt{n(\theta_{ML} - \theta)}$. We are using the central limit theorem here.

Leads to asymptotic normality (Property 2). We will derive the asymptotic variance of the MLE.

Estimating the variance of the maximum likelihood estimator.

Efficiency (we have not developed the tools to prove this.) The Cramer-Rao lower bound for efficient estimation (an asymptotic version of Gauss-Markov).

Invariance. (A <u>VERY</u> handy result.) Coupled with the Slutsky theorem and the delta method, the invariance property makes estimation of nonlinear functions of parameters very easy.

18-69/67

Regularity Conditions

- Deriving the theory for the MLE relies on certain "regularity" conditions for the density.
- What they are
 - 1. logf(.) has three continuous derivatives wrt parameters
 - 2. Conditions needed to obtain expectations of derivatives are met. (E.g., range of the variable is not a function of the parameters.)
 - 3. Third derivative has finite expectation.
- What they mean
 - Moment conditions and convergence. We need to obtain expectations of derivatives.
 - We need to be able to truncate Taylor series.
 - We will use central limit theorems

The MLE

The results center on the first order conditions for the MLE

$$\frac{\partial \log L}{\partial \hat{\boldsymbol{\theta}}_{MLE}} = \mathbf{g} \Big(\hat{\boldsymbol{\theta}}_{MLE} \Big) = \mathbf{0}$$

Begin with a Taylor series approximation to the first derivatives: $\mathbf{g}(\hat{\theta}_{MLE}) = \mathbf{0} \approx \mathbf{g}(\mathbf{\theta}) + \mathbf{H}(\mathbf{\theta})(\hat{\theta}_{MLE} - \mathbf{\theta})$ [+ terms o(1/n) that vanish] The derivative at the MLE, $\hat{\theta}_{MLE}$, is exactly zero. It is close to zero at the true $\mathbf{\theta}$, to the extent that $\hat{\theta}_{MLE}$ is a good estimator of $\mathbf{\theta}$. Rearrange this equation and make use of the Slutsky theorem $(\hat{\theta}_{MLE} - \mathbf{\theta}) \approx [-\mathbf{H}(\mathbf{\theta})]^{-1} \mathbf{g}(\mathbf{\theta})$

In terms of the original log likelihood

$$\left(\hat{\boldsymbol{\theta}}_{MLE} - \boldsymbol{\theta}\right) \approx \left[-\sum_{i=1}^{n} \mathbf{H}_{i}\left(\boldsymbol{\theta}\right)\right]^{-1} \left[\sum_{i=1}^{n} \mathbf{g}_{i}\left(\boldsymbol{\theta}\right)\right]$$

where $\mathbf{g}_{i}\left(\boldsymbol{\theta}\right) = \frac{\partial \log f_{i}\left(\boldsymbol{\theta}\right)}{\partial \boldsymbol{\theta}}$ and $\mathbf{H}_{i}\left(\boldsymbol{\theta}\right) = \frac{\partial^{2} \log f_{i}\left(\boldsymbol{\theta}\right)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'}$

Consistency of the MLE

$$\left(\hat{\boldsymbol{\theta}}_{MLE} - \boldsymbol{\theta}\right) \approx \left[-\sum_{i=1}^{n} \mathbf{H}_{i}\left(\boldsymbol{\theta}\right)\right]^{-1} \left[\sum_{i=1}^{n} \mathbf{g}_{i}\left(\boldsymbol{\theta}\right)\right]$$

Divide both sums by the sample size.

$$\left(\hat{\boldsymbol{\theta}}_{MLE} - \boldsymbol{\theta}\right) = \left[-\frac{1}{n}\sum_{i=1}^{n}\mathbf{H}_{i}\left(\boldsymbol{\theta}\right)\right]^{-1}\left[\frac{1}{n}\sum_{i=1}^{n}\mathbf{g}_{i}\left(\boldsymbol{\theta}\right)\right] + o\left(\frac{1}{n}\right)$$

The approximation is now exact because of the higher order term. As $n \rightarrow \infty$, the third term vanishes. The matrices in brackets are sample means that converge to their expectations.

$$\begin{bmatrix} -\frac{1}{n} \sum_{i=1}^{n} \mathbf{H}_{i}(\mathbf{\theta}) \end{bmatrix}^{-1} \rightarrow \left\{ -E \begin{bmatrix} \mathbf{H}_{i}(\mathbf{\theta}) \end{bmatrix} \right\}^{-1}, \text{ a positive definite matrix.} \\ \begin{bmatrix} \frac{1}{n} \sum_{i=1}^{n} \mathbf{g}_{i}(\mathbf{\theta}) \end{bmatrix} \rightarrow E \begin{bmatrix} \mathbf{g}_{i}(\mathbf{\theta}) \end{bmatrix} = \mathbf{0}, \text{ one of the regularity conditions.} \\ \text{Therefore, collecting terms,} \\ \begin{pmatrix} \hat{\mathbf{\theta}}_{MLE} - \mathbf{\theta} \end{pmatrix} \rightarrow \mathbf{0} \text{ or plim } \hat{\mathbf{\theta}}_{MLE} = \mathbf{\theta} \end{bmatrix}$$

18-72/67

Asymptotic Variance

Multiply both sides by \sqrt{n} . Thus,

$$\sqrt{n} \left(\stackrel{\wedge}{\boldsymbol{\theta}}_{ML} \quad \textbf{-} \quad \boldsymbol{\theta} \right) \quad \approx \ [\textbf{-} \ \mathbf{H}(\boldsymbol{\theta})/n]^{\textbf{-1}} \ \sqrt{n} \quad [\textbf{g}(\boldsymbol{\theta})/n].$$

The limiting variance of the thing on the LHS is the same as the limiting variance of the thing on the RHS. Remember that $[-H(\theta)/n]^{-1}$ converges to a positive definite matrix. Suppose that **D** is the limiting variance of \sqrt{n} [g(θ)/n]. Then, the limiting variance of

$$\sqrt{n} \begin{pmatrix} \hat{\boldsymbol{\theta}}_{ML} & - \boldsymbol{\theta} \end{pmatrix}$$
 will be $[-\mathbf{H}(\boldsymbol{\theta})/n]^{-1} \times \mathbf{D} \times [-\mathbf{H}(\boldsymbol{\theta})/n]^{-1}$,

so to complete the derivation, we need to know what **D**, the limiting covariance matrix of the score vector. There is a proof in your text of the VIR,

18-73/67

Asymptotic Variance

the limiting variance of $\sqrt{n} [\mathbf{g}(\mathbf{\theta})/\mathbf{n}]$ is $-(1/n)\mathbf{E}[\mathbf{H}(\mathbf{\theta})]$

(It bears repeating. The variance of the first derivatives vector is the second derivatives matrix. Multiplying it out and using our usual transition from limiting variances to asymptotic variances,

Asy. Var
$$\begin{pmatrix} \hat{\boldsymbol{\theta}}_{ML} & - \boldsymbol{\theta} \end{pmatrix} = (1/n) [-E[\mathbf{H}(\boldsymbol{\theta})/n]]^{-1}.$$

Part 18: Maximum Likelihood

18-74/67

II. Estimating the Asymptotic Covariance Matrix of the Maximum Likelihood Estimator:

 $LogL = LogL(\theta|data) = \Sigma_i logf(y_i|x_i,\theta) = \Sigma_i logf_i(\theta)$

 $g(\theta) = \partial log L / \partial \theta \qquad = \Sigma_i \, \partial log f(y_i | x_i, \theta) / \partial \theta \qquad = \Sigma_i \, g_i(\theta)$

 $H(\theta) = \partial^2 log L/\theta \partial \theta' \qquad = \Sigma_i \, \partial^2 log f(y_i | x_i, \theta) / \partial \theta \partial \theta' = \Sigma_i \, H_i(\theta)$

(1) Negative inverse of the expected Hessian - using estimates of the expectations (when known)

- a. Requires knowledge of the expectation of $\partial^2 \log f(y_i|x_i,\theta)/\partial\theta\partial\theta'$, -E[H_i(θ)]
- b. Estimator is then computed by inserting MLE into these functions

Est.Asy.Var[.] = $[\Sigma_i - E[H_i(\theta)]]^{-1}$ using the MLE

- (2) Negative inverse of the actual Hessian as an estimate of its population counterpart
 - a. Exact expected value of Hessian might be unknown, but we need to estimate the mean, so use the mean of the actual values.
 - b. Estimator is just the negative inverse of the actual Hessian

Est.Asy.Var[.] = $[\Sigma_i - H_i(\theta)]^{-1}$ using the MLE

(c. There are cases in which the Hessian does not involve the random variable, so that the actual Hessian equals the expected Hessian.)

(3) Inverse of sum of squares (outer products) of first derivatives, under the theory that the negative of the expected Hessian is the variance of the first derivatives.

- a. Negative of expected Hessian is the variance of the first derivatives. Use an empirical estimator
- b. Estimator is the sum of "squares" of the first derivatives

Est.Asy.Var[.] = $[\Sigma_i g_i(\theta)g_i(\theta)']^{-1}$ using the MLE

(This is called the BHHH - Berndt, Hall, Hall, Hausman - estimator

Asymptotic Distribution

You might guess (correctly) normal. Why?

$$\sqrt{n} \left(\stackrel{\wedge}{\boldsymbol{\theta}}_{ML} - \boldsymbol{\theta} \right) \approx [-\mathbf{H}(\boldsymbol{\theta})/n]^{-1} \sqrt{n} [\mathbf{g}(\boldsymbol{\theta})/n], \text{ on the}$$

right hand side, is a matrix which converges to something times root n times a sample mean. We can invoke the Lindberg-Feller version of the central limit theorem. The conclusion is

$$\begin{pmatrix} \stackrel{\wedge}{\boldsymbol{\theta}}_{ML} \end{pmatrix} \xrightarrow{a} N \begin{bmatrix} \boldsymbol{\theta}, \ [-\mathbf{H}(\boldsymbol{\theta})]^{\cdot 1} \end{bmatrix}$$

Efficiency: Variance Bound

If the density of the observed random variable satisfies the regularity conditions, then there is a lower bound for the variance of a consistent, normally distributed estimators. This is the *Crame'r* – *Rao Lower* bound for a regular estimator:

If $f(y_i|\theta)$ satisfies the regularity conditions, then, if $\stackrel{\frown}{\theta}$ is an estimator of θ which is consistent and asymptotically normally distributed and if V is the asymptotic covariance matrix of $\stackrel{\frown}{\theta}$, then V - $[-H(\theta)]^{-1}$ is a nonnegative definite matrix. That is, there is no C.A.N. estimator which has a variance which is smaller than the inverse of the information matrix.

VVIR: This means that the MLE is efficient among C.A.N. estimators.

Invariance

The maximum likelihood estimator of a function of θ , say h(θ) is h(MLE). This is not always true of other kinds of estimators. To get the variance of this function, we would use the delta method. E.g., the MLE of $\theta = (\beta / \sigma)$ is b/(e'e/n) Food Policy 50 (2015) 11-19

Contents lists available at ScienceDirect

Food Policy

journal homepage: www.elsevier.com/locate/foodpol

Does SNAP improve your health? [☆]

Christian A. Gregory ^{a,*}, Partha Deb^{b,c}

^a Diet, Safety and Health Economics Branch, Food Economics Division, Economic Research Service, USDA, Washington DC, United States ^b Dept. of Economics, Hunter College, City University of New York, New York, United States

Table 2

Parameter estimates from ordered and count models.

	SAH
Female	0.034
	(0.021)
Black	0.346***
	(0.028)
Hispanic	-0.018
	(0.029)
Other Race	0.021
	(0.051)
Married	-0.217
	(0.024)

One Vehicle Exempt per Adult	0.116** (0.049)
$tanh(\rho) / \lambda$	0.305
$\ln(\delta)$	Ana Ara
$\chi^2 N$	17.87 (0.000)

Part 18: Maximum Likelihood

FOOD POLICY

The Linear Probability "Model"

Prob $(y = 1 | \mathbf{x}) = \mathbf{\beta}'\mathbf{x}$ E $[y | \mathbf{x}] = 0 * Prob(y = 1 | \mathbf{x}) + 1Prob(y = 1 | \mathbf{x}) = Prob(y = 1 | \mathbf{x})$ $y = \mathbf{\beta}'\mathbf{x} + \varepsilon$

ROTTEN APPLES: AN INVESTIGATION OF THE PREVALENCE AND PREDICTORS OF TEACHER CHEATING

Brian A. Jacob Steven D. Levitt

Working Paper 9413 http://www.nber.org/papers/w9413

NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 December 2002

18-81/67

The Dependent Variable equals zero for 99.1% of the observations. In the sample of 163,474 observations, the LHS variable equals 1 about 1,500 times.

and Classi	oom Character	istics			
Dependent variable =					
	Indicator of classroom cheating				
Independent variables	(1)	(2)	(3)	(4)	
Social promotion policy	0.0011	0.0011	0.0015	0.0023	
Social promotion poncy	(0.0013)	(0.0013)	(0.0013)	(0.0009)	
School production policy	0.0020	0.0019	0.0021	0.0029	
School probation policy	(0.0014)	(0.0014)	(0.0014)	(0.0013)	
Dries deserves estrictions	-0.0047	-0.0028	-0.0016	-0.0028	
Prior classroom achievement	(0.0005)	(0.0005)	(0.0007)	(0.0007)	
Seciel anomatica *alesses and ashionement		-0.0049	-0.0051	-0.0046	
Social promotion*classroom achievement		(0.0014)	(0.0014)	(0.0012)	
Sahaal aashatian *alaasaa aa hianamaat		-0.0070	-0.0070	-0.0064	
School probation*classroom achievement		(0.0013)	(0.0013)	(0.0013)	
Mirrad arada alassroom	-0.0084	-0.0085	-0.0089	-0.0089	
Mixed grade classroom	(0.0007)	(0.0007)	(0.0008)	(0.0012)	
% of students included in official constinut	0.0252	0.0249	0.0141	0.0131	
% of students included in official reporting	(0.0031)	(0.0031)	(0.0037)	(0.0037)	
r Fixed Effects	No	No	No)	

Table 0: OIS Estimates of the Polationship between Chesting

Notes: The unit of observation is classroom*grade*year*subject and the sample includes years eight years (1993 to 2000), four subjects (reading comprehension and three math sections) and five grades (three to seven). The dependent variable is the cheating indicator derived using the 95th percentile cutoff. Robust standard errors clustered by school*year are shown in parenthesis. Other variables included in the regressions in column 1 and 2 include a

163.474

18-82/67

Number of observations

163.474

163.474

163.474

		Dependent	variable =	
	Teacher cheated for the student			
Independent variables	(1)	(2)	(3)	(4)
Prior achievement in the bottom quartile	0.011 (0.038)		-0.007 (0.075)	
Prior achievement in the 2 nd quartile	0.057 (0.024)		0.069 (0.039)	
Prior achievement in the 3 rd quartile	0.023		-0.012 (0.141)	
Prior achievement (linear measure)		0.0004 (0.0003)		0.0005
Prior achievement (linear) * High- stakes		-0.0007 (0.0004)		-0.0007
Excluded from test reporting	-0.045 (0.014)	-0.048 (0.014)	-0.045 (0.021)	-0.052 (0.020)
Male	-0.009 (0.004)	-0.009 (0.004)	-0.014 (0.005)	-0.013 (0.005)
Black	0.005 (0.011)	0.006 (0.011)	0.004 (0.024)	0.001 (0.023)
Hispanic	-0.010 (0.010)	-0.008 (0.009)	0.006 (0.023)	0.004 (0.022)
Age	-0.010 (0.004)	-0.012 (0.004)	-0.015 (0.005)	-0.017 (0.005)
Sample	Fu	11	Low-Achiev	
Number of observations	39,2	16	23,	010

Notes: The sample includes only those classrooms that were categorized as cheating based on the 95th percentile cutoff in a particular subject and year. The dependent variable takes on the value of one if a *student's* answer string and test score pattern was suspicious at the 90th percentile level, suggesting that the teacher had cheated for that student in the particular subject and year. All models include fixed effects for classroom*year. Low achieving schools are defined as those in which fewer than 25% of students met national norms in reading in 1995. The equations are estimated using 2SLS where a student's test scores at t-2 are used to instrument for the student's t-1 achievement level. Robust standard errors are shown in parenthesis.

2SLS for a binary dependent variable.

18-83/67

Modeling a Binary Outcome

- Did firm *i* produce a product or process innovation in year *t*? y_{it}: 1=Yes/0=No
- □ Observed N=1270 firms for T=5 years, 1984-1988
- Observed covariates: x_{it} = Industry, competitive pressures, size, productivity, etc.
- How to model?
 - Binary outcome
 - Correlation across time
 - Heterogeneity across firms

Application

$y_{it}^* = \beta_1 + \sum_{k=2}^8 x_{k,it} \beta_k + \varepsilon_{it}, \ y_{it} = 1 (y_{it}^* > 0),$
$i = 1, \dots, 1270, t = 1984, \dots, 1988.$
$y_{it} = 1$ if a product innovation was realized by German
manufacturing firm <i>i</i> in year <i>t</i> , 0 otherwise,
$x_{2,it} = \text{Log of industry sales in DM},$
$x_{3,it}$ = Import share = ratio of industry imports to (industry
sales plus imports),
$x_{4,it}$ = Relative firm size = ratio of employment in business
unit to employment in the industry (times 30),
$x_{5,it}$ = FDI share = Ratio of industry foreign direct investment
to (industry sales, plus imports),
x_{6ii} = Productivity = Ratio of industry value added to

- $x_{6,it}$ = Productivity = Ratio of industry value added to industry employment,
- $x_{7,it}$ = Raw materials sector = 1 if the firm is in this sector,
- $x_{8,it}$ = Investment goods sector = 1 if the firm is in this sector

18-85/67

Probit and LPM

++ Variable +	PROF	3IT	LINEARPM		
	Estimate	t ratio	Estimate	t ratio	
Constant LOGSALES IMUM SP FDIUM PROD RAWMTL INVGOOD	-1.96031 .17711 1.13384 1.07274 2.85318 -2.34116 27858 .18796	-8.508 7.966 7.506 7.549 7.096 -3.272 -3.452 4.793	10424 .05198 .45284 .09492 1.07787 55012 09861 .07879	-1.244 6.524 8.065 4.093 7.567 -2.192 -3.317 5.372	
Log-L Log-L(0) Rsqrd s.d.e(i)		-4114.05 -4283.17		1467 7987	
-> Maketabl	e ; H	ProbitME,I	linearME \$	+	
	PROB	PROBITME		ARME	
	Estimate	t ratio	Estimate	t ratio	
LOGSALES IMUM	.06573 .42080	8.083 7.613	.05198 .45284	6.524 8.065	
SP FDIUM PROD RAWMTL INVGOOD	.39812 1.05890 86887 10569 .07045	7.632 7.177 -3.278 -3.420 4.774	.09492 1.07787 55012 09861 .07879	4.093 7.567 -2.192 -3.317 5.372	

18-86/67

OLS approximates the partial effects, "directly," without bothering with coefficients.

	Probit Model		DV			
Dependent	variable		DV			
		Standard		Prob.	95% Confidence	
DV	Coefficient	Error	z	z >Z*		
+						
13	Index function f		ity			
Constant	-2.23278 ***	.19860	-11.24	.0000	-2.62203 -1.84353	
AGE	.01053 ***	.00186	5.65	.0000	.00688 .01418	
EDUC	020 47*	.01095	-1.87	.0616	04193 .00099	
MARRIED	12096 ***	.04625	-2.61	.0089	2116103030	
PUBLIC	.29821***	.09436	3.16	.0016	.11327 .48314	
HEALTHY	85776 ***	.04959	-17.30	.0000	9549676057	
***, **,	<pre>* ==> Significa</pre>	nce at 1%, 5	5%, 10% 1	evel.		
	erivatives of E[
	o the vector of					I
Average pa	artial effects f	or sample of	08.			I
+	Partial	Standard		Prob.	95% Confidence	
DV	Effect	Error	-	z >Z*		
	Effect	Error	Z	12174*	Interval	
AGE	.00041***	7425D-04	5.56	.0000	.00027 .00056	
EDUC	00080*	.00043	-1.87	0621	00164 .00004	
MARRIED	00504**	.00205	-2.46	.0139	0090600103	#
PUBLIC	.00919***	00223	4.12	. 0000	.00482 .01356	#
HEALTHY	03140***	00186	-16.92	.0000	0350302776	#
+						"
# Partia.	l effect for dum	my variable	is E[y x	,d=1] -	E[y x,d=0]	
Ordinary	least square	s regression	1			
LHS=DV	Mean			01749		
	Standard dev	iation =		13110		
Fit	R-squared	=			R-bar squared .019	37
+						
		Standard		Prob.		
DV	Coefficient	Error	Z	z >Z *	Interval	
	00070***	00000	2.24		00042 02214	
Constant	.02278***	.00682	3.34	.0008	.00942 .03614	
AGE	.00044***	.7315D-04	5.98	.0000	.00029 .00058	I
EDUC	00059	.00037	-1.62	.1060	00131 .00013	I
MARRIED	00520 *** .00700 ***	.00187	-2.78	.0055	0088700153	I
PUBLIC	00700*** 03261***	.00263 .00166	2.66 -19.59	.0077	.00185 .01215 0358802935	
HEALTHY	U3261***	.00166	-19.59	.0000	0356602935	
+						

MLE

Average Partial Effects

OLS Coefficients

: Maximum Likelihood

Odds Ratios

This calculation is not meaningful if the model is not a binary logit model

Prob(y = 0 | x, z) =
$$\frac{1}{1 + \exp(\beta' x + \gamma z)}$$
,
Prob(y = 1 | x, z) = $\frac{\exp(\beta' x + \gamma z)}{1 + \exp(\beta' x + \gamma z)}$
OR(x, z) = $\frac{\operatorname{Prob}(y = 1 | x, z)}{\operatorname{Prob}(y = 0 | x, z)} = \frac{\exp(\beta' x + \gamma z)}{1}$
= $\exp(\beta' x + \gamma z)$
= $\exp(\beta' x)\exp(\gamma z)$
 $\frac{\operatorname{OR}(x, z + 1)}{\operatorname{OR}(x, z)} = \frac{\exp(\beta' x)\exp(\gamma z + \gamma)}{\exp(\beta' x)\exp(\gamma z)} = \exp(\gamma)$

Odds Ratio

- Exp(γ) = multiplicative change in the odds ratio when z changes by 1 unit.
- $\Box \text{ dOR}(\mathbf{x}, z)/d\mathbf{x} = \text{OR}(\mathbf{x}, z)^*\beta, \text{ not } \exp(\beta)$
- The "odds ratio" is not a partial effect it is not a derivative.
- It is only meaningful when the odds ratio is itself of interest and the change of the variable by a whole unit is meaningful.
- "Odds ratios" might be interesting for dummy variables

Cautions About reported Odds Ratios

. logit grade	gpa tuce ps	i, nolog				
Logit estimates Log likelihood		3		LR ch Prob	er of obs = ni2(3) = > chi2 = do R2 =	15.4 0.001
grade	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval
tuce psi	.0951577 2.378688	1.262941 .1415542 1.064564	0.67 2.23	0.501 0.025	1822835 .29218	.372598 4.46519
_cons	-13.02135	4.931325	-2.64	0.008	-22.68657	-3.3561
cons . logit grade (Logit estimates Log likelihood =	gpa tuce psi	., or nolog	-2.64	Numbe: LR ch: Prob 3	r of obs = i2(3) =	
. logit grade Logit estimates Log likelihood :	gpa tuce psi = -12.889633	., or nolog		Numbe: LR ch: Prob : Pseudo	r of obs = i2(3) = > chi2 =	32 15.40 0.0015 0.3740

18-90/67

Model for a Binary Dependent Variable

Binary outcome.

- Event occurs or doesn't (e.g., the democrat wins, the person enters the labor force,...
- Model the probability of the event. P(x)=Prob(y=1|x)
- Probability responds to independent variables
- Requirements
 - 0 < Probability < 1</pre>
 - P(x) should be monotonic in x it's a CDF

Two Standard Models

Based on the normal distribution:

- Prob[y=1|x] = $\Phi(\beta'x)$ = CDF of normal distribution
- The "probit" model
- Based on the logistic distribution
 - Prob[y=1|x] = $\exp(\beta' x)/[1 + \exp(\beta' x)]$
 - The "logit" model
- Log likelihood
 - $P(y|x) = (1-F)^{(1-y)} F^{y}$ where F = the cdf
 - LogL = $\Sigma_i (1-y_i)\log(1-F_i) + y_i\log F_i$
 - = $\Sigma_i F[(2y_i-1)\beta'x]$ since F(-t)=1-F(t) for both.

Coefficients in the Binary Choice Models $E[y|x] = 0^{*}(1-F_{i}) + 1^{*}F_{i} = P(y=1|x)$ $= F(\beta'x)$

The coefficients are not the slopes, as usual in a nonlinear model

 $\partial E[y|x]/\partial x = f(\beta'x)\beta$

These will look similar for probit and logit

Application: Female Labor Supply

1975 Survey Data: Mroz (Econometrica) 753 Observations Descriptive Statistics							
Variabl		Mean	Std.Dev.	Minimum	Maximum	Cases Miss	sing
All observations in current sample							
LFP	· I	.568393	.495630	.000000	1.00000	753	0
WHRS	Ι	740.576	871.314	.000000	4950.00	753	0
KL6	I	.237716	.523959	.000000	3.00000	753	0
K618	I	1.35325	1.31987	.000000	8.00000	753	0
WA	I	42.5378	8.07257	30.0000	60.0000	753	0
WE	I	12.2869	2.28025	5.00000	17.0000	753	0
WW	I	2.37457	3.24183	.000000	25.0000	753	0
RPWG	I	1.84973	2.41989	.000000	9.98000	753	0
HHRS	I	2267.27	595.567	175.000	5010.00	753	0
HA	I	45.1208	8.05879	30.0000	60.0000	753	0
HE	I	12.4914	3.02080	3.00000	17.0000	753	0
HW	I	7.48218	4.23056	.412100	40.5090	753	0
FAMINC	Ι	23080.6	12190.2	1500.00	96000.0	753	0
KIDS	Ι	.695883	.460338	.000000	1.00000	753	0

18-94/67

Estimated Choice Models for Labor Force Participation

Binomial Probit Model								
Dependent	variable	LFP						
Log likelihood function -488.26476			(Probit)					
	ihood function							
•								
		Standard Error						
•								
•		for probability						
Constant	.77143	.52381	1.473	.1408				
WA	02008	.01305	-1.538	.1241	42.5378			
WE	.13881***	.02710	5.122	.0000	12.2869			
HHRS	00019**	.801461D-04	-2.359	.0183	2267.27			
HA	00526	.01285	410	.6821	45.1208			
HE	06136***	.02058	-2.982	.0029	12.4914			
FAMINC	.00997**	.00435	2.289	.0221	23.0806			
KIDS	34017***	.12556	-2.709	.0067	. 69588			
+								
Binary Log	git Model for E	inary Choice						
+								
10	Characteristics	in numerator of	Prob[Y =	1]				
Constant	1.24556	.84987	1.466	.1428				
WA	03289	.02134	-1.542	.1232	42.5378			
WE	.22584***	.04504	5.014	.0000	12.2869			
HHRS	00030**	.00013	-2.326	.0200	2267.27			
HA	00856	.02098	408	.6834	45.1208			
HE	10096***	.03381	-2.986	.0028	12.4914			
FAMINC	.01727**	.00752	2.298	.0215	23.0806			
KIDS	54990***	.20416	-2.693	.0071	. 69588			
+								

Partial Effects

Partial derivatives of probabilities with respect to the vector of characteristics. They are computed at the means of the Xs. Observations used are All Obs. ______ Variable | Coefficient Standard Error b/St.Er. P[|Z|>z] Elasticity |PROBIT: Index function for probability .00512 -1.538 WA -.00788 .1240 -.58479 .05445*** 5.127 .0000 WE .01062 1.16790 HHRS -. 74164D-04** .314375D-04 -2.359 .0183 -.29353 .00504 .00807 -.410 .6821 HA -.00206 -.16263 -2.983 .0029 HE -.02407*** -.52488 .00391** .00171 FAMINC 2.289 .0221 .15753 |Marginal effect for dummy variable is P|1 - P|0. .04708 -2.781 .0054 KIDS -.13093*** -.15905 Standard Error b/St.Er. P[|Z|>z] Elasticity Variable | Coefficient |LOGIT: Marginal effect for variable in probability -.00804 .00521 -1.542 .1231 WA -.59546 .05521*** .0000 .01099 5.023 1.18097 WE HHRS | -.74419D-04** .319831D-04 -2.327 .0200 -.29375 .00513 -.408 .6834 -.16434 HAI -.00209 HE | -.02468*** .00826 -2.988 .0028 -.53673 .16966 FAMINC .00422** .00184 2.301 .0214 |Marginal effect for dummy variable is P|1 - P|0. -.13120*** .04709 -2.786 .0053 KIDSI -.15894

18-96/67

Testing Hypotheses – A Trinity of Tests

The likelihood ratio test:

- Based on the proposition (Greene's) that restrictions always "make life worse"
- Is the reduction in the criterion (log-likelihood) large? Leads to the LR test.
- The Wald test: The usual.
- The Lagrange multiplier test:
 - Underlying basis: Reexamine the first order conditions.
 - Form a test of whether the gradient is significantly "nonzero" at the restricted estimator.

Testing Hypotheses

Wald tests, using the familiar distance measure

Likelihood ratio tests:

LogL_U = log likelihood without restrictions LogL_R = log likelihood with restrictions LogL_U > logL_R for any nested restrictions $2(LogL_U - logL_R) \rightarrow chi-squared [J]$

Estimating the Tobit Model

Log likelihood for the tobit model for estimation of $\boldsymbol{\beta}$ and σ :

$$\begin{split} & \text{logL} = \sum_{i=1}^{n} \Biggl[(1\text{-}d_{i}) \log \Phi \Biggl(\frac{-\textbf{x}_{i}'\textbf{\beta}}{\sigma} \Biggr) + d_{i} \log \Biggl(\frac{1}{\sigma} \phi \Biggl(\frac{\textbf{y}_{i} - \textbf{x}_{i}'\textbf{\beta}}{\sigma} \Biggr) \Biggr) \Biggr] \\ & d_{i} = 1 \text{ if } \textbf{y}_{i} > 0, \ 0 \text{ if } \textbf{y}_{i} = 0. \ \text{Derivatives are very complicated,} \\ & \text{Hessian is nightmarish. Consider the Olsen transformation*:} \\ & \theta = 1/\sigma, \ \gamma = -\textbf{\beta}/\sigma. \ (\text{One to one; } \sigma = 1 / \theta, \ \textbf{\beta} = -\gamma / \theta.) \\ & \text{logL} = \sum_{i=1}^{n} \log \Biggl[(1\text{-}d_{i}) \log \Phi \left(\textbf{x}_{i}'\gamma \right) + d_{i} \log \Bigl(\theta \varphi \bigl(\theta \textbf{y}_{i} + \textbf{x}_{i}'\gamma \bigr) \Bigr) \Bigr] \\ & \sum_{i=1}^{n} \log \Biggl[(1\text{-}d_{i}) \log \Phi \left(\textbf{x}_{i}'\gamma \right) + d_{i} (\log \theta + (1/2) \log 2\pi - (1/2) \bigl(\theta \textbf{y}_{i} + \textbf{x}_{i}'\gamma \bigr)^{2} \bigr) \Biggr] \\ & \frac{\partial \log L}{\partial \gamma} = \sum_{i=1}^{n} \ \Biggl[(1\text{-}d_{i}) \frac{\phi \bigl(\textbf{x}_{i}'\gamma \bigr)}{\Phi \bigl(\textbf{x}_{i}'\gamma \bigr)} - d_{i}e_{i} \Biggr] \textbf{x}_{i} \\ & \frac{\partial \log L}{\partial \theta} = \sum_{i=1}^{n} \ d_{i} \Biggl(\frac{1}{\theta} - e_{i} \textbf{y}_{i} \Biggr) \end{split}$$

*Note on the Uniqueness of the MLE in the Tobit Model," Econometrica, 1978.

18-99/67