# **Econometrics** I

Professor William Greene Stern School of Business Department of Economics



# **Econometrics** I

# Part 19 – Sample Selection Two Step Estimation

#### \*\*\*\*\*\*\* This Book is Seriously Flawed, November 19, 2012

By Dennis Hanseman (Cincinnati, OH United States) - See all my reviews

Amazon Verified Purchase (What's this?)

This review is from: Applied Econometrics for Health Economists: A Practical Guide (Paperback)

After paying over \$30 for a 115-page book, I was shocked to find that it was seriously flawed. All of the analysis in the book is based on data from the British "Health and Lifestyle Survey". As Jones points out in Chapter 2, this Survey employed a complex sample design that incorporated stratification, clustering, and -- presumably -- unequal probabilities of selection. Rather than taking the design characteristics into account, Jones analyzes this data as if it came from a simple random sample. As a result, his estimates are likely to be biased, with overstated significance levels.

Dueling Selection Biases – From two emails, same day.

- "I am trying to find methods which can deal with data that is non-randomised and suffers from selection bias."
- "I explain the probability of answering questions using, among other independent variables, a variable which measures knowledge breadth. Knowledge breadth can be constructed only for those individuals that fill in a skill description in the company intranet. <u>This is</u> <u>where the selection bias comes from.</u>

## **Samples and Populations**

- Consistent estimation
  - The sample is randomly drawn from the population
  - Sample statistics converge to their population counterparts
- A presumption: The 'population' is the population of interest.

Implication: If the sample is randomly drawn from a specific subpopulation, statistics converge to the characteristics of that subpopulation

# Nonrandom Sampling

- Simple nonrandom samples: Average incomes of airport travelers → mean income in the population as a whole?
- Survivorship: Time series of returns on business performance. Mutual fund performance. (Past performance is no guarantee of future success.)
- Attrition: Drug trials. Effect of erythropoetin on quality of life survey.
- Self-selection:
  - Labor supply models
  - Shere Hite's (1976) "The Hite Report" 'survey' of sexual habits of Americans. "While her books are ground-breaking and important, they are based on flawed statistical methods and one must view their results with skepticism."

## **The Crucial Element**

- Selection on the unobservables
  - Selection into the sample is based on both observables and unobservables.
  - All the observables are accounted for.
  - Unobservables in the selection rule also appear in the model of interest (or are correlated with unobservables in the model of interest).
- "Selection Bias" = the bias due to not accounting for the unobservables that link the equations.

## Heckman's Canonical Model

A behavioral model:

Offered wage  $= o^* = \beta'x + v$  (x = age, experience, educ...) Reservation wage  $= r^* = \delta'z + u$  (z = age, kids, family stuff) Labor force participation:

$$\begin{split} \mathsf{LFP} &= 1 \text{ if } o^* \geq \mathsf{r}^*, \ 0 \text{ otherwise} \\ \mathsf{Prob}(\mathsf{LFP}=1) = \Phi\Big[(\beta' \mathsf{x} \cdot \delta' \mathsf{z})/\sqrt{\sigma_\mathsf{v}^2 + \sigma_\mathsf{u}^2}\Big] \\ \mathsf{Desired Hours} &= \mathsf{H}^* = \gamma' \mathbf{w} + \varepsilon \\ \mathsf{Actual Hours} &= \mathsf{H}^* \text{ if } \mathsf{LFP} = 1 \\ & \mathsf{unobserved if } \mathsf{LFP} = 0 \\ \varepsilon \text{ and } \mathsf{u} \text{ are correlated. } \varepsilon \text{ and } \mathsf{v} \text{ might be correlated.} \\ \mathsf{What is } \mathsf{E}[\mathsf{H}^* \mid \mathsf{w}, \mathsf{LFP} = 1]? \text{ Not } \gamma' \mathsf{w}. \end{split}$$

## **Standard Sample Selection Model**

$$\begin{aligned} \mathbf{d}_{i}^{*} &= \boldsymbol{\alpha}' \mathbf{z}_{i} + \mathbf{u}_{i} \\ \mathbf{d}_{i} &= \mathbf{1}(\mathbf{d}_{i}^{*} > \mathbf{0}) \\ \mathbf{y}_{i}^{*} &= \boldsymbol{\beta}' \mathbf{x}_{i} + \boldsymbol{\epsilon}_{i} \\ \mathbf{y}_{i} &= \mathbf{y}_{i}^{*} \text{ when } \mathbf{d}_{i} = \mathbf{1}, \text{ unobserved otherwise} \\ (\mathbf{u}_{i}, \mathbf{v}_{i}) &\sim \text{Bivariate Normal}[(\mathbf{0}, \mathbf{0}), (\mathbf{1}, \boldsymbol{\rho} \sigma, \sigma^{2})] \\ \text{E}[\mathbf{y}_{i} \mid \mathbf{y}_{i} \text{ is observed}] &= \text{E}[\mathbf{y}_{i} | \mathbf{d}_{i} = \mathbf{1}] \\ &= \boldsymbol{\beta}' \mathbf{x}_{i} + \text{E}[\boldsymbol{\epsilon}_{i} \mid \mathbf{d}_{i} = \mathbf{1}] \\ &= \boldsymbol{\beta}' \mathbf{x}_{i} + \text{E}[\boldsymbol{\epsilon}_{i} \mid \mathbf{u}_{i} > -\boldsymbol{\alpha}' \mathbf{z}_{i}] \\ &= \boldsymbol{\beta}' \mathbf{x}_{i} + (\boldsymbol{\rho} \sigma) \frac{\boldsymbol{\phi}(\boldsymbol{\alpha}' \mathbf{z}_{i})}{\boldsymbol{\Phi}(\boldsymbol{\alpha}' \mathbf{z}_{i})} \\ &= \boldsymbol{\beta}' \mathbf{x}_{i} + \boldsymbol{\theta} \lambda_{i} \end{aligned}$$

# Incidental Truncation u1,u2~N[(0,0),(1,.71,1)



19-10/39

## Selection as a Specification Error

- $\Box E[y_i | \mathbf{x}_i, y_i \text{ observed}] = \boldsymbol{\beta}' \mathbf{x}_i + \theta \lambda_i$
- **D** Regression of  $y_i$  on  $\mathbf{x}_i$  omits  $\lambda_i$ .
  - $\lambda_i$  will generally be correlated with  $\mathbf{x}_i$  if  $\mathbf{z}_i$  is.
  - z<sub>i</sub> and x<sub>i</sub> often have variables in common.
  - There is no specification error if  $\theta = 0 \iff \rho = 0$
- **□** "Selection Bias" is plim  $(\mathbf{b} \mathbf{\beta})$
- What is "selection bias..."

### **Control Function**

Labor Force Participation

 $d^* = \boldsymbol{\alpha}' \mathbf{z} + \mathbf{u}$ 

What is u? Unmeasured factors that motivate LFP, u = (m,a)Desired Hours

 $\mathbf{H}^* = \mathbf{\beta}' \mathbf{x} + \mathbf{\varepsilon}$ 

What is  $\epsilon$ ? Unmeasured factors that motivate H\*,  $\epsilon = (m,c)$ 

 $\epsilon = \rho u + w \quad \epsilon \text{ and } u \text{ share factors, m.}$ 

 $\mathbf{H}^* = \boldsymbol{\beta}' \mathbf{x} + \boldsymbol{\rho} \mathbf{u} + \mathbf{w}$ 

Regression of H\* on x omits u.  $\lambda$  is the prediction of u.

Note, the problem goes away if  $\rho = 0$ .

## **Estimation of the Selection Model**

- Two step least squares
  - Inefficient
  - Simple exists in current software
  - Simple to understand and widely used
- Full information maximum likelihood
  - Efficient
  - Simple exists in current software
  - Not so simple to understand widely misunderstood

# **Estimation**

Heckman's two step procedure

- (1) Estimate the probit model and compute  $\lambda_i$  for each observation using the estimated parameters.
- (2) a. Linearly regress y<sub>i</sub> on x<sub>i</sub> and λ<sub>i</sub> using the observed data
  - b. Correct the estimated asymptotic covariance matrix for the use of the estimated λ<sub>i</sub>. (An application of Murphy and Topel (1984)
     Heckman was 1979) See text, pp. 953-955.

### Variance of a Heckman's Two Step Estimator

The parameters in  $\gamma$  do have to be estimated using the probit equation. Rewrite (19-24) as

$$(y_i|z_i = 1, \mathbf{x}_i, \mathbf{w}_i) = \mathbf{x}'_i \boldsymbol{\beta} + \beta_\lambda \hat{\lambda}_i + v_i - \beta_\lambda (\hat{\lambda}_i - \lambda_i).$$

In this form, we see that in the preceding expression we have ignored both an additional source of variation in the compound disturbance and correlation across observations; the same estimate of  $\gamma$  is used to compute  $\hat{\lambda}_i$  for every observation. Heckman has shown that the earlier covariance matrix can be appropriately corrected by adding a term inside the brackets,

$$\mathbf{Q} = \hat{\rho}^2(\mathbf{X}'_* \hat{\boldsymbol{\Delta}} \mathbf{W}) \text{Est.Asy.Var}[\hat{\boldsymbol{\gamma}}](\mathbf{W}' \hat{\boldsymbol{\Delta}} \mathbf{X}_*) = \hat{\rho}^2 \hat{\mathbf{F}} \hat{\mathbf{V}} \hat{\mathbf{F}}',$$

where  $\hat{\mathbf{V}} = \text{Est.Asy.Var}[\hat{\boldsymbol{\gamma}}]$ , the estimator of the asymptotic covariance of the probit coefficients. Any of the estimators in (17-22) to (17-24) may be used to compute  $\hat{\mathbf{V}}$ . The complete expression is

Est.Asy.Var[**b**, 
$$b_{\lambda}$$
] =  $\hat{\sigma}_{\varepsilon}^{2}$ [**X**'\_\***X**\_\*]<sup>-1</sup>[**X**'\_\*(**I** - \hat{\rho}^{2}\hat{\Delta})**X**\_\* + **Q**][**X**'\_\***X**\_\*]<sup>-1</sup>.

This is the estimator that is embedded in contemporary software such as *Stata*. We note three useful further aspects of the two-step estimator:

1. This is an application of the two-step procedures we developed in Section 8.4.1 and 14.7 and that were formalized by Murphy and Topel (1985).<sup>40</sup>

### 19-15/39

# **Application – Labor Supply**

| MROZ lak | oor supply data. Cross section, 753 observations          |
|----------|-----------------------------------------------------------|
| Use LFP  | for binary choice, KIDS for count models.                 |
| LFP      | = labor force participation, 0 if no, 1 if yes.           |
| WHRS     | = wife's hours worked. 0 if LFP=0                         |
| KL6      | = number of kids less than 6                              |
| K618     | = kids 6 to 18                                            |
| WA       | = wife's age                                              |
| WE       | = wife's education                                        |
| WW       | = wife's wage, 0 if LFP=0.                                |
| RPWG     | = Wife's reported wage at the time of the interview       |
| HHRS     | = husband's hours                                         |
| HA       | = husband's age                                           |
| HE       | = husband's education                                     |
| HW       | = husband's wage                                          |
| FAMINC   | = family income                                           |
| MTR      | = marginal tax rate                                       |
| WMED     | <pre>= wife's mother's education</pre>                    |
| WFED     | <pre>= wife's father's education</pre>                    |
| UN       | = unemployment rate in county of residence                |
| CIT      | = dummy for urban residence                               |
| AX       | = actual years of wife's previous labor market experience |
| AGE      | = Age                                                     |
| AGESQ    | = Age squared                                             |
| EARNINGS | S= WW * WHRS                                              |
| LOGE     | = Log of EARNINGS                                         |
| KIDS     | = 1 if kids < 18 in the home.                             |

# Labor Supply Model

```
NAMELIST ; Z = One,KL6,K618,WA,WE,HA,HE $
NAMELIST ; X = One,KL6,K618,Age,Agesq,WE,Faminc $
PROBIT ; Lhs = LFP ; Rhs = Z ; Hold(IMR=Lambda) $
SELECT ; Lhs = WHRS ; Rhs = X $
REGRESS ; If [ LFP = 1] ; Lhs = WHRS ; Rhs = X $
REGRESS ; If [ LFP = 1] ; Lhs = WHRS ; Rhs = X,Lambda $
REGRESS ; If [ LFP = 1] ; Lhs = WHRS ; Rhs = X,Lambda $
Cluster = 1 $
```

### **Participation Equation**

| Binomial<br>Dependent<br>Log like<br>Restricte<br>Chi squar<br>Significa<br>McFadden<br>Estimatic<br>Inf.Cr.Al<br>Results r | ependent variable LFP<br>og likelihood function -461.37865<br>estricted log likelihood -514.87320<br>hi squared [ 6](P= .000) 106.98911<br>ignificance level .00000<br>cFadden Pseudo R-squared .1038985<br>stimation based on N = 753, K = 7<br>nf.Cr.AIC = 936.8 AIC/N = 1.244<br>esults retained for SELECTION model. |                                                                                  |                                                                |                                                             |                                                                  |                                                                   |  |  |
|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|--|--|
| LFP                                                                                                                         | Coefficient                                                                                                                                                                                                                                                                                                              | Standard<br>Error                                                                | z                                                              | Prob.<br> z >Z <b>*</b>                                     | 95% Con<br>Inte                                                  | fidence<br>rval                                                   |  |  |
| Constant<br>KL6<br>K618<br>WA<br>WE<br>HA<br>HE                                                                             | Index function for<br>1.00265**<br>90400***<br>05453<br>02602*<br>.16039***<br>01643<br>05191**                                                                                                                                                                                                                          | probabilit<br>.49994<br>.11434<br>.04021<br>.01333<br>.02774<br>.01329<br>.02040 | y<br>2.01<br>-7.91<br>-1.36<br>-1.95<br>5.78<br>-1.24<br>-2.54 | .0449<br>.0000<br>.1751<br>.0508<br>.0000<br>.2165<br>.0110 | .02277<br>-1.12811<br>13334<br>05214<br>.10603<br>04248<br>09190 | 1.98252<br>67989<br>.02428<br>.00009<br>.21475<br>.00962<br>01192 |  |  |

# **Hours Equation**

| Sample Selection Model<br>Probit selection equation based on LFP<br>Selection rule is: Observations with LFP = 1<br>Results of selection:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                 |                                                                                                                    |                                                             |                                                                      |                                                                                                                 |                                                                                      |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|--|
| Data set<br>Selected<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Data po<br>79<br>sample 42                                                                      | oints Sum<br>53<br>28<br>                                                                                          | of weig]<br>753.0<br>428.0                                  | hts<br>                                                              |                                                                                                                 |                                                                                      |  |  |  |
| Sample Selection Model.         Two step       least squares regression         LHS=WHRS       Mean       =         Standard deviation       =       776.27438         Number of observs.       =       428         Model size       Parameters       =       8         Degrees of freedom       =       420         Residuals       Sum of squares       =       .226721E+09         Standard error of e       =       734.71953         Fit       R-squared       =       .10210         Adjusted R-squared       =       .08713         Model test       F[       7, 420] (prob) =       6.8(.0000)         Not using OLS or no constant.       Rsqrd & F may be < 0 |                                                                                                 |                                                                                                                    |                                                             |                                                                      |                                                                                                                 |                                                                                      |  |  |  |
| Correlati<br>and Selec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | on of disturband<br>tion Criterion (                                                            | (Rho) =                                                                                                            | ion                                                         | 84541                                                                |                                                                                                                 |                                                                                      |  |  |  |
| WHRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Coefficient                                                                                     | Standard<br>Error                                                                                                  | z                                                           | Prob.<br> z >Z <b>≭</b>                                              | 95% Co:<br>Inte                                                                                                 | nfidence<br>erval                                                                    |  |  |  |
| Constant<br>KL6<br>K618<br>AGE<br>AGESQ<br>WE<br>FAMINC<br>LAMBDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2442.27**<br>115.110<br>-101.721***<br>14.6359<br>10079<br>-102.203***<br>.01379***<br>-793.857 | $\begin{array}{c} 1202.111\\ 282.0086\\ 38.28339\\ 53.19166\\ .61856\\ 39.40963\\ .00345\\ 494.5410\\ \end{array}$ | 2.03<br>.41<br>-2.66<br>.28<br>16<br>-2.59<br>4.00<br>-1.61 | .0422<br>.6831<br>.0079<br>.7832<br>.8706<br>.0095<br>.0001<br>.1084 | $\begin{array}{r} 86.17\\ -437.617\\ -176.755\\ -89.6178\\ -1.31315\\ -179.445\\ .00703\\ -1763.140\end{array}$ | 4798.36<br>667.836<br>-26.687<br>118.8897<br>1.11157<br>-24.962<br>.02056<br>175.426 |  |  |  |

19-19/39

### Part 19: Sample Selection

### Selection "Bias"

| WHRS     | Coefficient | Standard<br>Error | t                                                                                       | Prob.<br> t >T* | 95% Con<br>Inte | fidence<br>rval |
|----------|-------------|-------------------|-----------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|
| Constant | 1812.13     | 1144.333          | $ \begin{array}{r} 1.58 \\ -2.99 \\ -4.09 \\ .21 \\42 \\ -2.74 \\ 3.72 \\ \end{array} $ | .1140           | -430.73         | 4054.98         |
| KL6      | -299.128*** | 100.0331          |                                                                                         | .0030           | -495.189        | -103.067        |
| K618     | -126.400*** | 30.87285          |                                                                                         | .0001           | -186.909        | -65.890         |
| AGE      | 11.2795     | 53.84421          |                                                                                         | .8342           | -94.2532        | 116.8122        |
| AGESQ    | 26104       | .62633            |                                                                                         | .6771           | -1.48862        | .96655          |
| WE       | -47.3272*** | 17.29681          |                                                                                         | .0065           | -81.2283        | -13.4260        |
| FAMINC   | .01262***   | .00339            |                                                                                         | .0002           | .00598          | .01926          |
| WHRS     | Coefficient | Standard<br>Error | t                                                                                       | Prob.<br> t >T* | 95% Con<br>Inte | fidence<br>rval |
| Constant | 2442.27**   | 1194.817          | 2.04                                                                                    | .0416           | 100.47          | 4784.06         |
| KL6      | 115.110     | 252.7874          | .46                                                                                     | .6491           | -380.345        | 610.564         |
| K618     | -101.721*** | 33.75941          | -3.01                                                                                   | .0027           | -167.888        | -35.554         |
| AGE      | 14.6359     | 53.73825          | .27                                                                                     | .7855           | -90.6891        | 119.9610        |
| AGESQ    | 10079       | .63114            | 16                                                                                      | .8732           | -1.33780        | 1.13623         |
| WE       | -102.203*** | 35.27561          | -2.90                                                                                   | .0040           | -171.342        | -33.064         |
| FAMINC   | .01379***   | .00344            | 4.01                                                                                    | .0001           | .00704          | .02054          |
| LAMBDA   | -793.857*   | 445.1168          | -1.78                                                                                   | .0752           | -1666.270       | 78.556          |

### Heckman's corrected standard errors

| WHRS     | Coefficient | Standard<br>Error | z     | Prob.<br> z >Z <b>*</b> | 95% Confidence<br>Interval |          |
|----------|-------------|-------------------|-------|-------------------------|----------------------------|----------|
| Constant | 2442.27**   | 1202.111          | 2.03  | .0422                   | 86.17                      | 4798.36  |
| KL6      | 115.110     | 282.0086          | .41   | .6831                   | -437.617                   | 667.836  |
| K618     | -101.721*** | 38.28339          | -2.66 | .0079                   | -176.755                   | -26.687  |
| AGE      | 14.6359     | 53.19166          | .28   | .7832                   | -89.6178                   | 118.8897 |
| AGESQ    | 10079       | .61856            | 16    | .8706                   | -1.31315                   | 1.11157  |
| WE       | -102.203*** | 39.40963          | -2.59 | .0095                   | -179.445                   | -24.962  |
| FAMINC   | .01379***   | .00345            | 4.00  | .0001                   | .00703                     | .02056   |
| LAMBDA   | -793.857    | 494.5410          | -1.61 | .1084                   | -1763.140                  | 175.426  |

### Uncorrected standard errors - OLS

| WHRS     | Coefficient | Standard<br>Error | t     | Prob.<br> t >T* | 95% Cc<br>Int | nfidence<br>erval |
|----------|-------------|-------------------|-------|-----------------|---------------|-------------------|
| Constant | 2442.27**   | 1194.817          | 2.04  | .0416           | 100.47        | 4784.06           |
| KL6      | 115.110     | 252.7874          | .46   | .6491           | -380.345      | 610.564           |
| K618     | -101.721*** | 33.75941          | -3.01 | .0027           | -167.888      | -35.554           |
| AGE      | 14.6359     | 53.73825          | .27   | .7855           | -90.6891      | 119.9610          |
| AGESQ    | 10079       | .63114            | 16    | .8732           | -1.33780      | 1.13623           |
| WE       | -102.203*** | 35.27561          | -2.90 | .0040           | -171.342      | -33.064           |
| FAMINC   | .01379***   | .00344            | 4.01  | .0001           | .00704        | .02054            |
| LAMBDA   | -793.857*   | 445.1168          | -1.78 | .0752           | -1666.270     | 78.556            |

### Heteroscedasticity robust standard errors (cluster = 1)

| WHRS     | Coefficient | Clustered<br>Std.Error | t     | Prob.<br> t >T <b>*</b> | 95% Co<br>Int | 95% Confidence<br>Interval |  |
|----------|-------------|------------------------|-------|-------------------------|---------------|----------------------------|--|
| Constant | 2442.27**   | 1232.878               | 1.98  | .0482                   | 25.87         | 4858.66                    |  |
| KL6      | 115.110     | 302.2937               | .38   | .7036                   | -477.375      | 707.594                    |  |
| K618     | -101.721*** | 33.77584               | -3.01 | .0028                   | -167.920      | -35.521                    |  |
| AGE      | 14.6359     | 57.43322               | .25   | .7990                   | -97.9311      | 127.2030                   |  |
| AGESQ    | 10079       | .67949                 | 15    | .8822                   | -1.43257      | 1.23100                    |  |
| WE       | -102.203*** | 36.79001               | -2.78 | .0057                   | -174.310      | -30.096                    |  |
| FAMINC   | .01379***   | .00409                 | 3.37  | .0008                   | .00578        | .02181                     |  |
| LAMBDA   | -793.857*   | 470.2006               | -1.69 | .0921                   | -1715.433     | 127.719                    |  |

19-21/39

#### Part 19: Sample Selection

$$\begin{split} & \text{Maximum Likelihood Estimation} \\ & \text{logL} = \sum_{d=1} \ \log \left[ \frac{\exp\left(-\frac{1}{2} (\epsilon_i \ / \ \sigma)^2\right)}{\sigma \sqrt{2\pi}} \Phi\left(\frac{\rho(\epsilon_i \ / \ \sigma) + \alpha' \mathbf{z}_i}{\sqrt{1 - \rho^2}}\right) \right] \\ & + \sum_{d=0} \ \log [1 - \Phi(\alpha' \mathbf{z}_i)] \\ & \text{Re parameterize this: let } q_i = \alpha' \mathbf{z}_i \\ & (1) \ \theta = 1/\sigma \\ & (2) \ \gamma = \beta/\sigma \text{ (Olsen transformation)} \\ & (3) \ \tau = \rho/\sqrt{1 - \rho^2} \\ & (4) \text{ Constrain } \rho \text{ to be in (-1,1) by using} \\ & \psi = \frac{1}{2} \ln\left(\frac{1 + \rho}{1 - \rho}\right) = \text{atanh}\rho, \text{ so } \rho = \text{atanh}^{-1}(\psi) = \frac{\exp(2\psi) - 1}{\exp(2\psi) + 1} \\ & \text{logL} = \sum_{d=0} \log \Phi(-q_i) + \sum_{d=1}^{\log \theta - \frac{1}{2} \log 2\pi - \frac{1}{2} (\theta y_i - \gamma' \mathbf{x}_i)^2}{+\log \Phi[\tau(\theta y_i - \gamma' \mathbf{x}) + q_i \sqrt{1 + \tau^2}]} \end{split}$$

|                                                                          |                                                                                                         |                                                                                                    | M                                                                     | ILE                                                                           |                                                                                                                             |                                                                                              |                                                                                                 |                                                                                          |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| ML Estima<br>Dependent<br>Log like<br>Estimatic<br>Inf.Cr.A              | ates of Selection<br>variable<br>inbood function<br>based on N =<br>C = 7820.9 Å                        | n Model<br>WH<br>-3894.470<br>753, K =<br>IC∕N = 10.3                                              | RS<br>94<br>16<br>86                                                  |                                                                               |                                                                                                                             |                                                                                              | Two Step Es                                                                                     | stimates                                                                                 |
| WHRS                                                                     | Coefficient                                                                                             | Standard<br>Error                                                                                  | z                                                                     | Prob.<br> z >Z*                                                               | 95% Co<br>Int                                                                                                               | nfidence<br>erval                                                                            | Coefficient                                                                                     | Standard<br>Error                                                                        |
| Constant<br>KL6<br>K618<br>WA<br>WE<br>HA<br>HE                          | Selection (prob:<br>1.01351**<br>90130***<br>05292<br>02492*<br>.16396***<br>01763<br>05597***          | it) equation<br>.51518<br>.11218<br>.03999<br>.01382<br>.02783<br>.01379<br>.01379<br>.02020       | for LFP.<br>1.97<br>-8.03<br>-1.32<br>-1.80<br>5.89<br>-1.28<br>-2.77 | .0492<br>.0000<br>.1857<br>.0714<br>.0000<br>.2011<br>.0056                   | .00376<br>-1.12116<br>13130<br>05201<br>.10942<br>04467<br>09555                                                            | 2.02325<br>68143<br>.02545<br>.00217<br>.21850<br>.00940<br>01638                            | Index function f<br>1.00265**<br>90400***<br>05453<br>02602*<br>.16039***<br>01643<br>05191**   | or probabil<br>.49994<br>.11434<br>.04021<br>.01333<br>.02774<br>.01329<br>.02040        |
| Constant<br>KL6<br>K618<br>AGESQ<br>WE<br>FAMINC<br>SIGMA(1)<br>RH0(1,2) | 1946.85*<br>-209.025<br>-120.969***<br>12.0376<br>22652<br>-59.2166*<br>01289***<br>748.132***<br>22965 | 1167.225<br>221.3726<br>35.45852<br>51.99025<br>.59914<br>33.33120<br>.00332<br>59.64630<br>.49962 | 1.67<br>94<br>-3.41<br>.23<br>38<br>-1.78<br>3.88<br>12.54<br>46      | .0953<br>.3451<br>.0006<br>.8169<br>.7054<br>.0756<br>.0001<br>.0000<br>.6458 | $\begin{array}{r} -340.87\\ -642.907\\ -190.467\\ -89.8615\\ -1.40082\\ -124.5446\\ .00639\\ 631.227\\ -1.20890\end{array}$ | 4234.56<br>224.857<br>-51.472<br>113.9366<br>.94777<br>6.1113<br>.01940<br>865.036<br>.74959 | 2442.27**<br>115.110<br>-101.721***<br>14.6359<br>10079<br>-102.203***<br>.01379***<br>-793.857 | 1202.111<br>282.0086<br>38.28339<br>53.19166<br>.61856<br>39.40963<br>.00345<br>494.5410 |

Standard error corrected for selection \$939.01825 Correlation of disturbance in regression and Selection Criterion (Rho) = -.84541

### How to Handle Selectivity

- The 'Mills Ratio' approach just add a 'lambda' to whatever model is being estimated?
  - The Heckman model applies to a probit model with a linear regression.
  - The conditional mean in a nonlinear model is not something "+lambda"
- The model can sometimes be built up from first principles

### Received Sunday, April 27, 2014

I have a paper regarding strategic alliances between firms, and their impact on firm risk. While observing how a firm's strategic alliance formation impacts its risk, I need to correct for two types of selection biases. The reviews at Journal of Marketing asked us to correct for the propensity of firms to enter into alliances, and also the propensity to select a specific partner, before we examine how the partnership itself impacts risk.

Our approach involved conducting a probit of alliance formation propensity, take the inverse mills and include it in the second selection equation which is also a probit of partner selection. Then, we include inverse mills from the second selection into the main model. The review team states that this is not correct, and we need an MLE estimation in order to correctly model the set of three equations. The Associate Editor's point is given below. Can you please provide any guidance on whether this is a valid criticism of our approach. Is there a procedure in LIMDEP that can handle this set of three equations with two selection probit models?

### AE's comment:

"Please note that the procedure of using an inverse mills ratio is only consistent when the main equation where the ratio is being used is linear. In non-linear cases (like the second probit used by the authors), this is not correct. Please see any standard econometric treatment like Greene or Wooldridge. A MLE estimator is needed which will be far from trivial to specify and estimate given error correlations between all three equations."

### 19-25/39

# A Bivariate Probit Model

Labor Force Participation Equation

 $d^* = \alpha' z + u$   $d = 1(d^* > 0)$ Full Time or Part Time?  $f^* = \beta' x + \varepsilon$   $f = 1(f^* > 0)$ Probability Model: Nonparticipant: Prob[d=0] =  $\Phi(-\alpha' z)$ Participant and Full Time Prob[f=1,d=1] = Prob[f=1|d=1]Prob[d=1] $= Bivariate Normal(\beta'x,\alpha'z,\rho)$ 

Participant and Part Time

Prob[f=0,d=1]= Prob[f=0|d=1]Prob[d=1]  
= Bivariate Normal(
$$\beta$$
'x,- $\alpha$ 'z,- $\rho$ )

### **FT/PT Selection Model**

| +                      |                     |                  | +        |          |                   |
|------------------------|---------------------|------------------|----------|----------|-------------------|
| FIML Est:              | imates of Bivari    | ate Probit Model | LI       |          |                   |
| Dependent              | t variable          | FULLFP           | I        |          |                   |
| Weighting              | g variable          | None             | Ι        |          |                   |
| Number of observations |                     | 753              | 1        | Full Tin | ne = Hours > 1000 |
| Log like               | lihood function     | -723.9798        | I        |          |                   |
| Number of              | f parameters        | 16               | I        |          |                   |
| Selection              | n model based on    | LFP              | I        |          |                   |
| +                      |                     |                  | +        |          |                   |
| +                      | ++                  |                  | -+       | +        | -++               |
| Variable               | Coefficient         | Standard Error   | b/St.Er. | P[ Z >z] | Mean of X         |
| +                      | tt<br>Trdex equatio | n for FULLTTME   | -+       | +        | -++               |
| Constant               | 94532822            | 1 61674948       | 585      | 5587     |                   |
| WW                     | - 02764944          | 01941006         | -1 424   | 1543     | 4 17768154        |
| кт.6                   | .04098432           | 26250878         | 156      | 8759     | 14018692          |
| к618                   | - 13640024          | .05930081        | -2.300   | .0214    | 1,35046729        |
| AGE                    | .03543435           | 07530788         | 471      | 6380     | 41,9719626        |
| AGESO                  | 00043848            | .00088406        | 496      | .6199    | 1821.12150        |
| WE                     | 08622974            | .02808185        | -3.071   | .0021    | 12.6588785        |
| FAMINC                 | .210971D-04         | .503746D-05      | 4.188    | .0000    | 24130.4229        |
| :                      | Index equatio       | n for LFP        |          |          |                   |
| Constant               | .98337341           | .50679582        | 1.940    | .0523    |                   |
| KL6                    | 88485756            | .11251971        | -7.864   | .0000    | .23771580         |
| K618                   | 04101187            | .04020437        | -1.020   | .3077    | 1.35325365        |
| WA                     | 02462108            | .01308154        | -1.882   | .0598    | 42.5378486        |
| WE                     | .16636047           | .02738447        | 6.075    | .0000    | 12.2868526        |
| HA                     | 01652335            | .01287662        | -1.283   | .1994    | 45.1208499        |
| HE                     | 06276470            | .01912877        | -3.281   | .0010    | 12.4913679        |
| 1                      | Disturbance corr    | elation          |          |          |                   |
| RHO(1,2)               | 84102682            | .25122229        | -3.348   | .0008    |                   |

### Part 19: Sample Selection

# Building a Likelihood for a Poisson Regression Model with Selection

### **Poisson Probability Functions**

 $P(y_i | x_i) = exp(-\lambda_i)\lambda_i^{y} / y_i!$ 

**Covariates and Unobserved Heterogeneity** 

 $\lambda(\mathbf{x}_{i'} \varepsilon_i) = \exp(\mathbf{x}_i' \mathbf{\beta} + \varepsilon_i)$ 

**Conditional Contribution to the Log Likelihood** 

 $\log L_i \mid \varepsilon_i = -\lambda(\mathbf{x}_i, \varepsilon_i) + y_i \log \lambda(\mathbf{x}_i, \varepsilon_i) - \log y_i!$ 

**Probit Selection Mechanism** 

 $\begin{aligned} d_{i}^{*} &= \mathbf{z}_{i}^{\prime} \mathbf{Y} + u_{i}, \ d_{i} = \mathbf{1}[d_{i}^{*} > 0] \\ [\varepsilon_{i}, u_{i}] &\sim \mathsf{BVN} \begin{bmatrix} 0 \\ 0 \end{pmatrix}, \begin{bmatrix} \sigma^{2} & \rho \sigma \\ \rho \sigma & 1 \end{bmatrix} \\ y_{i}, \mathbf{x}_{i} \text{ observed only when } d_{i} = \mathbf{1}. \end{aligned}$ 

### **Building the Likelihood**

### **The Conditional Probit Probability**

 $\begin{aligned} \mathbf{u}_{i} \mid \boldsymbol{\varepsilon}_{i} \sim \mathsf{N}[(\rho / \sigma)\boldsymbol{\varepsilon}_{i}, (1 - \rho^{2})] \\ \mathsf{Prob}[\mathsf{d}_{i} = 1 \mid \mathbf{z}_{i}, \boldsymbol{\varepsilon}_{i}] &= \Phi\left[\frac{\mathbf{z}_{i}'\gamma + (\rho / \sigma)\boldsymbol{\varepsilon}_{i}}{\sqrt{1 - \rho^{2}}}\right] \\ \mathsf{Prob}[\mathsf{d}_{i} = 0 \mid \mathbf{z}_{i}, \boldsymbol{\varepsilon}_{i}] &= \Phi\left[\frac{-\mathbf{z}_{i}'\gamma - (\rho / \sigma)\boldsymbol{\varepsilon}_{i}}{\sqrt{1 - \rho^{2}}}\right] \end{aligned}$ 

### **Conditional Contribution to Likelihood** $L_i(y_i, d_i = 1) | \epsilon_i = [f(y_i | \mathbf{x}_i, \epsilon_i, d_i = 1) \operatorname{Prob}[d_i = 1 | \mathbf{z}_i, \epsilon_i]$ $L_i(d_i = 0) = \operatorname{Prob}[d_i = 0 | \mathbf{z}_i, \epsilon_i]$

19-29/39

Dear Professor Greene,

I am doing a project investigating the impact of hedge fund manager's coinvestment on the survival probability of the fund. As fund managers' coinvestment decision is self-selection which might cause endogeneity issue, I jointly estimate the co-investment decision (Probit model) and the survival probability (Hazard model) to account for endogeneity of co-investment decision. I received one comment saying that I should use Heckman's two procedure to correct for endogeneity. My understanding is the Heckman's approach applies to a Probit and a LINEAR model. Since hazard model is nonlinear, simply adding inverse Mill's ration in the hazard model is wrong.

What I am asking is if my understanding of this is correct? If so, why can we not simply add Mill's ratio in a nonlinear model?

### **Conditional Likelihood**

# Conditional Density (not the log) $f(y_i, d_i = 1 | \epsilon_i) = [f(y_i | \epsilon_i, d_i = 1)]Prob[d_i = 1 | \epsilon_i]$ $f(y_i, d_i = 0 | \epsilon_i) = Prob[d_i = 0 | \epsilon_i]$ Unconditional Densities

$$f(y_{i}, d_{i} = 1) = \int_{-\infty}^{\infty} [f(y_{i} | \varepsilon_{i}, d_{i} = 1)] \operatorname{Prob}[d_{i} = 1 | \varepsilon_{i}] \frac{1}{\sigma} \phi\left(\frac{\varepsilon}{\sigma}\right) d\varepsilon$$
$$f(y_{i}, d_{i} = 0) = \int_{-\infty}^{\infty} \operatorname{Prob}[d_{i} = 0 | \varepsilon_{i}] \frac{1}{\sigma} \phi\left(\frac{\varepsilon}{\sigma}\right) d\varepsilon$$
$$Log Likelihoods$$

 $logL_i = logt(y_i, d_i)$ 

19-31/39

### **Poisson Model with Selection**

### **Strategy:**

- Hermite quadrature or maximum simulated likelihood.
- Not by throwing a 'lambda' into the unconditional likelihood
- Could this be done without joint normality?
  - How robust is the model?
  - Is there any other approach available?
  - Not easily. The subject of ongoing research

## Nonnormality Issue

- How robust is the Heckman model to nonnormality of the unobserved effects?
- Are there other techniques
  - Parametric: Copula methods
  - Semiparametric: Klein/Spady and Series methods
- Other forms of the selection equation e.g., multinomial logit
- Other forms of the primary model: e.g., as above.

# **Application: Health Care Usage**

#### German Health Care Usage Data, 7,293 Individuals, Varying Numbers of Periods

This is an unbalanced panel with 7,293 individuals. There are altogether 27,326 observations. The number of observations ranges from 1 to 7.

(Frequencies are: 1=1525, 2=2158, 3=825, 4=926, 5=1051, 6=1000, 7=987).

(Downloaded from the JAE Archive)

#### Variables in the file are

| DOCTOR   | = 1(Number of doctor visits > 0)                            |        |
|----------|-------------------------------------------------------------|--------|
| HOSPITAL | = 1(Number of hospital visits > 0)                          |        |
| HSAT     | = health satisfaction, coded 0 (low) - 10 (high)            |        |
| DOCVIS   | = number of doctor visits in last three months              |        |
| HOSPVIS  | = number of hospital visits in last calendar year           |        |
| PUBLIC   | = insured in public health insurance = 1; otherwise = 0     |        |
| ADDON    | = insured by add-on insurance = 1; otherswise = 0           |        |
| HHNINC   | = household nominal monthly net income in German marks /    | 10000. |
|          | (4 observations with income=0 were dropped)                 |        |
| HHKIDS   | = children under age 16 in the household = 1; otherwise = 0 |        |
| EDUC     | = years of schooling                                        |        |
| AGE      | = age in years                                              |        |
| MARRIED  | = marital status                                            |        |

```
SAMPLE : All $
NAMELIST : z = one,age,educ,married,hhkids,hhninc $
NAMELIST : x = one,age,hsat $
PROBIT : Lhs = public : Rhs = z : Hold $
SELECT : Lhs = docvis : Rhs = x : mle$
POISSON : Lhs = docvis : Rhs = x : Selection : MLE $
BIVARIATE: Lhs = doctor,public : Rh1=x : Rh2=z : Selection $
```

| Binomial<br>Dependent<br>Log like<br>Restricte<br>Chi squar<br>Significa<br>McFadden<br>Estimatic<br>Inf.Cr.Al<br>Results r | Probit Model<br>t variable<br>lihood function<br>ed log likelihood<br>red [ 5 d.f.]<br>ance level<br>Pseudo R-squared<br>on based on N = 2<br>IC = 16652.6 AIC<br>retained for SELEC | PUBL<br>-8320.323<br>-9711.251<br>2781.855<br>.000<br>.14322<br>7326, K =<br>∕N = .6<br>TION model. | IC<br>99<br>53<br>08<br>00<br>85<br>6<br>09            |                                                    |                                                         |                                                        |  |
|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|--|
| PUBLIC                                                                                                                      | Coefficient                                                                                                                                                                          | Standard<br>Error                                                                                   | z                                                      | Prob.<br> z >Z <b>*</b>                            | 95% Con<br>Inte                                         | nfidence<br>erval                                      |  |
| Constant<br>AGE<br>EDUC<br>MARRIED<br>HHKIDS<br>HHNINC                                                                      | Index function fo<br>3.63081***<br>.00115<br>17193***<br>02762<br>06940***<br>97958***                                                                                               | r probabili<br>.07341<br>.00111<br>.00406<br>.02903<br>.02503<br>.05581                             | ty<br>49.46<br>1.03<br>-42.30<br>95<br>-2.77<br>-17.55 | .0000<br>.3011<br>.0000<br>.3413<br>.0056<br>.0000 | 3.48693<br>00103<br>17990<br>08452<br>11845<br>-1.08895 | 3.77469<br>.00333<br>16397<br>.02927<br>02035<br>87020 |  |

| Sample<br>  Probit<br>  Selecti<br>  Results<br> <br>  Data se<br>  Selecte                                                         | Selection Model<br>selection equati<br>ion rule is: Obse<br>s of selection:<br>Data<br>et 27<br>ed sample 24                                                                                                                                                                  | on based on<br>rvations wit<br>points S<br>326<br>203                                                                                                          | PUBLIC<br>h PUBLIC<br>Sum of we:<br>27326<br>24203                   | = 1<br>ights<br>.0<br>.0                                                                                                   | 1                          | -                                               |                      |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------|----------------------|
| Sample Se<br>Two step<br>LHS=DOCVI<br>Model siz<br>Residuals<br>Fit<br>Model tes<br>Not using<br>Standard<br>Correlati<br>and Selec | election Model<br>least square<br>IS Mean<br>Standard dev<br>Number of ob<br>te Parameters<br>Degrees of f<br>s Sum of squar<br>Standard err<br>R-squared<br>Adjusted R-s<br>st F[ 3, 24199<br>g OLS or no const<br>error corrected<br>ion of disturbanc<br>ction Criterion ( | s regression<br>=<br>iation =<br>servs. =<br>reedom =<br>es =<br>or of e =<br>quared =<br>] (prob) =<br>ant. Rsqrd &<br>for selectic<br>e in regress<br>Rho) = | 3.3<br>5.8<br>719<br>5.4<br>1320.7(.0<br>F may be<br>on 5.4<br>sion1 | <br>31207<br>38224<br>24203<br>4<br>24199<br>9470.<br>45265<br>14069<br>14069<br>14059<br>0000)<br>≥ < 0<br>47621<br>18222 |                            |                                                 |                      |
| DOCVIS                                                                                                                              | Coefficient                                                                                                                                                                                                                                                                   | Standard<br>Error                                                                                                                                              | z                                                                    | Prob<br> z >Z*                                                                                                             | . 95<br>*                  | % Confidence<br>Interval                        |                      |
| Constant<br>AGE<br>HSAT<br>LAMBDA                                                                                                   | 8.22501***<br>.02939***<br>89510***<br>99788***                                                                                                                                                                                                                               | .20329<br>.00319<br>.01564<br>.23717                                                                                                                           | 40.46<br>9.22<br>-57.23<br>-4.21                                     | .0000<br>.0000<br>.0000<br>.0000                                                                                           | 7.82<br>.02<br>92<br>-1.46 | 2657 8.6234<br>314 .0356<br>25758644<br>2735330 | 15<br>53<br>15<br>13 |

| Sample Selection Model<br>Two step least squares regression<br>Standard error corrected for selection 5.47621<br>Correlation of disturbance in regression<br>and Selection Criterion (Rho) = - 18222                            |                                                                                                                |                                                                                             |                                                                             |                                                          |                                                         |                                                        |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|--|--|
|                                                                                                                                                                                                                                 | · · · · · · · · · · · · · · · · · · ·                                                                          | Standard Prob 95% Confidence                                                                |                                                                             |                                                          |                                                         |                                                        |  |  |
| DOCVIS                                                                                                                                                                                                                          | Coefficient                                                                                                    | Error                                                                                       | z                                                                           | z >Z*                                                    | Interval                                                |                                                        |  |  |
| Constant<br>AGE<br>HSAT<br>LAMBDA                                                                                                                                                                                               | 8.22501***<br>.02939***<br>89510***<br>99788***                                                                | .20329<br>.00319<br>.01564<br>.23717                                                        | 40.46<br>9.22<br>-57.23<br>-4.21                                            | .0000<br>.0000<br>.0000<br>.0000                         | 7.82657<br>.02314<br>92575<br>-1.46273                  | 8.62345<br>.03563<br>86445<br>53303                    |  |  |
| ML Estimates of Selection Model<br>Dependent variable DOCVIS<br>Log likelihood function -83716.13744<br>Estimation based on N = 27326, K = 11<br>Inf.Cr.AIC = 167454.3 AIC/N = 6.128<br>Model estimated: Aug 01, 2012, 23:04:48 |                                                                                                                |                                                                                             |                                                                             |                                                          |                                                         |                                                        |  |  |
| DOCVIS                                                                                                                                                                                                                          | 9<br>Coefficient                                                                                               | Standard<br>Error                                                                           | z                                                                           | Prob.<br> z >Z <b>*</b>                                  | 95% Confidence<br>Interval                              |                                                        |  |  |
| Constant<br>AGE<br>EDUC<br>MARRIED<br>HHKIDS<br>HHNINC                                                                                                                                                                          | Selection (probit)<br>3.63881***<br>.00117<br>17218***<br>02901<br>07355***<br>98832***<br>Corrected regressio | equation<br>.07361<br>.00115<br>.00412<br>.02925<br>.02512<br>.05164<br>on, Regime<br>.0202 | for PUBL:<br>49.44<br>1.02<br>-41.83<br>99<br>-2.93<br>-19.14<br>1<br>41.70 | IC<br>.0000<br>.3073<br>.0000<br>.3212<br>.0034<br>.0034 | 3.49455<br>00108<br>18024<br>08633<br>12279<br>-1.08953 | 3.78308<br>.00342<br>16411<br>.02831<br>02431<br>88712 |  |  |
| Constant<br>AGE<br>HSAT<br>SIGMA(1)<br>RHO(1,2)                                                                                                                                                                                 | 8.10465***<br>.03040***<br>89792***<br>5.45984***<br>08970*                                                    | .00325<br>.01389<br>.01019<br>.04810                                                        | 41.79<br>9.35<br>-64.65<br>535.78<br>-1.86                                  | .0000<br>.0000<br>.0000<br>.0000<br>.0622                | 7.72457<br>.02403<br>92514<br>5.43987<br>18398          | 8.48473<br>.03678<br>87070<br>5.47982<br>.00458        |  |  |

| Poisson Model with Sample Selection.<br>Dependent variable DOCVIS<br>Log likelihood function -60829.53023<br>Restricted log likelihood -205953.60785<br>Chi squared [ 2 d.f.] 290248.15524<br>Significance level .00000<br>McFadden Pseudo R-squared .7046445<br>Estimation based on N = 27326, K = 11<br>Inf.Cr.AIC = 121681.1 AIC/N = 4.453<br>Restr. Log-L is Poisson+Probit (indep).<br>LogL for initial probit = -8320.3674<br>LogL for initial Poisson= -197633.2404<br>Means for Psn/Neg.Bin. use selected data.<br>Means for Probit based on all observations. |                                                                                 |                                                           |                                                   |                                                    |                                                         |                                                        |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------|----------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|--|
| DOCVIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Coefficient                                                                     | Standard<br>Error                                         | z                                                 | Prob.<br> z >Z <b>*</b>                            | 95% Confidence<br>Interval                              |                                                        |  |
| Constant<br>AGE<br>HSAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Parameters of Pois<br>1.55949***<br>.01053***<br>25228***<br>Parameters of Prob | sson/Neg. B<br>.04592<br>.00078<br>.00339<br>bit Selectio | inomial H<br>33.96<br>13.50<br>-74.50<br>on Model | Probabil:<br>.0000<br>.0000<br>.0000               | ity<br>1.46948<br>.00900<br>25892                       | 1.64949<br>.01206<br>24564                             |  |
| Constant<br>AGE<br>EDUC<br>MARRIED<br>HHKIDS<br>HHNINC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.55923***<br>.00175<br>16992***<br>02874<br>06369**<br>93895***                | .07381<br>.00115<br>.00412<br>.02937<br>.02518<br>.05262  | 48.22<br>1.52<br>-41.21<br>98<br>-2.53<br>-17.84  | .0000<br>.1285<br>.0000<br>.3277<br>.0114<br>.0000 | 3.41456<br>00051<br>17800<br>08631<br>11305<br>-1.04208 | 3.70390<br>.00401<br>16184<br>.02882<br>01434<br>83582 |  |
| Sigma<br>Rho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Standard Deviation<br>1.16922***<br>Correlation of He<br>02853                  | n of Hetero<br>.00768<br>terogeneity<br>.05534            | geneity<br>152.19<br>& Select<br>52               | .0000<br>tion<br>.6062                             | 1.15416<br>13698                                        | 1.18427<br>.07993                                      |  |

| FIML Estimates of Bivariate Probit Model<br>Dependent variable DOCPUB<br>Log likelihood function -22945.59406<br>Estimation based on N = 27326, K = 10<br>Inf.Cr.AIC = 45911.2 AIC/N = 1.680<br>Selection model based on PUBLIC<br>Selected obs. 24203, Nonselected: 3123 |                                                                                                    |                                                                              |                                                          |                                                             |                                                                  |                                                                 |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------|--|
| DOCTOR<br>PUBLIC                                                                                                                                                                                                                                                          | Coefficient                                                                                        | Standard<br>Error                                                            | z                                                        | Prob.<br> z >Z <b>*</b>                                     | 95% Confidence<br>Interval                                       |                                                                 |  |
| Constant<br>AGE<br>HSAT                                                                                                                                                                                                                                                   | Index equation<br>1.18664***<br>.00892***<br>17226***<br>Index equation                            | for DOCTOR<br>.05011<br>.00079<br>.00416<br>for PUPLIC                       | 23.68<br>11.29<br>-41.43                                 | . 0000<br>. 0000<br>. 0000                                  | 1.08843<br>.00737<br>18041                                       | 1.28485<br>.01047<br>16411                                      |  |
| Constant<br>AGE<br>EDUC<br>MARRIED<br>HHKIDS<br>HHNINC<br>RHO(1,2)                                                                                                                                                                                                        | 3.63944***<br>.00098<br>17210***<br>02446<br>07540***<br>97675***<br>Disturbance correl<br>13237** | .07354<br>.00115<br>.00411<br>.02927<br>.02511<br>.05162<br>lation<br>.05753 | 49.49<br>.85<br>-41.86<br>84<br>-3.00<br>-18.92<br>-2.30 | .0000<br>.3949<br>.0000<br>.4033<br>.0027<br>.0027<br>.0000 | 3.49530<br>00127<br>18016<br>08182<br>12462<br>-1.07792<br>24513 | 3.78357<br>.00323<br>16405<br>.03290<br>02619<br>87558<br>01960 |  |