Econometrics I

Professor William Greene Stern School of Business Department of Economics

Part 2: Projection and Regression

Econometrics I

Part 2 – Projection and Regression

Part 2: Projection and Regression

Statistical Relationship

Objective: Characterize the 'relationship' between a variable of interest and a set of 'related' variables

Context: An inverse demand equation,

- $P = \alpha + \beta Q + \gamma Y$, Y = income. P and Q are two random variables with a joint distribution, f(P,Q). We are interested in studying the 'relationship' between P and Q.
- By 'relationship' we mean (usually) covariation.

Bivariate Distribution - Model for a Relationship Between Two Variables

- We might posit a bivariate distribution for P and Q, f(P,Q)
- How does variation in P arise?
 - With variation in Q, and
 - Random variation in its distribution.
- There exists a conditional distribution f(P|Q) and a conditional mean function, E[P|Q]. Variation in P arises because of
 - Variation in the conditional mean,
 - Variation around the conditional mean,
 - (Possibly) variation in a covariate, Y which shifts the conditional distribution

Conditional Moments

- The conditional mean function is the *regression* function.
 - $P = E[P|Q] + (P E[P|Q]) = E[P|Q] + \varepsilon$
 - $E[\varepsilon|Q] = 0 = E[\varepsilon]$. Proof: (The Law of iterated expectations)
- Variance of the conditional random variable = conditional variance, or the scedastic function.
- A "trivial relationship" may be written as $P = h(Q) + \varepsilon$, where the random variable $\varepsilon = P-h(Q)$ has zero mean by construction. Looks like a regression "model" of sorts.
- An extension: Can we carry Y as a parameter in the bivariate distribution? Examine *E*[P|Q,Y]

Sample Data (Experiment)

Y	Q	Р	
2	4.87922	7.54372	
1	3.82786	7.34581	
2	3.47715	8.06425	
1	2.80233	7.95544	
1	4.24447	6.89802	
2	4.69255	7.65647	
1	4.62286	6.13175	
1	2.52893	8.4732	
2	4.49625	7.81212	
1	3.93907	7.28257	
1	3.89569	7.45552	
1	4.58395	6.65612	
1	2.88468	8.54341	
1	2.20953	8.52388	
1	4.47329	6.79659	
1	4.76754	6.15842	
2	2.97926	8.81925	
1	3.44583	7.31662	
2	2.53235	9.60803	
2	3.79481	7.93217	
2	3.14991	8.35497	
1	4.03218	6.96767	
1	2.35632	8.95624	
2	2.52448	9.88523	
2	3.03155	8.82016	
1	4.90302	6.03125	
2	3.00654	9.25203	
2	4.01524	8.28128	
1	3.69082	7.57176	
2	2.711	8.96197	

2-6/47

50 Observations on P and Q Showing Variation of P Around E[P]

Variation Around E[P|Q] (Conditioning Reduces Variation)

2-8/47

Means of P for Given Group Means of Q

Part 2: Projection and Regression

2-9/47

Another Conditioning Variable

2-10/47

Part 2: Projection and Regression

Conditional Mean Functions

- No requirement that they be "linear" (we will discuss what we mean by linear)
- Conditional Mean function: h(X) is the function that minimizes E_{X,Y}[Y – h(X)]²
- No restrictions on conditional variances at this point.

Projections and Regressions

- We explore the difference between the linear projection and the conditional mean function
- y and x are two random variables that have a bivariate distribution, f(x,y).
- Suppose there exists a <u>linear</u> function such that

u
$$y = \alpha + \beta x + \varepsilon$$
 where $E(\varepsilon | x) = 0 => Cov(x, \varepsilon) = 0$
Then,

$$\begin{array}{rcl} {\rm Cov}({\rm x},{\rm y}) &=& {\rm Cov}({\rm x},\alpha) \,+\, \beta {\rm Cov}({\rm x},{\rm x}) \,+\, {\rm Cov}({\rm x},\epsilon) \\ &=& 0 \,\,+\, \beta \,\, {\rm Var}({\rm x}) \,\,+\,\, 0 \\ &=& {\rm so}, \,\, \overline{\beta} \,=\, {\rm Cov}({\rm x},{\rm y}) \,/\, {\rm Var}({\rm x}) \\ &=& {\rm and} \,\, E({\rm y}) \,=\, \alpha \,+\, \beta E({\rm x}) \,\,+\, E(\epsilon) \\ &=& {\rm but} \,\, E(\epsilon) \,=\, E(\epsilon|{\rm x}) \,=\, E(0) \,=\, 0 \,\, ({\rm Law \ of \ iterated \ expectations}) \\ &=& {\rm so}, \,\, \overline{\alpha} \,=\, E[{\rm y}] \,-\, \beta E[{\rm x}]. \end{array}$$

2-12/47

Regression and Projection

Does this mean $E[y|x] = \alpha + \beta x$?

- No. This is the linear projection of y on x
- It is true in every bivariate distribution, whether or not E[y|x] is linear in x.
- y can <u>generally</u> be written $y = \alpha + \beta x + \varepsilon$ where $\varepsilon \perp x, \beta = Cov(x,y) / Var(x)$ etc.
 - The conditional mean function is h(x) such that
 - y = h(x) + v where E[v|h(x)] = 0. But, h(x) does not have to be linear.
- The implication: What is the result of "linearly regressing y on ," for example using least squares?

Data from a Bivariate Population

Part 2: Projection and Regression

The Linear Projection Computed by Least Squares

2-15/47

Part 2: Projection and Regression

Linear Least Squares Projection

Ordinary	least squar	least squares regression							
LHS=Y	Mean	Mean Standard deviation		1.2163	2				
	Standard de			. 3759	2				
	Number of observs.		=	10	0				
Model siz	e Parameters	e Parameters		:	2				
	Degrees of	Degrees of freedom		98	98				
Residuals	Sum of squa	Sum of squares		9.9594	9				
	Standard er	Standard error of e		.3187					
Fit	R-squared	R-squared		.2881	2				
	Adjusted R-squared		=	= .28086					
Variable	Coefficient	Standard	Error	t-ratio	P[T >t]	Mean of X			
Constant	.83368***	.06	861	12.150	.0000				
X	.24591***	.03	905	6.298	.0000	1.55603			

The True Conditional Mean Function

The True Data Generating Mechanism

What does least squares "estimate?"

2-18/47

Part 2: Projection and Regression

Journal of Economic Growth, 5: 5–32 (March 2000) © 2000 Kluwer Academic Publishers. Printed in the Netherlands.

Inequality and Growth in a Panel of Countries

ROBERT J. BARRO

Littauer Center, Department of Economics, Harvard University, Cambridge, MA 02138

Evidence from a broad panel of countries shows little overall relation between income inequality and rates of growth and investment. For growth, higher inequality tends to retard growth in poor countries and encourage growth in richer places. The Kuznets curve—whereby inequality first increases and later decreases during the process of economic development—emerges as a clear empirical regularity. However, this relation does not explain the bulk of variations in inequality across countries or over time.

Keywords: inequality, growth, Kuznets curve, Gini coefficient

JEL classification: O4, I3

2-19/47

Part 2: Projection and Regression

2-20/47

Part 2: Projection and Regression

Application: Doctor Visits

- German Individual Health Care data: n=27,236
- A model for number of visits to the doctor:
 - True E[v|income] = exp(1.413 .747*income)
 - Linear regression: g*(income)=3.918 2.087*income

Conditional Mean and Projection

The linear projection somewhat resembles the conditional mean. Notice the problem with the linear approach. Negative predictions.

2-22/47

Poisson H Dependent Log like Restricte Chi squar Significa McFadden Estimatic Inf.Cr.Al Chi- squa G - squa Overdispe	Regression variable ihood function ed log likelihood ed [1](P= .000) nce level Pseudo R-squared on based on N = 2 C = 216050.2 AIC ared =270220.31368 ared =163007.59656 ersion tests: g=mu	DOCV -108023.088 -108662.135 1278.094 .000 .00588 27326, K = 2/N = 7.9 RsqP= .02 RsqD= .00 1(i) : 22.8 1(i)^2: 23.2	IS 69 83 29 00 10 2 06 75 78 05 48			
DOCVIS	Coefficient	Standard Error	z	Prob. z >Z *	95% Confidence Interval	
Constant INCOME	1.41304 *** 74694 ***	.00795 .02167	177.84 -34.47	. 0000 . 0000	1.39747 1.42862 7894170447	

For the Poisson model, E[v|income] = exp(1.41304 - .74694 income)

2-23/47

Ordinary LHS=DOCVI	least squares S Mean Standard devi	regression = ation =	3. 5.	18352 68969		
Regressic Residual Total Fit Model tes	 No. of observ n Sum of Square Sum of Square Sum of Square Standard erro R-squared it F[1, 27324] 	ations = s = s = r of e = = =	37 88 88 5. 115.	27326 21.68 0859. 4581. 67781 00421 44533	DegFreedom 1 27324 27325 Root MSE R-bar squared Prob F > F*	Mean square 3721.67505 32.23755 32.37258 5.67760 1 .00417 .00000
DOCVIS	Coefficient	Standard Error	z	Prob z >Z	. 95% Con * Inte	nfidence erval
Constant INCOME	3.91834 *** -2.08673 ***	.07653 .19421	51.20 -10.74	.0000 .0000	3.76834 -2.46738	4.06833 -1.70608

For the Poisson model, E[v|income]=exp(1.41304 - .74694 income)Mean income is 0.351235.

The slope is -.74694 * exp(1.41304 - .74694 income(.351235))

Partial Effects	s Analysis for Exponential Regression Function						
Effects on function with respect to INCOME Results are computed at sample means of all variables Partial effects for continuous INCOME computed by differentiation Effect is computed as derivative = df(.)/dx							
df/dINCOME Partial Standard (Delta method) Effect Error t 95% Confidence Interva							
PE.Func(means)	-2.35903	.06786	34.76	-2.49203	-2.22603		

Representing the Relationship

- Conditional mean function is : E[y | x] = g(x)
- The linear projection (linear regression?)

$$g^{*}(\mathbf{x}) = \gamma_{0} + \gamma_{1}(\mathbf{x} - \mathbf{E}[\mathbf{x}])$$
$$\gamma_{0} = \mathbf{E}[\mathbf{y}], \ \gamma = \frac{\mathbf{Cov}[\mathbf{x}, \mathbf{y}]}{\mathbf{Var}[\mathbf{x}]}$$

Linear approximation to the nonlinear conditional mean function: Linear Taylor series evaluated at x⁰

$$\hat{g}(x) = g(x^0) + \left[\frac{dg(x)}{dx} | (x = x^0)\right] (x - x^0)$$
$$= \delta_0 + \delta_1 (x - x^0)$$

We will use the projection very often. We will rarely use the Taylor series.

2-25/47

Representations of y Does $y = \beta_0 + \beta_1 x + \epsilon$?

Part 2: Projection and Regression

Summary

Regression function: E[y|x] = g(x)

Projection: g*(y|x) = a + bx where b = Cov(x,y)/Var(x) and a = E[y]-bE[x] Projection will equal E[y|x] if E[y|x] is linear.

The Linear Regression Model

- **D** The **model** is $y = f(x_1, x_2, ..., x_K, \beta_1, \beta_2, ..., \beta_K) + \varepsilon$
 - = a multiple regression model (multiple as opposed to multivariate). Emphasis on the "multiple" aspect of multiple regression. Important examples:
- Form of the model E[y|x] = a linear function of x. (Regressand vs. regressors)
- Note the presumption that there exists a relationship defined by the model.
- Dependent' and 'independent' variables.
 - Independent of what? Think in terms of autonomous variation.
 - Can y just 'change?' What 'causes' the change?
 - Very careful on the issue of causality. Cause vs. association. Modeling causality in econometrics...

Model Assumptions: Generalities

- Linearity means linear in the parameters. We'll return to this issue shortly.
- Identifiability. It is not possible in the context of the model for two different sets of parameters to produce the same value of E[y|x] for <u>all</u> x vectors. (It is possible for some x.)
- Conditional expected value of the deviation of an observation from the conditional mean function is zero
- Form of the variance of the random variable around the conditional mean is specified
- Nature of the process by which x is observed is not specified. The assumptions are conditioned on the observed x.
- Assumptions about a specific probability distribution to be made later.

Linearity of the Model

 $\square f(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_K, \beta_1, \beta_2, \dots \beta_K) = \mathbf{x}_1 \beta_1 + \mathbf{x}_2 \beta_2 + \dots + \mathbf{x}_K \beta_K$

D Notation: $x_1\beta_1 + x_2\beta_2 + ... + x_K\beta_K = \mathbf{x'}\boldsymbol{\beta}$.

- Boldface letter indicates a column vector. "x" denotes a variable, a function of a variable, or a function of a set of variables.
- There are K "variables" on the right hand side of the conditional mean "function."
- The first "variable" is usually a constant term. (Wisdom: Models should have a constant term unless the theory says they should not.)

$$E[y|\mathbf{x}] = \beta_1 * 1 + \beta_2 * x_2 + \dots + \beta_K * x_K. (\beta_1 * 1 = the intercept term).$$

2-30/47

Linearity

Simple linear model, E[y|x] =x'β
Quadratic model: E[y|x] = α + β₁x + β₂x²
Loglinear model, E[lny|lnx] = α + Σ_k lnx_kβ_k
Semilog, E[y|x] = α + Σ_k lnx_kβ_k
Translog: E[lny|lnx] = α + Σ_k lnx_kβ_k + Σ_k Σ_l δ_{kl} lnx_k lnx_k

All are "linear." An infinite number of variations.

Linearity

- Linearity means linear in the parameters, not in the variables
- $E[y|\mathbf{x}] = \beta_1 f_1(...) + \beta_2 f_2(...) + ... + \beta_K f_K(...).$ $f_k()$ may be any function of data.
- Examples:
 - Logs and levels in economics
 - Time trends, and time trends in loglinear models rates of growth
 - Dummy variables
 - Quadratics, power functions, log-quadratic, trig functions, interactions and so on.

Uniqueness of the Conditional Mean

The conditional mean relationship must hold for any set of N observations, i = 1,...,n. Assume, that $n \ge K$ (justified later) $E[y_1|\mathbf{x}] = \mathbf{x_1'\beta}$ $E[y_2|\mathbf{x}] = \mathbf{x_2'\beta}$... $E[y_n|\mathbf{x}] = \mathbf{x_n'\beta}$ All n observations at once: $E[\mathbf{y}|\mathbf{X}] = \mathbf{X\beta} = \mathbf{E}_{\beta}$.

Uniqueness of E[y|X]

Now, suppose there is a $\gamma \neq \beta$ that produces the same expected value,

$$E[\mathbf{y}|\mathbf{X}] = \mathbf{X}\gamma = \mathbf{E}_{\gamma}.$$

Let
$$\delta = \beta - \gamma$$
. Then,
 $X\delta = X\beta - X\gamma = E_{\beta} - E_{\gamma} = 0$.

Is this possible? X is an n×K matrix (n rows, K columns). What does $X\delta = 0$ mean? We assume this is not possible. This is the '*full rank'* assumption – it is an 'identifiability' assumption. Ultimately, it will imply that we can 'estimate' β . (We have yet to develop this.) This requires $n \ge K$.

Without uniqueness, neither $X\beta$ or $X\gamma$ are E[y|X]

Linear Dependence

Example: (2.5) from your text:

 $\mathbf{x} = [1, Nonlabor income, Labor income, Total income]$ More formal statement of the uniqueness condition:

No linear dependencies: No variable x_k may be written as a linear function of the other variables in the model. An *identification condition*. Theory does not rule it out, but it makes estimation impossible. E.g.,

$$y = \beta_1 + \beta_2 NI + \beta_3 S + \beta_4 T + \varepsilon$$
, where $T = NI + S$.

$$y = \beta_1 + (\beta_2 + a)NI + (\beta_3 + a)S + (\beta_4 - a)T + \varepsilon \text{ for any } a,$$

$$= \gamma_1 + \gamma_2 NI + \gamma_3 S + \gamma_4 T + \varepsilon.$$

- What do we estimate if we 'regress' y on (1,NI,S,T)?
- Note, the model does not rule out nonlinear dependence. Having x and x² in the same equation is no problem.

2-35/47

An Enduring Art Mystery

The Persistence of Econometrics Greene, 2017

Why do larger paintings command higher prices? Graphics show relative sizes of the two works.

The Persistence of Memory. Salvador Dali, 1931

An Unidentified (But Valid) Theory of Art Appreciation

(Not a Monet)

Enhanced Monet Area Effect Model: Height and Width Effects

Log(Price) = $\alpha + \beta_1 \log Area + \beta_2 \log Area +$

β₂ log Aspect Ratio +

 β_3 log Height +

 β_4 Signature + ϵ

 $= \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \varepsilon$

(Aspect Ratio = Width/Height). This is a perfectly respectable theory of art prices. However, it is not possible to learn about the parameters from data on prices, areas, aspect ratios, heights and signatures.

 $x_3 = (1/2)(x_1-x_2)$

2-37/47

Notation

Define column vectors of N observations on y **and the** K **variables.**

The assumption means that the rank of the matrix X is K. No linear dependencies => FULL COLUMN RANK of the matrix X.

Expected Values of Deviations from the Conditional Mean

Observed y will equal $E[y|\mathbf{x}]$ + random variation.

 $y = E[y|\mathbf{x}] + \varepsilon$ (disturbance)

- Is there any *information* about ε in x? That is, does movement in x provide useful information about movement in ε? If so, then we have not fully specified the conditional mean, and this function we are calling `E[y|x]' is not the conditional mean (regression)
- There may be information about ε in other variables. But, not in x. If E[ε|x] ≠ 0 then it follows that Cov[ε,x] ≠ 0. This violates the (as yet still not fully defined) 'independence' assumption

Zero Conditional Mean of ε

E[ε |all data in **X**] = 0

 $\Box E[\varepsilon | \mathbf{X}] = \mathbf{0} \text{ is stronger than } E[\varepsilon_i | \mathbf{x}_i] = 0$

- The second says that knowledge of x_i provides no information about the mean of ε_i. The first says that <u>no</u> x_j provides information about the expected value of ε_i, not the ith observation and not any other observation either.
- "No information" is the same as no correlation. Proof: Cov[X,ε] = Cov[X,E[ε|X]] = 0

The Difference Between $E[\epsilon | \mathbf{x}]=0$ and $E[\epsilon]=0$ With respect to —, $E[\epsilon | \mathbf{x}] \neq 0$, but $E_x[E[\epsilon | \mathbf{x}]] = E[\epsilon] = 0$

Part 2: Projection and Regression

Conditional Homoscedasticity and Nonautocorrelation

Disturbances provide no information about each other, whether in the presence of \mathbf{X} or not.

- Var[$\boldsymbol{\varepsilon} | \mathbf{X}$] = $\sigma^2 \mathbf{I}$.
- Does this imply that Var[ε] = σ²I? Yes: Proof: Var[ε] = E[Var[ε|X]] + Var[E[ε|X]].

Insert the pieces above. What does this mean? It is an additional assumption, part of the model. We'll change it later. For now, it is a useful simplification

Normal Distribution of ε

- Used to facilitate finite sample derivations of certain test statistics.
- Temporary. We'll return to this later. For now, we only assume ε are i.i.d. with zero conditional mean and constant conditional variance.

The Linear Model

- **y** = $X\beta + \varepsilon$, n observations, K columns in X, including a column of ones.
 - Standard assumptions about X
 - Standard assumptions about ε|X
 - E[ε|X]=0, E[ε]=0 and Cov[ε,x]=0
- Regression?
 - If $E[\mathbf{y}|\mathbf{X}] = \mathbf{X}\beta$ then $E[y|\mathbf{x}]$ is also the projection.

Cornwell and Rupert Panel Data

Cornwell and Rupert Returns to Schooling Data, 595 Individuals, 7 Years Variables in the file are

EXP	= work experience
WKS	= weeks worked
OCC	= occupation, 1 if blue collar,
IND	= 1 if manufacturing industry
SOUTH	= 1 if resides in south
SMSA	= 1 if resides in a city (SMSA)
MS	= 1 if married
FEM	= 1 if female
UNION	= 1 if wage set by union contract
ED	= years of education
LWAGE	= log of wage = dependent variable in regressions

These data were analyzed in Cornwell, C. and Rupert, P., "Efficient Estimation with Panel Data: An Empirical Comparison of Instrumental Variable Estimators," Journal of Applied Econometrics, 3, 1988, pp. 149-155. See Baltagi, page 122 for further analysis. The data were downloaded from the website for Baltagi's text.

2-45/47

Part 2: Projection and Regression

Regression Specification: Quadratic Effect of Experience

Ordinary LHS=LWAGE Regressio Residual Total Fit Model tes	least squares Mean Standard devi No. of observ on Sum of Square Sum of Square Sum of Square R-squared st F[10, 4154]	regression ation = vations = es = es = or of e = = =	6. 37 51 88 298.	67635 46151 4165 0.955 5.950 6.905 35243 41826 66153	DegFreedom 10 4154 4164 Root MSE R-bar squared Prob F > F*	Mean square 37.09546 .12421 .21299 .35196 1 .41686 .00000
LWAGE	Coefficient	Standard Error	z	Prob z >Z	. 95% Con * Inte	nfidence erval
Constant	5.24547 *** 05654 ***	.07170	73.15	. 0000	5.10493 05142	5.38600
EXP EXP*EXP	.04045 *** 00068 ***	.00217 .4783D-04	18.61 -14.24	.0000	.03619 00077	.04471 00059
WKS OCC SOUTH SMSA	.00449 *** 14053 *** 07210 *** 13901 ***	.00109 .01472 .01249 .01207	4.12 -9.54 -5.77 11.51	.0000 .0000 .0000	.00235 16939 09658 11534	.00662 11167 04762 16267
MS FEM	.06736 *** 38922 ***	.02063 .02518	3.26 -15.46	.0011	.02692 43857	.10779 33987
UNION .09015*** .01289 6.99 .0000 .06488 .11542 						

Part 2: Projection and Regression

Model Implication: Effect of Experience and Male vs. Female

