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Statistical Relationship 

 Objective:  Characterize the ‘relationship’ 
between a variable of interest and a set of 
'related' variables  

 Context:  An inverse demand equation,  

 P =    +  Q  +  Y, Y = income.  P and Q are two 

random variables with a joint distribution, f(P,Q).  We 

are interested in studying the ‘relationship’ between  

P and Q. 

 By ‘relationship’ we mean (usually) covariation. 
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Bivariate Distribution - Model for a 

Relationship Between Two Variables  

 We might posit a bivariate distribution for P and Q, f(P,Q)  

 How does variation in P arise?  

 With variation in Q, and  

 Random variation in its distribution.  

 There exists a conditional distribution f(P|Q) and a 
conditional mean function, E[P|Q].  Variation in P arises 
because of  

 Variation in the conditional mean,  

 Variation around the conditional mean,  

 (Possibly) variation in a covariate, Y which shifts the 
conditional distribution 
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Conditional Moments 

 The conditional mean function is the regression 
function. 
 P  =  E[P|Q]  +  (P - E[P|Q])  =  E[P|Q] +  
 E[|Q] = 0 = E[].  Proof:  (The Law of iterated 

expectations) 
 

 Variance of the conditional random variable = conditional 
variance, or the scedastic function. 
 

 A “trivial relationship” may be written as P = h(Q) + , 
where the random variable  = P-h(Q) has zero mean by 
construction.  Looks like a regression “model” of sorts.  
 

 An extension:  Can we carry Y as a parameter in the 
bivariate distribution?  Examine E[P|Q,Y] 
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Sample Data (Experiment) 

5.0                             7.5                             10.0 

Distribution of P 
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50 Observations on P and Q 

Showing Variation of P Around E[P] 
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Variation Around E[P|Q] 

(Conditioning Reduces Variation) 
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Means of P for Given Group Means of Q 
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Another Conditioning Variable 
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Conditional Mean Functions 

 No requirement that they be "linear" (we will 

discuss what we mean by linear) 

 Conditional Mean function: h(X) is the function 

that minimizes EX,Y[Y – h(X)]2 

 No restrictions on conditional variances at this 

point. 
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Projections and Regressions 

 We explore the difference between the linear projection and 
the conditional mean function 

 y and x are two random variables that have a bivariate 
distribution, f(x,y). 

 Suppose there exists a linear function such that 

 y =  + x +  where E(|x) = 0 => Cov(x,) = 0 

 Then, 

    Cov(x,y)  =  Cov(x,)  +  Cov(x,x)  +  Cov(x,) 

                  =       0       +    Var(x)    +    0 

       so,      =  Cov(x,y) / Var(x) 

 and    E(y)  =    +  E(x)  +  E() 

 but     E()  =  E(|x) = E(0) = 0 (Law of iterated expectations) 

 so       E(y) =     +  E(x)   +  0 

 so,           =   E[y]  -  E[x]. 
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Regression and Projection 

    Does this mean E[y|x]  =    +  x?   

 No.  This is the linear projection of y on x 

 It is true in every bivariate distribution, 
whether or not E[y|x] is linear in x. 

 y can generally be written y =   +  x +     

     where    x,   =  Cov(x,y) / Var(x) etc. 

  The conditional mean function is h(x) such that 

  y = h(x) + v where E[v|h(x)] = 0.  But, h(x) 
does not have to be linear. 

The implication: What is the result of “linearly 
regressing y on ,” for example using least 
squares? 
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Data from a Bivariate Population 
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The Linear Projection Computed  

by Least Squares 
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Linear Least Squares Projection 

---------------------------------------------------------------------- 

Ordinary     least squares regression ............ 

LHS=Y        Mean                 =        1.21632 

             Standard deviation   =         .37592 

             Number of observs.   =            100 

Model size   Parameters           =              2 

             Degrees of freedom   =             98 

Residuals    Sum of squares       =        9.95949 

             Standard error of e  =         .31879 

Fit          R-squared            =         .28812 

             Adjusted R-squared   =         .28086 

--------+------------------------------------------------------------- 

Variable| Coefficient    Standard Error  t-ratio  P[|T|>t]   Mean of X 

--------+------------------------------------------------------------- 

Constant|     .83368***       .06861       12.150   .0000 

       X|     .24591***       .03905        6.298   .0000      1.55603 

--------+------------------------------------------------------------- 
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The True Conditional Mean Function 

True Conditional Mean Function E[y|x]
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The True Data Generating Mechanism 

What does least squares “estimate?” 
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Application: Doctor Visits 

 German Individual Health Care data: n=27,236 

 A model for number of visits to the doctor: 

 True E[v|income] =          exp(1.413 - .747*income) 

 Linear regression: g*(income)=3.918 – 2.087*income 
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Conditional Mean and Projection 

         The linear projection somewhat resembles the conditional mean. 
         Notice the problem with the linear approach. Negative predictions. 
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For the Poisson model, E[v|income]=exp(1.41304 - .74694 income)
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For the Poisson model, E[v|income]=exp(1.41304 - .74694 income)

Mean income is 0.351235.

The slope is -.74694 * exp(1.41304 - .74694 income(.351235))



Part 2: Projection and Regression 2-25/47 

Representing the Relationship 

 Conditional mean function is :   E[y | x] = g(x) 

 The linear projection (linear regression?)  

 

 

 

 

 Linear approximation to the nonlinear conditional mean 
function:  Linear Taylor series evaluated at x0 

 

 

 

 

 We will use the projection very often.  We will rarely use 
the Taylor series. 
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Representations of y 

Does y = 0 + 1x + ? 

Slopes of the 3 

functions are 

roughly equal. 
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Summary 

 Regression function:  E[y|x] = g(x) 

 

 Projection:  g*(y|x) = a + bx where 
b = Cov(x,y)/Var(x) and a = E[y]-bE[x] 
Projection will equal E[y|x] if E[y|x] is 
linear. 

 

 y = E[y|x]  + e  

   y = a + bx + u 
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The Linear Regression Model 

 The model is y  =  f(x1,x2,…,xK,1,2,…K)  +     

     =  a multiple regression model (multiple as opposed to 

multivariate).  Emphasis on the “multiple” aspect of 

multiple regression.  Important examples:  

 Form of the model – E[y|x] = a linear function of x.   

    (Regressand vs. regressors) 

 Note the presumption that there exists a relationship 
defined by the model. 

 ‘Dependent’ and ‘independent’ variables.   
 Independent of what? Think in terms of autonomous variation. 

 Can y just ‘change?’  What ‘causes’ the change?   

 Very careful on the issue of causality.  Cause vs. association. 
Modeling causality in econometrics… 
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Model Assumptions: Generalities 

 Linearity means linear in the parameters. We’ll return to 
this issue shortly. 

 Identifiability.  It is not possible in the context of the 
model for two different sets of parameters to produce the 
same value of E[y|x] for all x vectors. (It is possible for 
some x.) 

 Conditional expected value of the deviation of an 
observation from the conditional mean function is zero 

 Form of the variance of the random variable around the 
conditional mean is specified 

 Nature of the process by which x is observed is not 
specified.  The assumptions are conditioned on the 
observed x. 

 Assumptions about a specific probability distribution to be 
made later. 
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Linearity of the Model 

 f(x1,x2,…,xK,1,2,…K) = x11  + x22 + … + xKK 

 Notation: x11  + x22 + … + xKK  =  x.  
 Boldface letter indicates a column vector.  “x” denotes a 

variable, a function of a variable, or a function of a set 
of variables.   

 There are K “variables” on the right hand side of the 
conditional mean “function.”   

 The first “variable” is usually a constant term.  (Wisdom:  
Models should have a constant term unless the theory 
says they should not.)  

 E[y|x]  =  1*1 + 2*x2 + … + K*xK.   

                  (1*1 = the intercept term). 
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Linearity 

 Simple linear model, E[y|x]      =x’β 

 Quadratic model:      E[y|x]       = α + β1x + β2x
2 

 Loglinear model,       E[lny|lnx] = α + Σk lnxkβk 

 Semilog,                    E[y|x]      = α + Σk lnxkβk 

 Translog:                   E[lny|lnx] = α + Σk lnxkβk 

                                              +  Σk Σl δkl   lnxk lnxl 

All are “linear.”  An infinite number of variations. 
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Linearity 

 Linearity means linear in the parameters, 
not in the variables 

 E[y|x]  =  1 f1(…) + 2 f2(…) + … +  K fK(…).  

                        fk() may be any function of data. 
 Examples: 

 Logs and levels in economics 
 Time trends, and time trends in loglinear models – 

rates of growth 
 Dummy variables 
 Quadratics, power functions, log-quadratic, trig 

functions, interactions and so on. 
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Uniqueness of the Conditional Mean 
 

The conditional mean relationship must hold for any set of 
N observations, i = 1,…,n.  Assume, that n  K  
(justified later) 

       E[y1|x]  =  x1 

       E[y2|x]  =  x2 

        …   

       E[yn|x]  =  xn   

All n observations at once:  E[y|X]  =  X  =  E.  
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Uniqueness of E[y|X] 

Now, suppose there is a    that produces the same 
expected value, 

  

           E[y|X]  = X  =  E. 
 

Let  =  - .  Then,  

            X = X - X  = E - E  =  0.   
 

Is this possible?  X is an nK matrix (n rows, K columns).  
What does X = 0 mean?   We assume this is not 
possible.  This is the ‘full rank’ assumption – it is an 
‘identifiability’ assumption.  Ultimately, it will imply that 
we can ‘estimate’ .  (We have yet to develop this.)  
This requires n  K . 

Without uniqueness, neither X or X are E[y|X] 
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Linear Dependence 

 Example:  (2.5) from your text:   

       x  =  [1 , Nonlabor income, Labor income, Total income] 

 More formal statement of the uniqueness condition: 

      No linear dependencies: No variable xk may be written 
as a linear function of the other variables in the model.  
An identification condition.  Theory does not rule it out, 
but it makes estimation impossible.  E.g., 

 y  =  1 + 2NI + 3S + 4T + , where T = NI+S.  

 y  =  1 + (2+a)NI + (3+a)S + (4-a)T +  for any a, 

       =  1  + 2NI + 3S + 4T + .   

 What do we estimate if we ‘regress’ y on (1,NI,S,T)? 

 Note, the model does not rule out nonlinear 
dependence.  Having x and x2 in the same equation is no  
problem. 
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An Enduring Art Mystery 

Why do larger 

paintings command 

higher prices? 

The Persistence of 

Memory.  Salvador 

Dali, 1931 

The Persistence 

of Econometrics 

Greene, 2017 

Graphics show relative 

sizes of the two works. 

3/49 
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An Unidentified (But Valid) 

Theory of Art Appreciation 

Enhanced Monet Area Effect Model: Height 

and Width Effects 

Log(Price)  =  α +  β1 log Area + 

                               β2 log Aspect Ratio + 

                               β3 log Height + 

                               β4 Signature + ε 

     = α + β1x1 + β2x2 + β3x3 + β4x4  + ε 

(Aspect Ratio = Width/Height).  This is a 

perfectly respectable theory of art prices.  

However, it is not possible to learn about 

the parameters from data on prices, areas, 

aspect ratios, heights and signatures. 

                       x3 = (1/2)(x1-x2) (Not a Monet) 
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Notation 

Define column vectors of N observations on y and the K variables. 

1 11 12 1 11

2 21 22 2 22

1 2 K

K

K

n n n n nK

y x x x

y x x x

y x x x

      
      

         
      
      

      

y

                  =  X  +   
 

The assumption means that the rank of the matrix X is K. 
No linear dependencies => FULL COLUMN RANK  of the matrix X.  
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Expected Values of Deviations  

from the Conditional Mean 

        Observed y will equal E[y|x] + random variation.   

          y = E[y|x]  +    (disturbance) 

 Is there any information about  in x?  That is, does 
movement in x provide useful information about 
movement in ?  If so, then we have not fully specified 
the conditional mean, and this function we are calling 
‘E[y|x]’ is not the conditional mean (regression) 

 There may be information about  in other variables.  
But, not in x.  If  E[|x]  0  then it follows that 
Cov[,x]  0.  This violates the (as yet still not fully 
defined) ‘independence’ assumption  
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Zero Conditional Mean of ε 

 E[|all data in X] = 0  

 

 E[|X] = 0 is stronger than E[i | xi] = 0 

 The second says that knowledge of xi provides no 
information about the mean of i.  The first says that no 
xj provides information about the expected value of i, 
not the ith observation and not any other observation 
either.  

 “No information” is the same as no correlation.  Proof: 
Cov[X,] = Cov[X,E[|X]] = 0  
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The Difference Between E[ε |x]=0 and E[ε]=0 

With respect to        , E[ε|x]  0, but Ex[E[ε|x]] = E[ε] = 0 
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Conditional Homoscedasticity and 

Nonautocorrelation  

    Disturbances provide no information about each other,   
whether in the presence of X or not. 

 Var[|X] = 2I. 

 Does this imply that Var[] = 2I?  Yes:   
Proof:  Var[] = E[Var[|X]] + Var[E[|X]].   

Insert the pieces above. What does this mean?  It is an 
additional assumption, part of the model.  We’ll change 
it later. For now, it is a useful simplification  
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Normal Distribution of ε 

          
 Used to facilitate finite sample derivations of certain test 

statistics.   

 

 Temporary.  We’ll return to this later.  For now, we only 
assume ε are i.i.d. with zero conditional mean and 
constant conditional variance. 
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The Linear Model 

 y = X+ε, n observations, K columns in X, including a 
column of ones. 

 Standard assumptions about X 

 Standard assumptions about ε|X 

 E[ε|X]=0, E[ε]=0 and Cov[ε,x]=0 

 

 Regression? 

 If E[y|X] = X then E[y|x] is also the projection. 
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Cornwell and Rupert Panel Data 
Cornwell and Rupert Returns to Schooling Data, 595 Individuals, 7 Years 
Variables in the file are 

EXP  = work experience 
WKS  = weeks worked 
OCC  = occupation, 1 if blue collar,  
IND  = 1 if manufacturing industry 
SOUTH  = 1 if resides in south 
SMSA = 1 if resides in a city (SMSA) 
MS  = 1 if married 
FEM  = 1 if female 
UNION  = 1 if wage set by union contract 
ED  = years of education 
LWAGE  = log of wage = dependent variable in regressions 

These data were analyzed in Cornwell, C. and Rupert, P., "Efficient Estimation with Panel 
Data: An Empirical Comparison of Instrumental Variable Estimators," Journal of Applied 
Econometrics, 3, 1988, pp. 149-155.  See Baltagi, page 122 for further analysis.  The 
data were downloaded from the website for Baltagi's text.  
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Regression Specification: Quadratic Effect of Experience 
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Model Implication:  

Effect of Experience and Male vs. Female 


