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Statistical Relationship

0O Objective: Characterize the ‘relationship’
between a variable of interest and a set of
'related' variables

O Context: An inverse demand equation,
mP=oa + BQ + yY,Y =income. Pand Q are two
random variables with a joint distribution, f(P,Q). We
are interested in studying the ‘relationship’ between

P and Q.
= By ‘relationship’ we mean (usually) covariation.
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Bivariate Distribution - Model for a
Relationship Between Two Variables

o We might posit a bivariate distribution for P and Q, f(P,Q)
o How does variation in P arise?

= With variation in Q, and

= Random variation in its distribution.

o There exists a conditional distribution f(P|Q) and a
conditional mean function, E[P|Q]. Variation in P arises
because of

= Variation in the conditional mean,
= Variation around the conditional mean,

= (Possibly) variation in a covariate, Y which shifts the
conditional distribution
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Conditional Moments

The conditional mean function is the regression
function.

P = E[P|Q] + (P-E[PIQ]) = E[PIQ] + ¢
= E[¢]Q] = 0 = E[¢]. Proof: (The Law of iterated
expectations)

Variance of the conditional random variable = conditional
variance, or the scedastic function.

A “trivial relationship” may be written as P = h(Q) + ¢,
where the random variable ¢ = P- h(Q) has zero mean b
construction. Looks like a regression "model” of sorts.

An extension: Can we carry Y as a parameter in the
bivariate distribution? Examine E[P|Q,Y]
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Sample Data (Experiment)

| Y | Q | P
2 487922 Th4372
1 382786 734581
2 347715 8.06425
1 2.80233 795544
1 4.24447 E.839802
2 469255 7.EREAT
1 4 62286 E13175
1 252893 84732
2 449625 12
1 393907 728257
1 3.89569 7.45562
1 4.58395 E.BRE1Z
1 Z2.88463 3.5431
1 2.20953 3.52383
1 447329 B.73659
1 4. 76754 E.15342
2 297926 2.81925
1 344583 T.A662 5.0 75 10.0
2 253235 9.60803 . . .
5 379481 a7 Distribution of P
2 3.7499 0.35497
1 4.03218 B.957E7
1 235632 0.95624
2 252443 9.88523
2 203155 0.82016
1 4.90302 B.03125
2 3.00654 9.25203
Z2 4.01524 0.28128
1 363082 TRATE
Z2 2711 8.95197
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50 Observations on P and Q
Showing Variation of P Around E[P]
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Variation Around E[P|Q]
(Conditioning Reduces Variation)
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Means of P for Given Group Means of Q
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Another Conditioning Variable
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Conditional Mean Functions

O No requirement that they be "linear" (we will
discuss what we mean by linear)

0 Conditional Mean function: h(X) is the function
that minimizes Ey [Y — h(X)]?

0 No restrictions on conditional variances at this
point.
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Projections and Regressions

o We explore the difference between the linear projection and
the conditional mean function

O Yy and x are two random variables that have a bivariate
distribution, f(x,y).

O Suppose there exists a /inear function such that

OV =a+pBX+ cwhere E(¢|]x) = 0 => Cov(x,e) =0

Then,

Cov(x,y) = Cov(x,a) + BCov(x,x) + Cov(x,e)

so,| B
and E(y)
but  E(¢)
SO E(y) =
SO, o
2-12/47

0) + B Var(x)

= Cov(X,y) / Var(x)

a + BE(X) + E(¢)

E(e|x) = E(O) = O (Law of iterated expectations)

a + BE(x) + O

Elyl - BE[x].
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Regression and Projection

Does this mean E[y|x] = a + BX?
= No. This is the linear projection of y on X

m It is true in every bivariate distribution,
whether or not E[y|x] is linear in X.

m y can generally be writteny = a + BXx + ¢
where ¢ 1 X, B = Cov(X,y) / Var(x) etc.
The conditional mean function is h(x) such that
y = h(x) + v where E[v|h(x)] = 0. But, h(x)
does not have to be linear.

The implication: What is the result of “linearly
regressing y on ,” for example using least
squares?
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Data from a Bivariate Population
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The Linear Projection Computed
by Least Squares

Fitted ¥
] : U a=+8337

1 DT T T Ry e S ———— . R ————
%7 H s $ e I b= +.2459

Rsq = 2581
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Linear Least Squares Projection

Ordinary least squares regression ............
LHS=Y Mean = 1.21632
Standard deviation = .37592
Number of observs. = 100
Model size Parameters = 2
Degrees of freedom = 98
Residuals Sum of squares = 9.95949
Standard error of e = .31879
Fit R-squared = .28812
Adjusted R-squared = .28086
________ +_____________________________________________________________
Variable| Coefficient Standard Error t-ratio P[|T|>t] Mean of X
________ +_____________________________________________________________
Constant| .83368*** .06861 12.150 .0000
X| .24591*** .03905 6.298 .0000 1.55603
________ +_____________________________________________________________
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The True Conditional Mean Function

EXPECTDY

True Conditional Mean Function Ey|X]
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The True Data Generating Mechanism
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What does least squares “estimate?”
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A4 ] Journal of Economic Growth, 5: 5-32 (March 2000)
© 2000 Kluwer Academic Publishers. Printed in the Netherlands.

Inequality and Growth in a Panel of Countries

ROBERT J. BARRO

Litrauer Center, Department of Economics, Harvard University, Cambridge, MA 02138

Ewvidence from a broad panel of countries shows little overall relation between mcome inequality and rates of
growth and investment. For growth, higher inequality tends to retard growth in poor countries and encourage
growth in richer places. The Kuznets curve—whereby inequality first increases and later decreases during the
process of economic development—emerges as a clear empirical regulanity. However, this relation does not
explain the bulk of variations in inequality across countries or over time.

Keywords: mequality, growth, Kuznets curve, Gini coefficient

JEL classification: O4, 13
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Scatter of Gini against log(GDP)

Gini coefficient
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Application: Doctor Visits

o German Individual Health Care data: n=27,236

o A model for number of visits to the doctor:
m True E[v]|income] = exp(1.413 - .747*income)
= Linear regression: g*(income)=3.918 - 2.087*income

11111

LU
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2-21/47 Part 2: Projection and Regression



Conditional Mean and Projection

Exponential Mean and Linear Projection Predictions
372 . ! .

| .._.. .1-"- : -"+._ : :
2.77—-2 ..._...+.‘.+.........................a.........-............................:.....................................}.....................................

Most of the ™

1 5 N data are in _ 5

T T — L SR AR Thisarea.is.................
|i : ; ’ outside the ‘range
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The linear projection somewhat resembles the conditional mean.
Notice the problem with the linear approach. Negative predictions.
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Foiz=zon Eegres=zion

Dependent wariable DoOCY IS
Log likelihood function —108023.08869
Festricted log likelihood -108662.13533
iChi zguared [ 1](F= .000) 1278 . 094249

Significance lewvel Loooon
McFadden P=eudo E—=guared 0058810
Eztimation baszed on H = 27326, K = 2
Inf Cr AIC = 216050.2 AIC-N = 7.906

Chi— =guared =270220.31368 FER=gP= .0275
5 — =guared =163007.59656 R=gD= .0078
Overdisper=sion tests: g=muli)  22.805&
Overdispersion tests: g=muii)"™2: 23 248

| Standard Praob. 95% Conf idence

DOCVIS| Coefficient Error z |= | »ZE* Interval
CDnstanti 1. 413043 00795 177.84 0000 1.39747 1.42862
.goon —. 78941 —. 70447

THCOHME | —. 74694 %xx 021687 —-34 .47

'—

For the Poisson model, E[v|income]=exp(1.41304 - .74694 income)
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Crdinary lea=t =guares regression ... ... ... ...
LHS=DOCVIS Mean = 3.18352
Standard deviation = L. 689619
—————————— Ho. of obhszervation=s = 27326 DegFreedom Hean =gquare
Fegres=ion Sum of Sguares = 3721 .68 1 3721 67505
Fezidual Sum of Sguares = aa0a59. 27324 3223755
Total Sum of Sguares = a84581 . 27325 3237258
—————————— Standard error of & = L. 67781 Foot HMSE L.e7760
Fit F—=guared = .00421 FHE-bar =guared .oo417
Model test F[ 1, 27324] = 115 . 44533 Frob F » F= Laooon
| Standard Praob. 954 Confidence
DOCVIS| Coefficient Error = |z | == Interwal
Con=stant | 3.9183 4% 07653 51.20 .0000 3.76834 4 06833
THCZOME | —2. 0367 3%xx 19421 -10.74 0000 -2.46738 -1.7060%8

For the Poissog model, E[v|income]=exp(1.41304 - .74694 income)

Mean income i% 0.351235.
The slope is -.7||4694 * exp(1.41304 - .74694 income(.351235))

Partial Effe:ta‘ Analy=i=z for Exponential Eegres=ion Function

Effects on functhon with respect to IHCOME

Feszult=s are compyuted at sample mean= of all wariables

Partial effect=z Bor continuous INCOME computed by differentiation
Effect i= cumput‘d az derivative = df({. - d=

df ~dIHCOME I Fartial Standard

(Delta method) | Effect Error |t] 95% Confidence Interwval
PE Funcimeans=) |—2.359D3 N6786 34.76 —-2.49203 —-2.22603
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Representing the Relationship

o Conditional mean functionis :  E[y | x] = g(x)
o The linear projection (linear regression?)
g*(x) = Yo T y1(X - E[X])
Cov[x,y]
= E / =
Yo =ELYl, v Var[x]

O Linear approximation to the nonlinear conditional mean
function: Linear Taylor series evaluated at x9

§0x) = g(x°) + {dg(x)
dx

=5, +8,(x - x°)

|(x = xo)}(x - x?)

o We will use the projection very often. We will rarely use

the Taylor series.
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Variable

Representations of y
Doesy =3, + ;X + €7?

Conditional hean, Taylor Series and Projection of y onto x
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Summary

0 Regression function: E[y|X] = g(x)

o Projection: g*(y|x) = a + bx where

0 = Cov(X,y)/Var(x) and a = E[y]-bE[X]
Projection will equal E[y|x] if E[y]|X] is
Inear.

oy = E[y|x] +e
vy =a+ bx +u
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The Linear Regression Model

The model isy = f(X{,X5,....%X,B1,B2,--Px) + €

= a multiple regression model (multiple as opposed to
multivariate). Emphasis on the "multiple” aspect of
multiple regression. Important examples:

Form of the model - E[y|x] = a linear function of x.
(Regressand vs. regressors)

Note the presumption that there exists a relationship
defined by the model.

‘Dependent’ and ‘independent’ variables.
= Independent of what? Think in terms of autonomous variation.
= Can vy just ‘change?’ What ‘causes’ the change?

= Very careful on the issue of causality. Cause vs. association.
Modeling causality in econometrics...
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Model Assumptions: Generalities

Linearity means linear in the parameters. We’'ll return to
this issue shortly.

Identifiability. It is not possible in the context of the
model for two different sets of parameters to produce the
same value of E[y|x] for all x vectors. (It is possible for
some X.)

Conditional expected value of the deviation of an
observation from the conditional mean function is zero

Form of the variance of the random variable around the
conditional mean is specified

Nature of the process by which x is observed is not
S[tJJecified. The assumptions are conditioned on the
observed x.

Assumptions about a specific probability distribution to be
made later.
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Linearity of the Model

O f(Xq, X0, s XisB1/Bor--Br) = X1B1 + X3Py + ..o + XPk

o Notation: x;B;, + X,B, + ... + Xy B = X'B.

= Boldface letter indicates a column vector. “Xx” denotes a
variable, a function of a variable, or a function of a set
of variables.

= There are K “variables” on the right hand side of the
conditional mean “function.”

= The first “variable” is usually a constant term. (Wisdom:
Models should have a constant term unless the theory
says they should not.)

o0 E[y|x] = By*1 + Bo*x, + ... + B*X.
(B1*1 = the intercept term).
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Linearity

O Simple linear model, E[y|x]
0 Quadratic model:  EJy|X]
O Loglinear model, E[lny
0 Semilog, E[y|x]
O Translog: E[lny

:x’B

= O+ ByX + Bx?

nx] = a+ 2, Inx,B,

Inx] = a + 2, Inx, 3,
+ 2, 2,0, Inx, Inx,

All are “linear.” An infinite number of variations.
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Linearity

o Linearity means linear in the parameters,
not in the variables

o E[y|x] = By fi(...) + By (i) + oo+ Py fi(Ln).
f.() may be any function of data.

o Examples:
= Logs and levels in economics

= Time trends, and time trends in loglinear models -
rates of growth

=  Dummy variables

= Quadratics, power functions, log-quadratic, trig
functions, interactions and so on.
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Unigueness of the Conditional Mean

The conditional mean relationship must hold for any set of
N observations, i = 1,...,n. Assume, that n>K
(justified later)

Ely.[x] = x,'B
Ely,[x] = x,'B
ElY, ] = x,/B

All n observations at once: E[y[X] = XB = E;.
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Uniqueness of E[y|X]

Now, suppose there is a y # B that produces the same
expected value,

E[y|X] =Xy = E,.

Letd =B -y. Then,
Xd=XB-Xy =E;-E, = 0.

Is this possible? X is an nxK matrix (n rows, K columns).
What does Xé = 0 mean? We assume this is not
possible. This is the ‘full rank’ assumption — it is an
‘Identifiability’ assumption. Ultimately, it will imply that
we can ‘estimate’ B. (We have yet to develop this.)
This requires n > K.

Without uniqueness, neither Xp or Xy are E[y|X]
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O
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Linear Dependence

Example: (2.5) from your text:
X = [1, Nonlabor income, Labor income, Total income]
More formal statement of the uniqueness condition:

No linear dependencies: No variable x, may be written
as a linear function of the other variables in the model.

An identification condition. Theory does not rule it out,
but it makes estimation impossible. E.g.,

y = By + B,NI + B3S + B4T + ¢, where T = NI+S.

y = By + (B,+a)NI + (B5+a)S + (B4-a)T + ¢ for any a,
= vy + NI+ y3S + y,4T + &,

What do we estimate if we ‘regress’y on (1,NI,S,T)?

Note, the model does not rule out nonlinear
dependence. Having x and x2 in the same equation is no
problem.
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An Enduring Art Mystery

Graphics show relative
sizes of the two works.

ECONOMETRIC

ANALYSIS

The Persistence
of Econometrics
Greene, 2017

s

ot %
7

Why do larger The Persistence o
. - emory. alvador
paintings command pali, 1931

higher prices?
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An Unidentified (But Valid)
Theory of Art Appreciation

(Not a Monet)
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Enhanced Monet Area Effect Model: Height
and Width Effects

Log(Price) = a+ B,log Area +
B, log Aspect Ratio +
B; log Height +
B, Signhature + €
=a+ ByXy + BX, + BaXg+ Bux, tE

(Aspect Ratio = Width/Height). This is a
perfectly respectable theory of art prices.
However, it is not possible to learn about
the parameters from data on prices, areas,
aspect ratios, heights and signatures.

Xz = (1/2)(X1-X,)
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Y1
Y>

X1 X
- X21 X22
_an Xn2
= XB + ¢

Notation

Define column vectors of N observations on y and the K variables.

X1k

X2K

XnK

31
3,

B

The assumption means that the rank of the matrix X is K.
No linear dependencies => FULL COLUMN RANK of the matrix X.
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Expected Values of Deviations
from the Conditional Mean

Observed y will equal E[y|x] + random variation.
y = E[y|x] + ¢ (disturbance)

= Is there any information about ¢ in x? That is, does
movement in x provide useful information about
movement in £? If so, then we have not fully specified
the conditional mean, and this function we are calling
‘E[y|x]" is not the conditional mean (regression)

= There may be information about ¢ in other variables.
But, not in x. If E[¢|x] # 0 then it follows that
Cov[e,x] # 0. This violates the (as yet still not fully
defined) ‘independence’ assumption
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Zero Conditional Mean of ¢

o E[e|all datain X] =0

o E[e|X] = 0 is stronger than E[¢; | x;] = 0
= The second says that knowledge of x; provides no
information about the mean of ¢;. The first says that no
X; provides information about the expected value of g;,
not the ith observation and not any other observation
either.

= "No information” is the same as no correlation. Proof:
Cov[X,e] = Cov[X,E[¢|X]] = O
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The Difference Between E[¢ |x]=0 and E[g]=0
With respect to —, E[g|x] # O, but E,[E[g|x]] = E[€] =0

Conditional and Unconditional Mean of Disturbance

A5
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Conditional Homoscedasticity and
Nonautocorrelation

Disturbances provide no information about each other,
whether in the presence of X or not.

= Var[e|X] = ¢4I.
m Does this imply that Var[e] = ¢2I? Yes:
Proof: Var[e] = E[Var[e|X]] + Var[E[e|X]].

Insert the pieces above. What does this mean? Itis an
additional assumption, part of the model. We'll change
it later. For now, it is a useful simplification
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Normal Distribution of €

O Used to facilitate finite sample derivations of certain test
statistics.

o Temporary. We'll return to this later. For now, we only
assume € are i.i.d. with zero conditional mean and
constant conditional variance.
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The Linear Model

o y = XB+g, n observations, K columns in X, including a
column of ones.

= Standard assumptions about X
= Standard assumptions about g|X
= E[g|X]=0, E[e]=0 and Cov[g,x]=0

O Regression?
= If E[y|X] = XB then E[y|x] is also the projection.
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Cornwell and Rupert Panel Data

Cornwell and Rupert Returns to Schooling Data, 595 Individuals, 7 Years
Variables in the file are

EXP = work experience

WKS = weeks worked

OCC = occupation, 1 if blue collar,
IND = 1 if manufacturing industry
SOUTH =1 if resides in south

SMSA = 1 if resides in a city (SMSA)
MS = 1 if married

FEM = 1 if female

UNION = 1if t : tract
ED = years of education

LWAGE = log of wage = dependent variable in regressions

These data were analyzed in Cornwell, C. and Rupert, P., "Efficient Estimation with Panel
Data: An Empirical Comparison of Instrumental Variable Estimators," Journal of Applied
Econometrics, 3, 1988, pp. 149-155. See Baltagi, page 122 for further analysis. The
data were downloaded from the website for Baltagi's text.
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Regression Specification: Quadratic Effect of Experience

Drdinary lea=t =quares regression ... ... ... ...
LHS=LWAGE Mean = B.67635
Standard deviation = 46151
NHo. of obzervations = 4165 DegFresdom Mean sguare
Fegres=ion Sum of Sguares = 370,955 10 37 .0954¢6
Fe=zidual Sum of Sguares = 515 .950 4154 12421
Total Sum of Sguares = g486 . 905 4164 21299
Standard error of 2 = .35243  BEoot HSE .35196
Fit FE—=quared = 418726 E-bar =gquared 41686
Model test F[ 10, 4154] = 298 . 66153 Frob F » F* .Qoooo
Standard Frob. 95% Confidence
LWAGE Cosfficient Error z |z | »Z= Interval
Constant L.24047xuxx 07170 315 0000 L.10493 5. 38600
ED [EEE4%%% 00261 21 F4 000 (5142 Ne16E
EXF 04045 %% 00217 18 .61 0000 .03619 04471
EXP=EXP — Q006 0xxx .4783D-04 —-14 .24 0000 —. Qnny7 —. Q0059
WES JINEFEEE23 RN 4 1.2 . uadl ] JUBER S
Qi —. 1405 3xxx 01472 -9.54 0000 —. 16939 —. 11167
SOUTH — 0721 0%%x 01249 =577 .0o00an —. 09653 —. 04762
CMSA 1390707 ®xx oi1:»n% 11 &1 annn 11534 16267
M5 BT 3nxex 02063 2.26 0011 02692 10779
FEM — 092 xxn 02518 —-15 .46 0000 —. 43857 —. 33987
THIOH IR RS2 CU12EY 99 U CUedEd 1154
nnnnn.D-xx or D4xEx =: multiply by 10 to —xx or +==.
*¥% %%, * ==> Significance at 1%, L¥%, 10% level.
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Model Implication:

Effect of Experience and Male vs. Female
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Log Wage

Log Wage vs. Experience, Male and Female
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