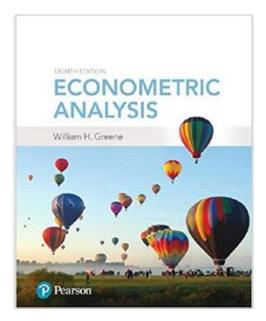
Econometrics I

Professor William Greene Stern School of Business Department of Economics



Econometrics I

Part 21 – Generalized Method of Moments

I also have a questions about nonlinear GMM - which is more or less nonlinear IV technique I suppose.

I am running a panel non-linear regression (non-linear in the parameters) and I have L parameters and K exogenous variables with L>K.

In particular my model looks kind of like this: $Y = b_1 * X^b_2 + e$, and so I am trying to estimate the extra b_2 that don't usually appear in a regression.

From what I am reading, to run nonlinear GMM I can use the K exogenous variables to construct the orthogonality conditions but what should I use for the extra, b_2 coefficients? Just some more possible IVs (like lags) of the exogenous variables?

I agree that by adding more IVs you will get a more efficient estimation, but isn't it only the case when you believe the IVs are truly uncorrelated with the error term?

So by adding more "instruments" you are more or less imposing more and more restrictive assumptions about the model (which might not actually be true).

I am asking because I have not found sources comparing nonlinear GMM/IV to nonlinear least squares. If there is no homoscadesticity/serial correlation what is more efficient/give tighter estimates?

I'm trying to minimize a nonlinear program with the least square under nonlinear constraints. It's first introduced by Ané & Geman (2000). It consisted on the minimization of the sum of squared difference between the moment generating function and the theoretical moment generating function

(The method was suggested by Quandt and Ramsey in the 1970s.)

Method of Moment Generating Functions For the normal distribution, the MGF is $M(t|\mu,\sigma)=E[exp(tx)]=exp[t\mu + \frac{1}{2}t^2\sigma^2]$ Moment Equations: $\frac{1}{n}\sum_{i=1}^{n} exp(t_jx_i) = exp[t_j\mu + \frac{1}{2}t_j^2\sigma^2], j=1,2.$ Choose two values of t and solve the two moment equations for μ and σ .

Mixture of Normals Problem:

 $f(\mathbf{x}|\lambda,\mu_1,\sigma_1,\mu_2,\sigma_2) = \lambda N[\mu_1,\sigma_1] + (1-\lambda)N[\mu_2,\sigma_2]$

Use the method of moment generating functions with 5 values of t.

 $M(t|\mu_1,\sigma_1,\mu_2,\sigma_2) = E[exp(tx)] = \lambda exp[t\mu_1 + \frac{1}{2}t^2\sigma_1^2] + (1-\lambda)exp[t\mu_2 + \frac{1}{2}t^2\sigma_2^2]$

21-5/67

Finding the solutions to the moment equations: Least squares

$$\hat{\mathbf{M}}(\mathbf{t}_1) = \frac{1}{n} \sum_{i=1}^{n} \exp(t_1 x_i), \text{ and likewise for } \mathbf{t}_2, \dots$$

$$\mathbf{Minimize}(\lambda, \mu_1, \sigma_1, \mu_2, \sigma_2)$$

$$\sum_{j=1}^{5} \left[\hat{\mathbf{M}}(\mathbf{t}_j) - \left(\lambda \exp[t\mu_1 + \frac{1}{2}t^2\sigma_1^2] + (1-\lambda)\exp[t\mu_2 + \frac{1}{2}t^2\sigma_2^2] \right) \right]^2$$

Alternative estimator: Maximum Likelihood

$$L(\lambda, \mu_{1}, \sigma_{1}, \mu_{2}, \sigma_{2}) = \sum_{i=1}^{n} \log \{ \lambda N[x_{i} | \mu_{1}, \sigma_{1}] + (1 - \lambda) N[x_{i} | \mu_{2}, \sigma_{2}] \}$$

21-6/67

The Method of Moments

Estimating Parameters of Distributions Using Moment Equations Population Moment

$$\mu_{k} = \mathsf{E}[\mathsf{x}^{k}] = \mathsf{f}_{k}(\theta_{1}, \theta_{2}, \dots, \theta_{K})$$

Sample Moment

 $m_k = \frac{1}{n} \sum_{i=1}^n x_i^k$. m_k may also be $\frac{1}{n} \sum_{i=1}^n h_k(x_i)$, need not be powers Law of Large Numbers

plim $m_k = \mu_k = f_k(\theta_1, \theta_2, ..., \theta_K)$ 'Moment Equation' (k = 1,...,K)

$$\mathbf{m}_{k} = \frac{1}{N} \Sigma_{i=1}^{N} \mathbf{x}_{i}^{k} = \mathbf{f}_{k}(\theta_{1}, \theta_{2}, \dots, \theta_{K})$$

Method of Moments applied by inverting the moment equations.

$$\boldsymbol{\hat{\theta}}_{k} = \boldsymbol{g}_{k}(\boldsymbol{m}_{1},...,\boldsymbol{m}_{K}), \ \boldsymbol{k} = 1,...,K$$

Estimating a Parameter

Mean of Poisson

- p(y)=exp(-λ) λ^y / y!
- E[y]= λ.
 plim (1/n)Σ_iy_i = λ.
 This is the estimator
- Mean of Exponential
 - p(y) = α exp(- α y)
 - E[y] = 1/ α. plim $(1/n)\Sigma_i y_i = 1/ α$

Mean and Variance of a Normal Distribution

$$p(y) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)$$

Population Moments

$$E[y] = \mu$$
, $E[y^2] = \sigma^2 + \mu^2$

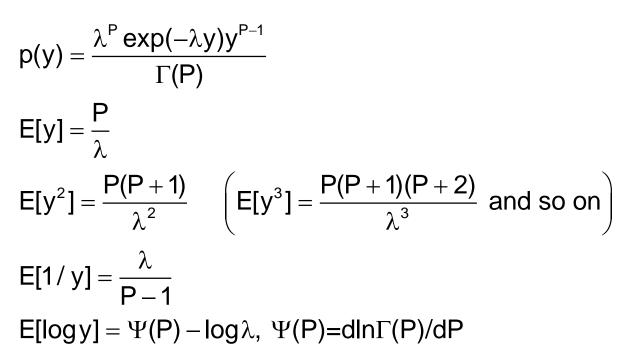
Moment Equations

$$\frac{1}{n}\sum_{i=1}^{n} \mathbf{y}_{i} = \boldsymbol{\mu}, \quad \frac{1}{n}\sum_{i=1}^{n} \mathbf{y}_{i}^{2} = \boldsymbol{\sigma}^{2} + \boldsymbol{\mu}^{2}$$

Method of Moments Estimators

$$\hat{\mu} = \overline{y}, \quad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n y_i^2 - (\overline{y}^2) = \frac{1}{n} \sum_{i=1}^n (y_i - \overline{y})^2$$

Gamma Distribution



(Each pair gives a different answer. Is there a 'best' pair? Yes, the ones that are 'sufficient' statistics. E[y] and E[logy]. For a different course....)

21-10/67

The Linear Regression Model

Population

 $y_i = \boldsymbol{\beta}' \boldsymbol{x}_i + \boldsymbol{\epsilon}_i$

Population Expectation

$$E[\varepsilon_i x_{ik}] = 0, k = 1,...,K$$

Moment Equations

$$\begin{split} &\frac{1}{n} \sum_{i=1}^{n} (y_{i} - x_{i1}\beta_{1} - x_{i2}\beta_{2} - ... - x_{iK}\beta_{K})x_{i1} = 0 \\ &\frac{1}{n} \sum_{i=1}^{n} (y_{i} - x_{i1}\beta_{1} - x_{i2}\beta_{2} - ... - x_{iK}\beta_{K})x_{i2} = 0 \\ & ... \\ &\frac{1}{n} \sum_{i=1}^{n} (y_{i} - x_{i1}\beta_{1} - x_{i2}\beta_{2} - ... - x_{iK}\beta_{K})x_{iK} = 0 \\ & \text{Solution: Linear system of K equations in K unknowns. Least Squares} \end{split}$$

Instrumental Variables

Population

 $\boldsymbol{y}_i = \boldsymbol{\beta}' \boldsymbol{x}_i + \boldsymbol{\epsilon}_i$

Population Expectation

 $E[\varepsilon_i z_{ik}] = 0$ for instrumental variables $z_1 \dots z_k$.

Moment Equations

$$\frac{1}{n}\sum_{i=1}^{n}(y_{i} - x_{i1}\beta_{1} - x_{i2}\beta_{2} - \dots - x_{iK}\beta_{K})z_{i1} = 0$$

$$\frac{1}{n}\sum_{i=1}^{n}(y_{i} - x_{i1}\beta_{1} - x_{i2}\beta_{2} - \dots - x_{iK}\beta_{K})z_{i2} = 0$$

...

$$\frac{1}{n}\sum\nolimits_{i=1}^{n}(y_{i}-x_{i1}\beta_{1}-x_{i2}\beta_{2}-...-x_{iK}\beta_{K})z_{iK}=0$$

Solution: Also a linear system of K equations in K unknowns.

$$b_{IV} = (Z'X / n)^{-1}(Z'y / n)$$

An extension : What is the solution if there are M > K IVs?

21-12/67

Maximum Likelihood

Log likelihood function, $logL = \frac{1}{n} \sum_{i=1}^{n} logf(y_i | x_i, \theta_1, ..., \theta_K)$ Population Expectations

$$\mathsf{E}\left[\frac{\partial \mathsf{logL}}{\partial \theta_{\mathsf{k}}}\right] = 0, \ \mathsf{k} = 1, \dots, \mathsf{K}$$

Sample Moments

$$\frac{1}{n}\sum_{i=1}^{n}\frac{\partial logf(y_{i} \mid x_{i}, \theta_{1}, \dots, \theta_{K})}{\partial \theta_{k}} = 0$$

Solution: K nonlinear equations in K unknowns.

$$\frac{1}{n} \sum_{i=1}^{n} \frac{\partial logf(y_i \mid x_i, \hat{\theta}_{1,MLE}, \dots, \hat{\theta}_{K,MLE})}{\partial \hat{\theta}_{k,MLE}} = 0$$

Behavioral Application

Life Cycle Consumption (text, pages 488-489)

$$\mathsf{E}_{\mathsf{t}}\left[(1+\mathsf{r})\left(\frac{1}{1+\delta}\right)\left(\frac{\mathsf{c}_{\mathsf{t}+1}}{\mathsf{c}_{\mathsf{t}}}\right)^{-\alpha}-1\big|\Omega_{\mathsf{t}}\right]=0$$

- $\delta = \text{discount rate}$
- $c_t = consumption$

 Ω_t = information at time t

Let
$$\beta = 1/(1+\delta)$$
, $R_{t+1} = c_{t+1} / c_t$, $\lambda = -\alpha$

$$\mathsf{E}_{t}[\beta(1+r)\mathsf{R}_{t+1}^{\lambda}-1 \mid \Omega_{t}]=0$$

What is in the information set? Each piece of 'information'

provides a moment equation for estimation of the two parameters.

$$\left[\sum_{t=1}^{T} \left((1+r) \left(\frac{1}{1+\delta} \right) \left(\frac{c_{t+1}}{c_t} \right)^{-\alpha} - 1 \right) w_{tk} \right] = 0, \ k=1,...,K$$

Identification

- Can the parameters be estimated?
- Not a sample 'property'
- □ Assume an infinite sample
 - Is there sufficient information in a sample to reveal consistent estimators of the parameters
 - Can the 'moment equations' be solved for the population parameters?

Identification

- Exactly Identified Case: K population moment equations in K unknown parameters.
 - Our familiar cases, OLS, IV, ML, the MOM estimators
 - Is the counting rule sufficient?
 - What else is needed?
- Overidentified Case
 - Instrumental Variables
- Underidentified Case
 - Multicollinearity
 - Variance parameter in a probit model
 - Shape parameter in a loglinear model

Overidentification

Population

$$\begin{split} y_i &= \boldsymbol{\beta}' \boldsymbol{x}_i + \epsilon_i, \ \beta_1, \dots, \beta_K \\ \text{Population Expectation} \\ &= [\epsilon_i z_{ik}] = 0 \text{ for instrumental variables } z_1 \ \dots \ z_M \ M > K. \\ \text{There are } M > K \ \text{Moment Equations - more than necessary} \\ &\frac{1}{n} \sum_{i=1}^n (y_i - x_{i1}\beta_1 - x_{i2}\beta_2 - \ldots - x_{iK}\beta_K) z_{i1} = 0 \\ &\frac{1}{n} \sum_{i=1}^n (y_i - x_{i1}\beta_1 - x_{i2}\beta_2 - \ldots - x_{iK}\beta_K) z_{i2} = 0 \\ & \dots \\ &\frac{1}{n} \sum_{i=1}^n (y_i - x_{i1}\beta_1 - x_{i2}\beta_2 - \ldots - x_{iK}\beta_K) z_{iM} = 0 \\ & \text{Solution : A linear system of M equations in K unknowns.} \end{split}$$

21-17/67

Overidentification

Two Equation Covariance Structures Model Country 1: $\mathbf{y}_1 = \mathbf{X}_1 \boldsymbol{\beta} + \boldsymbol{\varepsilon}_1$ Country 2: $\mathbf{y}_2 = \mathbf{X}_2 \boldsymbol{\beta} + \boldsymbol{\varepsilon}_2$ Two Population Moment Conditions: $E[(1/T) \mathbf{X}_1'(\mathbf{y}_1 - \mathbf{X}_1 \boldsymbol{\beta})] = \mathbf{0}$ $E[(1/T) \mathbf{X}_2'(\mathbf{y}_2 - \mathbf{X}_2 \boldsymbol{\beta})] = \mathbf{0}$ (1) How do we combine the two sets of equations?

(2) Given two OLS estimates, **b**₁ and **b**₂, how do we reconcile them?

Note: There are even more. $E[(1/T) \mathbf{X}_{1}'(\mathbf{y}_{2} - \mathbf{X}_{2}\beta)] = \mathbf{0}.$

Underidentification – Model/Data

Consider the Mover - Stayer Model Binary choice for whether an individual 'moves' or 'stays' $d_i = 1(\mathbf{z}'_i \alpha + u_i > 0)$

Outcome equation for the individual, conditional on the state:

$$y_i | (d = 0) = x'_i \beta_0 + \varepsilon_{i0}$$

$$y_i | (d = 1) = x'_i \beta_1 + \varepsilon_{i1}$$

$$(\varepsilon_{i0}, \varepsilon_{i1}) \sim \mathsf{N}[(0,0), (\sigma_0^2, \sigma_1^2, \rho\sigma_0\sigma_1)]$$

An individual either moves or stays, but not both (or neither). The parameter ρ cannot be estimated with the observed data regardless of the sample size. It is unidentified.

Underidentification - Normalization

When a parameter is unidentified, the log likelihood is invariant to changes in it. Consider the logit binary choice model $\operatorname{Prob}[y=0] = \frac{\exp(\beta_0 x)}{\exp(\beta_0 x) + \exp(\beta_1 x)} \qquad \operatorname{Prob}[y=1] = \frac{\exp(\beta_1 x)}{\exp(\beta_0 x) + \exp(\beta_1 x)}$ Probabilities sum to 1, are monotonic, etc. But, consider, for any $\delta \neq 0$, $\operatorname{Prob}[y=0] = \frac{\exp[(\beta_0 + \delta)x]}{\exp[(\beta_0 + \delta)x] + \exp[(\beta_1 + \delta)x]} = \frac{\exp(\delta x) \left[\exp(\beta_0 x)\right]}{\exp(\delta x) \left[\exp(\beta_0 x) + \exp(\beta_1 x)\right]}$ $Prob[y=1] = \frac{exp[(\beta_1 + \delta)x]}{exp[(\beta_0 + \delta)x] + exp[(\beta_1 + \delta)x]} = \frac{exp(\delta x) [exp(\beta_1 x)]}{exp(\delta x) [exp(\beta_0 x) + exp(\beta_1 x)]}$ $exp(\delta x)$ always cancels out. The parameters are unidentified. A normalization such as $\beta_0 = 0$ is needed.

21-20/67

Part 21: Generalized Method of Moments

Underidentification: Moments Nonlinear LS vs. MLE

 $y_{i} \sim \text{Gamma}(\mathbf{P}, \lambda_{i}), \lambda_{i} = \exp(\boldsymbol{\beta}' \mathbf{x}_{i})$ $f(\mathbf{y}_{i}) = \frac{\lambda_{i}^{P} \exp(-\lambda_{i} y_{i}) y_{i}^{P-1}}{\Gamma(P)}$ $E[\mathbf{y}_{i} | \mathbf{x}_{i}] = \frac{P}{\lambda_{i}}$

We consider nonlinear least squares and maximum likelihood estimation of the parameters. We use the German health care data, where

y = income

x = 1,age,educ,female,hhkids,married

21-21/67

Nonlinear Least Squares

<pre>> NAMELIST ; x = one,age,educ,female,hhkids,married \$> Calc ; k=col(x) \$> NLSQ ; Lhs = hhninc ; Fcn = p / exp(b1'x) ; labels = k_b,p ; start = k_0,1 ; maxit = 20\$ Moment matrix has become nonpositive definite. Switching to BFGS algorithm Normal exit: 16 iterations. Status=0. F= 381.1028</pre>						
User Defined Nonlinear LHS=HHNINC	Optimizatio least squar	n es regres	 sion =	.35208	3	
Model size Residuals	Number of o Parameters Degrees of	bservs. freedom res	= = =	27326 27319 762.20551	5 7 9	
Variable Coe	efficient	Standard	Error			
B1 B2 B3 B4 B5 B6 P	1.39905 .00029 05527*** 01843*** .05445*** 26424*** .63239	14319 .00 .00 .00 .00 .00 9055.	.39 029 105 580 665 823 493	.000 .986 -52.809 -3.180 8.184 -32.109 .000	.9999 .3242 .0000 .0015 .0000 .0000	

Nonlinear least squares did not work. That is the implication of the infinite standard errors for B1 (the constant) and P.

Maximum Likelihood

Gamma (Loglinear) Regression Model						
Dependent variable HHNINC						
Log likelihood function 14293.00214						
Restricted log likelihood 1195.06953						
Chi squared [6 d.f.] 26195.86522						
Significance level .00000						
McFadden Pseudo R-squared -10.9599753 (4 observations with income =						
Estimation based on $N = 27322$, $K = 7$ were deleted so logL was						
computable.)						
+						
Variable Coefficient Standard Error	b/St.Er. P[Z >z] Mean of	ΞX				
+						
Parameters in conditional mean function						
Constant 3.40841*** .02154	158.213 .0000					
AGE .00205*** .00028	7.413 .0000 43.52	272				
EDUC 05572*** .00120	-46.496 .0000 11.32	202				
FEMALE 00542 .00545	995 .3198 .478	881				
HHKIDS .06512*** .00618	10.542 .0000 .402	272				
MARRIED 26341*** .00692	-38.041 .0000 .758	369				
Scale parameter for gamma model	1					
P scale 5.12486*** .04250	120.594 .0000					

MLE apparently worked fine. Why did one method (nls) fail and another consistent estimator work without difficulty?

Moment Equations: NLS

$$E[y | \mathbf{x}] = P / \exp(\beta' \mathbf{x}_i)$$

$$\mathbf{e'e} = \sum_{i=1}^n (y_i - P / \exp(\beta' \mathbf{x}_i)) = \sum_{i=1}^n e_i^2$$

$$\frac{\partial \mathbf{e'e}}{\partial P} = \sum_{i=1}^n \frac{-2e_i}{\exp(\beta' \mathbf{x}_i)} = 0$$

$$\frac{\partial \mathbf{e'e}}{\partial \beta} = \sum_{i=1}^n \frac{2e_i P}{\exp(\beta' \mathbf{x}_i)} \mathbf{x}_i = \mathbf{0}$$

Consider the term for the constant in the model, β_1 . Notice that the first order condition for the constant term is

 $\sum_{i=1}^{n} \frac{2e_i P}{\exp(\beta' \mathbf{x}_i)} = 0.$ This doesn't depend on P, since we can divide both sides of the equation by P. This means that we cannot find solutions for both β_1 and P. It is easy to see why NLS cannot distinguish P from β_1 . E[y|x] = exp((logP- β_1) - ...). There are an infinite number of pairs of (P, β_1) that produce the same constant term in the model.

21-24/67

Part 21: Generalized Method of Moments

Moment Equations MLE

The log likelihood function and likelihood equations are

$$\log L = \sum_{i=1}^{n} P \log \lambda_{i} - \log \Gamma(P) - \lambda_{i} y_{i} + (P-1) \log y_{i}$$
$$\frac{\partial \log L}{\partial P} = \sum_{i=1}^{n} \left(\log \lambda_{i} - \Psi(P) + \log y_{i} \right) = 0, \ \Psi(P) = \frac{d \log \Gamma(P)}{dP}$$
$$\frac{\partial \log L}{\partial \beta_{i}} = \sum_{i=1}^{n} \left(\frac{P}{\lambda_{i}} \lambda_{i} - y_{i} \lambda_{i} \right); \ \text{using} \ \frac{\partial \lambda_{i}}{\partial \beta} = \lambda_{i} \mathbf{x}_{i}.$$

Recall, the expected values of the derivatives of the log likelihood equal zero. So, a look at the first equation reveals that the moment equation in use for estimating P is $E[\log y_i | \mathbf{x}_i] = \Psi(P) - \log \lambda_i$ and another K moment equations, $E\left[\left(y_i - \frac{P}{\lambda_i}\right)\mathbf{x}_i\right] = 0$ are also in use. So, the MLE uses K+1

functionally independent moment equations for K+1 parameters, while NLS was only using K independent moment equations for the same K+1 parameters.

GMM Agenda

The Method of Moments. Solving the moment equations

Exactly identified cases

Overidentified cases

Consistency. How do we know the method of moments is consistent?

Asymptotic covariance matrix.

Consistent vs. Efficient estimation

A weighting matrix

The minimum distance estimator

What is the efficient weighting matrix?

Estimating the weighting matrix.

The Generalized method of moments estimator - how it is computed.

Computing the appropriate asymptotic covariance matrix

The Method of Moments

Moment Equation: Defines a sample statistic that mimics a population expectation:

<u>The population expectation – orthogonality</u> <u>condition</u>:

E[$\mathbf{m}_{i}(\beta)$] = **0**. Subscript i indicates it depends on data vector indexed by 'i' (or 't' for a time series setting)

The Method of Moments - Example

Gamma Distribution Parameters

$$p(y_i) = \frac{\lambda^{P} \exp(-\lambda y_i) y_i^{P-1}}{\Gamma(P)}$$

Population Moment Conditions

$$E[y_i] = \frac{P}{\lambda}, \quad E[logy_i] = \Psi(P) - log\lambda$$

Moment Equations:

$$\begin{split} &\mathsf{E}[\bar{m}_1(\lambda,\mathsf{P})] = \mathsf{E}[\{(1/n)\Sigma_{i=1}^n y_i\} - \mathsf{P} / \lambda] = 0\\ &\mathsf{E}[\bar{m}_2(\lambda,\mathsf{P})] = \mathsf{E}[\{(1/n)\Sigma_{i=1}^n \log y_i\} - (\Psi(\mathsf{P}) - \log \lambda)] = 0 \end{split}$$

Application

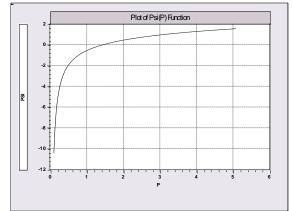
	I	Y
1 »	1	20.5
2 »	2	31.5
3»	3	47.7
4 »	4	26.2
5 »	5	44
6 »	6	8.28
7 »	7	30.8
8 »	8	17.2
9 »	9	19.9
10 »	10	9.96
11 »	11	55.8
12 »	12	25.2
13 »	13	29
14 »	14	85.5
15 »	15	15.1
16 »	16	28.5
17 »	17	21.4
18 »	18	17.7
19 »	19	6.42
20 »	20	84.9

21-29/67

Solving the moment equations Use least squares:

Minimize $\{\overline{m}_1 - E[\overline{m}_1]\}^2 + \{\overline{m}_2 - E[\overline{m}_2]\}^2$ = $(\overline{m}_1 - (P/\lambda))^2 + (\overline{m}_2 - (\Psi(P) - \log\lambda))^2$ $\overline{m}_1 = 31.278$

 $\overline{m}_{_2} = 3.221387$



Method of Moments Solution

```
create ; y1=y ; y2=log(y)$
calc ; m1=xbr(y1) ; ms=xbr(y2)$
minimize; start = 2.0, .06; labels = p,1
      ; fcn = (1*m1-p)^2
            + (ms - psi(p)+log(l)) ^2 $
| User Defined Optimization
                Function
| Dependent variable
| Number of observations
                               1
| Iterations completed
                               6
| Log likelihood function .5062979E-13 |
+----+
|Variable | Coefficient |
+-----+---+
     2.41060361
Ρ
     .07707026
L
```

Nonlinear Instrumental Variables

There are K parameters, β

 $y_i = f(\mathbf{x}_i, \beta) + \varepsilon_i.$

There exists a set of K instrumental variables, \mathbf{z}_i such that $E[\mathbf{z}_i \epsilon_i] = 0$.

The sample counterpart is the moment equation

$$(1/n)\Sigma_i \mathbf{z}_i \varepsilon_i = (1/n)\Sigma_i \mathbf{z}_i [y_i - f(\mathbf{x}_i, \beta)] = (1/n)\Sigma_i \mathbf{m}_i (\beta) = \overline{\mathbf{m}}(\beta) = \mathbf{0}.$$

The method of moments estimator is the solution to the moment equation(s).

(How the solution is obtained is not always obvious, and varies from problem to problem.)

The MOM Solution

There are K equations in K unknowns in $\overline{\mathbf{m}}(\beta)=\mathbf{0}$ If there is a solution, there is an exact solution At the solution, $\overline{\mathbf{m}}(\beta)=\mathbf{0}$, and $[\overline{\mathbf{m}}(\beta)]'[\overline{\mathbf{m}}(\beta)] = 0$ Since $[\overline{\mathbf{m}}(\beta)]'[\overline{\mathbf{m}}(\beta)] \ge 0$, the solution can be found by solving the programming problem

Minimize wrt β : $[\overline{\mathbf{m}}(\beta)]'[\overline{\mathbf{m}}(\beta)]$ For this problem,

 $[\overline{\mathbf{m}}(\beta)]'[\overline{\mathbf{m}}(\beta)] = [(1/n)\mathbf{\epsilon}'\mathbf{Z}] \times [(1/n)\mathbf{Z}'\mathbf{\epsilon}]$

The solution is defined by

 $\frac{\partial [\bar{\mathbf{m}}(\beta)]'[\bar{\mathbf{m}}(\beta)]}{\partial \beta} = \frac{\partial [(1/n) \boldsymbol{\varepsilon}' \mathbf{Z}] \times [(1/n) \mathbf{Z}' \boldsymbol{\varepsilon}]}{\partial \beta}$

MOM Solution

$$\frac{\partial [(1/n)\boldsymbol{\varepsilon}^{\mathsf{T}}\mathbf{Z}] \times [(1/n)\mathbf{Z}^{\mathsf{T}}\boldsymbol{\varepsilon}]}{\partial \beta} = -2[(1/n)\mathbf{G}^{\mathsf{T}}\mathbf{Z}] [(1/n)\mathbf{Z}^{\mathsf{T}}\boldsymbol{\varepsilon}]$$

 $\mathbf{G} = \mathbf{n} \times \mathbf{K}$ matrix with row i equal to $\mathbf{g}_i = \frac{\partial f(\mathbf{x}_i, \boldsymbol{\beta})}{\partial \boldsymbol{\beta}'}$

For the classical linear regression model, $f(\mathbf{x}_i, \boldsymbol{\beta}) = \mathbf{x}_i | \boldsymbol{\beta}, \boldsymbol{Z} = \mathbf{X}, \, \mathbf{G} = \mathbf{X}, \, \text{and the FOC are}$ $-2[(1/n)(\mathbf{X'X})] [(1/n)\mathbf{X'\varepsilon}] = 0$ which has unique solution $\hat{\boldsymbol{\beta}} = (\mathbf{X'X})^{-1}\mathbf{X'y}$

Variance of the Method of Moments Estimator

The MOM estimator solves $\overline{\mathbf{m}}(\mathbf{\beta})=\mathbf{0}$ $\overline{\mathbf{m}}(\mathbf{\beta})=\frac{1}{n}\sum_{i=1}^{n}\mathbf{m}_{i}(\mathbf{\beta})$ so the variance is $\frac{1}{n}\mathbf{\Omega}$ for some $\mathbf{\Omega}$ Generally, $\mathbf{\Omega} = E[\mathbf{m}_{i}(\mathbf{\beta})\mathbf{m}_{i}(\mathbf{\beta})']$

The asymptotic covariance matrix of the estimator is

Asy.Var[
$$\boldsymbol{\beta}_{MOM}$$
]=(**G**)⁻¹ $\left(\frac{1}{n}\boldsymbol{\Omega}\right)$ (**G'**)⁻¹ where **G** = $\frac{\partial \overline{\mathbf{m}}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}'}$

Example 1: Gamma Distribution

$$\begin{split} \bar{\mathbf{m}}_{1} &= \frac{1}{n} \sum_{i=1}^{n} (\mathbf{y}_{i} - \frac{\mathbf{P}}{\lambda}) \\ \bar{\mathbf{m}}_{2} &= \frac{1}{n} \sum_{i=1}^{n} (\log \mathbf{y}_{i} - \Psi(\mathbf{P}) + \log \lambda) \\ \frac{1}{n} \mathbf{\Omega} &= \frac{1}{n} \begin{bmatrix} \operatorname{Var}(\mathbf{y}_{i}) & \operatorname{Cov}(\mathbf{y}_{i}, \log \mathbf{y}_{i}) \\ \operatorname{Cov}(\mathbf{y}_{i}, \log \mathbf{y}_{i}) & \operatorname{Var}(\log \mathbf{y}_{i}) \end{bmatrix} \\ \mathbf{G} &= \frac{1}{n} \sum_{i=1}^{N} \begin{bmatrix} -\frac{1}{\lambda} & \frac{\mathbf{P}}{\lambda^{2}} \\ -\Psi'(\mathbf{P}) & \frac{1}{\lambda} \end{bmatrix} \\ \hat{\mathbf{\Omega}} &= \frac{1}{n} \sum_{i=1}^{n} \begin{bmatrix} y_{i} - \overline{y} \\ \log y_{i} - \overline{\log y} \end{bmatrix} \begin{bmatrix} y_{i} - \overline{y} & \log y_{i} - \overline{\log y} \end{bmatrix} \end{split}$$

Part 21: Generalized Method of Moments

21-35/67

Example 2: Nonlinear IV Least Squares

 $y_i = f(\mathbf{x}_i, \boldsymbol{\beta}) + \epsilon_i, \ \mathbf{z}_i = \text{the set of K instrumental variables}$ $Var[\epsilon_i] = \sigma^2$

 $\mathbf{m}_{i} = \mathbf{Z}_{i} \varepsilon_{i}$

 $Var[\mathbf{m}_i] = \sigma^2 \mathbf{z}_i \mathbf{z}_i'$

With independent observations, observations are uncorrelated

$$\operatorname{Var}[\bar{\boldsymbol{m}}(\beta)] = (1/n^2) \sum_{i=1}^n \sigma^2 \boldsymbol{z_i} \boldsymbol{z_i}' = (\sigma^2 / n^2) \boldsymbol{Z}' \boldsymbol{Z}$$

 $\mathbf{G} = (1/n)\sum_{i=1}^{n} -\mathbf{z}_{i}\mathbf{x}_{i}^{0} \text{ where } \mathbf{x}_{i}^{0} \text{ is the vector of 'pseudo-regressors,'}$ $\mathbf{x}_{i}^{0} = \frac{\partial f(\mathbf{x}_{i},\beta)}{\partial \beta}. \text{ In the linear model, this is just } \mathbf{x}_{i}.$ $\mathbf{G} = -(1/n)\mathbf{Z}'\mathbf{X}^{0}.$ $(\mathbf{G}^{-1})\mathbf{V}(\mathbf{G}^{-1})' = [-(1/n)\mathbf{Z}'\mathbf{X}^{0}]^{-1}[(\sigma^{2}/n^{2})\mathbf{Z}'\mathbf{Z}][-(1/n)\mathbf{X}^{0}'\mathbf{Z}]^{-1}$ $= \sigma^{2}[\mathbf{Z}'\mathbf{X}^{0}]^{-1}[\mathbf{Z}'\mathbf{Z}][\mathbf{X}^{0}'\mathbf{Z}]^{-1}$

Variance of the Moments

How to estimate $\mathbf{V} = (1/n)\Omega = \text{Var}[\overline{\mathbf{m}}(\beta)]$ Var $[\overline{\mathbf{m}}(\beta)] = (1/n)\text{Var}[\mathbf{m}_i(\beta)] = (1/n)\Omega$

Estimate Var[$\mathbf{m}_i(\beta)$] with Est.Var[$\mathbf{m}_i(\beta)$] = $(1/n)\sum_{i=1}^n \mathbf{m}_i(\beta)\mathbf{m}_i(\beta)$ ' Then,

$$\hat{\mathbf{V}} = (1/n) \times (1/n) \times \sum_{i=1}^{n} \mathbf{m}_{i}(\hat{\boldsymbol{\beta}}) \mathbf{m}_{i}(\hat{\boldsymbol{\beta}})'$$

For the linear regression model,

 $\mathbf{m}_{i} = \mathbf{x}_{i} \varepsilon_{i}$,

$$\hat{\mathbf{V}} = (1/n) \times (1/n) \times \sum_{i=1}^{n} \mathbf{x}_{i} e_{i} e_{i} \mathbf{x}_{i}^{*} = (1/n) \times (1/n) \times \sum_{i=1}^{n} e_{i}^{2} \mathbf{x}_{i} \mathbf{x}_{i}^{*}$$
$$\mathbf{G} = (1/n) \mathbf{X}^{*} \mathbf{X}$$

 $\text{Est.Var}[\mathbf{b}_{\text{MOM}}] = [(1/n)\mathbf{X'X}]^{-1}[(1/n) \times (1/n) \times \sum_{i=1}^{n} e_i^2 \mathbf{x}_i \mathbf{x}_i'][(1/n)\mathbf{X'X}]^{-1}$ $= [\mathbf{X'X}]^{-1}[\sum_{i=1}^{n} e_i^2 \mathbf{x}_i \mathbf{x}_i'][\mathbf{X'X}]^{-1} \quad \text{(familiar?)}$

Properties of the MOM Estimator

Consistent?

- The LLN implies that the moments are consistent estimators of their population counterparts (zero)
- Use the Slutsky theorem to assert consistency of the functions of the moments
- Asymptotically normal? The moments are sample means. Invoke a central limit theorem.
- Efficient? Not necessarily
 - Sometimes yes. (Gamma example)
 - Perhaps not. Depends on the model and the available information (and how much of it is used).

Generalizing the Method of Moments Estimator

More moments than parameters – the overidentified case

Example: Instrumental variable case, M > K instruments

Two Stage Least Squares

How to use an "excess" of instrumental variables

- (1) **X** is K variables. Some (at least one) of the K variables in **X** are correlated with ε .
- (2) Z is M > K variables. Some of the variables in
 Z are also in X, some are not. None of the variables in Z are correlated with ε.
- (3) Which K variables to use to compute Z'X and Z'y?

Choosing the Instruments

- Choose K randomly?
- Choose the included Xs and the remainder randomly?
- Use all of them? How?
- A theorem: (Brundy and Jorgenson, ca. 1972) There is a most efficient way to construct the IV estimator from this subset:
 - (1) For each column (variable) in X, compute the predictions of that variable using all the columns of Z.
 - (2) Linearly regress **y** on these K predictions.
- This is two stage least squares

2SLS Algebra

 $\hat{\mathbf{X}} = \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{X}$ $\mathbf{b}_{2SLS} = (\hat{\mathbf{X}}'\hat{\mathbf{X}})^{-1}\hat{\mathbf{X}}'\mathbf{y}$ But, $\mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{X} = (\mathbf{I} - \mathbf{M}_{z})\mathbf{X} \text{ and } (\mathbf{I} - \mathbf{M}_{z}) \text{ is idempotent.}$ $\hat{\mathbf{X}}'\hat{\mathbf{X}} = \mathbf{X}'(\mathbf{I} - \mathbf{M}_{z})(\mathbf{I} - \mathbf{M}_{z})\mathbf{X} = \mathbf{X}'(\mathbf{I} - \mathbf{M}_{z})\mathbf{X} \text{ so}$ $\mathbf{b}_{2SLS} = (\hat{\mathbf{X}}'\mathbf{X})^{-1}\hat{\mathbf{X}}'\mathbf{y} = \text{ a real IV estimator by the definition.}$ Note, plim $(\hat{\mathbf{X}}'\epsilon/n) = \mathbf{0}$ since columns of $\hat{\mathbf{X}}$ are linear combinations of the columns of \mathbf{Z} , all of which are uncorrelated with ϵ .

 $\mathbf{b}_{2SLS} = [\mathbf{X}'(\mathbf{I} - \mathbf{M}_{z})\mathbf{X}]^{-1}\mathbf{X}'(\mathbf{I} - \mathbf{M}_{z})\mathbf{y}$

21-42/67

Method of Moments Estimation

Same Moment Equation

m(β)=0

Now, M moment equations, K parameters. There is no unique solution. There is also no exact solution to

m(β)=0.

We get as close as we can.

How to choose the estimator? Least squares is an obvious choice. Minimize wrt β : $\overline{m}(\beta)'\overline{m}(\beta)$

E.g., Minimize wrt $\boldsymbol{\beta}$: [(1/n) $\varepsilon(\boldsymbol{\beta})$ '**Z**][(1/n)**Z**' $\varepsilon(\boldsymbol{\beta})$]=(1/n²) $\varepsilon(\boldsymbol{\beta})$ '**ZZ'** $\varepsilon(\boldsymbol{\beta})$

FOC for MOM

First order conditions

(1) General

 $\partial \bar{\mathbf{m}}(\boldsymbol{\beta})' \bar{\mathbf{m}}(\boldsymbol{\beta}) / \partial \boldsymbol{\beta} = 2\mathbf{G}(\boldsymbol{\beta})' \bar{\mathbf{m}}(\boldsymbol{\beta}) = 0$

(2) The Instrumental Variables Problem $\partial (1/n^2) \varepsilon(\beta)' ZZ' \varepsilon(\beta) / \partial \beta = -(2/n^2)(X'Z)[Z'(y - X\beta)]$ = 0

Or, $(X'Z)[Z'(y - X\beta)] = 0$ $(K \times M) (M \times n)(n \times 1) = 0$

At the solution, $(\mathbf{X}'\mathbf{Z})[\mathbf{Z}'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})] = \mathbf{0}$ But, $[\mathbf{Z}'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})] \neq \mathbf{0}$ as it was before.

Computing the Estimator

- Programming Program
- No all purpose solution
- Nonlinear optimization problem solution varies from setting to setting.

Asymptotic Covariance Matrix

General Result for Method of Moments when $M \geq K$ Moment Equations: $E[\bar{\mathbf{m}}(\boldsymbol{\beta})] = \mathbf{0}$ Solution - FOC: $G(\beta)'\bar{m}(\beta)=0$, $G(\beta)'$ is $K \times M$ Asymptotic Covariance Matrix Asy.Var[$\hat{\boldsymbol{\beta}}$] = [G($\boldsymbol{\beta}$)' V⁻¹ G($\boldsymbol{\beta}$)]⁻¹, V = Asy.Var[$\bar{\boldsymbol{m}}(\boldsymbol{\beta}$)] Special Case - Exactly Identified: M = K and **G**($\boldsymbol{\beta}$) is nonsingular. Then $[\mathbf{G}(\boldsymbol{\beta})]^{-1}$ exists and Asv.Var[$\hat{\boldsymbol{\beta}}$] = [$\boldsymbol{G}(\boldsymbol{\beta})$]⁻¹ V [$\boldsymbol{G}(\boldsymbol{\beta})$ ']⁻¹

More Efficient Estimation

```
We have used least squares,
Minimize wrt \beta : \overline{m}(\beta)'\overline{m}(\beta)
to find the estimator of \beta. Is this the most efficient
way to proceed?
```

Generally not: We consider a more general approach

Minimum Distance Estimation

Let **A** be any positive definite matrix:

Let
$$\hat{\beta}_{MD}$$
 = the solution to Minimize wrt β :
 $\mathbf{q} = \overline{\mathbf{m}}(\beta)' \mathbf{A} \, \overline{\mathbf{m}}(\beta)$

This is a minimum distance (in the metric of **A**) estimator.

Minimum Distance Estimation

Let
$$\hat{\mathbf{A}}$$
 be any positive definite matrix:
Let $\hat{\mathbf{\beta}}_{MD}$ = the solution to Minimize wrt $\mathbf{\beta}$:
 $\mathbf{q} = \overline{\mathbf{m}}(\mathbf{\beta})' \mathbf{A} \, \overline{\mathbf{m}}(\mathbf{\beta})$

where $E[\bar{\mathbf{m}}(\boldsymbol{\beta})] = 0$ (the usual moment conditions).

This is a minimum distance (in the metric of **A**) estimator.

 $\hat{\boldsymbol{\beta}}_{\text{MD}}$ is consistent

 $\hat{\boldsymbol{\beta}}_{MD}$ is asymptotically normally distributed.

Same arguments as for the GMM estimator. Efficiency of the estimator depends on the choice of **A**.

MDE Estimation: Application

N units, T observations per unit, T > K

$$\mathbf{y}_i = \mathbf{X}_i \mathbf{\beta} + \mathbf{\epsilon}_i, \ \mathbf{E}[\mathbf{\epsilon}_i \mid \mathbf{X}_i] = 0$$

Consider the following estimation strategy:

(1) OLS country by country, \mathbf{b}_i produces N estimators of $\boldsymbol{\beta}$

(2) How to combine the estimators?

We have 'moment' equation:
$$E\begin{bmatrix} \mathbf{b}_1 - \mathbf{\beta} \\ \mathbf{b}_2 - \mathbf{\beta} \\ \mathbf{\cdots} \\ \mathbf{b}_N - \mathbf{\beta} \end{bmatrix} = \mathbf{0}$$

How can I combine the N estimators of $\boldsymbol{\beta}$?

Least Squares

$$E\begin{bmatrix} \mathbf{b}_{1} - \mathbf{\beta} \\ \mathbf{b}_{2} - \mathbf{\beta} \\ \dots \\ \mathbf{b}_{N} - \mathbf{\beta} \end{bmatrix} = \mathbf{0} \cdot \mathbf{m}(\mathbf{\beta}) = \begin{bmatrix} \mathbf{b}_{1} - \mathbf{\beta} \\ \mathbf{b}_{2} - \mathbf{\beta} \\ \dots \\ \mathbf{b}_{N} - \mathbf{\beta} \end{bmatrix}$$

To minimize $\mathbf{m}(\mathbf{\beta})'\mathbf{m}(\mathbf{\beta}) = \sum_{i=1}^{N} (\mathbf{b}_{i} - \mathbf{\beta})'(\mathbf{b}_{i} - \mathbf{\beta})$
$$\frac{\partial \mathbf{m}(\mathbf{\beta})'\mathbf{m}(\mathbf{\beta})}{\partial \mathbf{\beta}} = -2[\mathbf{I}, \mathbf{I}, \dots, \mathbf{I}] \begin{bmatrix} \mathbf{b}_{1} - \mathbf{\beta} \\ \mathbf{b}_{2} - \mathbf{\beta} \\ \dots \\ \mathbf{b}_{N} - \mathbf{\beta} \end{bmatrix} = -2\sum_{i=1}^{N} (\mathbf{b}_{i} - \mathbf{\beta}) = \mathbf{0}.$$

The solution is $\sum_{i=1}^{N} (\mathbf{b}_{i} - \mathbf{\beta}) = \mathbf{0}$ or $\mathbf{\beta} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{b}_{i} = \overline{\mathbf{b}}$

Generalized Least Squares

The preceding used OLS - simple unweighted least squares.

Also, it uses
$$\mathbf{A} = \begin{bmatrix} I & 0 & \dots & 0 \\ 0 & I & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & I \end{bmatrix}$$
. Suppose we use weighted, GLS.
Then, $\mathbf{A} = \begin{bmatrix} [\sigma_1^2(\mathbf{X}'_1\mathbf{X}_1)^{-1}]^{-1} & 0 & \dots & 0 \\ 0 & [\sigma_2^2(\mathbf{X}'_2\mathbf{X}_2)^{-1}]^{-1} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & [\sigma_N^2(\mathbf{X}'_N\mathbf{X}_N)^{-1}]^{-1} \end{bmatrix}$

The first order condition for minimizing $m(\beta)$ 'Am(β) is

$$\sum_{i=1}^{N} \{ [\sigma_{i}^{2} (\mathbf{X}_{i}'\mathbf{X}_{i})^{-1}]^{-1} \} (\mathbf{b}_{i} - \mathbf{\beta}) = 0$$

or $\mathbf{\beta} = \left(\sum_{i=1}^{N} \{ [\sigma_{i}^{2} (\mathbf{X}_{i}'\mathbf{X}_{i})^{-1}]^{-1} \} \right)^{-1} \sum_{i=1}^{N} \{ [\sigma_{i}^{2} (\mathbf{X}_{i}'\mathbf{X}_{i})^{-1}]^{-1} \} \mathbf{b}_{i}$
$$= \sum_{i=1}^{N} \mathbf{W}_{i} \mathbf{b}_{i} = \text{a matrix weighted average.}$$

21-51/67

Minimum Distance Estimation

The minimum distance estimator minimizes

 $\mathbf{q} = \bar{\mathbf{m}}(\mathbf{\beta})' \mathbf{A} \, \bar{\mathbf{m}}(\mathbf{\beta})$

The estimator is

- (1) Consistent
- (2) Asymptotically normally distributed
- (3) Has asymptotic covariance matrix

Asy.Var $[\hat{\boldsymbol{\beta}}_{MD}] = [\boldsymbol{G}(\boldsymbol{\beta})'\boldsymbol{A}\boldsymbol{G}(\boldsymbol{\beta})]^{-1}[\boldsymbol{G}(\boldsymbol{\beta})'\boldsymbol{A}\boldsymbol{V}\boldsymbol{A}\boldsymbol{G}(\boldsymbol{\beta})][\boldsymbol{G}(\boldsymbol{\beta})'\boldsymbol{A}\boldsymbol{G}(\boldsymbol{\beta})]^{-1}$

Optimal Weighting Matrix

A is the Weighting Matrix of the minimum distance estimator. Are some A's better than others? (Yes) Is there a best choice for A? Yes The variance of the MDE is minimized when $A = \{Asy.Var[\overline{m}(\beta)]\}^{-1}$ This defines the generalized method of moments estimator.

$$\mathbf{A} = \mathbf{V}^{-1}$$

GMM Estimation

$$\bar{\mathbf{m}}(\boldsymbol{\beta}) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{m}_{i}(\mathbf{y}_{i}, \mathbf{x}_{i}, \boldsymbol{\beta})$$
Asy.Var[$\bar{\mathbf{m}}(\boldsymbol{\beta})$] estimated with $\mathbf{W} = \frac{1}{n} \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{m}_{i}(\mathbf{y}_{i}, \mathbf{x}_{i}, \boldsymbol{\beta}) \mathbf{m}_{i}(\mathbf{y}_{i}, \mathbf{x}_{i}, \boldsymbol{\beta})' \right)$
The GMM estimator of $\boldsymbol{\beta}$ then minimizes
$$\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{m}_{i}(\mathbf{y}_{i}, \mathbf{x}_{i}, \boldsymbol{\beta}) \right) |\mathbf{W}| = \frac{1}{n} \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{m}_{i}(\mathbf{y}_{i}, \mathbf{x}_{i}, \boldsymbol{\beta}) \right)$$

$$\mathbf{q} = \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{m}_{i}(\mathbf{y}_{i}, \mathbf{x}_{i}, \boldsymbol{\beta})\right)^{\mathbf{W}^{-1}} \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{m}_{i}(\mathbf{y}_{i}, \mathbf{x}_{i}, \boldsymbol{\beta})\right).$$

Est.Asy.Var[$\hat{\boldsymbol{\beta}}_{\mathsf{GMM}}$] = [$\mathbf{G}^{\mathbf{W}^{-1}}\mathbf{G}$]⁻¹, $\mathbf{G} = \frac{\partial \overline{\mathbf{m}}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}'}$

21-54/67

GMM Estimation

Exactly identified GMM problems

When $\overline{\mathbf{m}}(\mathbf{\beta}) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{m}_{i}(\mathbf{y}_{i}, \mathbf{x}_{i}, \mathbf{\beta}) = \mathbf{0}$ is K equations in

K unknown parameters (the exactly identified case), the weighting matrix in

$$\mathbf{q} = \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{m}_{i}(\mathbf{y}_{i}, \mathbf{x}_{i}, \boldsymbol{\beta})\right) \mathbf{W}^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{m}_{i}(\mathbf{y}_{i}, \mathbf{x}_{i}, \boldsymbol{\beta})\right)$$

is irrelevant to the solution, since we can set exactly $\overline{\mathbf{m}}(\mathbf{\beta}) = \mathbf{0}$ so $\mathbf{q} = \mathbf{0}$. And, the asymptotic covariance matrix (estimator) is the product of 3 square matrices and becomes $[\mathbf{G'W^{-1}G]^{-1} = \mathbf{G^{-1}WG'^{-1}}$

A Practical Problem

Asy.Var[$\bar{\mathbf{m}}(\mathbf{\beta})$] estimated with

$$\mathbf{W} = \frac{1}{n} \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{m}_{i} (\mathbf{y}_{i}, \mathbf{x}_{i}, \boldsymbol{\beta}) \mathbf{m}_{i} (\mathbf{y}_{i}, \mathbf{x}_{i}, \boldsymbol{\beta})' \right)$$

The GMM estimator of $\boldsymbol{\beta}$ then minimizes

$$\mathbf{q} = \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{m}_{i}(\mathbf{y}_{i}, \mathbf{x}_{i}, \boldsymbol{\beta})\right)^{*} \mathbf{W}^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{m}_{i}(\mathbf{y}_{i}, \mathbf{x}_{i}, \boldsymbol{\beta})\right).$$

In order to compute **W**, you need to know $\boldsymbol{\beta}$, and you are trying to estimate $\boldsymbol{\beta}$. How to proceed?

Typically two steps:

- (1) Use $\mathbf{A} = \mathbf{I}$. Simple least squares, to get a preliminary estimator of $\boldsymbol{\beta}$. This is consistent, though not efficient.
- (2) Compute the weighting matrix, then use GMM.

Inference

Testing hypotheses about the parameters: Wald test A counterpart to the likelihood ratio test

Testing the overidentifying restrictions

Testing Hypotheses

(1) Wald Tests in the usual fashion.
(2) A counterpart to likelihood ratio tests GMM criterion is q = m̄(β)'W m̄(β) when restrictions are imposed on β q increases.

q_{restricted} - q_{unrestricted} - d→ chi - squared[J]
(The weighting matrix must be the same for both.)
(3) Testing the overidentifying restrictions: q would be 0 if exactly identified. q - 0 > 0 results from the overidentifying restrictions.

Application: Innovation

Bertschek and Lechner applied the GMM estimator to an analysis of the product innovation activity of 1,270 German manufacturing firms observed in five years, 1984 -1988, in response to imports and foreign direct investment. [See Bertschek (1995).] The basic model to be estimated is a probit model based on the latent regression

$$y_{it}^* = \beta_1 + \sum_{k=2}^{s} x_{k,it} \beta_k + \varepsilon_{it}, \ y_{it} = \mathbf{1} \left(y_{it}^* > 0 \right), \ i = 1, \dots, 1270, \ t = 1984, \dots, 1988.$$

where

- $y_{it} = 1$ if a product innovation was realized by firm i in year t, 0 otherwise, $x_{2,it} = \text{Log of industry sales in DM},$
- $x_{3,it}$ = Import share = ratio of industry imports to (industry sales plus imports),
- x_{4,it} = Relative firm size = ratio of employment in business unit to employment in the industry (times 30),
- x_{5,it} = FDI share = Ratio of industry foreign direct investment to (industry sales, plus imports),
- $x_{6,it}$ = Productivity = Ratio of industry value added to industry employment,
- $x_{7,it}$ = Raw materials sector = 1 if the firm is in this sector,
- $x_{8,it}$ = Investment goods sector = 1 if the firm is in this sector,

21-59/67

Application: Innovation
$y_{it}^* = \beta_1 + \sum_{k=2}^{\circ} x_{k,it} \beta_k + \varepsilon_{it}, \ y_{it} = 1 \left(y_{it}^* > 0 \right),$
i = 1,, 1270, t = 1984,, 1988.
$y_{it} = 1$ if a product innovation was realized by German
manufacturing firm <i>i</i> in year <i>t</i> , 0 otherwise,
$x_{2,it} = \text{Log of industry sales in DM},$
$x_{3,it}$ = Import share = ratio of industry imports to (industry
sales plus imports)
$x_{4,it}$ = Relative firm size = ratio of employment in business
unit to employment in the industry (times 30),
$x_{5,it}$ = FDI share = Ratio of industry foreign direct investment
to (industry sales, plus imports),
$x_{6,it}$ = Productivity = Ratio of industry value added to
industry employment,
$x_{7,it}$ = Raw materials sector = 1 if the firm is in this sector,

 $x_{8,it}$ = Investment goods sector = 1 if the firm is in this sector

21-60/67

Application: Multivariate Probit Model

5 - variate Probit Model

 $y_{it}^{*} = \beta' x_{it} + \varepsilon_{it}, y_{it} = l[y_{it}^{*} > 0]$ $\log L_{i} = \int_{-\infty}^{\beta' \mathbf{x}_{i5}} \int_{-\infty}^{\beta' \mathbf{x}_{i4}} \int_{-\infty}^{\beta' \mathbf{x}_{i3}} \int_{-\infty}^{\beta' \mathbf{x}_{i2}} \int_{-\infty}^{\beta' \mathbf{x}_{i1}} \phi_{5}[\{(2y_{it}-1)s_{it}, t=1,...,5\}, \boldsymbol{\Sigma}] ds_{i1} ds_{i2} ds_{i3} ds_{i4} ds_{i5}]$ Requires 5 dimensional integration of the joint normal density. Very hard! But, $E[\mathbf{y}_{it} | \mathbf{x}_{it}] = \Phi(\boldsymbol{\beta}' \mathbf{x}_{it}).$ Orthogonality Conditions: E[{ $y_{it} - \Phi(\beta' x_{it})$ } $x_{it} = 0$ Moment Equations: $\frac{1}{n} \sum_{i=1}^{n} \begin{bmatrix} \{\mathbf{y}_{i1} - \Phi(\boldsymbol{\beta}'\mathbf{x}_{i1})\}\mathbf{x}_{i1} \\ \{\mathbf{y}_{i2} - \Phi(\boldsymbol{\beta}'\mathbf{x}_{i2})\}\mathbf{x}_{i2} \\ \{\mathbf{y}_{i3} - \Phi(\boldsymbol{\beta}'\mathbf{x}_{i3})\}\mathbf{x}_{i3} \\ \{\mathbf{y}_{i4} - \Phi(\boldsymbol{\beta}'\mathbf{x}_{i4})\}\mathbf{x}_{i4} \\ \{\mathbf{y}_{i5} - \Phi(\boldsymbol{\beta}'\mathbf{x}_{i5})\}\mathbf{x}_{i5} \end{bmatrix} = \mathbf{0} \quad 40 \text{ equations in 8 parameters.}$

Part 21: Generalized Method of Moments

21-61/67

Pooled Probit – Ignoring Correlation

			Estimated Sta	andard Error		Margir	nal Effects	
Variable	Estimate ^a	se(1) ^b	se(2) ^c	se(3) ^d	se(4) ^e	Partial ^f	Std. Err.	
Constant	-1.960**	0.21	0.230	0.377	0.373			
log Sales	0.177**	0.025	0.0222	0.0375	0.0358	0.0683	0.0138**	
Rel Size	1.072**	0.21	0.142	0.306	0.269	0.413	0.103**	
Imports	1.134**	0.15	0.151	0.246	0.243	0.437	0.0938**	
FDI	2.853**	0.47	0.402	0.679	0.642	1.099	0.247**	
Prod.	-2.341**	1.10	0.715	1.300	1.115	-0.902	0.429*	
Raw Mtl	-0.279**	0.097	0.0807	0.133	0.126	-0.110 ^g	0.0503*	
Inv Good	0.188**	0.040	0.0392	0.0630	0.0628	0.0723 ^g	0.0241**	

Table 1. Estimated Pooled Probit Model

^a Recomputed. Only two digits were reported in the earlier paper.

^b Obtained from results in Bertschek and Lechner, Table 10.

^c Square roots of the diagonals of the negative inverse of the Hessian

^d Based on the Avery et al. GMM estimator

^eBased on the cluster estimator.

^fCoefficient scaled by the density evaluated at the sample means

^g Computed as the difference in the fitted probability with the dummy variable equal to one then zero.

* Indicates significant at 95% level, ** indicates significant at 99% level based on a two tailed test. Significance tests based on se(4).

Random Effects: Σ=(1- ρ)I+ρii'

Table 2. LSI	innated Rand	OIN LITECIS MIC	Jueis	
		Randon	1 Effects	
	Quadrature	e Estimator	Simulation	n Estimator
Variable	Estimate	Std.Error	Estimate	Std.Error
Constant	-2.839**	0.533	-2.884**	0.543
log Sales	0.244**	0.0522	0.249**	0.0510
Rel Size	1.522**	0.257	1.452**	0.281
Imports	1.779**	0.360	1.796**	0.360
FDI	3.652**	0.870	3.724**	0.831
Prod.	-2.307	1.911	-2.321**	0.151
Raw Mtl	-0.477*	0.202	-0.469*	0.186
Inv Good	0.331**	0.0952	0.331**	0.0915
ρ	0.578**	0.0189	0.578** ^a	0.0231

Table 2. Estimated Random Effects Models

^aBased on estimated standard deviation of the random constant of 1.1707 with estimated standard error of 0.01865.

* Indicates significant at 95% level, ** indicates significant at 99% level based on a two tailed test.

Unrestricted Correlation Matrix

Coefficients	β	Std. Error	BL GMM ^a	Std. Error
Constant	-1.797**	0.341	-1.74**	0.37
log Sales	0.154**	0.0334	0.15**	0.034
Relative size	0.953**	0.160	0.95**	0.20
Imports	1.155**	0.228	1.14**	0.24
FDI	2.426**	0.573	2.59**	0.59
Productivity	-1.578	1.216	-1.91*	0.82
Raw Material	-0.292**	0.130	-0.28*	0.12
Investment Goods	0.224**	0.0605	0.21**	0.063
Estin	nated Correla	tions		
1984,1985	0.460**	0.0301	Estimated	Correlation Matrix
1984,1986	0.599**	0.0323		
1985,1986	0.643**	0.0308	1984 19	85 1986 1987 1988
1984,1987	0.540**	0.0308	1984 1.000	
1985,1987	0.546**	0.0348	1985 0.460 1.0	
1986,1987	0.610**	0.0322	1986 0.599 0.0	
1984,1988	0.483**	0.0364		546 0.610 1.000
1985,1988	0.446**	0.0380	1988 0.483 0.4	446 0.524 0.605 1.000
1986,1988	0.524**	0.0355		
1987,1988	0.605**	0.0325		

Table 3. Estimated Constrained Multivariate Probit Model
--

^aEstimates are BL's WNP-joint uniform estimates with k = 880. Estimates are from their Table 9, standard errors from their Table 10.

* Indicates significant at 95% level, ** indicates significant at 99% level based on a two tailed test.

21-64/67