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| also have a questions about nonlinear GMM - which is more or less nonlinear IV technique
| suppose.

| am running a panel non-linear regression (non-linear in the parameters) and | have L
parameters and K exogenous variables with L>K.

In particular my model looks kind of like this: Y = b;*X”b, + e, and so | am trying to
estimate the extra b, that don't usually appear in a regression.

From what | am reading, to run nonlinear GMM | can use the K exogenous variables to
construct the orthogonality conditions but what should | use for the extra, b, coefficients?
Just some more possible Vs (like lags) of the exogenous variables?

| agree that by adding more Vs you will get a more efficient estimation, but isn't it only the
case when you believe the 1Vs are truly uncorrelated with the error term?

So by adding more "instruments" you are more or less imposing more and more restrictive
assumptions about the model (which might not actually be true).

| am asking because | have not found sources comparing nonlinear GMM/IV to nonlinear

least squares. If there is no homoscadesticity/serial correlation what is more efficient/give
tighter estimates?
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I'm trying to minimize a nonlinear program with the
least square under nonlinear constraints. It’s first
iIntroduced by Ané & Geman (2000). It consisted on
the minimization of the sum of squared difference
between the moment generating function and the
theoretical moment generating function

(The method was suggested by Quandt and Ramsey in the 19703.)
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Method of Moment Generating Functions
For the normal distribution, the MGF is

M(tle,0)=E[exp(tx)]=expltu + t°c”]

Moment Equations: EZ” exp(t;x;) =exp[t,u + $t°c°],j=12.
n

Choose two values of t and solve the two moment equations for 1 and o.

Mixture of Normals Problem:

f(X[ 4,14, 04, 14, 0,) = AN[11, 0, ]+ 1= A)N[11,, 0, ]
Use the method of moment generating functions with 5 values of t.

M(t|y, 0,0 1, 0,)=E[exp(tX)]=Aexp[ty, + %t2012]+(1—/1)exp[ty2 + %tzazz]
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Finding the solutions to the moment equations: Least squares

M(t,) ZEZ_”l exp(t,x), and likewise fort,, ...
n="9
Minimize(A,u,, oy, t,,0,)

> [N - (dexplts, + 3071+ @-Dexplty, + it

J:

Alternative estimator: Maximum Likelihood

LA, 04, 1, 0,) = Zin:l log {ﬂ“N[Xi | 14, 07]+@=A)N[X; |/U21O-2]}
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The Method of Moments

Estimating Parameters of Distributions Using Moment Equations
Population Moment

u, =E[x“]=f(0,0,,...,06,)
Sample Moment

=13" x.  m_may also be 13" h (x,), need not be powers
Law of Large Numbers

pimm, =p, =1(0,,0,,...,6,)
'Moment Equation' (k = 1,...,K)

= 12:\11 = 1(01,0,,....6,)

Method of Moments applied by inverting the moment equations.

0, =g, (Mm,...m.), k=1,..K
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Estimating a Parameter

0 Mean of Poisson

= p(y)=exp(-A) NV /'y!
= E[y]= A.
plim (1/n)Zy; = A.
This is the estimator
O Mean of Exponential

= p(y) = aexp(-ay)
= E[y]=1/a.
plim (1/n)2y; = 1/ a
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Mean and Variance of a
Normal Distribution

26°

p(y) = — exp[—(y_“)j
o\ 21

Population Moments

Elyl=wn, E[y’]=c"+p°

Moment Equations

RELY =w aZlyl =0+

Method of Moments Estimators

i=y, & =32y —(¥°)=2ZL(y,-Y)
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Gamma Distribution

A" exp(-Ay)y ™
I'(P)

p(y) =

P

Ely] = Y

P(P +1)

Ely?] = - (E[yg] _P(P+ 1)3(P +2)

and so onj

A

E[logy] = ¥(P) - log, ¥(P)=dInT(P)/dP

(Each pair gives a different answer. Is there a 'best' pair? Yes,
the ones that are 'sufficient' statistics. E[y] and E[logy]. For a
different course....)
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The Linear Regression Model

Population

Y, =B +¢

Population Expectation
Elex,]=0, k=1,..K
Moment Equations

%Zin:l(yi - XilBl - Xi2B2 T T XiKBK)Xil =0

%Zin:l(yi = Xy = XipBp = = XiKBK)XiZ =0

%Zin:l(yi = XBy = XioB, — - = Xy By )X =0

Solution: Linear system of K equations in K unknowns. Least Squares
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Instrumental Variables

Population

Y, =B'%; +¢

Population Expectation

Elez, ] =0 for instrumental variables z, ... z,.
Moment Equations

%Z;(Yi = Xy = XizPp == Xy By )2y = 0

%Zinzl(yi = X3y = XigBy =+ = XyBy)Z;, =0

1<n

Hzizl(yi — Xy = X By o XiKBK)ZiK =0

Solution: Also a linear system of K equations in K unknowns.
b, = @'X/n)*(Z'y/n)

An extension: What is the solution if there are M > K IVs?
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Maximum Likelihood

Log likelihood function, logL = %" logf(y, | x,,0,,...,6,)
Population Expectations
EF'OQL} ~0, k=1,..,K

0,

Sample Moments

Zn ologf(y. | x.,0,,...,0 )—O
00,

Solution: K nonlinear equations in K unknowns.

n

Zn ologf(y; | X|’GLMLE’ eK,MLE)
aek,MLE

=0
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Behavioral Application

Life Cycle Consumption (text, pages 488-489)

E [(1+ r)(ljéj(céﬂ] —1Qt] -0

0 = discount rate
C, = consumption

Q. =information at time t
Let B=1/(1+3), R,,, =C,,,
E[B+1)R;, —1]Q,]=0

t+1

/c, A=-a

What is in the information set? Each piece of 'information’
provides a moment equation for estimation of the two parameters.

[ZtTl ((1+r)(1j8j[céﬂj ]}Wtk]:O’ k=1,...,.K
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|dentification

0 Can the parameters be estimated?
O Not a sample ‘property’

O Assume an infinite sample

= |s there sufficient information in a sample to reveal
consistent estimators of the parameters

= Can the ‘'moment equations’ be solved for the
population parameters?
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|dentification

O Exactly Identified Case: K population moment equations
In K unknown parameters.

= Our familiar cases, OLS, IV, ML, the MOM estimators
= s the counting rule sufficient?
= What else is needed?
O Overidentified Case
= Instrumental Variables

O Underidentified Case
= Multicollinearity
= Variance parameter in a probit model
= Shape parameter in a loglinear model
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Overidentification

Population

Y. =B'X. +¢, BBy
Population Expectation
E[ez, ] =0 for instrumental variables z, ... z, M > K.

There are M > K Moment Equations - more than necessary

%Z?_l(yi - XilBl B Xi2B2 e XiKBK)Zil =0

%Zinl(yi = Xy = XiBp = = X3P )Z, =0

%Z?l(yi - Xilﬁl - XiZBZ T T XiKBK)ZiM =0

Solution: A linear system of M equations in K unknowns.
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Overidentification

Two Equation Covariance Structures Model

Country 1: y, =X B +¢,

Country 2: y, = X,B+eg,

Two Population Moment Conditions:

E[(1/T) X, (y, — X,8)] =0

E[(1/T) X,'(y, - X,B)] =0

(1) How do we combine the two sets of equations?

(2) Given two OLS estimates, b, and b,, how do we
reconcile them?

Note: There are even more. E[(1/T) X/(y, — X,B)] =0.
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Underidentification — Model/Data

Consider the Mover - Stayer Model

Binary choice for whether an individual 'moves' or 'stays'

d =1(Zza +u, >0)

Outcome equation for the individual, conditional on the state:
yi1(d=0) = xB, +¢,

y [(d=1) = xB, +¢g,

(86, 24) ~ NI(0,0), (02, 6%, p5,0; )]

An individual either moves or stays, but not both (or neither).
The parameter p cannot be estimated with the observed data
regardless of the sample size. It is unidentified.
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Underidentification - Normalization

When a parameter is unidentified, the log likelihood is invariant
to changes in it. Consider the logit binary choice model

_1— exp(ByX) 11— exp(pB,x)
oY =l B+ o) oY T (B o) + exp(B )
Probabilities sum to 1, are monotonic, etc. But, consider, for any & = 0,
Probly=0]= exp[(B, + 5)x] _ exp(dx) [exp(ByX)]
exp[(B, + 8)x] +exp[(B, +8)x] exp(ox)[exp(Byx) + exp(B,X)]
Probly=1]= exp[(B, +3)x] exp(3x) [exp(B,x)]

exp[(B, + 8)x]+exp[(B, + 3)x]  exp(x)[exp(B,x) +exp(B,x)]
exp(dx) always cancels out.
The parameters are unidentified. A normalization such as 8, = 0 is needed.
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Underidentification: Moments
Nonlinear LS vs. MLE

y; ~ Gamma(P,A;), A; =exp(B'x;)

f (yl) _ 7\‘i expl(_‘_(i‘)i)yi)yi )

ey, Ix1=

We consider nonlinear least squares and maximum
likelihood estimation of the parameters. We use the
German health care data, where

y = income

X = 1,age,educ,female,hhkids,married
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Nonlinear Least Squares

--> NAMELIST ; x = one,age,educ, female, hhkids,married $
--> Calc ; k=col(x) $
--> NLSQ ; Lhs = hhninc ; Fcn = p / exp(bl'x)

; labels = k b,p ; start = k 0,1 ; maxit = 20$%
Moment matrix has become nonpositive definite.
Switching to BFGS algorithm
Normal exit: 16 iterations. Status=0. F= 381.1028

User Defined Optimization.........c.oeeiieereneennn.

Nonlinear least squares regression ............
LHS=HHNINC Mean = .35208
Standard deviation = .17691
Number of observs. = 27326
Model size Parameters = 7
Degrees of freedom = 27319
Residuals Sum of squares = 762.20551
Standard error of e = .16701
________ +__________________________________________________
Variable| Coefficient Standard Error b/St.Er. P[|Z]|>z]
________ +__________________________________________________
B1| 1.39905 14319.39 .000 .9999 <======
B2 | .00029 .00029 .986 .3242
B3| —.05527**x* .00105 -52.809 .0000
B4 | -.01843**x* .00580 -3.180 .0015
B5| .05445%*x* .00665 8.184 .0000
B6 | —.26424%%x* .00823 -32.109 .0000
P .63239 9055.493 .000 .9999 <=======
________ +__________________________________________________

Nonlinear least squares did not work. That is the implication of the
infinite standard errors for Bl (the constant) and P.
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Maximum Likelihood

Gamma

(Loglinear)
Dependent variable
Log likelihood function
Restricted log likelihood
Chi squared
Significance level
McFadden Pseudo R-squared
Estimation based on N =
computable.)

Regression Model
HHNINC
14293.00214
1195.06953
26195.86522
.00000
-10.9599753
27322, K = 7

6 d.f.]

(4 observations with income = 0
were deleted so logL was

________ +--————————-— - o - e =

Variable|

Coefficient

Standard Error b/St.

EFr.

________ +_____________________________________________________________
| Parameters in conditional mean function

Constant|
AGE |
EDUC |
FEMALE |
HHKIDS |
MARRIED|

3.

|Scale

MLE apparently worked fine.

5.

40841**x* .02154 158.
.00205%** .00028 7.
.05572%** .00120 -46.
.00542 .00545 -.
.06512*** .00618 10.
.26341%** .00692 -38.
parameter for gamma model

12486**x* .04250 120

213
413
496
995
542
041

P[|1Z]|>z] Mean of X
.0000
0000 43.5272
0000 11.3202
3198 .47881
.0000 .40272
0000 .75869
0000

Why did one method (nls) fail and

another consistent estimator work without difficulty?
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Moment Equations: NLS

E[y|Xx]=P/exp(B’x;)

e'e=Y " (y,—Plexp('x))=>. €
oe'e —2¢.
R exp('x,)
oe'e n 2e.P
B =2 exp(B’x; )
Consider the term for the constant in the model, 3,. Notice that
the first order condition for the constant term is

=0

Zi”:l & = 0. This doesn't depend on P, since we can divide
exp(B'x;)

both sides of the equation by P. This means that we cannot find

solutions for both 3, and P. Itis easy to see why NLS cannot distinguish

P from B3,. E[y|x] = exp((logP-B,)—...). There are an infinite number

of pairs of (P,B,) that produce the same constant term in the model.
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Moment Equations MLE

The log likelihood function and likelihood equations are

logL=>)"" Plogx, —logI'(P)- 4.y, +(P-1)logy,

dlogL n dlogI'(P)
prs => . (logk,—¥(P)+logy,)=0, ¥(P)= i
olog L n P . O\,
=) | —A—=VYA [; USINg —-=A.X..
aBI lel (7\" | yl Ij g aﬁ 1771

Recall, the expected values of the derivatives of the log likelihood equal
zero. So, a look at the first equation reveals that the moment equation in
use for estimating P is E[logy; | x.] =¥ (P) —log A, and another K moment

equations, ElIyi —;j xi} =0 are also in use. So, the MLE uses K+1
functionally independent moment equations for K+1 parameters, while NLS
was only using K independent moment equations for the same K+1 parameters.
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GMM Agenda

The Method of Moments. Solving the moment equations
Exactly identified cases
Overidentified cases

Consistency. How do we know the method of moments is
consistent?

Asymptotic covariance matrix.
Consistent vs. Efficient estimation
A weighting matrix
The minimum distance estimator
What is the efficient weighting matrix?
Estimating the weighting matrix.
The Generalized method of moments estimator - how it is computed.
Computing the appropriate asymptotic covariance matrix
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The Method of Moments

Moment Equation: Defines a sample statistic that
mimics a population expectation:

The population expectation — orthogonality
condition:

E[m; (B) ] = 0. Subscriptiindicates it depends
on data vector indexed by 'I' (or 't' for a time
series setting)
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The Method of Moments - Example

Gamma Distribution Parameters
1" exp(=Ay, )y

I'(P)
Population Moment Conditions

Ely,] = ; Eflogy,] = ¥(P) ~log.

Moment Equations:
E[M,(AP)] = E{(A/n)ZLy,} -P/A] =0

E[m,(A,P)] = E[{(1/n)X,logy;} - (¥(P)—logA)] = 0

p(yi) —
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Application

| Y |
1= 1 205
2w 2 KR
3 : 7 Solving the moment equations
4= 4 2B.2
b » 5 44 .
2 X . Use least squares:
f= 7 308 . . . — — — —_
— ; 72 Minimize {m, —E[m,]}* +{m, —E[m,]}’
I 9 19.9 _ _
10 10 s = (m, —(P/1))° +(m, — (¥(P) —logh))’
11 = 11 BE.8
12 » 12 %2 m. =31.278 \,
1 3 = 13 EE‘ 1 . Plot of Psi(P) unction
14 = 14 855 - il P ——
15 = 15 15.1 m2 _ 3221387 |
16 » 16 28.5 o/
17 » 17 1.4 f |
18 » 18 17.7 M
19 » 19 £.42 ol
20 » 20 54.9 I SR R RN S
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Method of Moments Solution

create ; yl=y ; y2=log(y) $
calc ; ml=xbr(yl) ; ms=xbr(y2)$
minimize; start = 2.0, .06 ; labels = p,1
; fcn = (1*ml-p)~2
+ (ms - psi(p)+log(l)) "2 §

| User Defined Optimization |
| Dependent variable Function |
| Number of observations 1 |
| Iterations completed 6 |
| Log likelihood function .5062979E-13 |

|Variable | Coefficient |

- e e e L P +
P 2.41060361

L .07707026
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Nonlinear Instrumental Variables

There are K parameters,

yi = f(X;,B) + &
There exists a set of K instrumental variables, z; such that
Elz,¢] = O.
The sample counterpart is the moment equation
(I/n)Z; z g = (Un)Z; z; ly; - 1(x;,B)]
= (Un)zim; (B) =m(p) = 0.
The method of moments estimator is the solution to the
moment equation(s).

(How the solution is obtained is not always obvious, and
varies from problem to problem.)
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The MOM Solution

There are K equations in K unknowns in m(p)=0
If there Is a solution, there is an exact solution
At the solution, m(B)=0, and [m(B)]'[m(B)] = O
Since [m(B)]'[m(B)] > O, the solution can be found
by solving the programming problem
Minimize wrt B : [M(B)]'IM(B)]
For this problem,
(MBI TM(B)] = [(L/n)e'Z] x [(1/n)Z’e]
The solution is defined by
omB)I'Tm(B)] _ ol(1/n)e'Z] x [(1/n)Z']
op op
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MOM Solution

ol(Am)eZ] x [(AM)Ze] _

33 [(1/n)G'Z] [(1/n)Z'¢]

of(X;, )
op’

G = nxK matrix with row | equal to g, =

For the classical linear regression model,
f(x,,B)=x/B, Z = X, G = X, and the FOC are
2[(A/N)(X'X)] [(1/n)X'e]=0

which has unique solution p { X'X)'X'y
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Variance of the Method
of Moments Estimator

The MOM estimator solves m()=0

ﬁ(B):EZ_”_lmi(B) so the variance is € for some Q
n <~ N

Generally, Q = E[m.(B)m.(B)']
The asymptotic covariance matrix of the estimator is
om(PB

B’

Asy.Var[[BMo,\,,]:(G)'l(%SIJ(G')'1 where G =
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Example 1. Gamma Distribution

ml = %Zinzl(yi _%

, =+2! (logy, —¥(P) +logh)

m
1, 1 Vary)  Cov(y,logy)
n n| Cov(y,logy;) Var(logy;)

1 <N —% TF;
G_HZ‘=1 L\P'(P) %}

yi_y

Q:%Zfl{ d }[yi—v log y, —logy |

logy, —logy
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Example 2: Nonlinear IV Least Squares

y. =f(X,B) + &, Z, = the set of K instrumental variables

Var[e]=c”

m=2z¢

Var[m] = ¢°z;z;

With independent observations, observations are uncorrelated

Var[m(B)]=(1/n*)> " o°zz' = (c* In?)Z'Z

G=(1/ n)zinzl—zixio' where X? is the vector of 'pseudo-regressors,'

o - OB
0

. In the linear model, this is just X..

G=—(1/nZ'X".
(GHV(G™)' = [~(1/n)Z' X°][(c? / n?)Z' Z][—(1/ n)X°'Z] ™
= 6%[Z'X°T 2" Z][X° 2] ™
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Variance of the Moments

How to estimate V = (1/n)Q = Var[m(p)]
Var[m(B)]=(1/n)Var[m.(B)] = (1/n)Q

Estimate Var[m.()] with Est.Var[m.(B)] = (1/n)zin:1mi([3)mi([3)'
Then,

V= (@/n)x(@/n)x " m(B)m,(B)

For the linear regression model,

m. = X.g,

V=(/nx@inx>" xeex'=@L/nx@/nx> " e’xx'
G=(1/n)X'X

Est.Var[b,,] = [(L/ XX/ n) x(@/n)x >~ e’xx L/ n)X'X]*

= [X'XI' D e’xx'I[X'X]*  (familiar?)
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Properties of the MOM Estimator

0o Consistent?

= The LLN implies that the moments are consistent estimators of
their population counterparts (zero)

= Use the Slutsky theorem to assert consistency of the functions of
the moments
O Asymptotically normal? The moments are sample
means. Invoke a central limit theorem.

O Efficient? Not necessarily

= Sometimes yes. (Gamma example)

= Perhaps not. Depends on the model and the available
iInformation (and how much of it is used).
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Generalizing the Method
of Moments Estimator

O More moments than parameters —
the overidentified case

O Example: Instrumental variable
case, M > K instruments
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Two Stage Least Sqguares

How to use an “excess” of instrumental variables

(1) Xis K variables. Some (at least one) of the K
variables in X are correlated with €.

(2) Zis M > K variables. Some of the variables In
Z are also in X, some are not. None of the
variables in Z are correlated with €.

(3) Which K variables to use to compute Z’X and
Z’'y?
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Choosing the Instruments

O Choose K randomly?
O Choose the included Xs and the remainder randomly?
O Use all of them? How?

O A theorem: (Brundy and Jorgenson, ca. 1972) There is a
most efficient way to construct the IV estimator from this
subset:

= (1) For each column (variable) in X, compute the predictions of
that variable using all the columns of Z.

= (2) Linearly regressy on these K predictions.
O This is two stage least squares
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2SLS Algebra

X =2(Z2'2)*2'X

b,os = ()’\(')’\()_1 )A('y

But, Z(2'2)*Z'X = (I-M,)X and (I-M,) is idempotent.
X'X = X'(I-M,)(I-M,)X =X(I-M,)X so

b, s = ()A('X)‘1 )A('y = a real IV estimator by the definition.

Note, pIim()A('a/n) = 0 since columns of X are linear combinations
of the columns of Z, all of which are uncorrelated with e.

b,g s =[X'(I- MZ)X]'1X'(I -M,)y
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Method of Moments Estimation

Same Moment Equation
m(B)=0
Now, M moment equations, K parameters. There is no
unique solution. There is also no exact solution to
m(f3)=O0.
We get as close as we can.
How to choose the estimator? Least squares is an obvious choice.
Minimize wrt B : m(B)'m(B)
E.g., Minimize wrt B : [(1/n)e(B)'Z][(1/n)Z's(B)]=(1/n*)e(B)'ZZ'<(B)
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FOC for MOM

First order conditions
(1) General

om(B)'m(B)/oB = 2G(B)'m(B) = 0
(2) The Instrumental Variables Problem
o(1/n*)e(B)'2Z'¢(B)/ 0B = - (2/n*)(X"'Z)[Z'(y - XB)]

=0
Or, (X'2)[Z(y-XB)] = 0O
(KxM) (Mxn)(nx1)=0

At the solution, (X'Z2)[Z'(y-XB)] = 0
But, [Z'(y - XB)] # O as it was before.
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Computing the Estimator

O Programming Program
0 No all purpose solution

O Nonlinear optimization problem —
solution varies from setting to setting.
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Asymptotic Covariance Matrix

General Result for Method of Moments when M > K
Moment Equations:E[m(B)]= 0
Solution - FOC: G(B)'m(B)=0, G(B)' is KxM
Asymptotic Covariance Matrix
Asy.Var[B] = [G(B)' V™* G(B)]", V = Asy.Var[m(B)]
Special Case - Exactly Identified: M = K and
G(B) is nonsingular. Then [G(B)]" exists and

Asy.Var[B] = [G(B)I" V [G(B)'T"
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More Efficient Estimation

We have used least squares,

Minimize wrt B : m(B)'m(B)

to find the estimator of B. Is this the most efficient

way to proceed?

Generally not: We consider a more general approach
Minimum Distance Estimation

Let A be any positive definite matrix:

Let |§MD = the solution to Minimize wrt B :

q = m(B)'Am(B)

This is @ minimum distance (in the metric of A) estimator.
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Minimum Distance Estimation

Let A be any positive definite matrix:
Let |§MD = the solution to Minimize wrt B :
q = m(B)' Am(B)
where E[m(B)] = 0 (the usual moment conditions).
This is @ minimum distance (in the metric of A) estimator.

B, IS consistent

|§MD is asymptotically normally distributed.
Same arguments as for the GMM estimator. Efficiency of
the estimator depends on the choice of A.
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MDE Estimation

. Application

N units, T observations per unit, T > K

y.=XB+E€, E[,|X]=0

Consider the following estimation strategy:

(1) OLS country by country, b,

produces N estimators of 8

(2) How to combine the estimators?

We have 'moment' equation: E

b, B
b, -B

_bN B B_

How can I combine the N estimators of 3?

21-49/67
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b
b

2

b B
-B

=0. m(B)=

_bN N B_

omB)m®B) _ orp1.1]

_bN B B_
To minimize m(B)'m(B) = > (b, ~B)'(b, - B)

B

B
-B

b B
b,-B

_bN N B_
The solution is Z:il(bi -B) =0 or B= 12:11 b=b

Least Squares

=-2>" (b,-B)=0.

N
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Generalized Least Squares

The preceding used OLS - simple unweighted least squares.

I 0 ... O
_ oI .. 0 :
Also, it uses A = . Suppose we use weighted, GLS.
0 0 .. I
[o2(X X)) T 0 0 |
2 ' -17-1
Then, A = 0 [o5(XX,) T ... 0
0 0 o [on(X X)) T |

The first order con_dition for minimizing m(B)'Am(B) is
> Alo?(XX)) T )b, B) = 0
or B=(30 A7(XX) Y] T, {Ie7(XX) 1T}
= Z:i Wb, = a matrix weighted average.
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Minimum Distance Estimation

The minimum distance estimator minimizes
q = m(B)' Am(B)

The estimator is

(1) Consistent

(2) Asymptotically normally distributed

(3) Has asymptotic covariance matrix

Asy.Var[By, ] = [G(B)'AG(B)] '[G(B)'AVAG(B)][G(B)'AG(B)] "
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Optimal Weighting Matrix

A is the Weighting Matrix of the minimum distance estimator.
Are some A's better than others? (Yes)
Is there a best choice for A? Yes
The variance of the MDE is minimized when
A = {Asy.Var[m(B)]}"
This defines the generalized method of moments estimator.
A = V!
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GMM Estimation

m(s)=%z:;1mi(yi,xi,m

Asy.Var[m(B)] estimated with w=%(% sn 1mi(yi,xi,B)mi(yi,xi,B)’j

The GMM estimator of B then minimizes
1, Y
q= (E z:i=1n1i(yil X;, B)j W : (H z:i=1mi(yil X, B)j

om(

ESt-ASy-Var[éGMM] = [G'W'iG]_ll G — aB’
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GMM Estimation

Exactly identified GMM problems
When m(B) = %Ziilmi(yi,xi,ﬁ) =0 is K equations in

K unknown parameters (the exactly identified case),
the weighting matrix in

q- G S m (. X, B)] W (% = m(y., X, B)j

is irrelevant to the solution, since we can set exactly
m(B) =0 so g = 0. And, the asymptotic covariance matrix
(estimator) is the product of 3 square matrices and becomes

[G'W'G]" =G'WG'*!
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A Practical Problem

Asy.Var[m(B)] estimated with
1(1_, /
= H (H Zi:1mi(yil Xi, B)mi(yil Xi, B) j
The GMM estimator of B then minimizes

a=[ 2xnm v, %, B W 22m(y,x,B) |

In order to compute W, you need to know B, and you are

trying to estimate B. How to proceed?

Typically two steps:

(1) Use A = I. Simple least squares, to get a preliminary
estimator of B. This is consistent, though not efficient.

(2) Compute the weighting matrix, then use GMM.
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Inference

Testing hypotheses about the parameters:
Wald test
A counterpart to the likelihood ratio test
Testing the overidentifying restrictions
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Testing Hypotheses

(1) Wald Tests in the usual fashion.
(2) A counterpart to likelihood ratio tests
GMM criterionis g = m(B)'W m(B)
when restrictions are imposed on
g increases.
Urestricted ~ YQunrestricted ——>chi- squared[J]
(The weighting matrix must be the same for both.)
(3) Testing the overidentifying restrictions: g would
be O if exactly identified. g - 0 > 0 results from
the overidentifying restrictions.
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Application: Innovation

Bertschek and Lechner applied the GMM estimator to an analysis of the product

innovation activity of 1.270 German manufacturing firms observed in five years, 1984 -

1988, mn response to imports and foreign direct investment. [See Bertschek (1995).] The

basic model to be estimated 1s a probit model based on the latent regression

g .
Vo =B+ x, B, +5,. ¥, =1(y; >0).i=1...1270, t = 1984.....1988.

where

Xg, it
X7t

21-59/67

g E

b=l

1 if a product mnovation was realized by firm 1 1n year £, 0 otherwise,
Log of industry sales in DM,

= Import share = ratio of industry imports to (industry sales plus imports),

Relative firm size = ratio of employment in business unit to employment
i the industry (times 30),

FDI share = Ratio of industry foreign direct investment to (industry sales,
plus imports).

Productivity = Ratio of industry value added to industry employment,
Raw materials sector = 1 if the firm 1s in this sector,

xg;; = Investment goods sector = 1 1if the firm 1s 1n this sector,
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Application: Innovation
y: =B +Zxk,fr[3k tE;, ¥y =1 (y: > 0) >
i=1,..1270,r=1984,...1988.

‘ y: = 1 if a product mnovation was realized by German ‘
manufacturing firm 7 in vear £ 0 otherwise.

|ﬂx = Log of industry sales in DM,
X3 it

= Import share = ratio of industry imports to (industry ‘

aqles nlis 1mnorts

X1; = Relative firm size = ratio of employment in business
unit to employment in the industry (times 30),

X5 — PDI ghare = Ratio ol industry toreign direct investment

‘ to (industrv sales, plus imports), ‘

Xxs; = Productivity = Ratio of industry value added to
industry employment,

x7; = Raw matenals sector = 1 if the firm 1s 1n thig sector,

Xg; = Investment goods sector = 1 if the firm 18 1n thig sector
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Application: Multivariate Probit Model

5 - variate Probit Model
yit* - B,Xit &, Yy = :I'[yit* > O]
B'Xis B'Xi4 B'Xis B'Xi, B'xi1
ogl, =7 [ [ [ [ iy, s

t=1,...,5},2]ds,ds,,ds,;,ds;,ds,

Requires 5 dimensional integration of the joint normal density. Very hard!

But, E[yit |Xit] = (D(ﬂ’xit)'
Orthogonality Conditions: E[{y. - ®(B'x,)}x, =0
_{yil B q)(ﬁlxil)}xil |
{Vi, - ©B*%;,) I,
{yiS B CD(B’XiS)}XB
{Yi4 B (D(B’XM)}XM
_{yi5 B CD([?)'Xi5)}Xi5 |

: 1 <
Moment Equations: =>"
n=""7
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=0 40 equations in 8 parameters.
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Pooled Probit — Ignoring Correlation

Table 1. Estimated Pooled Probit Model

Estimated Standard Errors Marginal Effects
Variable | Estimate” ae{ljb se(2) - l:e{_"s]d 5&-[4]E Partial Std. Err.
Constant | -1.960%* 0.21 0.230 0.377 0.373 S —
log Sales 0.177%* 0.025 0.0222 0.0375 0.0358 0.0683 0.0138%#
Rel S1ze 1.072%# 021 0.142 0.306 0.269 0413 0.103%#
Imports 1.154%* 0.15 0.151 0.246 0.243 0437 0.093g%*
FDI 2 R53*H 047 0.402 0.679 0.642 1.099 0.247%*
Prod. -2 341%* 1.10 0.715 1.300 1.115 -0.902 0.429%
Raw Mtl | -0279%* 0.097 0.0807 0.133 0.126 -0.110F 0.0503%
Inv Good | 0.188** 0.040 0.0392 0.0630 0.0628 0.0723% | 0.0241%*

? Recomputed. Only two digits were reported in the earlier paper.

o Obtamned from results in Bertschek and Lechner. Table 10.

“ Square roots of the diagonals of the negative inverse of the Hessian
“ Based on the Avery et al. GMVM estimator

® Based on the cluster estimator.

£ Coefficient scaled by the density evaluated at the sample means

o . . - .

= Computed as the difference in the fitted probability with the dummy varnable equal to one then zero.

* Indicates significant at 95% level. ** indicates significant at 99%¢ level based on a two tailed test.
Sigmificance tests based on se(4).
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Table 2. Estimated Random Effects Models

Random Effects: 2=(1- p)I+p

Random Effects

Quadrature Estimator

Simmulation Estimator

Variable Estimate Std Error Estimate Std.Emror
Constant -2 B3g** 0.533 -2 BR4** 0.543
log Sales 0.244%* 0.0522 0.249%=* 0.0510
Rel Size 1.522%% 0.257 1.452%= 0.281
Imports 1.779%# 0.360 1.796%* 0.360
EDI 3652 %% 0.870 3.724%= 0.831
Prod. -2.307 1911 -2 3D R 0.151
Faw Ml -0.477* 0.202 -0.469* 0.186
Inv Good 0.331** 0.0952 0. 33]%* 0.0915
o 0.578** 0.0189 0. 57g%* 0.0231

d . . .
Based on estimated standard deviation of the random constant of 1.1707 with

estimated standard error of 0.01865.

* Indicates sigmificant at 95% level, ** mndicates significant at 99% level bazed on a two tailed test.

21-63/67

Part 21: Generalized Method of Moments




Unrestricted Correlation Matrix

Table 3. Estimated Constrained Multivariate Probit Model

Coefficients § Std. Error BL GMM?® Std. Error

Constant -1.797** 0.341 -1.74%* 0.37

loz Sales 0.154%* 0.0334 0.15%* 0.034

Relative size (.953%* 0.160 0.95%* 0.20

Imports 1.155%%* 0228 1.14%* 024

FDI 2 426%* 0.573 2. 50%* 0.59

Productivity -1.578 1.216 -191* 0.82

Raw Materal -().292%* 0.130 -0.28* 0.12

Investment Goods 0.224%* 0.0605 0.21** 0.063
Estimated Correlations

1984.1985 0. 480%* 0.0301 Estimated Correlation Matrix

1984,19584 (.599%* 0.0323

19851984 0.643%* 0.0308 1984 1985 1986 1987 19388

1984 1987 0.540%* 0.0308 1984 1.000

1985.1987 0.546%* 0.0348 1985 0.460 1.000

19861987 0.610%* 0.0322 1286 0.599 0.643 1.000

1984.1988 0 483%* 0.0364 1987 0540 05346 0.610 1.000

1985.1988 0. 446** 0.0380 1988 0483 0446 0524 0605 1.000

1986,1958 0.524%% 0.0355

1987.1988 0.605%* 0.0325

*Estimates are BL’'s WNP-joint uniform estimates with & = 880. Estimates are from their Table 9. standard
errors from their Table 10.
* Indicates significant at 95% level, ** mdicates sigmificant at 99% level based on a two tailed test.
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