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I also have a questions about nonlinear GMM - which is more or less nonlinear IV technique 

I suppose. 

 

I am running a panel non-linear regression  (non-linear in the parameters) and I have L 

parameters and K exogenous variables with L>K. 

 

In particular my model looks kind of like this:  Y =   b1*X^b2 + e, and so I am trying to 

estimate the extra b2 that don't usually appear in a regression. 

From what I am reading, to run nonlinear GMM I can use the K exogenous variables to 

construct the orthogonality conditions but what should I use for the extra, b2 coefficients? 

Just some more possible IVs (like lags) of the exogenous variables? 

I agree that by adding more IVs you will get a more efficient estimation, but isn't it only the 

case when you believe the IVs are truly uncorrelated with the error term? 

So by adding more "instruments" you are more or less imposing more and more restrictive 

assumptions about the model (which might not actually be true). 

 

I am asking because I have not found sources comparing nonlinear GMM/IV to nonlinear 

least squares.  If there is no homoscadesticity/serial correlation what is more efficient/give 

tighter estimates? 
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I’m trying to minimize a nonlinear program with the 

least square under nonlinear constraints. It’s first 

introduced by Ané & Geman (2000). It consisted on 

the minimization of the sum of squared difference 

between the moment generating function and the 

theoretical moment generating function  

 

(The method was suggested by Quandt and Ramsey in the 1970s.) 
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Method of Moment Generating Functions

For the normal distribution, the MGF is

M(t| , )=E[exp(tx)]=exp[t   +  ]

1
Moment Equations:  exp( ) exp[t   +  ], j 1,2.

Choose  two values of t 

n

j i j ji

t

t x t
n

   

 


 

1 1 2 2 1 1 2 2

1 1 2 2

and solve the two moment equations for  and .

Mixture of Normals Problem:
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Use  the method of moment generating functions with 5 values of t.
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Finding the solutions to the moment equations: Least squares

1
M̂(t ) exp( ),  and likewise for t ,...

Minimize( , , , , )

M̂(t ) exp[t   +  ] (1 )exp[t   +  ]
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native estimator: Maximum Likelihood
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The Method of Moments 
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Estimating Parameters of Distributions Using Moment Equations

Population Moment

      E[x ] f ( , ,..., )

Sample Moment

m x .    m  may also be h (x ), need not be powers

Law of Large


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 Numbers

      plim m f ( , ,..., )

'Moment Equation' (k = 1,...,K)

      m x f ( , ,..., )

Method of Moments applied by inverting the moment equations.

ˆ      g (m ,...,m ), k = 1,...,K
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Estimating a Parameter 

 Mean of Poisson 

 p(y)=exp(-λ) λy / y! 

 E[y]= λ.   

plim (1/n)Σiyi = λ.   

This is the estimator 

 Mean of Exponential 

 p(y) = α exp(- α y) 

 E[y] = 1/ α.  

plim (1/n)Σiyi = 1/ α 
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Mean and Variance of a  

Normal Distribution 
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E[y] ,    E[y ]

Moment Equations

y ,  y

Method of Moments Estimators
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Gamma Distribution 
 







   
  

  






     

P P 1
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exp( y)y
p(y)

(P)

P
E[y]

P(P 1) P(P 1)(P 2)
E[y ]     E[y ]  and so on

E[1/ y]
P 1

E[logy] (P) log , (P)=dln (P)/dP

(Each pair gives a different answer.  Is there a 'best' pair?  Yes,

the ones that are 'sufficient' statistics.  E[y] and E[logy].  For a

different course....)
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The Linear Regression Model 
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lution :  Linear system of K equations in K unknowns.   Least Squares
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Instrumental Variables 


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E[ z ] 0 for instrumental variables z  ... z .

Moment Equations
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An extension:  What is the solution if there are M > K IVs?

Z'X Z'y

i2 2 iK K iK

-1

IV

x ... x )z 0

Solution :  Also a linear system of K equations in K unknowns.

                b  = ( )
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Maximum Likelihood 
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Log likelihood function, logL = logf(y | x , ,..., )

Population Expectations

logL
E 0, k = 1,...,K

Sample Moments

logf(y | x , ,..., )1
0
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Behavioral Application 
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Life Cycle Consumption (text, pages 488-489)

c1
E (1 r) 1 0

1 c

discount rate

c consumption

information at time t

Let =1/(1+ ), R c / c , =-

E [ (1 r)R 1| ] 0
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t is in the information set?  Each piece of 'information'

provides a moment equation for estimation of the two parameters.

c1
(1 r) 1 w 0, k=1,...,K
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Identification 

 Can the parameters be estimated? 

 Not a sample ‘property’ 

 Assume an infinite sample 

 Is there sufficient information in a sample to reveal 

consistent estimators of the parameters 

 Can the ‘moment equations’ be solved for the 

population parameters? 
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Identification 

 Exactly Identified Case:  K population moment equations 

in K unknown parameters. 

 Our familiar cases, OLS, IV, ML, the MOM estimators 

 Is the counting rule sufficient? 

 What else is needed? 

 Overidentified Case  

 Instrumental Variables 

 Underidentified Case 

 Multicollinearity 

 Variance parameter in a probit model 

 Shape parameter in a loglinear model 
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Overidentification 
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E[ z ] 0 for instrumental variables z  ... z  M > K.
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Solution :  A linear system of M equations in K unknowns. 
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Overidentification 
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Two Equation Covariance Structures Model

Country 1:  

Country 2:  

Two Population Moment Conditions:

E[(1/T) '( )]

E[(1/T) '( )]

(1)  How do we combine the two sets of eq

y X

y X

X y X 0

X y X 0

 
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
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uations?

(2)  Given two OLS estimates,  and , how do we

      reconcile them?

Note: There are even more. E[(1/T) '( )] . 

b b

X y X 0
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Underidentification – Model/Data 
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Consider the Mover - Stayer Model

Binary choice for whether an individual 'moves' or 'stays'

d 1( u 0)

Outcome equation for the individual, conditional on the state:

y | (d 0)  =  

y | (d 1)  


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

x
i 1 i1
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=   

( , ) ~ N[(0,0),( , , )]

An individual either moves or stays, but not both (or neither).

The parameter  cannot be estimated with the observed data

regardless of the sample size.  



It is unidentified.
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Underidentification - Normalization 
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When a parameter is unidentified, the log likelihood is invariant

to changes in it.  Consider the logit binary choice model

exp( x) exp( x)
Prob[y=0]=       Prob[y=1]=

exp( x) exp( x) exp( x) exp( x)
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0

obabilities sum to 1, are monotonic, etc.  But, consider, for any 0,

exp[( )x] exp( x) [exp( x)]
Prob[y=0]=

exp[( )x] exp[( )x] exp( x)[exp( x) exp( x)]

exp[( )x]
Prob[y=1]=

exp[( )x] exp

 

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

 

1

1 0 1

0

exp( x) [exp( x)]

[( )x] exp( x)[exp( x) exp( x)]

exp( x) always cancels out.

The parameters are unidentified.  A normalization such as 0 is needed.
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Underidentification: Moments 

Nonlinear LS vs. MLE 

1

y  ~ Gamma(P, ), exp( )

exp( )
(y )

( )

[y | ]

We consider nonlinear least squares and maximum

likelihood estimation of the parameters.  We use the

German health care data, where
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  =  income

x  =  1,age,educ,female,hhkids,married
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Nonlinear Least Squares 
--> NAMELIST ; x = one,age,educ,female,hhkids,married $ 

--> Calc     ; k=col(x) $ 

--> NLSQ     ; Lhs = hhninc ; Fcn = p / exp(b1'x) 

             ; labels = k_b,p ; start = k_0,1 ; maxit = 20$ 

Moment matrix has become nonpositive definite. 

Switching to BFGS algorithm 

Normal exit:  16 iterations. Status=0. F=    381.1028 

----------------------------------------------------------- 

User Defined Optimization......................... 

Nonlinear    least squares regression ............ 

LHS=HHNINC   Mean                 =         .35208 

             Standard deviation   =         .17691 

             Number of observs.   =          27326 

Model size   Parameters           =              7 

             Degrees of freedom   =          27319 

Residuals    Sum of squares       =      762.20551 

             Standard error of e  =         .16701 

--------+-------------------------------------------------- 

Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z] 

--------+-------------------------------------------------- 

      B1|    1.39905        14319.39         .000   .9999 <====== 

      B2|     .00029          .00029         .986   .3242 

      B3|    -.05527***       .00105      -52.809   .0000 

      B4|    -.01843***       .00580       -3.180   .0015 

      B5|     .05445***       .00665        8.184   .0000 

      B6|    -.26424***       .00823      -32.109   .0000 

       P|     .63239        9055.493         .000   .9999 <======= 

--------+-------------------------------------------------- 

Nonlinear least squares did not work. That is the implication of the 

infinite standard errors for B1 (the constant) and P. 
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Maximum Likelihood 

---------------------------------------------------------------------- 

Gamma (Loglinear) Regression Model 

Dependent variable               HHNINC 

Log likelihood function     14293.00214 

Restricted log likelihood    1195.06953 

Chi squared [   6 d.f.]     26195.86522 

Significance level               .00000 

McFadden Pseudo R-squared   -10.9599753 (4 observations with income = 0 

Estimation based on N =  27322, K =   7  were deleted so logL was 

computable.) 

--------+------------------------------------------------------------- 

Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X 

--------+------------------------------------------------------------- 

        |Parameters in conditional mean function 

Constant|    3.40841***       .02154      158.213   .0000 

     AGE|     .00205***       .00028        7.413   .0000      43.5272 

    EDUC|    -.05572***       .00120      -46.496   .0000      11.3202 

  FEMALE|    -.00542          .00545        -.995   .3198       .47881 

  HHKIDS|     .06512***       .00618       10.542   .0000       .40272 

 MARRIED|    -.26341***       .00692      -38.041   .0000       .75869 

        |Scale parameter for gamma model 

 P_scale|    5.12486***       .04250      120.594   .0000 

--------+------------------------------------------------------------- 

 

MLE apparently worked fine.  Why did one method (nls) fail and 

another consistent estimator work without difficulty? 
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Moment Equations: NLS 
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 the constant term is

2
0.  This doesn't depend on P, since we can divide

exp( )

both sides of  the equation by P.  This means that we cannot find

solutions for both  and P.  It is easy to see
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 why NLS cannot distinguish

P from . E[y|x]  =  exp((logP- ) ...).  There are an infinite number

of pairs of (P, ) that produce the same constant term in the model.
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Moment Equations MLE 
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The log likelihood function and likelihood equations are 

logL= log log ( ) ( 1) log
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, the expected values of the derivatives of the log likelihood equal

zero.  So, a look at the first equation reveals that the moment equation in

use for estimating P is E[logy | ] ( ) log  and anothei i iP   x r K moment

equations, E y 0 are also in use. So, the MLE uses K+1 

functionally independent moment equations for K+1 parameters, while NLS
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GMM Agenda 

 The Method of Moments.  Solving the moment equations 

 Exactly identified cases 

 Overidentified cases 

Consistency.  How do we know the method of moments is  
consistent? 

Asymptotic covariance matrix. 

Consistent vs. Efficient estimation 

 A weighting matrix 

 The minimum distance estimator 

 What is the efficient weighting matrix? 

 Estimating the weighting matrix. 

The Generalized method of moments estimator - how it is computed. 

Computing the appropriate asymptotic covariance matrix  
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The Method of Moments 

Moment Equation:  Defines a sample statistic that 

mimics a population expectation: 

 

    The population expectation – orthogonality 

condition: 

 

 E[ mi () ] = 0.  Subscript i indicates it depends 

on data vector indexed by 'i' (or 't' for a time 

series setting) 
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The Method of Moments - Example 
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Gamma Distribution Parameters

exp( y )y
p(y )

(P)

Population Moment Conditions

P
E[y ] ,    E[logy ] (P) log

Moment Equations:

E[m ( ,P)] = E[{(1/n) y } P / ] 0

E[m ( ,P)] = E[{(1/n) logy } (   (P) log )] 0
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Application 

2 2

1 1 2 2

2 2

1 2

1

2

Solving the moment equations

Use least squares:

Minimize  {m E[m ]} {m E[m ]}

 (m (P / )) (m ( (P) log ))

m 31.278

m 3.221387

  

       
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
Plot of Psi(P) Function
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Method of Moments Solution 

create  ; y1=y       ;  y2=log(y)$ 

calc    ; m1=xbr(y1) ;  ms=xbr(y2)$ 

minimize; start = 2.0, .06 ; labels = p,l 

        ; fcn   =   (l*m1-p)^2      

                  + (ms - psi(p)+log(l)) ^2  $ 

+---------------------------------------------+ 

| User Defined Optimization                   | 

| Dependent variable             Function     | 

| Number of observations                1     | 

| Iterations completed                  6     | 

| Log likelihood function        .5062979E-13 | 

+---------------------------------------------+ 

+---------+--------------+  

|Variable | Coefficient  |   

+---------+--------------+  

 P             2.41060361     

 L              .07707026     
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Nonlinear Instrumental Variables 

There are K parameters,  

 yi  =  f(xi,)  +  i.   

There exists a set of K instrumental variables, zi such that  
E[zi i]  =  0. 

The sample counterpart is the moment equation 

 (1/n)i zi i  =  (1/n)i  zi [yi - f(xi,)]   

                       =  (1/n)i mi ()  =    ()  =  0. 

The method of moments estimator is the solution to the 
moment equation(s).  

(How the solution is obtained is not always obvious, and 
varies from problem to problem.)     

m
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The MOM Solution 

There are K equations in K unknowns in ( )=

     If there is a solution, there is an exact solution

    At the solution, ( )= and [ ( )]'[ ( )] = 0

Since  [ ( )]'[ ( )]  0, the solution can be fou

m 0

m 0,  m m

m m



  

  nd

by solving the programming problem

     Minimize wrt   :   [ ( )]'[ ( )] 

For this problem,

      [ ( )]'[ ( )] = [(1/n) ]  [(1/n) ]

The solution is defined by

[ ( )]'[ ( )] [(1/n) ] 
      = 



  



m m

m m

m m

  

 

 

ε'Z Z'ε

ε'Z  [(1/n) ]



Z'ε
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MOM Solution 

 
 

 



 





i
i

i i

[(1/n) ]  [(1/n) ]
2 (1/ n)  [(1/n) ]

f( , )
 = n K matrix with row i equal to 

For the classical linear regression model,

f( , ) '  = ,  = , and the FOC are

             -2[(1

x
G g

x x Z X G X





 

ε'Z Z'ε
G'Z Z'ε

/n)( )] [(1/n) '

ˆ

X'X X

X'X X'y

ε

-1

] = 0

which has unique solution =( )
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Variance of the Method  

of Moments Estimator 



 
 
 



MOM

β

m β m β Ω Ω

Ω m β m β '

β G Ω G'

n

ii 1

i i

-1 -1

The MOM estimator solves m( )=

1 1
( )= ( ) so the variance is  for some 

n n

Generally,  =  E[ ( ) ( ) ]

The asymptotic covariance matrix of the estimator is

1
Asy.Var[ ]=( ) ( )  w

n

0





m β
G=

β'

( )
here 
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Example 1: Gamma Distribution 

 



 





  

    

 
  

 

 
  

  


2

n1 P
1 i 1 in

n1
2 i 1 in

i i i

i i i

1 P
N

i 1 1

m (y )

m (logy (P) log )

Var(y ) Cov(y ,logy )1 1

Cov(y ,logy ) Var(logy )n n

1

n '(P)
G



1

1ˆ log log
log log

n i

i ii

i

y y
y y y y

n y y

 
       


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Example 2: Nonlinear IV Least Squares 



  

  

 

 

   

 



i

i i

i i

x z

m z

m z z '

m z z ' Z Z

G z x

i i i

2

i

i i i

2

i

n2 2 2 2

i 1

0

i i

y f( , ) ,  = the set of K instrumental variables

Var[ ]

Var[ ]

With independent observations, observations are uncorrelated

Var[ ( )]=(1/n ) ( / n ) '

(1/ n) '





   






 

   



 x

x
x x

G Z X

G V G Z X Z Z X Z

Z

n 0

ii 1

0 i
i i

0

1 1 0 1 2 2 0 1

2

  where   is the vector of 'pseudo-regressors,'

f( , )
.  In the linear model, this is just .

(1/ n) ' .

( ) ( )' [ (1/ n) ' ] [( / n ) ' ][ (1/ n) ' ]

                   = [





 X Z Z X Z0 1 0 1' ] [ ' ][ ' ]
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Variance of the Moments 



  





i

n

i i i ii=1

n

i ii=1

How to estimate  = (1/n)  = Var[ ( )]

Var[ ( )]=(1/n)Var[ ( )] = (1/n)

Estimate Var[ ( )] with Est.Var[ ( )]  = (1/n) ( ) ( )'

Then,

ˆ ˆ ˆ(1/ n) (1/ n) ( ) ( )'

For the linear regression 

V m

m m

m m m m

V m m



  

   

 

 

     



  

 





V x x ' x x '

G X'X

X'X x x ' X'X

X'X x x ' X'X

i i i

n n 2

i i i i i i ii=1 i=1

n-1 2 -1

MOM i i ii=1

n-1 2 -1

i i ii=1

model,

, 

ˆ (1/ n) (1/ n) e e (1/ n) (1/ n) e

(1/ n)

Est.Var[ ] [(1/ n) ] [(1/ n) (1/ n) e ][(1/ n) ]

                     = [ ] [ e ][ ]    

m x

b

   (familiar?)
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Properties of the MOM Estimator 

 Consistent? 

 The LLN implies that the moments are consistent estimators of 

their population counterparts (zero) 

 Use the Slutsky theorem to assert consistency of the functions of 

the moments 

 Asymptotically normal?  The moments are sample 

means.  Invoke a central limit theorem. 

 Efficient?  Not necessarily 

 Sometimes yes. (Gamma example) 

 Perhaps not. Depends on the model and the available 

information (and how much of it is used). 
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Generalizing the Method  

of Moments Estimator 

 More moments than parameters – 

the overidentified case 

 Example:  Instrumental variable 

case, M > K instruments 
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Two Stage Least Squares 

How to use an “excess” of instrumental variables 

(1)  X is K variables.  Some (at least one) of the K 

      variables in X are correlated with ε. 

(2)  Z is M > K variables.  Some of the variables in 

      Z are also in X, some are not.  None of the 

      variables in Z are correlated with ε. 

(3)  Which K variables to use to compute Z’X and 

      Z’y? 
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Choosing the Instruments 

 Choose K randomly? 

 Choose the included Xs and the remainder randomly? 

 Use all of them?  How? 

 A theorem: (Brundy and Jorgenson, ca. 1972) There is a 

most efficient way to construct the IV estimator from this 

subset: 

 (1)  For each column (variable) in X, compute the predictions of 

that variable using all the columns of Z. 

 (2)  Linearly regress y on these K predictions. 

 This is two stage least squares 
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2SLS Algebra 

1

1

ˆ

ˆ ˆ ˆ( )

But,  = ( )  and ( ) is idempotent.

ˆ ˆ ( )( ) ( )  so

ˆ ˆ( )  = a real IV estimator by the definition.

ˆNote, plim( /n) = 











-1

2SLS

-1

Z Z

Z Z Z

2SLS

X Z(Z'Z) Z'X

b X'X X'y

Z(Z'Z) Z'X I -M X I -M

X'X = X' I -M I -M X = X' I -M X

b X'X X'y

X' 0

-1

ˆ since columns of  are linear combinations

of the columns of , all of which are uncorrelated with 

( ) ] ( )

 

2SLS Z Z

X

Z

b X' I -M X X' I -M y




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Method of Moments Estimation 

            m β 0

 

            m β 0. 

Same Moment Equation

( )=

Now, M moment equations, K parameters.  There is no 

unique solution.  There is also no exact solution to 

( )=

We get as close as we can.

How to cho

   

β m β 'm β

β β 'Z Z' β β 'ZZ' β2

ose the estimator?  Least squares is an obvious choice.

          Minimize wrt  : ( ) ( )

E.g.,    Minimize wrt  : [(1/n) ( ) ][(1/n) ( )]=(1/n ) ( ) ( )
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FOC for MOM 

 

   2 2

First order conditions

(1)  General

      ( ) ( )/ 2 ( ) ( ) = 0

(2)   The Instrumental Variables Problem

(1/n ) ( ) ( )/ (2/n )( ' )[ ( )] 

                                 = 

Or,     

m β 'm β β = G β 'm β

β 'ZZ' β β = - X Z Z' y - Xβ

0

  



        ( ' )[ ( )]    =  

                 (K M) (M n)(n 1) = 

At the solution, ( ' )[ ( )]    =  

But, [ ( )]   as it was before.

X Z Z' y - Xβ 0

0

X Z Z' y - Xβ 0

Z' y - Xβ 0
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Computing the Estimator 

 Programming Program 

 No all purpose solution 

 Nonlinear optimization problem – 

solution varies from setting to setting. 
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Asymptotic Covariance Matrix 





-1

m β 0

G β 'm β 0 G β '

β G β ' V  G β V = m-1

General Result for Method of Moments when M  K

   Moment Equations:E[ ( )]= 

   Solution - FOC: ( ) ( )= , ( )  is K M

   Asymptotic Covariance Matrix

ˆ   Asy.Var[ ] = [ ( ) ( )] ,  Asy.Var[ β

G β G β

β G β V G β '  

-1

-1 -1

( )]

Special Case - Exactly Identified:  M = K and 

( ) is nonsingular.  Then [ ( )]  exists and

ˆ   Asy.Var[ ] = [ ( )]  [ ( ) ]
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More Efficient Estimation 

β m β 'm β

β

Minimum Distance Est

We have used least squares,

Minimize wrt  : ( ) ( )

to find the estimator of .  Is this the most efficient

way to proceed?

Generally not:  We consider a more general approach

      

MD

imation

A  

β β :

                  q  =  m β ' A m β

A

Let  be any positive definite matrix:

ˆLet   = the solution to Minimize wrt 

( ) ( )

This is a minimum distance (in the metric of ) estimator.
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      Minimum Distance Estimation 

MD

A  

β β :

                  q  =  m β ' A m β

m β

Let  be any positive definite matrix:

ˆLet   = the solution to Minimize wrt 

( ) ( )

where E[ ( )] = 0 (the usual moment conditions).

This is a minimum distance (in th

MD

MD

A

β

β

A

e metric of ) estimator.

ˆ  is consistent

ˆ  is asymptotically normally distributed.

Same arguments as for the GMM estimator.  Efficiency of

the estimator depends on the choice of .
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MDE Estimation: Application 

  i iy X β ε ε X

b β

i i i

i

N units, T observations per unit, T > K

,  E[ | ] 0

Consider the following estimation strategy:

(1) OLS country by country,  produces N estimators of 

(2) How to combine the estimators?

We hav

 
 


  
 
 

 

2

N

b β

b β
0

...

b β

β?

1

e 'moment' equation: E

How can I combine the N estimators of 
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Least Squares 





    
   

 
   
   
   

    

 

 
 

       
 
 

 







2 2

N N

2

N

b β b β

b β b β
0 m β

... ...

b β b β

m β m β b β ' b β

b β

b βm β m β
I I I b β 0

...β

b β

b β

1 1

N

i ii 1

1

N

ii 1

i

E .  ( )=

To minimize ( )' ( ) = ( ) ( )

( )' ( )
2[ , ,..., ] 2 ( ) .

The solution is  ( )
 

  0   β = b b
N N

ii 1 i 1

1
 or  

N
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Generalized Least Squares 

 

 
 
 
 
 
 





A

X X

X X
A

2 1 1

1 1 1

2

2 2 2

The preceding used OLS - simple unweighted least squares.

I 0 ... 0

0 I ... 0
Also, it uses  = .  Suppose we use weighted, GLS.

... ... ... ...

0 0 ... I

[ ( ) ] 0 ... 0

0 [ (
Then,           = 

 

 

 

 


 

 
 
 
 
 

  

 

  





X X

m β Am β

X X b β

β = X X

1 1

2 1 1

N N N

N 2 1 1

i i i ii=1

1
N 2 1 1 2

i i i ii=1

) ] ... 0

... ... ... ...

0 0 ... [ ( ) ]

The first order condition for minimizing ( )' ( ) is

{[ ( ) ] }( ) = 0

                or  {[ ( ) ] } {[ (  



X X b

Wb

N 1 1

i i ii=1

N

i ii=1

) ] }

                       =   =  a matrix weighted average.
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     Minimum Distance Estimation 

The minimum distance estimator minimizes

( ) ( )

The estimator is

(1)  Consistent

(2)  Asymptotically normally distributed

(3)  Has asymptotic covariance matrix

ˆAsy.Var[ ] [ ( )MD

               q  =  m β ' A m β

β G β 1 1( )] [ ( ) ( )][ ( ) ( )] 'AG β G β 'AVAG β G β 'AG β
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Optimal Weighting Matrix 

A

A

A

                A

 is the Weighting Matrix of the minimum distance estimator.

Are some 's better than others?  (Yes)

Is there a best choice for ?  Yes

The variance of the MDE is minimized when 

 = {Asy.

generalized method of moments estimator

m β

A V

-1

-1

Var[ ( )]}

This defines the .

                =  
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GMM Estimation 







 



 
 

 

   
     
   

n

i 1 i i

n

i 1 i i i i

n 1 n

i 1 i i i 1 i i

1
( )= (y )

n

1 1
Asy.Var[ ( )] estimated with = (y ) (y )

n n

The GMM estimator of  then minimizes

1 1
q (y ) (y ) .

n n

ˆEst.Asy.Var[

i

i i

i i

GM

m β m , x ,β

m β W m , x ,β m , x ,β

β

m , x ,β 'W m , x ,β

β  




1 ( )
] [ ] ,  -1

M

m β
G'W G G =

β
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GMM Estimation  





 

 

 
   
 

n

i 1 i i

n 1 n

i 1 i i i 1 i i

Exactly identified GMM problems

1
When ( ) = (y )  is K equations in

n

K unknown parameters (the exactly identified case),

the weighting matrix in 

1 1
q (y ) (y

n n

i

i

m β m , x ,β 0

m , x ,β 'W m , x



 
 
 



1

)

is irrelevant to the solution, since we can set exactly

( )  so q = 0.  And, the asymptotic covariance matrix

(estimator) is the product of 3 square matrices and becomes

[ ]

i

-1 -1 -1

,β

m β 0

G'W G G WG'
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A Practical Problem 





 

 
 

 

   
     
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n

i 1 i i i i

n 1 n

i 1 i i i 1 i i

Asy.Var[ ( )] estimated with 

1 1
= (y ) (y )

n n

The GMM estimator of  then minimizes

1 1
q (y ) (y ) .

n n

In order to compute , you need to know

i i

i i

m β

W m , x ,β m , x ,β

β

m , x ,β 'W m , x ,β

W  , and you are

trying to estimate .  How to proceed?

Typically two steps:

(1)  Use   =    Simple least squares, to get a preliminary

     estimator of .  This is consistent, though not efficient.

(2

β

β

A I. 

β

)  Compute the weighting matrix, then use GMM.
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Inference 

 Testing hypotheses about the parameters: 

   Wald test 

   A counterpart to the likelihood ratio test 

 Testing the overidentifying restrictions 
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Testing Hypotheses 

restricted unrestrict

(1) Wald Tests in the usual fashion.

(2) A counterpart to likelihood ratio tests

     GMM criterion is q  =  ( ) ( )

    when restrictions are imposed on 

q increases.

    q q

m β 'W m β

β

     

 d

ed chi squared[J]

(The weighting matrix must be the same for both.)

(3) Testing the overidentifying restrictions: q would

     be 0 if exactly identified.  q - 0 > 0 results from

     the overidentifying restrictions. 
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Application: Innovation 
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Application: Innovation 
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Application: Multivariate Probit Model 

5 4 3 2 1

5 1 2 3 4 5

5 - variate Probit Model

y *  ,   y 1[y * 0]

log [{(2 1) , 1,...,5}, ]

Requires 5 dimensional integration of the joint no

    

    

    

       
i i i i i

it it it it it

i it it i i i i iL y s t ds ds ds ds ds
x x x x x

x

    





1 1 1

2 2 2

3 3 31

4 4

rmal density.  Very hard!

But,  E[y | ] ( ).

Orthogonality Conditions:  E[{y  - ( )}

{y  - ( )}

{y  - ( )}
1

Moment Equations:  {y  - ( )}

{y  - ( )}


 

 











it it it

it it it

i i i

i i i
n

i i ii

i i

n

x x

x x 0

x x

x x

x x

x











 4

5 5 5

   40 equations in 8 parameters.

{y  - ( )}
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Pooled Probit – Ignoring Correlation 
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Random Effects: Σ=(1- ρ)I+ρii’ 
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Unrestricted Correlation Matrix 


