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Modeling an Economic Time Series 

 Observed y0, y1, …, yt,… 

 What is the “sample?”  Realization of the 

entire sequence? 

 Random sampling?  Not really possible. 

We are using a different type of statistics. 

 The “observation window” 
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Estimators 

 Functions of sums of correlated observations 

 Law of large numbers? 

 Non-independent observations 

 What does “increasing sample size” mean? 

 Asymptotic properties? (There are no finite 

sample properties.) 
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Interpreting a Time Series 

 Time domain:  A “process”   

 y(t)  =  ax(t)  +  by(t-1) + … 

 Regression like approach/interpretation 

 Frequency domain:  A sum of terms 

 y(t) = 

 Contribution of different frequencies to the observed 

series.  

 (“High frequency data and financial econometrics 

– “frequency” is used slightly differently here.) 

( )    ( )j jj
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For example,… 
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In parts… 
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Studying the Frequency Domain 

 Cannot identify the number of terms 

 Cannot identify frequencies from the time series 

 Deconstructing the variance, autocovariances 

and autocorrelations 

 Contributions at different frequencies 

 Apparent large weights at different frequencies 

 Using Fourier transforms of the data 

 Does this provide “new” information about the series? 
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Stationary Time Series 

 yt = b1yt-1 + b2yt-2 + … + bPyt-P + et 

 Autocovariance: γk  =  Cov[yt,yt-k] 

 Autocorrelation: k = γk / γ0  

 Stationary series: γk depends only on k, not on t 

 Weak stationarity:  E[yt] is not a function of t, E[yt * yt-s] is not a function 
of t or s, only of |t-s| 

 Strong stationarity: The joint distribution of [yt,yt-1,…,yt-s] for any window 
of length s periods, is not a function of t or s. 

 A condition for weak stationarity:  The smallest root of the 
characteristic polynomial: 1 - b1z

1 - b2z
2 - … - bPzP = 0, is greater 

than one. 

 The unit circle 

 Complex roots 

 Example: yt = yt-1 + ee,  1 - z = 0 has root z = 1/ , | z | > 1 => |  | < 1. 
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Stationary vs. Nonstationary Series 



Part 22: Time Series 22-11/37 

The Lag Operator 

 Lxt  =  xt-1 

 L2 xt  =  xt-2 

 LPxt + LQxt  =  xt-P + xt-Q
  

 Polynomials in L:  yt  =  B(L)yt + et 

 A(L) yt = et 

 Invertibility:  yt = [A(L)]-1 et 
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Inverting a Stationary Series 

 yt= yt-1 + et  (1- L)yt = et 

 yt = [1- L]-1 et = et + et-1 + 2et-2 + … 

 

 

 

 Stationary series can be inverted 

 Autoregressive vs. moving average form of series 
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Autocorrelation 

 How does it arise? 

 What does it mean? 

 Modeling approaches 
 Classical – direct: corrective 

 Estimation that accounts for autocorrelation 

 Inference in the presence of autocorrelation 

 Contemporary – structural 
 Model the source 

 Incorporate the time series aspect in the model 
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Regression with Autocorrelation 

 yt = xt’b + et, et = et-1 + ut 

  (1- L)et = ut  et = (1- L)-1ut 

 E[et]  = E[ (1- L)-1ut] = (1- L)-1E[ut]  =  0 

 Var[et] = (1- L)-2Var[ut] = 1+ 2u
2 + … = u

2/(1- 2) 

 Cov[et,et-1] = Cov[et-1 + ut, et-1] =  

                     =Cov[et-1,et-1]+Cov[ut,et-1] =  u
2/(1- 2) 
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Autocorrelation in Regression 

 Yt  =  b’xt  +  εt 

 Cov(εt, εt-1) ≠ 0 

 Ex. RealConst =  a  +  bRealIncome + εt  U.S. Data, quarterly, 1950-2000  
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Generalized Least Squares 

Efficient estimation of  and, by implication, the 
inefficiency of least squares b. 

 

                    = (X*’X*)-1X*’y* 

                    = (X’P’PX)-1 X’P’Py 

                    = (X’Ω-1X)-1 X’Ω-1y 

 

     ≠ b.      is efficient, so by construction, b is not.  

β̂

β̂ β̂
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Autocorrelation 

     t  =  t-1  +  ut    

    (‘First order autocorrelation.’  How does this come about?)   

 Assume -1 <  < 1.  Why? 

 ut  =  ‘nonautocorrelated white noise’ 

 t   = t-1 + ut  (the autoregressive form) 

        = (t-2  +  ut-1)  +  ut 

           = ... (continue to substitute) 

  =  ut + ut-1 + 2ut-2 + 3ut-3 + ... 

  = (the moving average form)  
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Autocorrelation 
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Autocovariances 
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Autocorrelation Matrix 
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Generalized Least Squares 
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The Autoregressive Transformation 
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Unknown  

 The problem (of course),  is unknown.  For now, we 
will consider two methods of estimation: 

 Two step, or feasible estimation.  Estimate  first, then do 
GLS. Emphasize - same logic as White and Newey-West.  
We don’t need to estimate .  We  need to find a matrix that 
behaves the same as (1/n)X-1X. 

 Properties of the feasible GLS estimator 

 Maximum likelihood estimation of , 2, and  all at 
the same time. 

 Joint estimation of all parameters.  Fairly rare.  Some 
generalities… 

 We will examine two applications:  Harvey’s model of 
heteroscedasticity and Beach-MacKinnon on the first order 
autocorrelation model 
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Sorry to bother you again, but an important issue has come up.  I am using 

LIMDEP to produce results for my testimony in a utility rate case.  I have a 

time series sample of 40 years, and am doing simple OLS analysis using a 

primary independent variable and a dummy.  There is serial correlation 

present.  The issue is what is the BEST available AR1 procedure in LIMDEP 

for a sample of this type??  I have tried Cochrane-Orcott, Prais-Winsten, and 

the MLE procedure recommended by Beach-MacKinnon, with slight but 

meaningful differences. 

 

By modern constructions, your best choice if you are comfortable 

with AR1 is Prais-Winsten.  No one has ever shown that iterating it is better 

or worse than not.  Cochrance-Orcutt is inferior because it discards 

information (the first observation).  Beach and MacKinnon would be best, but 

it assumes normality, and in contemporary  treatments, fewer assumptions is 

better.  If you are not comfortable with AR1, use OLS 

with Newey-West and 3 or 4 lags. 
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OLS vs. GLS 

 OLS 

 Unbiased? 

 Consistent:  (Except in the presence of a lagged 

dependent variable) 

 Inefficient 

 GLS 

 Consistent and efficient 
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The Newey-West Estimator 

Robust to Autocorrelation 

n 2

0 i i ii 1

L n

1 l t t l t t l t l tl 1 t l 1

l

Heteroscedasticity Component - Diagonal Elements

1
e

n

Autocorrelation Component - Off Diagonal Elements

1
w e e ( )

n

l
w 1  = "Bartlett weight"

L 1

1
Est.Var[ ]=

n



    



  

 




 

S x x '

S x x x x

X
b

1 1

0 1[ ]
n n

 

   
   

   

'X X'X
S S



Part 22: Time Series 22-27/37 



Part 22: Time Series 22-28/37 



Part 22: Time Series 22-29/37 

Detecting Autocorrelation 

 Use residuals 

 Durbin-Watson d= 

 Assumes normally distributed disturbances strictly 

exogenous regressors 

 Variable addition (Godfrey)  

 yt  =  ’xt  +  εt-1 + ut 

 Use regression residuals et and test  = 0 

 Assumes consistency of b. 
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A Unit Root? 

 How to test for  = 1? 

 By construction:  εt – εt-1 = ( - 1)εt-1 + ut  

 Test for γ = ( - 1) = 0 using regression? 

 Variance goes to 0 faster than 1/T.  Need a new table; 

can’t use standard t tables. 

 Dickey – Fuller tests 

 Unit roots in economic data. 

 Nonstationary series 

 Implications for conventional analysis 
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Integrated Processes 

 Integration of order (P) when the P’th differenced 

series is stationary 

 Stationary series are I(0) 

 Trending series are often I(1). Then yt – yt-1 = yt    

is I(0).  [Most macroeconomic data series.] 

 Accelerating series might be I(2). Then                    

(yt – yt-1)- (yt – yt-1) = 2yt is I(0) [Money stock in 

hyperinflationary economies. Difficult to find 

many applications in economics] 
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Cointegration: Real DPI and Real Consumption 
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Cointegration – Divergent Series? 
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Cointegration 

 X(t) and y(t) are obviously I(1) 

 Looks like any linear combination of x(t) and y(t) will also 

be I(1) 

 Does a model y(t) = bx(t) + u(u) where u(t) is I(0) make 

any sense?  How can u(t) be I(0)? 

 In fact, there is a linear combination, [1,-] that is I(0). 

 y(t) = .1*t + noise, x(t) = .2*t + noise 

 y(t) and x(t) have a common trend 

 y(t) and x(t) are cointegrated. 
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Cointegration and I(0) Residuals 
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Reinterpreting Autocorrelation 
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