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Settings 

 Conditional and unconditional log likelihoods 
 Likelihood function to be maximized contains 

unobservables 

 Integration techniques 

 Bayesian estimation 
 Prior times likelihood is intractible 

 How to obtain posterior means, which are open form 
integrals 

 The problem in both cases is “…how to do the 
integration?” 



Part 23: Simulation Based Estimation 23-4/32 

A Conditional Log Likelihood 
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maximization?





Part 23: Simulation Based Estimation 23-5/32 

Application - Innovation 

 Sample = 1,270 German Manufacturing Firms 

 Panel, 5 years, 1984-1988 

 Response: Process or product innovation in the survey 
year? (yes or no) 

 Inputs:  
 Imports of products in the industry 

 Pressure from foreign direct investment 

 Other covariates 

 Model:  Probit with common firm effects 

 (Irene Bertschuk, doctoral thesis, Journal of 
Econometrics, 1998) 
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Likelihood Function for Random Effects 

 Joint conditional (on ui=vi) density for obs. i. 

 

 

 Unconditional likelihood for observation i 

 

 

 

 How do we do the integration to get rid of the 
heterogeneity in the conditional likelihood? 
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Obtaining the Unconditional Likelihood 

 

 The Butler and Moffitt (1982) method is used 

by most current software 

 Quadrature (Stata –GLAMM) 

 Works only for normally distributed heterogeneity 
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Hermite Quadrature 
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Adapt to integrating out a normal variable

exp( (v / ) )
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Change the variable to z = (1/( 2))v,  
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1
f(x) f(x













 

 


 



 









2

H

hh=1

, z) exp( z )dz,  = 2

This can be accurately approximated by Hermite quadrature
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Example: 8 Point Quadrature 

 Weights for 8 point Hermite Quadrature   

      0.661147012558199960,  
      0.20780232581489999, 
      0.0170779830074100010,  
      0.000199604072211400010 

 

 Nodes for 8 point Hermite Quadrature   
 Use both signs, + and - 
       0.381186990207322000,  
       1.15719371244677990 
       1.98165675669584300  
       2.93063742025714410 
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Butler and Moffitt’s Approach  

 Random Effects Log Likelihood Function 
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The Simulated Log Likelihood 
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Monte Carlo Integration 
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E.g.,   

Requires many draws,  typically 

hundreds or thousands
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Generating Random Draws 

Most common approach is the "inverse probability transform"

Let  u  =  a random draw from the standard uniform (0,1).

Let  x  =  the desired population to draw from

Assume the CDF of x is F(x).

The random

   



 

-1 draw is then x = F (u).

Example :  exponential, . f(x)= exp(- x), F(x)=1-exp(- x)

               Equate u to F(x), x = -(1/ )log(1-u).

Example:  Normal( , ). Inverse function does not exist in

          

 

     closed form. There are good polynomial approxi-

               mations to produce a draw from N[0,1] from a U(0,1).

               Then x = + v.
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Drawing Uniform Random Numbers 

Computer generated random numbers are not random; they

are Markov chains that look random.

The Original IBM SSP Random Number Generator for 32 bit computers.

SEED originates at some large odd number

     



31

31

   d3 = 2147483647.0  (2 1)

        d2 = 2147483655.0  (2 7)

        d1=16807.0             (a strange number)

SEED=Mod(d1*SEED,d3)  !  MOD(a,p)  =  a - INT(a/p) * p

X=SEED/d2 is a pseudo-random value

31

 between 0 and 1.

Problems: 

(1) Short period. Based on 32 bits, so recycles after 2 1 values

(2) Evidently not very close to random.  (Recent tests have

     discredited this RNG)

(3) Current state of t
20000

he art is the Mersenne Twister. (Default in R, Matlab, etc.) 

      Period = 2          Passes (DieHard) randomness tests
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Poisson with mean = 4.1 

Table 

Uniform Draw = .72159 

Poisson Draw = 4 
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Quasi-Monte Carlo Integration Based on Halton Sequences 

0

Coverage of the unit interval is the objective,

not randomness of the set of draws.

Halton sequences --- Markov chain

p = a prime number,      

r= the sequence of integers, decomposed as 

H(r|p)


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, ,...1 r = r  (e.g., 10,11,12,...) 
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For example, using base p=5, the integer r=37 has b0 = 

2, b1 = 2, and b2 = 1; (37=1x52 + 2x51 + 2x50).  Then   

H(37|5) = 25-1 + 25-2 + 15-3  =  0.448. 
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Halton Sequences vs. Random Draws 

Requires far fewer draws – for one dimension, about 

1/10.  Accelerates estimation by a factor of 5 to 10. 
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Panel Data Estimation  

A Random Effects Probit Model 
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Log Likelihood 
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Application: Innovation 
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Application: Innovation 
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(1.17072 / (1 + 1.17072) = 0.578) 
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Quadrature vs. Simulation 

 Computationally, comparably difficult 

 Numerically, essentially the same answer.  MSL is 

consistent in R 

 Advantages of simulation 

 Can integrate over any distribution, not just normal 

 Can integrate over multiple random variables.  Quadrature is 

largely unable to do this. 

 Models based on simulation are being extended in many 

directions. 

 Simulation based estimator allows estimation of conditional 

means  essentially the same as Bayesian posterior means 
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A Random Parameters Model 

   

     

         
     

         

1i 2i

3 4 5 6
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Prob(Innovation)= ( FDI Imports

              logSales Employment + Productivity)

~ N ,

and four fixed (nonrandom) parameters.
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ˆ ˆ                     (v ,..., v ,...) are reused for all computations of function or derivatives.
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Estimates of a Random Parameters Model 
---------------------------------------------------------------------- 

Probit   Regression Start Values for IP 

Dependent variable                   IP 

Log likelihood function     -4134.84707 

Estimation based on N =   6350, K =   6 

Information Criteria: Normalization=1/N 

              Normalized   Unnormalized 

AIC              1.30420     8281.69414 

--------+------------------------------------------------------------- 

Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X 

--------+------------------------------------------------------------- 

Constant|   -2.34719***       .21381      -10.978   .0000 

   FDIUM|    3.39290***       .39359        8.620   .0000       .04581 

    IMUM|     .90941***       .14333        6.345   .0000       .25275 

LOGSALES|     .24292***       .01937       12.538   .0000      10.5401 

      SP|    1.16687***       .14072        8.292   .0000       .07428 

    PROD|   -4.71078***       .55278       -8.522   .0000       .08962 

--------+------------------------------------------------------------- 
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RPM 
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Parameter Heterogeneity 



Part 23: Simulation Based Estimation 23-31/32 



Part 23: Simulation Based Estimation 23-32/32 

Movie Model 


