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Settings 

 Conditional and unconditional log likelihoods 
 Likelihood function to be maximized contains 

unobservables 

 Integration techniques 

 Bayesian estimation 
 Prior times likelihood is intractible 

 How to obtain posterior means, which are open form 
integrals 

 The problem in both cases is “…how to do the 
integration?” 
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A Conditional Log Likelihood 
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Integral does not exist in closed form.  How to do the

maximization?
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Application - Innovation 

 Sample = 1,270 German Manufacturing Firms 

 Panel, 5 years, 1984-1988 

 Response: Process or product innovation in the survey 
year? (yes or no) 

 Inputs:  
 Imports of products in the industry 

 Pressure from foreign direct investment 

 Other covariates 

 Model:  Probit with common firm effects 

 (Irene Bertschuk, doctoral thesis, Journal of 
Econometrics, 1998) 
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Likelihood Function for Random Effects 

 Joint conditional (on ui=vi) density for obs. i. 

 

 

 Unconditional likelihood for observation i 

 

 

 

 How do we do the integration to get rid of the 
heterogeneity in the conditional likelihood? 
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Obtaining the Unconditional Likelihood 

 

 The Butler and Moffitt (1982) method is used 

by most current software 

 Quadrature (Stata –GLAMM) 

 Works only for normally distributed heterogeneity 
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Hermite Quadrature 
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f(x, v) exp( v )dv f(x, v )W

Adapt to integrating out a normal variable

exp( (v / ) )
f(x) f(x, v) dv

2

Change the variable to z = (1/( 2))v,  

           v = ( 2)z and  , dv=( 2)dz
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, z) exp( z )dz,  = 2

This can be accurately approximated by Hermite quadrature

f(x) f(x, z)W
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Example: 8 Point Quadrature 

 Weights for 8 point Hermite Quadrature   

      0.661147012558199960,  
      0.20780232581489999, 
      0.0170779830074100010,  
      0.000199604072211400010 

 

 Nodes for 8 point Hermite Quadrature   
 Use both signs, + and - 
       0.381186990207322000,  
       1.15719371244677990 
       1.98165675669584300  
       2.93063742025714410 
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Butler and Moffitt’s Approach  

 Random Effects Log Likelihood Function 
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Butler and Moffitt: Compute this by Hermite quadrature
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The Simulated Log Likelihood 
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where v  is the normally distributed effect.  

Use the law of large numbers:

let v v a random sample of R draws from 

the standard normal po
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Monte Carlo Integration 
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irDrawing u  by 'random sampling'

 

E.g.,   

Requires many draws,  typically 

hundreds or thousands
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Generating Random Draws 

Most common approach is the "inverse probability transform"

Let  u  =  a random draw from the standard uniform (0,1).

Let  x  =  the desired population to draw from

Assume the CDF of x is F(x).

The random

   



 

-1 draw is then x = F (u).

Example :  exponential, . f(x)= exp(- x), F(x)=1-exp(- x)

               Equate u to F(x), x = -(1/ )log(1-u).

Example:  Normal( , ). Inverse function does not exist in

          

 

     closed form. There are good polynomial approxi-

               mations to produce a draw from N[0,1] from a U(0,1).

               Then x = + v.
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Drawing Uniform Random Numbers 

Computer generated random numbers are not random; they

are Markov chains that look random.

The Original IBM SSP Random Number Generator for 32 bit computers.

SEED originates at some large odd number

     



31

31

   d3 = 2147483647.0  (2 1)

        d2 = 2147483655.0  (2 7)

        d1=16807.0             (a strange number)

SEED=Mod(d1*SEED,d3)  !  MOD(a,p)  =  a - INT(a/p) * p

X=SEED/d2 is a pseudo-random value

31

 between 0 and 1.

Problems: 

(1) Short period. Based on 32 bits, so recycles after 2 1 values

(2) Evidently not very close to random.  (Recent tests have

     discredited this RNG)

(3) Current state of t
20000

he art is the Mersenne Twister. (Default in R, Matlab, etc.) 

      Period = 2          Passes (DieHard) randomness tests
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Poisson with mean = 4.1 

Table 

Uniform Draw = .72159 

Poisson Draw = 4 
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Quasi-Monte Carlo Integration Based on Halton Sequences 

0

Coverage of the unit interval is the objective,

not randomness of the set of draws.

Halton sequences --- Markov chain

p = a prime number,      

r= the sequence of integers, decomposed as 

H(r|p)
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For example, using base p=5, the integer r=37 has b0 = 

2, b1 = 2, and b2 = 1; (37=1x52 + 2x51 + 2x50).  Then   

H(37|5) = 25-1 + 25-2 + 15-3  =  0.448. 
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Halton Sequences vs. Random Draws 

Requires far fewer draws – for one dimension, about 

1/10.  Accelerates estimation by a factor of 5 to 10. 
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Panel Data Estimation  

A Random Effects Probit Model 
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Log Likelihood 
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Application: Innovation 
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Application: Innovation 
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(1.17072 / (1 + 1.17072) = 0.578) 
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Quadrature vs. Simulation 

 Computationally, comparably difficult 

 Numerically, essentially the same answer.  MSL is 

consistent in R 

 Advantages of simulation 

 Can integrate over any distribution, not just normal 

 Can integrate over multiple random variables.  Quadrature is 

largely unable to do this. 

 Models based on simulation are being extended in many 

directions. 

 Simulation based estimator allows estimation of conditional 

means  essentially the same as Bayesian posterior means 
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A Random Parameters Model 
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1i 1 11 12

2i 2 12 22

Prob(Innovation)= ( FDI Imports

              logSales Employment + Productivity)

~ N ,

and four fixed (nonrandom) parameters.
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Estimates of a Random Parameters Model 
---------------------------------------------------------------------- 

Probit   Regression Start Values for IP 

Dependent variable                   IP 

Log likelihood function     -4134.84707 

Estimation based on N =   6350, K =   6 

Information Criteria: Normalization=1/N 

              Normalized   Unnormalized 

AIC              1.30420     8281.69414 

--------+------------------------------------------------------------- 

Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X 

--------+------------------------------------------------------------- 

Constant|   -2.34719***       .21381      -10.978   .0000 

   FDIUM|    3.39290***       .39359        8.620   .0000       .04581 

    IMUM|     .90941***       .14333        6.345   .0000       .25275 

LOGSALES|     .24292***       .01937       12.538   .0000      10.5401 

      SP|    1.16687***       .14072        8.292   .0000       .07428 

    PROD|   -4.71078***       .55278       -8.522   .0000       .08962 

--------+------------------------------------------------------------- 
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RPM 
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Parameter Heterogeneity 
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Movie Model 


