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Bayesian Estimators 

 “Random Parameters” vs. Randomly 

Distributed Parameters 

 Models of Individual Heterogeneity 

 Random Effects: Consumer Brand Choice 

 Fixed Effects:  Hospital Costs 
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Bayesian Estimation 

 Specification of conditional likelihood:   
f(data | parameters) 

 Specification of priors:  g(parameters) 

 Posterior density of parameters: 

 

 

 Posterior mean = E[parameters|data] 

(data | parameters) (parameters)
(parameters|data)
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The Marginal Density for the Data is Irrelevant 

f(data | )p( ) L(data | )p( )
f( | data)

f(data) f(data)

Joint density of  and data is f(data, ) =L(data | )p( )

Marginal density of the data is 

         f(data)= f(data, )d L(data | )p( )d

Thus,  f( | data

 

   
  

   

     



 
L(data | )p( )

)
L(data | )p( )d

 L(data | )p( )d
Posterior Mean = p( | data)d

 L(data | )p( )d

Requires specification of the likeihood and the prior.
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Computing Bayesian Estimators 

 First generation: Do the integration (math) 

 

 

 

 Contemporary - Simulation:  
 (1)  Deduce the posterior 

 (2)  Draw random samples of draws from the posterior and 
compute the sample means and variances of the samples.  (Relies 
on the law of large numbers.) 

(data | ) ( )
( | data)

(data)
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Modeling Issues 

 As n , the likelihood dominates and the prior 

disappears  Bayesian and Classical MLE converge. 

(Needs the mode of the posterior to converge to the 

mean.) 

 Priors 

 Diffuse  large variances imply little prior information. 

(NONINFORMATIVE) 

 INFORMATIVE priors – finite variances that appear in the 

posterior.  “Taints” any final results. 
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A Practical Problem 
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Sampling from the joint posterior may be impossible.

E.g., linear regression.

[vs ] 1
f( , | , ) e [2 ] | ( ) |

(v 2)

exp( (1 / 2)( ) [ ( ) ] ( ))

What is this???

T

β y X X X

β b X X β b

2

o do 'simulation based estimation' here, we need joint

observations on ( , ).β
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A Solution to the Sampling Problem 
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The joint posterior, p( , |data) is intractable.  But,

For inference about , a sample from the marginal

     posterior, p( |data) would suffice.

For inference about ,  a sample from the marginal

     p
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osterior of , p( |data) would suffice.  

Can we deduce these?  For this problem, we do have conditionals:

     p( | ,data) = N[ , ( ) ]

(y )
     p( | ,data) = K   a gamma distributioi

2

β b X'X

x β
β

2

n

Can we use this information to sample from p( |data) and

p( |data)?

β
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The Gibbs Sampler 

 Target:  Sample from marginals of f(x1, x2) = joint distribution 

 Joint distribution is unknown or it is not possible to sample from the joint 
distribution. 

 Assumed: f(x1|x2) and f(x2|x1) both known and samples can be drawn from 
both. 

 Gibbs sampling:  Obtain one draw from x1,x2 by many cycles between x1|x2 
and x2|x1. 
 Start x1,0 anywhere in the right range. 

 Draw x2,0 from x2|x1,0. 

 Return to x1,1 from x1|x2,0 and so on. 

 Several thousand cycles produces the draws 

 Discard the first several thousand to avoid initial conditions.  (Burn in) 

 Average the draws to estimate the marginal means. 
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Bivariate Normal Sampling 
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Draw a random sample from bivariate normal ,
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(1) Direct approach:  where  are two
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    independent standard normal draws (easy) and = 
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(2) Gibbs sampler: v | v ~ N v , 1

                           v | v ~ N v , 1
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Gibbs Sampling for the Linear Regression Model 
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     p( | ,data) = N[ , ( ) ]

(y )
     p( | ,data) = K  

                        a gamma distribution

Iterate back and forth between these two distributions
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Application – the Probit Model 
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(a) y *      ~ N[0,1]

(b) y 1 if y *  > 0, 0 otherwise

Consider estimation of  and y *  (data augmentation)

(1) If y* were observed, this would be a linear regression

     (y  would not be useful 


i

β|

β

x β 

i

i i

i

since it is just sgn(y *).)

     We saw in the linear model before, p( y *, y )

(2) If (only)  were observed, y *  would be a draw from 

     the normal distribution with mean and variance 1.

     Bu β
i i i i

t, y  gives the sign of y * . y * | , y  is a draw from

     the truncated normal (above if y=0, below if y=1)
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Gibbs Sampling for the Probit Model 

i

i

(1) Choose an initial value for (maybe the MLE)

(2) Generate y *  by sampling N observations from

     the truncated normal with mean and variance 1,

     truncated above 0 if y 0,  from below if y





i

β 

x β 

i

-1 -1

1.

(3) Generate  by drawing a random normal vector with

     mean vector ( ) *  and variance matrix ( )

(4) Return to 2 10,000 times, retaining the last 5,000

     draws - first 5,000 are the 



β

X'X X'y X'X

'burn in.'

(5)  Estimate the posterior mean of  by averaging the

      last 5,000 draws.

(This corresponds to a uniform prior over .)

β

β
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Generating Random Draws from f(X) 

-1

The inverse probability method of sampling

random draws:

If F(x) is the CDF of random variable x, then

a random draw on x may be obtained as F (u)

where u is a draw from the standard uniform (0,1).

Exampl

  



 

   

-1

-1

i i

es:

Exponential: f(x)= exp(- x); F(x)=1-exp(- x)

                  x = -(1/ )log(1-u)

Normal:       F(x) = (x); x = (u)

Truncated Normal: x=  + [1-(1-u)* ( )] for y=1;

                           x    -1

i i=  + [u (- )] for y=0.
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? Generate raw data 

Calc    ; Ran(13579) $ 

Sample  ; 1 - 250 $ 

Create  ; x1  = rnn(0,1) ; x2 = rnn(0,1) $ 

Create  ; ys  = .2 + .5*x1 - .5*x2 + rnn(0,1) ; y = ys > 0 $ 

Namelist; x   = one,x1,x2$ 

Matrix  ; xxi = <x’x> $ 

Calc    ; Rep = 200 ; Ri = 1/(Rep-25)$ 

? Starting values and accumulate mean and variance matrices 

Matrix  ; beta=[0/0/0] ; bbar=init(3,1,0);bv=init(3,3,0)$$ 

Proc    = gibbs $  Markov Chain – Monte Carlo iterations 

Do for  ; simulate ; r =1,Rep $ 

? ------- [ Sample y* | beta ] -------------------------- 

Create  ; mui = x'beta ; f = rnu(0,1)  

        ; if(y=1)  ysg = mui + inp(1-(1-f)*phi( mui));  

            (else) ysg = mui + inp(     f *phi(-mui)) $ 

? ------- [ Sample beta | y*] --------------------------- 

Matrix  ; mb = xxi*x'ysg ; beta = rndm(mb,xxi) $ 

? ------- [ Sum posterior mean and variance. Discard burn in. ] 

Matrix  ; if[r > 25] ; bbar=bbar+beta ; bv=bv+beta*beta'$ 

Enddo   ; simulate $ 

Endproc $ 

Execute ; Proc = Gibbs $  

Matrix  ; bbar=ri*bbar ; bv=ri*bv-bbar*bbar' $ 

Probit  ; lhs = y ; rhs = x $ 

Matrix  ; Stat(bbar,bv,x) $ 
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Example: Probit MLE vs. Gibbs 

--> Matrix  ; Stat(bbar,bv); Stat(b,varb) $ 

+---------------------------------------------------+ 

|Number of observations in current sample =    1000 | 

|Number of parameters computed here       =       3 | 

|Number of degrees of freedom             =     997 | 

+---------------------------------------------------+ 

+---------+--------------+----------------+--------+---------+ 

|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | 

+---------+--------------+----------------+--------+---------+ 

 BBAR_1         .21483281      .05076663     4.232   .0000 

 BBAR_2         .40815611      .04779292     8.540   .0000 

 BBAR_3        -.49692480      .04508507   -11.022   .0000 

+---------+--------------+----------------+--------+---------+ 

|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | 

+---------+--------------+----------------+--------+---------+ 

 B_1            .22696546      .04276520     5.307   .0000 

 B_2            .40038880      .04671773     8.570   .0000 

 B_3           -.50012787      .04705345   -10.629   .0000 
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A Random Effects Approach 

 Allenby and Rossi, “Marketing Models of 

Consumer Heterogeneity” 

 Discrete Choice Model – Brand Choice 

 “Hierarchical Bayes” 

 Multinomial Probit 

 Panel Data: Purchases of 4 brands of Ketchup 
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Structure 
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Bayesian Priors 
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Bayesian Estimator 

 Joint Posterior= 

 Integral does not exist in closed form. 

 Estimate by random samples from the joint 

posterior. 

 Full joint posterior is not known, so not possible 

to sample from the joint posterior. 

1 1[ ,..., , , , ,..., | ]N JE V data    
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Gibbs Cycles for the MNP Model 

 Samples from the marginal posteriors 

Marginal posterior for the individual parameters

(Known and can be sampled)

| , , ,

Marginal posterior for the common parameters  

(Each known and each can be sampled)

   | , ,

   | , ,

i data

data
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Results 

 Individual parameter vectors and disturbance variances 

 Individual estimates of choice probabilities 

 The same as the “random parameters model” with slightly different 
weights. 

 Allenby and Rossi call the classical method an “approximate 
Bayesian” approach. 
 (Greene calls the Bayesian estimator an “approximate random 

parameters model”) 

 Who’s right? 
 Bayesian layers on implausible uninformative priors and calls the maximum 

likelihood results “exact” Bayesian estimators 

 Classical is strongly parametric and a slave to the distributional 
assumptions. 

 Bayesian is even more strongly parametric than classical. 

 Neither is right – Both are right. 
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Comparison of Maximum Simulated Likelihood  

and Hierarchical Bayes 

 Ken Train: “A Comparison of Hierarchical Bayes and 

Maximum Simulated Likelihood for Mixed Logit” 

 Mixed Logit 

( , , ) ( , , ) ( , , ),

1,...,  individuals,

1,...,  choice situations

1,...,  alternatives (may also vary)
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Stochastic Structure – Conditional Likelihood 
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Note individual specific parameter vector, i 
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Classical Approach 

1/2

, *,

1 1

, ,1

~ [ , ];  write 

    where ( ) ( )

exp[( ]
log

exp[( ]

Maximize over  using maximum simulated likel

i

i i

i j

TN i i j t

ii t

i i i j tj

N

diag uncorrelated

Log likelihood d
 










 


 


Jw

b

b + w

b + v

b w ) x
w

b w ) x

b,

   



  









ihood 

(random parameters model)



Part 24: Bayesian Estimation 24-27/35 

Bayesian Approach – Gibbs Sampling and 

Metropolis-Hastings 

1

1

1
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Posterior L data priors

Prior N normal

IG parameters Inverse gamma

g assumed parameters Normal with large variance
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Gibbs Sampling from Posteriors: b 

1

1

( | ,..., , ) [ , (1/ ) ]

(1/ )

Easy to sample from Normal with known

mean and variance by transforming a set

of draws from standard normal.
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Gibbs Sampling from Posteriors: Ω 

1
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Gibbs Sampling from Posteriors: i 

( | , ) ( | ) ( , )

M=a constant, L=likelihood, g=prior

(This is the definition of the posterior.)

Not clear how to sample.

Use Metropolis Hastings algorithm.

i i ip M L data g     b  | b 



Part 24: Bayesian Estimation 24-31/35 

Metropolis – Hastings Method 

,0

,1

r

:

an 'old' draw (vector)

the 'new' draw (vector)

d  =   , 

=a constant (see below)

the diagonal matrix of standard deviations

=a vector of K draws from standard normal
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Metropolis Hastings: A Draw of i 
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During Gibbs iterations, draw 
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Application: Energy Suppliers 

 N=361 individuals, 2 to 12 hypothetical suppliers 

 X=  (1) fixed rates,  

      (2) contract length,      

      (3) local (0,1), 

      (4) well known company (0,1),  

      (5) offer TOD rates (0,1),  

      (6) offer seasonal rates (0,1). 



Part 24: Bayesian Estimation 24-34/35 

Estimates: Mean of Individual i 

MSL Estimate Bayes Posterior 
Mean 

Price -1.04 (0.396) -1.04 (0.0374) 

Contract -0.208 (0.0240) -0.194 (0.0224) 

Local 2.40 (0.127) 2.41 (0.140) 

Well Known 1.74 (0.0927) 1.71 (0.100) 

TOD -9.94 (0.337) -10.0 (0.315) 

Seasonal -10.2 (0.333) -10.2 (0.310) 
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Reconciliation: A Theorem (Bernstein-Von Mises) 

 The posterior distribution converges to normal with covariance 
matrix equal to 1/n times the information matrix (same as classical 
MLE).  (The distribution that is converging is the posterior, not the 
sampling distribution of the estimator of the posterior mean.) 

 The posterior mean (empirical) converges to the mode of the 
likelihood function.  Same as the MLE.  A proper prior disappears 
asymptotically. 

 Asymptotic sampling distribution of the posterior mean is the same 
as that of the MLE. 


