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Bayesian Estimators 

 “Random Parameters” vs. Randomly 

Distributed Parameters 

 Models of Individual Heterogeneity 

 Random Effects: Consumer Brand Choice 

 Fixed Effects:  Hospital Costs 
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Bayesian Estimation 

 Specification of conditional likelihood:   
f(data | parameters) 

 Specification of priors:  g(parameters) 

 Posterior density of parameters: 

 

 

 Posterior mean = E[parameters|data] 

(data | parameters) (parameters)
(parameters|data)

(data)

f g
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f
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The Marginal Density for the Data is Irrelevant 

f(data | )p( ) L(data | )p( )
f( | data)

f(data) f(data)

Joint density of  and data is f(data, ) =L(data | )p( )

Marginal density of the data is 

         f(data)= f(data, )d L(data | )p( )d

Thus,  f( | data
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Computing Bayesian Estimators 

 First generation: Do the integration (math) 

 

 

 

 Contemporary - Simulation:  
 (1)  Deduce the posterior 

 (2)  Draw random samples of draws from the posterior and 
compute the sample means and variances of the samples.  (Relies 
on the law of large numbers.) 

(data | ) ( )
( | data)

(data)
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Modeling Issues 

 As n , the likelihood dominates and the prior 

disappears  Bayesian and Classical MLE converge. 

(Needs the mode of the posterior to converge to the 

mean.) 

 Priors 

 Diffuse  large variances imply little prior information. 

(NONINFORMATIVE) 

 INFORMATIVE priors – finite variances that appear in the 

posterior.  “Taints” any final results. 
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A Practical Problem 


    

 

 
       

     

2 2

v 12 v 2
2 vs (1 / ) K /2 2 1 1 /2

2

2 1 1

Sampling from the joint posterior may be impossible.

E.g., linear regression.

[vs ] 1
f( , | , ) e [2 ] | ( ) |

(v 2)

exp( (1 / 2)( ) [ ( ) ] ( ))

What is this???

T

β y X X X

β b X X β b
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o do 'simulation based estimation' here, we need joint

observations on ( , ).β
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A Solution to the Sampling Problem 





2
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The joint posterior, p( , |data) is intractable.  But,

For inference about , a sample from the marginal

     posterior, p( |data) would suffice.

For inference about ,  a sample from the marginal

     p
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osterior of , p( |data) would suffice.  

Can we deduce these?  For this problem, we do have conditionals:

     p( | ,data) = N[ , ( ) ]

(y )
     p( | ,data) = K   a gamma distributioi

2

β b X'X

x β
β
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n

Can we use this information to sample from p( |data) and

p( |data)?

β
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The Gibbs Sampler 

 Target:  Sample from marginals of f(x1, x2) = joint distribution 

 Joint distribution is unknown or it is not possible to sample from the joint 
distribution. 

 Assumed: f(x1|x2) and f(x2|x1) both known and samples can be drawn from 
both. 

 Gibbs sampling:  Obtain one draw from x1,x2 by many cycles between x1|x2 
and x2|x1. 
 Start x1,0 anywhere in the right range. 

 Draw x2,0 from x2|x1,0. 

 Return to x1,1 from x1|x2,0 and so on. 

 Several thousand cycles produces the draws 

 Discard the first several thousand to avoid initial conditions.  (Burn in) 

 Average the draws to estimate the marginal means. 
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Bivariate Normal Sampling 
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Gibbs Sampling for the Linear Regression Model 
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     p( | ,data) = N[ , ( ) ]

(y )
     p( | ,data) = K  

                        a gamma distribution

Iterate back and forth between these two distributions
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Application – the Probit Model 
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(a) y *      ~ N[0,1]

(b) y 1 if y *  > 0, 0 otherwise

Consider estimation of  and y *  (data augmentation)

(1) If y* were observed, this would be a linear regression

     (y  would not be useful 


i

β|

β

x β 

i

i i

i

since it is just sgn(y *).)

     We saw in the linear model before, p( y *, y )

(2) If (only)  were observed, y *  would be a draw from 

     the normal distribution with mean and variance 1.

     Bu β
i i i i

t, y  gives the sign of y * . y * | , y  is a draw from

     the truncated normal (above if y=0, below if y=1)
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Gibbs Sampling for the Probit Model 

i

i

(1) Choose an initial value for (maybe the MLE)

(2) Generate y *  by sampling N observations from

     the truncated normal with mean and variance 1,

     truncated above 0 if y 0,  from below if y





i

β 

x β 

i

-1 -1

1.

(3) Generate  by drawing a random normal vector with

     mean vector ( ) *  and variance matrix ( )

(4) Return to 2 10,000 times, retaining the last 5,000

     draws - first 5,000 are the 



β

X'X X'y X'X

'burn in.'

(5)  Estimate the posterior mean of  by averaging the

      last 5,000 draws.

(This corresponds to a uniform prior over .)

β

β
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Generating Random Draws from f(X) 

-1

The inverse probability method of sampling

random draws:

If F(x) is the CDF of random variable x, then

a random draw on x may be obtained as F (u)

where u is a draw from the standard uniform (0,1).

Exampl

  


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-1

-1

i i

es:

Exponential: f(x)= exp(- x); F(x)=1-exp(- x)

                  x = -(1/ )log(1-u)

Normal:       F(x) = (x); x = (u)

Truncated Normal: x=  + [1-(1-u)* ( )] for y=1;

                           x    -1

i i=  + [u (- )] for y=0.
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? Generate raw data 

Calc    ; Ran(13579) $ 

Sample  ; 1 - 250 $ 

Create  ; x1  = rnn(0,1) ; x2 = rnn(0,1) $ 

Create  ; ys  = .2 + .5*x1 - .5*x2 + rnn(0,1) ; y = ys > 0 $ 

Namelist; x   = one,x1,x2$ 

Matrix  ; xxi = <x’x> $ 

Calc    ; Rep = 200 ; Ri = 1/(Rep-25)$ 

? Starting values and accumulate mean and variance matrices 

Matrix  ; beta=[0/0/0] ; bbar=init(3,1,0);bv=init(3,3,0)$$ 

Proc    = gibbs $  Markov Chain – Monte Carlo iterations 

Do for  ; simulate ; r =1,Rep $ 

? ------- [ Sample y* | beta ] -------------------------- 

Create  ; mui = x'beta ; f = rnu(0,1)  

        ; if(y=1)  ysg = mui + inp(1-(1-f)*phi( mui));  

            (else) ysg = mui + inp(     f *phi(-mui)) $ 

? ------- [ Sample beta | y*] --------------------------- 

Matrix  ; mb = xxi*x'ysg ; beta = rndm(mb,xxi) $ 

? ------- [ Sum posterior mean and variance. Discard burn in. ] 

Matrix  ; if[r > 25] ; bbar=bbar+beta ; bv=bv+beta*beta'$ 

Enddo   ; simulate $ 

Endproc $ 

Execute ; Proc = Gibbs $  

Matrix  ; bbar=ri*bbar ; bv=ri*bv-bbar*bbar' $ 

Probit  ; lhs = y ; rhs = x $ 

Matrix  ; Stat(bbar,bv,x) $ 
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Example: Probit MLE vs. Gibbs 

--> Matrix  ; Stat(bbar,bv); Stat(b,varb) $ 

+---------------------------------------------------+ 

|Number of observations in current sample =    1000 | 

|Number of parameters computed here       =       3 | 

|Number of degrees of freedom             =     997 | 

+---------------------------------------------------+ 

+---------+--------------+----------------+--------+---------+ 

|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | 

+---------+--------------+----------------+--------+---------+ 

 BBAR_1         .21483281      .05076663     4.232   .0000 

 BBAR_2         .40815611      .04779292     8.540   .0000 

 BBAR_3        -.49692480      .04508507   -11.022   .0000 

+---------+--------------+----------------+--------+---------+ 

|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | 

+---------+--------------+----------------+--------+---------+ 

 B_1            .22696546      .04276520     5.307   .0000 

 B_2            .40038880      .04671773     8.570   .0000 

 B_3           -.50012787      .04705345   -10.629   .0000 
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A Random Effects Approach 

 Allenby and Rossi, “Marketing Models of 

Consumer Heterogeneity” 

 Discrete Choice Model – Brand Choice 

 “Hierarchical Bayes” 

 Multinomial Probit 

 Panel Data: Purchases of 4 brands of Ketchup 
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Structure 
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Bayesian Priors 
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Bayesian Estimator 

 Joint Posterior= 

 Integral does not exist in closed form. 

 Estimate by random samples from the joint 

posterior. 

 Full joint posterior is not known, so not possible 

to sample from the joint posterior. 

1 1[ ,..., , , , ,..., | ]N JE V data    
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Gibbs Cycles for the MNP Model 

 Samples from the marginal posteriors 

Marginal posterior for the individual parameters

(Known and can be sampled)

| , , ,

Marginal posterior for the common parameters  

(Each known and each can be sampled)

   | , ,

   | , ,

i data

data
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Results 

 Individual parameter vectors and disturbance variances 

 Individual estimates of choice probabilities 

 The same as the “random parameters model” with slightly different 
weights. 

 Allenby and Rossi call the classical method an “approximate 
Bayesian” approach. 
 (Greene calls the Bayesian estimator an “approximate random 

parameters model”) 

 Who’s right? 
 Bayesian layers on implausible uninformative priors and calls the maximum 

likelihood results “exact” Bayesian estimators 

 Classical is strongly parametric and a slave to the distributional 
assumptions. 

 Bayesian is even more strongly parametric than classical. 

 Neither is right – Both are right. 
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Comparison of Maximum Simulated Likelihood  

and Hierarchical Bayes 

 Ken Train: “A Comparison of Hierarchical Bayes and 

Maximum Simulated Likelihood for Mixed Logit” 

 Mixed Logit 

( , , ) ( , , ) ( , , ),

1,...,  individuals,

1,...,  choice situations

1,...,  alternatives (may also vary)

i
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Stochastic Structure – Conditional Likelihood 
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Classical Approach 

1/2
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Bayesian Approach – Gibbs Sampling and 

Metropolis-Hastings 
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Gibbs Sampling from Posteriors: b 

1

1

( | ,..., , ) [ , (1/ ) ]
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Easy to sample from Normal with known

mean and variance by transforming a set

of draws from standard normal.
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Gibbs Sampling from Posteriors: Ω 

1

2

,1

r,k

R 2

r,k1

( | , ,..., ) ~  [1 ,1 ]

(1/ ) ( )  for each k=1,...,K

Draw from inverse gamma for each k: 

Draw 1+N draws from N[0,1] = h ,
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then the draw is 
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Gibbs Sampling from Posteriors: i 

( | , ) ( | ) ( , )

M=a constant, L=likelihood, g=prior

(This is the definition of the posterior.)

Not clear how to sample.

Use Metropolis Hastings algorithm.

i i ip M L data g     b  | b 
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Metropolis – Hastings Method 
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the diagonal matrix of standard deviations

=a vector of K draws from standard normal

i

i

Define

 

 





r

r

v

v



 



Part 24: Bayesian Estimation 24-32/35 

Metropolis Hastings: A Draw of i 
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Application: Energy Suppliers 

 N=361 individuals, 2 to 12 hypothetical suppliers 

 X=  (1) fixed rates,  

      (2) contract length,      

      (3) local (0,1), 

      (4) well known company (0,1),  

      (5) offer TOD rates (0,1),  

      (6) offer seasonal rates (0,1). 
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Estimates: Mean of Individual i 

MSL Estimate Bayes Posterior 
Mean 

Price -1.04 (0.396) -1.04 (0.0374) 

Contract -0.208 (0.0240) -0.194 (0.0224) 

Local 2.40 (0.127) 2.41 (0.140) 

Well Known 1.74 (0.0927) 1.71 (0.100) 

TOD -9.94 (0.337) -10.0 (0.315) 

Seasonal -10.2 (0.333) -10.2 (0.310) 
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Reconciliation: A Theorem (Bernstein-Von Mises) 

 The posterior distribution converges to normal with covariance 
matrix equal to 1/n times the information matrix (same as classical 
MLE).  (The distribution that is converging is the posterior, not the 
sampling distribution of the estimator of the posterior mean.) 

 The posterior mean (empirical) converges to the mode of the 
likelihood function.  Same as the MLE.  A proper prior disappears 
asymptotically. 

 Asymptotic sampling distribution of the posterior mean is the same 
as that of the MLE. 


