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Modeling an Economic Time Series 

 Observed y0, y1, …, yt,… 
 What is the “sample” 
 Random sampling? 
 The “observation window” 
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Estimators 

 Functions of sums of observations 
 Law of large numbers? 

 Nonindependent observations 
 What does “increasing sample size” mean? 

 Asymptotic properties? (There are no finite 
sample properties.) 
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Interpreting a Time Series 

 Time domain:  A “process”   
 y(t)  =  ax(t)  +  by(t-1) + … 
 Regression like approach/interpretation 

 Frequency domain:  A sum of terms 
 y(t) = 
 Contribution of different frequencies to the observed 

series.  
 (“High frequency data and financial econometrics 

– “frequency” is used slightly differently here.) 
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For example,… 



Part 25: Time Series 25-7/25 

In parts… 
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Studying the Frequency Domain 

 Cannot identify the number of terms 
 Cannot identify frequencies from the time series 
 Deconstructing the variance, autocovariances 

and autocorrelations 
 Contributions at different frequencies 
 Apparent large weights at different frequencies 
 Using Fourier transforms of the data 
 Does this provide “new” information about the series? 
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Autocorrelation in Regression 
 Yt  =  b’xt  +  εt 
 Cov(εt, εt-1) ≠ 0 
 Ex. RealConst =  a  +  bRealIncome + εt  U.S. Data, quarterly, 1950-2000  
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Autocorrelation 

 How does it arise? 
 What does it mean? 
 Modeling approaches 

 Classical – direct: corrective 
 Estimation that accounts for autocorrelation 
 Inference in the presence of autocorrelation 

 Contemporary – structural 
 Model the source 
 Incorporate the time series aspect in the model 
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Stationary Time Series 
 zt = b1yt-1 + b2yt-2 + … + bPyt-P + et 
 Autocovariance: γk  =  Cov[yt,yt-k] 
 Autocorrelation: ρk = γk / γ0  
 Stationary series: γk depends only on k, not on t 

 Weak stationarity:  E[yt] is not a function of t, E[yt * yt-s] is not a function 
of t or s, only of |t-s| 

 Strong stationarity: The joint distribution of [yt,yt-1,…,yt-s] for any window 
of length s periods, is not a function of t or s. 

 A condition for weak stationarity:  The smallest root of the 
characteristic polynomial: 1 - b1z1 - b2z2 - … - bPzP = 0, is greater 
than one. 
 The unit circle 
 Complex roots 
 Example: yt = ρyt-1 + ee,  1 - ρz = 0 has root z = 1/ ρ, | z | > 1 => | ρ | < 1. 
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Stationary vs. Nonstationary Series 
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The Lag Operator 

 Lxt  =  xt-1 
 L2 xt  =  xt-2 
 LPxt + LQxt  =  xt-P + xt-Q

  

 Polynomials in L:  yt  =  B(L)yt + et 
 A(L) yt = et 
 Invertibility:  yt = [A(L)]-1 et 
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Inverting a Stationary Series 

 yt= ρyt-1 + et  (1- ρL)yt = et 
 yt = [1- ρL]-1 et = et + ρet-1 + ρ2et-2 + … 

 
 
 
 Stationary series can be inverted 
 Autoregressive vs. moving average form of series 
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Regression with Autocorrelation 

 yt = xt’b + et, et = ρet-1 + ut 
  (1- ρL)et = ut  et = (1- ρL)-1ut 

 E[et]  = E[ (1- ρL)-1ut] = (1- ρL)-1E[ut]  =  0 
 Var[et] = (1- ρL)-2Var[ut] = 1+ ρ2σu

2 + … = σu
2/(1- ρ2) 

 Cov[et,et-1] = Cov[ρet-1 + ut, et-1] =  
                     =ρCov[et-1,et-1]+Cov[ut,et-1] = ρ σu

2/(1- ρ2) 
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OLS vs. GLS 

 OLS 
 Unbiased? 
 Consistent:  (Except in the presence of a lagged 

dependent variable) 
 Inefficient 

 GLS 
 Consistent and efficient 
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+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=REALCONS Mean                 =   2999.436     | 
| Autocorrel   Durbin-Watson Stat.  =   .0920480     | 
|              Rho = cor[e,e(-1)]   =   .9539760     | 
+----------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant     -80.3547488     14.3058515    -5.617   .0000 
 REALDPI        .92168567      .00387175   238.054   .0000    3341.47598 
| Robust VC    Newey-West, Periods  =         10     | 
 Constant     -80.3547488     41.7239214    -1.926   .0555 
 REALDPI        .92168567      .01503516    61.302   .0000    3341.47598 
+---------------------------------------------+ 
| AR(1) Model:     e(t) = rho * e(t-1) + u(t) | 
| Final value of Rho    =             .998782 | 
| Iter=  6, SS= 118367.007, Log-L=-941.371914 | 
| Durbin-Watson:   e(t) =             .002436 | 
| Std. Deviation:  e(t) =          490.567910 | 
| Std. Deviation:  u(t) =           24.206926 | 
| Durbin-Watson:   u(t) =            1.994957 | 
| Autocorrelation: u(t) =             .002521 | 
| N[0,1] used for significance levels         | 
+---------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant      1019.32680     411.177156     2.479   .0132 
 REALDPI        .67342731      .03972593    16.952   .0000    3341.47598 
 RHO            .99878181      .00346332   288.389   .0000 
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Detecting Autocorrelation 

 Use residuals 
 Durbin-Watson d= 
 Assumes normally distributed disturbances strictly 

exogenous regressors 
 Variable addition (Godfrey)  

 yt  =  β’xt  +  ρεt-1 + ut 

 Use regression residuals et and test ρ = 0 
 Assumes consistency of b. 
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A Unit Root? 

 How to test for ρ = 1? 
 By construction:  εt – εt-1 = (ρ - 1)εt-1 + ut  

 Test for γ = (ρ - 1) = 0 using regression? 
 Variance goes to 0 faster than 1/T.  Need a new table; 

can’t use standard t tables. 
 Dickey – Fuller tests 

 Unit roots in economic data.  (Are there?) 
 Nonstationary series 
 Implications for conventional analysis 
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Reinterpreting Autocorrelation 
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Integrated Processes 
 Integration of order (P) when the P’th differenced 

series is stationary 
 Stationary series are I(0) 
 Trending series are often I(1). Then yt – yt-1 = ∆yt    

is I(0).  [Most macroeconomic data series.] 
 Accelerating series might be I(2). Then                    

(yt – yt-1)- (yt – yt-1) = ∆2yt is I(0) [Money stock in 
hyperinflationary economies. Difficult to find 
many applications in economics] 
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Cointegration: Real DPI and Real Consumption 
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Cointegration – Divergent Series? 
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Cointegration 

 X(t) and y(t) are obviously I(1) 
 Looks like any linear combination of x(t) and y(t) will also 

be I(1) 
 Does a model y(t) = bx(t) + u(u) where u(t) is I(0) make 

any sense?  How can u(t) be I(0)? 
 In fact, there is a linear combination, [1,-β] that is I(0). 
 y(t) = .1*t + noise, x(t) = .2*t + noise 
 y(t) and x(t) have a common trend 
 y(t) and x(t) are cointegrated. 
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Cointegration and I(0) Residuals 
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