Econometrics I

Professor William Greene Stern School of Business Department of Economics

WILLIAM H. GREENE

Econometrics I

Modeling an Economic Time Series

Observed y₀, y₁, ..., y_t,...
What is the "sample"
Random sampling?
The "observation window"

Estimators

- Functions of sums of observations
- Law of large numbers?
 - Nonindependent observations
 - What does "increasing sample size" mean?
- Asymptotic properties? (There are no finite sample properties.)

Interpreting a Time Series

□ Time domain: A "process"

• y(t) = ax(t) + by(t-1) + ...

Regression like approach/interpretation

Frequency domain: A sum of terms

- $y(t) = \sum_{j} \beta_{j} Cos(\alpha_{j}t) + \varepsilon(t)$
- Contribution of different frequencies to the observed series.

 ("High frequency data and financial econometrics – "frequency" is used slightly differently here.)

For example,...

25-6/25

Part 25: Time Series

In parts...

25-7/25

Studying the Frequency Domain

- Cannot identify the number of terms
- Cannot identify frequencies from the time series
- Deconstructing the variance, autocovariances and autocorrelations
 - Contributions at different frequencies
 - Apparent large weights at different frequencies
 - Using Fourier transforms of the data
 - Does this provide "new" information about the series?

Autocorrelation in Regression

- $\Box \quad Y_t = b' x_t + \epsilon_t$
- $\Box \quad Cov(\varepsilon_{t'}, \varepsilon_{t-1}) \neq 0$

E Ex. RealCons_t = a + bRealIncome + ε_t U.S. Data, quarterly, 1950-2000

Autocorrelation

- How does it arise?
- What does it mean?
- Modeling approaches
 - Classical direct: corrective
 - Estimation that accounts for autocorrelation
 - Inference in the presence of autocorrelation
 - Contemporary structural
 - Model the source
 - Incorporate the time series aspect in the model

Stationary Time Series

- $\Box \quad z_{t} = b_{1}y_{t-1} + b_{2}y_{t-2} + \dots + b_{P}y_{t-P} + e_{t}$
- Autocovariance: $\gamma_k = Cov[y_t, y_{t-k}]$
- **D** Autocorrelation: $\rho_k = \gamma_k / \gamma_0$
- **D** Stationary series: γ_k depends only on k, not on t
 - Weak stationarity: E[y_t] is not a function of t, E[y_t * y_{t-s}] is not a function of t or s, only of |t-s|
 - Strong stationarity: The joint distribution of [y_t,y_{t-1},...,y_{t-s}] for any window of length s periods, is not a function of t or s.
- A condition for weak stationarity: The smallest root of the characteristic polynomial: $1 b_1 z^1 b_2 z^2 ... b_P z^P = 0$, is greater than one.
 - The unit circle
 - Complex roots
 - Example: $y_t = \rho y_{t-1} + e_e$, $1 \rho z = 0$ has root $z = 1/\rho$, $|z| > 1 => |\rho| < 1$.

Stationary vs. Nonstationary Series

25-12/25

The Lag Operator

Lx_t = x_{t-1}
L² x_t = x_{t-2}
L^Px_t + L^Qx_t = x_{t-P} + x_{t-Q}
Polynomials in L: y_t = B(L)y_t + e_t
A(L) y_t = e_t
Invertibility: y_t = [A(L)]⁻¹ e_t

Inverting a Stationary Series

□
$$y_t = \rho y_{t-1} + e_t \rightarrow (1 - \rho L) y_t = e_t$$

□ $y_t = [1 - \rho L]^{-1} e_t = e_t + \rho e_{t-1} + \rho^2 e_{t-2} + ...$

$$\frac{1}{1-\rho L} = 1 + (\rho L) + (\rho L)^2 + (\rho L)^3 + .$$

- Stationary series can be inverted
- Autoregressive vs. moving average form of series

Regression with Autocorrelation

□
$$y_t = x_t'b + e_t$$
, $e_t = \rho e_{t-1} + u_t$
□ $(1 - \rho L)e_t = u_t \Rightarrow e_t = (1 - \rho L)^{-1}u_t$
■ $E[e_t] = E[(1 - \rho L)^{-1}u_t] = (1 - \rho L)^{-1}E[u_t] = 0$
■ $Var[e_t] = (1 - \rho L)^{-2}Var[u_t] = 1 + \rho^2 \sigma_u^2 + ... = \sigma_u^2/(1 - \rho^2)$
■ $Cov[e_t, e_{t-1}] = Cov[\rho e_{t-1} + u_t, e_{t-1}] =$
 $= \rho Cov[e_{t-1}, e_{t-1}] + Cov[u_t, e_{t-1}] = \rho \sigma_u^2/(1 - \rho^2)$

OLS vs. GLS

OLS

Unbiased?

- Consistent: (Except in the presence of a lagged dependent variable)
- Inefficient
- GLS
 - Consistent and efficient

```
Ordinary
        least squares regression
 LHS=REALCONS Mean
                              2999.436
                           =
 Autocorrel Durbin-Watson Stat. = .0920480
           Rho = cor[e, e(-1)]
                           =
                              .9539760
|Variable | Coefficient | Standard Error |t-ratio |P[|T|>t] | Mean of X|
+-----
                ____+
                           -----
Constant
         -80.3547488 14.3058515 -5.617
                                        .0000
REALDPI
         .92168567
                      .00387175 238.054
                                         .0000
                                               3341.47598
Robust VC Newey-West, Periods = 10
Constant -80.3547488 41.7239214 -1.926
                                         .0555
          .92168567 .01503516 61.302
                                              3341.47598
REALDPI
                                         .0000
+-----
                            _____
 AR(1) Model: e(t) = rho * e(t-1) + u(t)
Final value of Rho
                             .998782
                  =
 Iter= 6, SS= 118367.007, Log-L=-941.371914
Durbin-Watson: e(t) =
                           .002436
 Std. Deviation: e(t) =
                         490.567910
Std. Deviation: u(t) =
                         24.206926
Durbin-Watson: u(t) =
                           1.994957
Autocorrelation: u(t) =
                           .002521
 N[0,1] used for significance levels
|Variable | Coefficient | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X
411.177156 2.479 .0132
Constant
           1019.32680
REALDPI
           .67342731 .03972593 16.952 .0000
                                               3341.47598
RHO
           .99878181 .00346332 288.389
                                         .0000
```

Detecting Autocorrelation

Use residuals

- Durbin-Watson d= $\frac{\sum_{t=2}^{T} (e_t e_{t-1})^2}{\sum_{t=1}^{T} e_t^2} \approx 2(1-r)$
- Assumes normally distributed disturbances strictly exogenous regressors

Variable addition (Godfrey)

•
$$y_t = \beta' x_t + \rho \varepsilon_{t-1} + u_t$$

- Use regression residuals e_t and test $\rho = 0$
- Assumes consistency of b.

A Unit Root?

- **\square** How to test for $\rho = 1$?
- **D** By construction: $\varepsilon_t \varepsilon_{t-1} = (\rho 1)\varepsilon_{t-1} + u_t$
 - Test for $\gamma = (\rho 1) = 0$ using regression?
 - Variance goes to 0 faster than 1/T. Need a new table; can't use standard t tables.
 - Dickey Fuller tests
- Unit roots in economic data. (Are there?)
 - Nonstationary series
 - Implications for conventional analysis

Reinterpreting Autocorrelation

Regression form $y_t = \beta' x_t + \varepsilon_t, \ \varepsilon_t = \rho \varepsilon_{t-1} + u_t$ Error Correction Form $y_t - y_{t-1} = \beta'(x_t - x_{t-1}) + \alpha(y_{t-1} - \beta' x_{t-1}) + u_t, (\alpha = \rho - 1)$ $\beta' x_t =$ the equilibrium The model describes adjustment of y_t to equilibrium when x_t changes.

Integrated Processes

- Integration of order (P) when the P'th differenced series is stationary
- □ Stationary series are I(0)
- Trending series are often I(1). Then $y_t y_{t-1} = \Delta y_t$ is I(0). [Most macroeconomic data series.]
- Accelerating series might be I(2). Then $(y_t - y_{t-1}) - (y_t - y_{t-1}) = \Delta^2 y_t$ is I(0) [Money stock in hyperinflationary economies. Difficult to find many applications in economics]

Cointegration: Real DPI and Real Consumption

25-22/25

Cointegration – Divergent Series?

25-23/25

Cointegration

- **\square** X(t) and y(t) are obviously I(1)
- Looks like any linear combination of x(t) and y(t) will also be I(1)
- Does a model y(t) = bx(t) + u(u) where u(t) is I(0) make any sense? How can u(t) be I(0)?
- **I** In fact, there is a linear combination, $[1,-\beta]$ that is I(0).
- □ $y(t) = .1^{t} + noise$, $x(t) = .2^{t} + noise$
- y(t) and x(t) have a <u>common trend</u>
- \square y(t) and x(t) are cointegrated.

Cointegration and I(0) Residuals

25-25/25