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Modeling an Economic Time Series

O Observed yg, Vi, - Y- --
O What is the “sample”

0 Random sampling?

O The “observation window”
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Estimators

O Functions of sums of observations

O Law of large numbers?
= Nonindependent observations
= What does “increasing sample size” mean?

O Asymptotic properties? (There are no finite
sample properties.)
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Interpreting a Time Series

O Time domain: A “process’

= y(t) = ax(t) + by(t-1) + ...

= Regression like approach/interpretation
O Frequency domain: A sum of terms

= y(t) = ZjB Cos(a;t) + &(t)
= Contribution of different frequencies to the observed
series.

O (“High frequency data and financial econometrics
— “frequency” Is used slightly differently here.)
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For example,...

Index of Hourly Traffic Flow on L.I. Distressway
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Variable

In parts...

Index of Hourly Traffic Flow on L.I. Distressway
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Studying the Frequency Domain

O Cannot identify the number of terms
0 Cannot identify frequencies from the time series
O Deconstructing the variance, autocovariances
and autocorrelations
= Contributions at different frequencies
= Apparent large weights at different frequencies

= Using Fourier transforms of the data
= Does this provide “new” information about the series?
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Autocorrelation in Regression

o Y, = bx + &
o Cov(g, €.4) #0
O Ex. RealCons, = a + DbReallncome + g, U.S. Data, quarterly, 1950-2000
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Autocorrelation

0 How does It arise?
0 What does it mean?

O Modeling approaches

m Classical — direct: corrective
Estimation that accounts for autocorrelation
Inference in the presence of autocorrelation

= Contemporary — structural
Model the source
Incorporate the time series aspect in the model
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Stationary Time Series

Z, = D1y + Dy + .+ bpYp t &
Autocovariance: y, = Cov[y,Y..
Autocorrelation: p, = vy, / Vg

Stationary series: y, depends only on k, not on t

= Weak stationarity: E[y,] is not a function of t, E[y, * y,] is not a function
of tor s, only of [t-s|
= Strong stationarity: The joint distribution of [y,,Y,,...,Y.s] for any window
of length s periods, is not a function of t or s.
A condition for weak stationarity: The smallest root of the
characteristic polynomial: 1 - b,z* - b,z? - ... - bpz” = 0, is greater
than one.
= The unit circle
= Complex roots
= Example:y,=py,;+€, 1-pz=0hasrootz=1/p,|z|>1=>|p|<1.
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Stationary vs. Nonstationary Series
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The Lag Operator

OLX = X4

OL2X = X,

O LPX, + LOX, = Xp + X

O Polynomials in L: y, = B(L)y, + €
o A(L) vy, = e

O Invertibility: vy, = [A(L)]* e,
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Inverting a Stationary Series

OY= pYrr + € 2 (1-pl)y, = €
Oy =[1-pL]t e, =e +pe, +p’e,+ ...

1
1-pL

= Stationary series can be inverted
= Autoregressive vs. moving average form of series

=1+ (pL)+(pL)* + (pL)* +.
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Regression with Autocorrelation

Oy, =Xb+e,e=pe,+u
o (1- pL)e,=u, 2> e, = (1- pL) 'y,
= E[e] =E[(1- pL)*u] = (1- pL)*E[u] =
= Var[e] = (1- pL)2Var[u] = 1+ p%5,2 + ... = 6, 2/(1- p?)
= Covle,e.,] = Covipe,, +u, €] =
=pCov(e.,,e.,]+Cov[u,e ] = p 6,5/(1- p?)
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OLS vs. GLS

O OLS
= Unbiased?

= Consistent: (Except in the presence of a lagged
dependent variable)

= Inefficient

O GLS
m Consistent and efficient
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gy +
| Ordinary least squares regression |
| LHS=REALCONS Mean = 2999.436 |
| Autocorrel Durbin-Watson Stat. = -0920480 |
| Rho = cor[e,e(-1)] = -9539760 |
gy +
o Ry e o o o +
|variable | Coefficient | Standard Error |t-ratio |P[|T]>t] | Mean of X]
o Ry Ry S o o o +
Constant -80.3547488 14.3058515 -5.617 -0000

REALDPI -92168567 .00387175  238.054 -0000 3341.47598
| Robust VC Newey-West, Periods = 10 |

Constant -80.3547488 41.7239214 -1.926 -0555

REALDPI .92168567 .01503516 61.302 -0000 3341.47598
S +

AR(1) Model: e(t) = rho * e(t-1) + u(b)

Final value of Rho .998782

Iter= 6, SS= 118367.007, Log-L=-941.371914

| |
| |
| |
| Durbin-Watson: e(t) = .002436 |
| Std. Deviation: e(t) = 490.567910 |
| Std. Deviation: u(t) = 24.206926 |
| Durbin-Watson: u(t) = 1.994957 |
| Autocorrelation: u(t) = .002521 |
| N[O,1] used for significance levels |
S +
o Sy Ry o o o +
|variable | Coefficient | Standard Error |b/St.Er.|P[]Z]>z] | Mean of X]
o Sy Ry o o o +
Constant 1019.32680 411.177156 2.479 .0132
REALDPI .67342731 .03972593 16.952 -0000 3341.47598
RHO .99878181 .00346332  288.389 -0000
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Detecting Autocorrelation

O Use residuals . ,
] thz (e t _et—l)
= Durbin-Watson d= ST o2

t=1

t

= Assumes normally distributed disturbances strictly
exogenous regressors

O Variable addition (Godfrey)

=Y, = BX t+ pEa t U
= Use regression residuals e, and test p = 0
= Assumes consistency of b.

~2(1-r)
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A Unit Root?

O How to test for p =17
O By construction: €, —¢€.,=(p - 1)&.; + U,
m Testfory = (p-1) =0 using regression?

= Variance goes to O faster than 1/T. Need a new table;
can’t use standard t tables.

= Dickey — Fuller tests

O Unit roots in economic data. (Are there?)
= Nonstationary series
= Implications for conventional analysis
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Reinterpreting Autocorrelation

Regression form

Y =B'X +&, & =pg +U,

Error Correction Form

Yi = Yu = B'(Xt - Xt—1) + a(yt—l _let—l) +U, (a=p-1)

B'x = the equilibrium

The model describes adjustment of y, to equilibrium when
X, changes.
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Integrated Processes

O Integration of order (P) when the P’th differenced
series Is stationary

O Stationary series are 1(0)

O Trending series are often I(1). Then y, — y,; = Ay,
IS 1(0). [Most macroeconomic data series.]

O Accelerating series might be 1(2). Then

(Yt = Yea)- (Ve — Yea) = A%, is 1(0) [Money stock in
hyperinflationary economies. Difficult to find
many applications in economics]

25-21/25 Part 25: Time Series



Cointegration: Real DPI and Real Consumption
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Cointegration — Divergent Series?
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Cointegration

O X(t) and y(t) are obviously 1(1)

O Looks like any linear combination of x(t) and y(t) will also
be I(1)

O Does a model y(t) = bx(t) + u(u) where u(t) is 1(0) make
any sense? How can u(t) be 1(0)?

O In fact, there Is a linear combination, [1,-B] that is 1(0).

O y(t) = .1*t + noise, x(t) = .2*t + noise

O y(t) and x(t) have a common trend

O y(t) and x(t) are cointegrated.
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Cointegration and 1(0) Residuals

OOOOOOO
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