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Vocabulary 

 Some terms to be used in the discussion. 

 Population characteristics and entities vs.  

sample quantities and analogs 

 Residuals and disturbances 

 Population regression line and sample regression 

 Objective:  Learn about the conditional mean 

function.  ‘Estimate’  and 2 

 First step:  Mechanics of fitting a line (hyperplane) to 

a set of data 
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Fitting Criteria 

 The set of points in the sample 

 Fitting criteria - what are they:   

 LAD:    Minimizeb  |y – x’bLAD| 

 Least squares: Minimizeb  (y – x’bLS)2 

 and so on 

 Why least squares?  
         

 A fundamental result: 
 

        Sample moments are “good” estimators of 

        their population counterparts 
 

        We will examine this principle and apply it to least 
squares computation. 
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An Analogy Principle for Estimating  

    In the population      E[y | X ]  = X   so   
                                   E[y - X |X]  = 0 
    Continuing (assumed)      E[xi i]   = 0 for every i 
    Summing,                   Σi E[xi i]  = Σi 0 = 0 
    Exchange Σi and E[]    E[Σi xi i]  = E[ X ] = 0 
                                  E[X(y - X) ] = 0 
    So, if X is the conditional mean, then E[X’] = 0. 
    We choose b, the estimator of , to mimic this population 

result:  i.e., mimic the population mean with the sample 
mean 

  
    Find b such that    
      
    As we will see, the solution is the least squares coefficient 

vector. 

( )
n n
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 X e 0 X y - Xb
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Population Moments 

   We assumed that E[i|xi]  = 0. (Slide 2:40)  

It follows that   Cov[xi,i] = 0.   

Proof:               Cov(xi,i) = Cov(xi,E[i |xi]) = Cov(xi,0) = 0. 

   (Theorem B.2).  If E[yi|xi] = xi’, then  

                  = (Var[xi])
-1 Cov[xi,yi]. 

    Proof:  Cov[xi,yi] = Cov[xi,E[yi|xi]]=Cov[xi,xi’] 

   This will provide a population analog to the statistics we 

compute with the data.  
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U.S. Gasoline Market, 1960-1995 
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Least Squares 

 Example will be, Gi regressed on  

                             xi =  [1, PGi , Yi] 

 

 Fitting criterion:  Fitted equation will be  

                   yi  =  b1xi1 + b2xi2 + ... + bKxiK. 

 

 Criterion is based on residuals:   

      ei  =  yi  -  b1xi1 + b2xi2 + ... + bKxiK  

  Make ei as small as possible.   

     Form a criterion and minimize it. 
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Fitting Criteria 

 Sum of residuals: 
 

 Sum of squares:  
 

 Sum of absolute values of residuals: 
 

 Absolute value of sum of residuals 
 

 We focus on          now and             later     
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Least Squares Algebra 

2 2

1 1
e (y )

n n

i i ii i 
   - x b   =  e e = (y - Xb)'(y - Xb)

Matrix and vector derivatives.

    Derivative of a scalar with respect to a vector

    Derivative of a column vector wrt a row vector

    Other derivatives
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Least Squares Normal Equations 
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Least Squares Normal Equations 

     2

1 1 K 1 (-2)(n K n 1

(-2)(K n n 1 K 1

Note: Derivative of (1 1) wrt K 1 vector is a K 1 vector.


 


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  
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(y - Xb)'(y - Xb)
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                                    =  )( ) = 

Solution:  2 X'(y - Xb) =  0  X'y = X'Xb
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Least Squares Solution 
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Second Order Conditions 
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Side Result: Sample Moments 
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Does b Minimize e’e? 
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A Positive Definite Matrix 

Matrix  is positive definite if  is > 0 for every .

    Generally hard to check.  Requires a look at

    characteristic roots (later in the course).

    For some matrices, it is easy to verify.  

C a'Ca a

X'

K 2

kk=1
 = v 0

-1

 is

    one of these.

  =  ( )( ) = ( ) ( ) = 

Could  = ?   means .  Is this possible? No.

Conclusion:  = ( )  does indeed minimize .

X

a'X'Xa a'X' Xa Xa ' Xa v'v

v 0 v =0 Xa = 0

b X'X X'y e'e
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Algebraic Results - 1 

1

 =  means for each column of ,  = 0

(1) Each column of  is orthogonal to .

(2) One of the columns of  is a column of ones.
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Residuals vs. Disturbances 
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Algebraic Results - 2 

 A “residual maker”  M  =  (I - X(X’X)-1X’) 

 e = y - Xb= y - X(X’X)-1X’y = My  

 My = The residuals that result when y is regressed on X 

 MX = 0  (This result is fundamental!) 

      How do we interpret this result in terms of residuals? 

      When a column of X is regressed on all of X, we get a 
  perfect fit and zero residuals. 

 (Therefore)  My  =  MXb + Me = Me  =  e  

     (You should be able to prove this. 

 y = Py + My, P = X(X’X)-1X’ = (I - M).   

           PM = MP = 0. 

 Py is the projection of y into the column space of X.   
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The M Matrix 

 M = I- X(X’X)-1X’ is an nxn matrix 

 M is symmetric – M = M’ 

 M is idempotent – M*M = M 

    (just multiply it out) 

 M is singular; M-1 does not exist.  

   (We will prove this later as a side result 
in another derivation.) 
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Results when X Contains a Constant Term 

 X = [1,x2,…,xK] 

 The first column of X is a column of ones 

 Since X’e = 0, x1’e = 0 – the residuals sum to 
zero. 
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U.S. Gasoline Market, 1960-1995 
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Least Squares Algebra 



Part 3: Least Squares Algebra 3-25/29 

Least Squares 
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Residuals 
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Least Squares Residuals (autocorrelated) 
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Least Squares Algebra-3 

M is n  n potentially huge 

I X XX X M
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Least Squares Algebra-4 

MX = 


