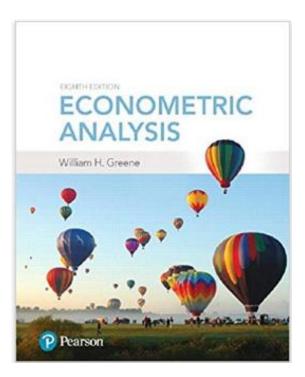
Econometrics I

Professor William Greene Stern School of Business Department of Economics



Econometrics I

Part 4 – Partial Regression and Partial Correlation

Frisch-Waugh (1933) 'Theorem'

Context: Model contains two sets of variables:

X = [(1,time): (other variables)]

$$= [\mathbf{X}_1 \ \mathbf{X}_2]$$

Regression model:

$$\mathbf{y} = \mathbf{X}_1 \boldsymbol{\beta}_1 + \mathbf{X}_2 \boldsymbol{\beta}_2 + \boldsymbol{\varepsilon}$$
 (population)

= $X_1 b_1 + X_2 b_2 + e$ (sample)

Problem: Algebraic expression for the second set of least squares coefficients, \mathbf{b}_2

Partitioned Solution

Method of solution (Why did F&W care? In 1933, matrix computation was not trivial!)

Direct manipulation of normal equations produces

$$(\mathbf{X}'\mathbf{X})\mathbf{b} = \mathbf{X}'\mathbf{y}$$

$$\mathbf{X} = [\mathbf{X}_{1}, \mathbf{X}_{2}] \text{ so } \mathbf{X}'\mathbf{X} = \begin{bmatrix} \mathbf{X}_{1}'\mathbf{X}_{1} & \mathbf{X}_{1}'\mathbf{X}_{2} \\ \mathbf{X}_{2}'\mathbf{X}_{1} & \mathbf{X}_{2}'\mathbf{X}_{2} \end{bmatrix} \text{ and } \mathbf{X}'\mathbf{y} = \begin{bmatrix} \mathbf{X}_{1}'\mathbf{y} \\ \mathbf{X}_{2}'\mathbf{y} \end{bmatrix}$$

$$(\mathbf{X}'\mathbf{X})\mathbf{b} = \begin{bmatrix} \mathbf{X}_{1}'\mathbf{X}_{1} & \mathbf{X}_{1}'\mathbf{X}_{2} \\ \mathbf{X}_{2}'\mathbf{X}_{1} & \mathbf{X}_{2}'\mathbf{X}_{2} \end{bmatrix} \begin{pmatrix} \mathbf{b}_{1} \\ \mathbf{b}_{2} \end{pmatrix} = \begin{bmatrix} \mathbf{X}_{1}'\mathbf{y} \\ \mathbf{X}_{2}'\mathbf{y} \end{bmatrix}$$

$$\mathbf{X}_{1}'\mathbf{X}_{1}\mathbf{b}_{1} + \mathbf{X}_{1}'\mathbf{X}_{2}\mathbf{b}_{2} = \mathbf{X}_{1}'\mathbf{y}$$

$$\mathbf{X}_{2}'\mathbf{X}_{1}\mathbf{b}_{1} + \mathbf{X}_{2}'\mathbf{X}_{2}\mathbf{b}_{2} = \mathbf{X}_{2}'\mathbf{y} = \mathbf{X}_{2}'\mathbf{X}_{2}\mathbf{b}_{2} = \mathbf{X}_{2}'\mathbf{y} - \mathbf{X}_{2}'\mathbf{X}_{1}\mathbf{b}_{1}$$

$$= \mathbf{X}_{2}'(\mathbf{y} - \mathbf{X}_{1}\mathbf{b}_{1})$$

****//

Partitioned Solution

Direct manipulation of normal equations produces

 $\mathbf{b}_2 = (\mathbf{X}_2'\mathbf{X}_2)^{-1}\mathbf{X}_2'(\mathbf{y} - \mathbf{X}_1\mathbf{b}_1)$

What is this? Regression of $(\mathbf{y} - \mathbf{X}_1 \mathbf{b}_1)$ on \mathbf{X}_2

If we knew \mathbf{b}_1 , this is the solution for \mathbf{b}_2 .

Important result (perhaps not fundamental). Note the result if $\mathbf{X}_2'\mathbf{X}_1 = \mathbf{0}$.

Useful in theory: Probably

Likely in practice? Not at all.

Partitioned Inverse

Use of the partitioned inverse result produces a fundamental result: What is the southeast element in the inverse of the moment matrix?

$$\begin{bmatrix} X_{1}'X_{1} & X_{1}'X_{2} \\ X_{2}'X_{1} & X_{2}'X_{2} \end{bmatrix}^{-1}$$

Partitioned Inverse

The algebraic result is:

$$[]^{-1}_{(2,2)} = \{ [\mathbf{X}_{2}'\mathbf{X}_{2}] - \mathbf{X}_{2}'\mathbf{X}_{1}(\mathbf{X}_{1}'\mathbf{X}_{1})^{-1} \mathbf{X}_{1}'\mathbf{X}_{2} \}^{-1} \\ = [\mathbf{X}_{2}'(\mathbf{I} - \mathbf{X}_{1}(\mathbf{X}_{1}'\mathbf{X}_{1})^{-1}\mathbf{X}_{1}')\mathbf{X}_{2}]^{-1} \\ = [\mathbf{X}_{2}'\mathbf{M}_{1}\mathbf{X}_{2}]^{-1}$$

- Note the appearance of an "M" matrix. How do we interpret this result?
- Note the implication for the case in which X₁ is a single variable. (Theorem, p. 37)
- Note the implication for the case in which X₁ is the constant term. (p. 38)

Frisch-Waugh (1933) Basic Result Lovell (JASA, 1963) did the matrix algebra.

Continuing the algebraic manipulation:

 $\mathbf{b}_2 = [\mathbf{X}_2'\mathbf{M}_1\mathbf{X}_2]^{-1}[\mathbf{X}_2'\mathbf{M}_1\mathbf{y}].$

This is Frisch and Waugh's famous result - the "double residual regression."

How do we interpret this? A regression of residuals on residuals.

"We get the same result whether we (1) detrend the other variables by using the residuals from a regression of them on a constant and a time trend and use the detrended data in the regression or (2) just include a constant and a time trend in the regression and not detrend the data"

"Detrend the data" means compute the residuals from the regressions of the variables on a constant and a time trend.

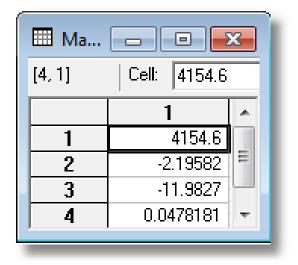
Important Implications

- Isolating a single coefficient in a regression. (Corollary 3.2.1, p. 37). The double residual regression.
- Regression of residuals on residuals `partialling' out the effect of the other variables.
- It is not necessary to 'partial' the other Xs out of y because M₁ is idempotent. (This is a very useful result.) (i.e., X₂'M₁'M₁y = X₂'M₁y)
- Orthogonal regression) Suppose X₁ and X₂ are orthogonal; X₁'X₂ = 0. What is M₁X₂?

Applying Frisch-Waugh

Using gasoline data from Notes 3.

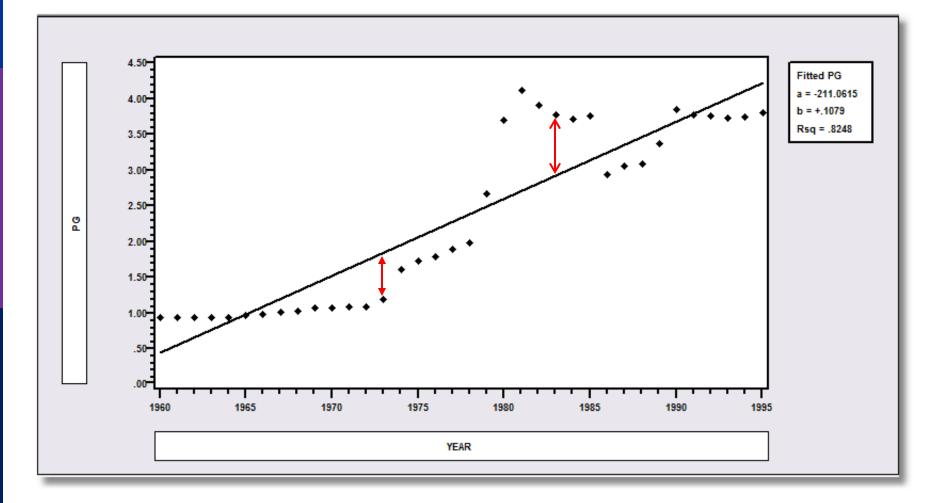
X = [1, year, PG, Y], y = G as before.Full least squares regression of y on X.



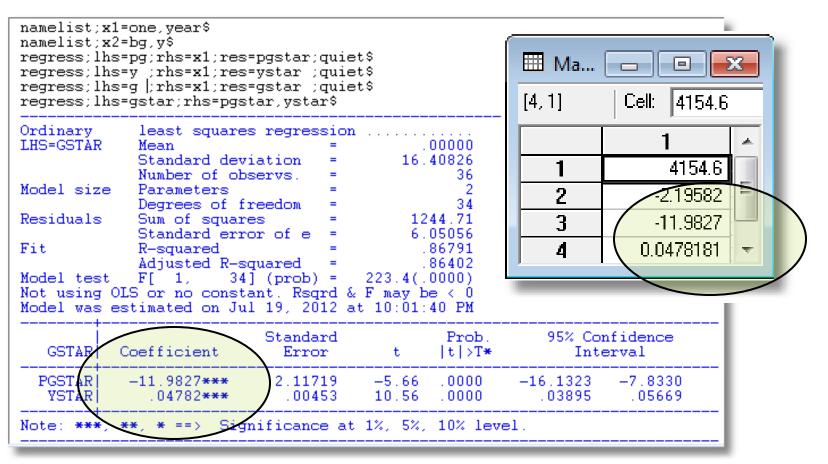
Partitioned regression strategy:

- 1. Regress PG and Y on (1,Year) (detrend them) and compute residuals PG* and Y*
- 2. Regress G on (1,Year) and compute residuals G*. (This step is not actually necessary.)
- 3. Regress G* on PG* and Y*. (Should produce -11.9827 and 0.0478181.

Detrending the Variables – Pg Pg* are the residuals from this regression



Regression of detrended G on detrended Pg and detrended Y



Partial Regression

Important terms in this context: **Partialing out** the effect of **X**₁. **Netting out** the effect ...

"Partial regression coefficients."

To continue belaboring the point: Note the interpretation of partial regression as "net of the effect of ..."

This is the (<u>very powerful</u>) Frisch – Waugh Theorem. This is what is meant by "controlling for the effect of X_1 ."

Now, follow this through for the case in which X_1 is just a constant term, column of ones. What are the residuals in a regression on a constant. What is M_1 ? Note that this produces the result that we can do linear regression on data in mean deviation form.

'Partial regression coefficients' are the same as 'multiple regression coefficients.' It follows from the Frisch-Waugh theorem.

4-13/25

Partial Correlation

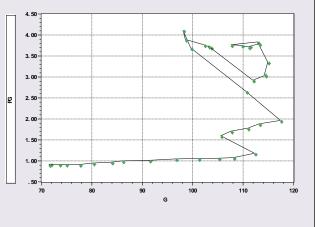
Working definition. Correlation between sets of residuals. Some results on computation: Based on the **M** matrices. Some important considerations:

Partial correlations and coefficients can have signs and magnitudes that differ greatly from gross correlations and simple regression coefficients.

Compare the simple (gross) correlation of G and PG with the partial correlation, net of the time effect. (Could you have predicted the negative partial correlation?)

CALC;list;Cor(g,pg)\$ Result = .7696572

CALC;list;cor(gstar,pgstar)\$ Result = -.6589938



Partial Correlation

🥝 gas2012.lim *	—
∱r Insert Name: ▼	
<pre>namelist;x1=one,year\$ regress;lhs=pg;rhs=x1;res=pgstar;quiet\$ regress;lhs=y ;rhs=x1;res=ystar ;quiet\$ regress;lhs=g ;rhs=x1;res=gstar ;quiet\$</pre>	- III
calc ; list ; cor(gstar,pgstar)\$	
-> calc ; list ; cor(gstar,pgstar)\$ [CALC] =6589938	
•	►

<u>THE</u> Most Famous Application of Frisch-Waugh: The Fixed Effects Model

A regression model with a dummy variable for each individual in the sample, each observed T_i times. There is a constant term for each individual.

 $\mathbf{y}_i = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{d}_i \boldsymbol{a}_i + \boldsymbol{\epsilon}_i$, for each individual N columns

$$\begin{pmatrix} \mathbf{y}_{1} \\ \mathbf{y}_{2} \\ \vdots \\ \mathbf{y}_{N} \end{pmatrix} = \begin{bmatrix} \mathbf{X}_{1} & \mathbf{d}_{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{X}_{2} & \mathbf{0} & \mathbf{d}_{2} & \mathbf{0} & \mathbf{0} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{X}_{N} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{d}_{N} \end{bmatrix} \begin{pmatrix} \mathbf{\beta} \\ \mathbf{a} \end{pmatrix} + \boldsymbol{\varepsilon}$$
$$= [\mathbf{X}_{r} \mathbf{D}] \begin{pmatrix} \mathbf{\beta} \\ \mathbf{a} \end{pmatrix} + \boldsymbol{\varepsilon}$$

 $= Z\delta + \varepsilon$

N may be thousands. I.e., the regression has thousands of variables (coefficients).

Application – Health and Income

German Health Care Usage Data, 7,293 Individuals, Varying Numbers of Periods

Variables in the file are

Data downloaded from *Journal of Applied Econometrics* Archive. This is an unbalanced panel with N = 7,293 individuals. There are altogether n = 27,326 observations. The number of observations ranges from 1 to 7 per family. (Frequencies are: 1=1525, 2=2158, 3=825, 4=926, 5=1051, 6=1000, 7=987). The dependent variable of interest is

- **DOCVIS** = number of visits to the doctor in the observation period
- **HHNINC** = household nominal monthly net income in German marks / 10000. (4 observations with income=0 were dropped)
- **HHKIDS** = children under age 16 in the household = 1; otherwise = 0
- **EDUC** = years of schooling
- **AGE** = age in years

We desire also to include a separate family effect (7293 of them) for each family. This requires 7293 dummy variables in addition to the four regressors.

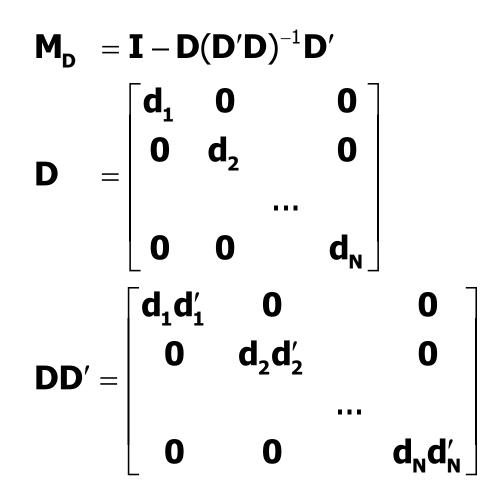
Estimating the Fixed Effects Model

The FE model is a linear regression model with *many* independent variables

$$\begin{pmatrix} \mathbf{b} \\ \mathbf{a} \end{pmatrix} = \begin{bmatrix} \mathbf{X'X} & \mathbf{X'D} \\ \mathbf{D'X} & \mathbf{D'D} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{X'y} \\ \mathbf{D'y} \end{bmatrix}$$

Using the Frisch-Waugh theorem
$$\mathbf{b} = [\mathbf{X'M}_{\mathbf{D}}\mathbf{X}]^{-1} [\mathbf{X'M}_{\mathbf{D}}\mathbf{y}]$$

Fixed Effects Estimator (cont.)



Fixed Effects Estimator (cont.)

$$\begin{split} \mathbf{M}_{D} &= \mathbf{I} - \mathbf{D} (\mathbf{D}' \mathbf{D})^{-1} \mathbf{D}' \\ \mathbf{M}_{D} &= \begin{bmatrix} \mathbf{M}_{D}^{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{M}_{D}^{2} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{M}_{D}^{N} \end{bmatrix} \text{ (The dummy variables are orthogonal)} \\ \mathbf{M}_{D}^{i} &= \mathbf{I}_{T_{i}} - \mathbf{d}_{i} (\mathbf{d}'_{i} \mathbf{d}_{i})^{-1} \mathbf{d}' = \mathbf{I}_{T_{i}} - (1/T_{i}) \mathbf{d}_{i} \mathbf{d}' \\ \mathbf{M}_{D}^{i} &= \mathbf{I}_{T_{i}} - \mathbf{d}_{i} (\mathbf{d}'_{i} \mathbf{d}_{i})^{-1} \mathbf{d}' = \mathbf{I}_{T_{i}} - (1/T_{i}) \mathbf{d}_{i} \mathbf{d}' \\ &= \begin{bmatrix} 1 - \frac{1}{T_{i}} & -\frac{1}{T_{i}} & \dots & -\frac{1}{T_{i}} \\ -\frac{1}{T_{i}} & 1 - \frac{1}{T_{i}} & \dots & -\frac{1}{T_{i}} \\ \dots & \dots & \dots & \dots \\ -\frac{1}{T_{i}} & -\frac{1}{T_{i}} & \dots & 1 - \frac{1}{T_{i}} \end{bmatrix} \end{split}$$

'Within' Transformations

$$\begin{split} \mathbf{M}_{\mathbf{D}}^{\mathbf{i}} \mathbf{X}_{i} &= \left(\mathbf{I}_{\mathbf{T}_{i}} - \mathbf{d}_{i} (\mathbf{d}_{i}^{\prime} \mathbf{d}_{i})^{-1} \mathbf{d}^{\prime} \right) \mathbf{X}_{i} = \left(\mathbf{I}_{\mathbf{T}_{i}} - (1/\mathsf{T}_{i}) \mathbf{d}_{i} \mathbf{d}^{\prime} \right) \mathbf{X}_{i} \\ &= \mathbf{X}_{i} - (1/\mathsf{T}_{i}) \mathbf{d}_{i} \left(\mathbf{d}^{\prime} \mathbf{X}_{i} \right) = \mathbf{X}_{i} - (1/\mathsf{T}_{i}) \mathbf{d}_{i} (\mathsf{T}_{i} \overline{\mathbf{x}}_{i}^{\prime}) = \mathbf{X}_{i} - \mathbf{d}_{i} \overline{\mathbf{x}}_{i}^{\prime} \\ &\qquad (\mathsf{T}_{i} \times \mathsf{K}) - (\mathsf{T}_{i} \times 1)^{*} (1 \times \mathsf{K}) \end{split}$$

$$\begin{split} \mathbf{X}'\mathbf{M}_{\mathbf{D}}\mathbf{X} &= \Sigma_{i=1}^{N} \mathbf{X}'_{i}\mathbf{M}_{\mathbf{D}}^{i}\mathbf{X}_{i}, \\ & \left\{\mathbf{X}'_{i}\mathbf{M}_{\mathbf{D}}^{i}\mathbf{X}_{i}\right\}_{k,l} = \Sigma_{t=1}^{T_{i}} (\mathbf{X}_{it,k} - \overline{\mathbf{X}}_{i.,k}) (\mathbf{X}_{it,l} - \overline{\mathbf{X}}_{i.,l}) \quad (k,l \text{ element}) \\ \mathbf{X}'\mathbf{M}_{\mathbf{D}}\mathbf{y} &= \Sigma_{i=1}^{N} \mathbf{X}'_{i}\mathbf{M}_{\mathbf{D}}^{i}\mathbf{y}_{i}, \\ & \left\{\mathbf{X}'_{i}\mathbf{M}_{\mathbf{D}}^{i}\mathbf{y}_{i}\right\}_{k} = \Sigma_{t=1}^{T_{i}} (\mathbf{X}_{it,k} - \overline{\mathbf{X}}_{i.,k}) (\mathbf{y}_{it} - \overline{\mathbf{y}}_{i.}) \end{split}$$

Part 4: Partial Regression and Correlation

4-21/25

Least Squares Dummy Variable Estimator

- b is obtained by 'within' groups least squares (group mean deviations)
- Normal equations for a are D'Xb+D'Da=D'y

$$a = (D'D)^{-1}D'(y - Xb)$$
 (see slide 5)

$$a_i = (1/T_i) \Sigma_{t=1}^{T_i} (y_{it} - \mathbf{x}'_{it} \mathbf{b}) = \overline{e}_i$$

A Fixed Effects Regression

Constant terms

Estd. Autocorrelation of e(i,t) =220319 Panel:Groups Empty 0, Valid data 7293 Smallest 1, Largest 7 Average group size in panel 3.75 Variances Effects a(i) Residuals e(i,t) 19.776379 21.679385 Rho squared: Residual variation due to ai .477048 Within groups variation in DOCVIS 435764.4262 R squared based on within group variation .003552	LSDV LHS=DOCVIS Regression Residual Total	S Mean Standard dev - No. of obser n Sum of Square	= iation = vations = es = es = or of e =	3. 5. 45 43 88 4.	18352 68969 27326 0364. 4216. 4581. 65611	Root MSE 3.98626
Smallest 1,Largest7Average group size in panel3.75VariancesEffects a(i)Residuals e(i,t)19.77637921.679385Rho squared: Residual variation due to ai.477048Within groups variation in DOCVIS435764.4262R squared based on within group variation.003552	Model test	t F[***, 20029] =	2.	84729	R-bar squared .33032 Prob F > F* .00000
	Variances Rho square Within gro	Smallest 1 Average grou Effects a(i) 19.77637 ed: Residual var oups variation i	, Larges p size in pa: Res 9 iation due to n DOCVIS	t nel iduals e 21.6 o ai .4 435764	7 3.75 (i,t) 79385 77048 .4262	
StandardProb.95% ConfidenceDOCVISCoefficientErrorz z >Z*Interval	DOCVIS	Coefficient				. 95% Confidence * Interval
HHNINC 94188*** .30603 -3.08 .0021 -1.54168 34207 HHKIDS 02274 .12225 19 .8525 26235 .21687 EDUC 10269 .11552 89 .3740 32909 .12372 AGE .09984*** .01206 8.28 .0000 .07620 .12347	HHKIDS EDUC	02274 10269	.12225 .11552	19 89	.8525 .3740	26235 .21687 32909 .12372

[7293, 1]	Cell: -3.2701	5
	1	•
1	-3.27015	
2	-2.33104	
3	-1.48175	
4	3.07553	
5	-0.560508	
6	3.22613	
7	-0.832392	
8	1.82994	
9	1.96091	
10	-0.832094	
11	-1.06964	
12	2.32093	
13	1.39914	
14	-1.76044	
15	0.22136	
16	-2.05827	
17	4.98343	
18	24.3749	
19	-0.355367	
20	0.161649	
21	-1.9608	
22	-1.9459	
23	-3.09324	
24	-3.04032	
25	-0.396102	
26	-1.0917	
27	-0.794878	
28	-2.72324	
29	2.00065	
30	-0.644711	
31	0.40696	
20	1 0001 /	K////// 🔺

What happens to a time invariant variable such as gender?

$$\begin{split} \mathbf{f} &= \text{a variable that is the same in every period (FEMALE)} \\ \mathbf{f'M_{D}f} &= \Sigma_{i=1}^{n} \mathbf{f}_{i}^{\mathbf{M}_{D}^{i}} \mathbf{f}_{i} = \Sigma_{i=1}^{n} \Sigma_{t=1}^{T_{i}} (\mathbf{f}_{it} - \overline{\mathbf{f}}_{i.})^{2} \\ \text{but } \mathbf{f}_{it} &= \mathbf{f}_{i}, \text{ so } \mathbf{f}_{it} = \overline{\mathbf{f}}_{i.} \text{ and } (\mathbf{f}_{it} - \overline{\mathbf{f}}_{i.}) = 0 \text{ for all } i \text{ and } t \\ \text{This is a simple case of multicollinearity.} \\ \mathbf{f} &= \text{diag}(\mathbf{f}_{i})^{*} \mathbf{D} \end{split}$$

Panel:Groups	Empty	0,	Valid data	7293
-	Smallest	1,	Largest	7
	Average	group s	ize in panel	3.75
Variances	Effects	a(i)	Residuals	e(i,t)
	23.	803375		.680476
Std.Devs.	4.	878870	4	.656230
			ion due to ai 👘	
Within groups	s variati	on in D	OCVIS .43	576D+06
			oup variation	
Between group	p variati	on in D	OCVIS .44	882D+06
*********	*******	******	************	******
	iables ha	ve no w	ithin group var	iation.
FEMALE				

They are not included in the fixed effects model.

DOCVIS	Coefficient	Standard Error z		Prob. z >Z *	95% Confidence Interval	
INCOME HHKIDS EDUC AGE FEMALE	02281 10216 .09982***	.30618 .12226 .11553 .01206 (Fixed	-3.08 19 88 8.28 Parameter	.0021 .8520 .3765 .0000	-1.54202 26243 32859 .07619	34183 .21681 .12427 .12345

***, **, * ==> Significance at 1%, 5%, 10% level. Fixed parameter ... is constrained to equal the value or had a nonpositive st.error because of an earlier problem.