Econometrics I

Professor William Greene Stern School of Business Department of Economics

Econometrics I

Part 5 – Regression Algebra and Fit; Restricted Least Squares

Minimizing e'e

b minimizes $\mathbf{e}'\mathbf{e} = (\mathbf{y} - \mathbf{X}\mathbf{b})'(\mathbf{y} - \mathbf{X}\mathbf{b}).$

Any other coefficient vector has a larger sum of squared residuals. Proof:

d = the vector, not equal to b; u = Xd u = y - Xd = y - Xb + Xb - Xd = e - X(d - b). Then, u'u = (y - Xd)'(y-Xd) = sum of squares using d = [(y - Xb) - X(d - b)]'[(y - Xb) - X(d - b)] = [e - X(d - b)]'[e - X(d - b)] Expand to find u'u = e'e + (d-b)'X'X(d-b) (The cross product term is 2e'X(d-b)=0 as X'e = 0.)

$$= \mathbf{e'}\mathbf{e} + \mathbf{v'}\mathbf{v} > \mathbf{e'}\mathbf{e}$$

Dropping a Variable

An important special case. Suppose

 $\mathbf{b}_{\mathbf{X},\mathbf{z}} = [\mathbf{b},\mathbf{C}]$

= the regression coefficients in a regression of y on [X,z]

- $b_{X} = [d,0]$
 - = is the same, but computed to force the coefficient on **z**
 - to equal 0. This removes z from the regression.
- We are comparing the results that we get with and without the variable **z** in the equation. Results which we can show:
- **Dropping a variable(s)** cannot improve the fit that is, it cannot reduce the sum of squared residuals.
- Adding a variable(s) cannot degrade the fit that is, it cannot increase the sum of squared residuals.

Adding a Variable Never Increases the Sum of Squares

Theorem 3.5 on text page 40. **u** = the residual in the regression of **y** on [**X**,**z**] **e** = the residual in the regression of **y** on **X** alone,

$$u'u = e'e - C^2(z^*'z^*) \le e'e$$

where $\mathbf{z}^* = \mathbf{M}_{\mathbf{X}}\mathbf{z}$ and c is the coefficient on \mathbf{z} in the regression of \mathbf{y} on $[\mathbf{X}, \mathbf{z}]$.

The Fit of the Regression

- Variation:" In the context of the "model" we speak of <u>covariation</u> of a variable as movement of the variable, usually associated with (not necessarily caused by) movement of another variable.
- Total variation =

$$\sum_{i=1}^{n} (\mathbf{y}_{i} - \overline{\mathbf{y}})^{2} = \mathbf{y'} \mathbf{M}^{\mathbf{0}} \mathbf{y}.$$

M⁰ = $I - i(i'i)^{-1}i'$

= the **M** matrix for

X = a column of ones.

Decomposing the Variation

$$y_{i} = \mathbf{x}_{i}'\mathbf{b} + \mathbf{e}_{i}$$

$$y_{i} - \overline{\mathbf{y}} = \mathbf{x}_{i}'\mathbf{b} - \overline{\mathbf{x}}'\mathbf{b} + \mathbf{e}_{i}$$

$$= (\mathbf{x}_{i} - \overline{\mathbf{x}})'\mathbf{b} + \mathbf{e}_{i}$$

$$\sum^{n} (\mathbf{y}_{i} - \overline{\mathbf{y}})^{2} = \sum^{n} [(\mathbf{x}_{i} - \overline{\mathbf{x}})'\mathbf{b}]^{2} + \sum^{n} \mathbf{e}_{i}^{2}$$

$$\sum_{i=1}^{11} (y_i - \overline{y})^2 = \sum_{i=1}^{11} [(x_i - \overline{x})'b]^2 + \sum_{i=1}^{11} e_i^2$$

(Sum of cross products is zero.)

Total variation = regression variation + residual variation

Recall the decomposition:

Var[y] = Var[E[y|x]] + E[Var[y|x]]

- = Variation of the conditional mean around the overall mean
 - + Variation around the conditional mean function.

Decomposing the Variation of Vector **y**

Decomposition: (This all assumes the model contains a constant term. one of the columns in **X** is **i**.)

y = **Xb** + **e** so

 $\mathbf{M}^{0}\mathbf{y} = \mathbf{M}^{0}\mathbf{X}\mathbf{b} + \mathbf{M}^{0}\mathbf{e} = \mathbf{M}^{0}\mathbf{X}\mathbf{b} + \mathbf{e}.$

(Deviations from means.)

 $y'M^0y = b'(X'M^0)(M^0X)b + e'e$

 $= b'X'M^0Xb + e'e.$

(M^{0} is idempotent and **e'** $M^{0}X = e'X = 0$.)

Total sum of squares = Regression Sum of Squares (SSR)+ Residual Sum of Squares (SSE)

A Fit Measure

$$R^{2} = \mathbf{b'X'M^{0}Xb/y'M^{0}y}$$

$$= 1 - \frac{\mathbf{e'e}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}} = \frac{\text{Regression Variation}}{\text{Total Variation}}$$

(Very Important Result.) R² is bounded by zero and one only if:
(a) There is a constant term in X and
(b) The line is computed by linear least squares.

Adding Variables

- \square R² never falls when a variable **z** is added to the regression.
- □ A useful general result for adding a variable
 - R_{Xz}^2 with both X and variable z equals
 - $R_{\mathbf{X}}^{2}$ with only **X** plus the increase in fit due to **z**

after **X** is accounted for:

$$R_{Xz}^2 = R_X^2 + (1 - R_X^2) r_{yz|X}^{*2}$$

Useful practical wisdom: It is not possible meaningfully to accumulate R² by adding variables in sequence. The incremental fit added by each variable depends on the order. The increase in R² that occurs from x₃ in (x₁ then x₂ then x₃) is different from that in (x₁ then x₃ then x₂).

Adding Variables to a Model What is the effect of adding PN, PD, PS?

Ordinary LHS=G Regression Residual Total Fit	least square Mean Standard dev No. of obset Sum of Squat Sum of Squat Sum of Squat Standard ert R-squared	es regression viation = rvations = res = res = res = ror of e = =	226.(50.9 883 124 899 6	 09444 59182 36 338.9 44.71 583.6 23677 98611	DegFreedom 3 32 35 Root MSE R-bar square	Mean square 29446.30141 38.89734 2559.53197 5.88009 d .98480
Fit with PN, Fit Model test Model was es Effects of a Variable Coe PN PD PS	PD, PS added R-squared F[3, 3: stimated on Ju dditional var efficient New -24.7246 -19.8131 -18.3479	1 to the regr = 2] = 11 21, 2012 a riables on the 7 R-sqrd Chg .9882 .9868 .9907	ession 757.0 t 08:40:3 e regress .R-sqrd .0021 .0006 .0046	99259 02619 19 AM sion be Parti	R-bar square Prob F > F* al-Rsq Par .1515 .0465 .3310	d .99106 .00000 tial F 5.534 1.511 15.340
G C	Coefficient	Standard Error	t	Prob. t >T*	95% Co • Int	nfidence erval
Constant YEAR PG Y	4154.60** -2.19582** -11.9827*** .04782***	1748.656 .90680 2.18235 .00467	2.38 -2.42 -5.49 10.25	.0237 .0213 .0000 .0000	727.29 -3.97311 -16.2600 .03867	7581.90 41853 -7.7053 .05696
Note: ***, *	**, * ==> Sig	gnificance at	1%, 5%,	10% le	vel.	

5-11/36

Part 5: Regression Algebra and Fit

A Useful Result

Squared partial correlation of an x in X with y is

squared t - ratio

squared t - ratio + degrees of freedom

We will define the 't-ratio' and 'degrees of freedom' later. Note how it enters:

$$R_{xz}^{2} = R_{x}^{2} + (1 - R_{x}^{2})r_{yz}^{*2} \Longrightarrow r_{yz}^{*2} = (R_{xz}^{2} - R_{x}^{2})/(1 - R_{x}^{2})$$

Partial Correlation

Partial correlation is a difference in R²s. For PS in the example above,

G	Coefficient	Standard Error	t	Prob. t >T ≭	95% Cc Int	nfidence erval
Constant	-8520.85**	3547.533	-2.40	.0225	-15473.89	-1567.81
YEAR	4.34824**	1.83288	2.37	.0241	.75586	7.94062
PG	-14.0226***	1.88682	-7.43	.0000	-17.7207	-10.3245
Y	.02429***	.00715	3.40	.0019	.01028	.03830
PS	-18.3478***	4.68454	-3.92	.0005	-27.5294	-9.1663

R² without PS = .9861, R² with PS = .9907 (.9907 - .9861) / (1 - .9861) = .331 3.92^2 / (3.92² + (36-5)) = .331

Comparing fits of regressions

Make sure the denominator in R² is the same - i.e., same left hand side variable. Example, linear vs. loglinear. Loglinear will almost always appear to fit better because taking logs reduces variation.

-> regr; l	hs=g;rhs=x\$					
Ordinary LHS=G Fit Model test	least squares Mean Standard dev: R-squared F[3, 32	s regression = iation = =] =	226 50 757	09444 59182 98611 02619	R-bar squared Prob F > F*	
G	Coefficient	Standard Error	t	Prob. t >T*	95% Con • Inte	fidence rval
Constant YEAR PG Y	4154.60** -2.19582** -11.9827*** .04782***	1748.656 .90680 2.18235 .00467	2.38 -2.42 -5.49 10.25	.0237 .0213 .0000 .0000	727.29 -3.97311 -16.2600 .03867	7581.90 41853 -7.7053 .05696
Note: ***,	**, * ==> Sig	nificance at	1%, 5%,	10% le	evel.	
-> reqr;l	hs=log(g);rhs=o	ne,year,log(p	og),log(y)\$		
Ordinary LHS=logG Fit Model test	least squares Mean Standard dev: R-squared F[3, 32	s regression = iation =] =	5. 845.	39299 24878 98754 23602	R-bar squared Prob F > F*	. 98637 . 00000
logG	Coefficient	Standard Error	t	Prob. t >T*	95% Con • Inte	fidence rval
Constant YEAR logPG logY	6.60154 00967 *** 11268 *** 1.97383 ***	4.18578 .00255 .02228 .11248	1.58 -3.78 -5.06 17.55	.1246 .0006 .0000 .0000	-1.60244 01467 15634 1.75337	14.80551 00466 06902 2.19428
Note: ***,	**, * ==> Sign	nificance at	1%, 5%,	10% le	evel.	

(Linearly) Transformed Data

- How does linear transformation affect the results of least squares? Z = XP for K×K nonsingular P
- **D** Based on **X**, $\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$.
- Based on Z, c = (Z'Z)⁻¹Z'y = (P'X'XP)⁻¹P'X'y = P⁻¹(X'X)⁻¹P'⁻¹P'X'y = P⁻¹b

"Fitted value" is **Zc** = (**XP)(P**⁻¹**b)** = **Xb**. The same!!

- Residuals from using Z are y Zc = y Xb (we just proved this.). The same!!
 - Sum of squared residuals must be identical, as y-Xb = e = y-Zc.
 - **R**² must also be identical, as $R^2 = 1 e'e/y'M^0y$ (!!).

Linear Transformation

What are the practical implications of this result?

- (1) Transformation *does not* affect the fit of a model to a body of data.
- (2) Transformation *does* affect the "estimates." If **b** is an estimate of something (β), then **c** cannot be an estimate of β it must be an estimate of **P**⁻¹ β , which might have no meaning at all.

Xb is the projection of **y** into the column space of **X**. **Zc** is the projection of **y** into the column space of **Z**. But, since the columns of **Z** are just linear combinations of those of **X**, the column space of **Z** must be identical to that of **X**. Therefore, the projection of **y** into the former must be the same as the latter, which now produces the other results.)

Principal Components

\Box Z = XC

- Fewer columns than X
- Includes as much 'variation' of X as possible
- Columns of Z are orthogonal
- Why do we do this?
 - Collinearity
 - Combine variables of ambiguous identity such as test scores as measures of 'ability'

What is a Principal Component?

X = a data matrix (deviations from means)
 z = Xp = a linear combination of the columns of X.
 Choose p to maximize the variation of z.

How? **p** = *eigenvector* that corresponds to the largest *eigenvalue* of **X'X**. (Notes 7:41-44.)

Events Awards

Members More

Marketing Daily

Movies' Online Buzz Indicative Of Box Office Success

by Aaron Baar, February 19, 2015, 3:47 PM

As much as anything else, a big film's online buzz has a direct correlation to how successful that film will be on its opening weekend.

Comment

Q

According to a new study from two NYU Stern School of Business professors and a

business co-author, the amount of chatter a film is getting three weeks prior to its release on film-specific websites (such as Fandango and TrailerAddict), is a decent indicator of the film's opening weekend grosses. Conversely, the study found that star power and MPAA rating had less to do with the opening weekend revenues.

★ Recommend (1)

18

SHARES

 \sim

f

-

Q+

in

+					+	
Movie Regre	ssion. Openi:	ng Week Bo	x for	r 62 Films	I	
Ordinary	least squar	es regress	ion		I	
LHS=LOGBOX	Mean		=	16.47993	I	
I	Standard d	eviation	=	.9429722	I	
I	Number of	observs.	=	62	I	
Residuals	Sum of squ	ares	=	20.54972	I	
I	Standard e	rror of e	=	.6475971		
Fit	R-squared		=	.6211405 🔹	\leftarrow	
1	Adjusted R	-squared	=	.5283586	Ĩ	
+					+	
+	+			+	++	+
Variable Co	efficient	Standard	Erro	r t-ratio	P[T >t]	Mean of X
+	+			+	++	+
Constant	12.5388***	. 987	66	12.695	.0000	I
LOGBUDGT	.23193	.183	46	1.264	.2122	3.71468
STARPOWR	.00175	.013	03	.135	.8935	18.0316
SEQUEL	.43480	.296	68	1.466	.1492	.14516
MPRATING	26265*	.141	79	-1.852	.0700	2.96774
ACTION	83091***	. 292	97	-2.836	.0066	.22581
COMEDY	03344	.236	26	142	.8880	. 32258
ANIMATED	82655**	. 384	07	-2.152	.0363	.09677
HORROR	.33094	. 363	18	. 911	.3666	.09677
4 INTERNET B	UZZ VARIABLE	S				
LOGADCT	.29451**	.131	46	2.240	.0296	8.16947
LOGCMSON	.05950	.126	33	.471	. 6397	3.60648
LOGFNDGO	.02322	.114	60	.203	.8403	5.95764
CNTWAIT3	2.59489***	. 909	81	2.852	.0063	.48242
<u> </u>						

The fit goes down when the 4 buzz variables are reduced to a single linear combination of the 4.

+					+				
Ordinary le	ast squares	regression	L		·	$\int p_{11}$	0	0	0
LHS=LOGBOX	Mean		=	16.47993	Ι	p_{21}	0	0	0
I	Standard d	eviation	=	.9429722	I P	$= \begin{bmatrix} 1 & 21 \\ n \end{bmatrix}$	Δ	Δ	Δ
I	Number of	observs.	=	62	I	P_{31}	0	0	U
Residuals	Sum of squ	ares	=	25.36721	I	$\lfloor p_{41}$	0	0	0
I	Standard e	rror of e	=	.6984489					
Fit	R-squared		=	.5323241					
I	Adjusted R	-squared	=	.4513802	I				
+					+				
+	+			+	+	+			+
Variable Co	efficient	Standard	Erro	r t-ratio	P[T >t]	Mean	ı of	EX	I
+	+			+	+	+			+
Constant	11.9602***	.918	18	13.026	.0000				I
LOGBUDGT	.38159**	.187	11	2.039	.0465	3.	714	168	1
STARPOWR	.01303	.013	15	. 991	3263	18	8.03	316	I
SEQUEL	.33147	.284	92	1.163	.2500	•	145	516	1
MPRATING	21185	.139	75	-1.516	5.1356	2.	967	774	1
ACTION	81404**	.307	60	-2.646	.0107		225	581	1
COMEDY	.04048	.253	67	.160	.8738		322	258	I
ANIMATED	80183*	.407	76	-1.966	.0546		096	677	I
HORROR	.47454	.386	29	1.228	.2248	•	096	577	l
PCBUZZ	. 39704***	.085	75	4.630	.0000	9.	193	362	
<u> </u>									+

Home / Experience Stern / Faculty & Research

RESEARCH HIGHLIGHTS

New Research Shows Online Movie Buzz is a Good Predictor of Box Office Success

— February 19, 2015

Professors C. Samuel Craig and William Greene of NYU Stern, and Anthony Versaci of AIG, encourage studio execs to monitor "e-buzz" prior to a film's release to inform marketing efforts.

	Ν	Aodel
	Ι	II
Variable	Coefficient (Standard Error)	Coefficient (Standard Error
Constant	14.06ª	12.86ª
	(.940)	(.899)
Log of Film Budget	.70ª	.26
	(.204)	(.178)
Star Power	.007	.001
	(.015)	(.013)
Sequel	.65°	.25
-	(.326)	(.265)
MPAA Rating	13	18
C	(.163)	(.129)
Genre		
Action	30	90 ^b
	(.337)	(.286)
Comedy	.003	016
-	(.298)	(.236)
Animation	74	74
	(.479)	(.379)
Horror	1.03°	.41
	(.432)	(.359)
Internet Buzz		.23°
(Awareness)		(.097)
Internet Buzz (Intention)		2.74 ^b
		(.881)
R ²	.34	.61
Adjusted R ²	.24	.53
F (8, 53)	3.4 ^b	
F(10,51)		7.8ª

Table 2 Predicting First Weekend Box Office

Part 5: Regression Algebra and Fit

5-23/36

Adjusted R Squared

- Adjusted R² (adjusted for degrees of freedom) $\overline{R}^2 = 1 - \left(\frac{n-1}{n-K}\right) \left(1 - \overline{R}^2\right)$
- Degrees of freedom" adjustment.

 \overrightarrow{R}^2 includes a penalty for variables that don't add much fit. Can fall when a variable is added to the equation.

Table 2 Predicting First Weekend Box Office (Log of Total Box Office)

Model

Refine by: Books | Opinion | Research Highlights | Research in the News | Blogs | Archive

Home / Experience Stern / Faculty & Research

RESEARCH HIGHLIGHTS

New Research Shows Online Movie Buzz is a Good Predictor of Box Office Success

— February 19, 2015

Professors C. Samuel Craig and William Greene of NYU Stern, and Anthony Versaci of AIG, encourage studio execs to monitor "e-buzz" prior to a film's release to inform marketing efforts.

$$.24 = 1 - \left(\frac{62 - 1}{62 - 9}\right)(1 - .34)$$

Part 5: Regression Algebra and Fit

5-25/36

Adjusted R²

What is being adjusted?

The penalty for using up degrees of freedom.

$$= 1 - [(n-1)/(n-K)(1 - R^2)]$$

Will \overline{R}^2 rise when a variable is added to the regression? \overline{R}^2 is higher with *z* than without *z* if and only if the t ratio on *z* is in the regression when it is added is larger than one in absolute value. (See p. 46 in text.)

Full Regression (Without PD)

Ordinary	least squares	regress	ion			
LHS=G	Mean		=	226.09444	L	
	Standard devia	tion	=	50.59182	2	
	Number of obse	rvs.	=	36	5	
Model size	Parameters		=	g)	
	Degrees of fre	edom	=	27	,	
Residuals	Sum of squares		=	596.68995	5	
	Standard error	of e	=	4.70102	2	
Fit	R-squared		=	. 99334	<******	***
	Adjusted R-squ	ared	=	.99137	/ <******	***
Info criter.	LogAmemiya Prd	. Crt.	=	3.31870) <*****	***
	Akaike Info. C	riter.	=	3.30788	\$ <*****	***
Model test	F[8, 27]	(prob)	= 503	3.3(.0000)		
Variable Coe	efficient St	andard	Error	t-ratio	P[T >t]	Mean of X
Constant	-8220.38**	3629.3	 09	-2.265	.0317	
PG	-26.8313***	5.764	03	-4.655	.0001	2.31661
Y	.02214***	.007	11	3.116	.0043	9232.86
PNC	36.2027	21.545	63	1.680	.1044	1.67078
PUC	-6.23235	5.010	98	-1.244	.2243	2.34364
PPT	9.35681	8.945	49	1.046	.3048	2.74486
PN	53.5879*	30.613	84	1.750	.0914	2.08511
PS	-65.4897***	23.588	19	-2.776	.0099	2.36898
YEAR	4.18510**	1.872	83	2.235	.0339	1977.50

Part 5: Regression Algebra and Fit

PD added to the model. R² rises, Adjusted R² falls

Ord	dinary	least squar	es regression					
LHS	S=G	Mean	=	226.09444				
		Standard de	viation =	50.59182				
		Number of c	bservs. =	36				
Мос	del sizo	e Parameters	=	10				
		Degrees of	freedom =	26				
Res	siduals	Sum of squa	ires =	594.54206				
		Standard er	ror of e =	4.78195				
Fit	t	R-squared	=	. 99336	Was 0.9	9334		
		Adjusted R-	squared =	.99107	Was 0.9	9137		
	+							
Vai	riable	Coefficient	Standard Error	t-ratio H	?[T >t]	Mean of X		
Cor	nstant	-7916.51**	3822.602	-2.071	.0484			
	PG	-26.8077***	5.86376	-4.572	.0001	2.31661		
	Y	.02231***	.00725	3.077	.0049	9232.86		
	PNC	30.0618	29.69543	1.012	.3207	1.67078		
	PUC	-7.44699	6.45668	-1.153	.2592	2.34364		
	PPT	9.05542	9.15246	. 989	.3316	2.74486		
	PD	11.8023	38.50913	.306	.7617	1.65056	(NOTE LOW t ratio)	
	PN	47.3306	37.23680	1.271	.2150	2.08511		
	PS	-60.6202**	28.77798	-2.106	.0450	2.36898		
	YEAR	4.02861*	1.97231	2.043	.0514	1977.50		
	+							

Part 5: Regression Algebra and Fit

Linear Least Squares Subject to Restrictions

Restrictions: Theory imposes certain restrictions on parameters.

Some common applications

- Dropping variables from the equation = certain coefficients in b forced to equal 0. (Probably the most common testing situation. "Is a certain variable significant?")
- Adding up conditions: Sums of certain coefficients must equal fixed values. Adding up conditions in demand systems. Constant returns to scale in production functions.
- Equality restrictions: Certain coefficients must equal other coefficients. Using real vs. nominal variables in equations.

General formulation for linear restrictions:

Minimize the sum of squares, e'e, subject to the linear constraint Rb = q.

Restricted Least Squares

In practice, restrictions can usually be imposed by solving them out.

- 1. Force a coefficient to equal zero. Drop the variable from the equation Problem: Minimize for $\beta_1, \beta_2, \beta_3 \sum_{i=1}^{n} (y_i - \beta_1 x_{i1} - \beta_2 x_{i2} - \beta_3 x_{i3})^2$ subject to $\beta_3 = 0$ Solution: Minimize for $\beta_1, \beta_2 \sum_{i=1}^{n} (y_i - \beta_1 x_{i1} - \beta_2 x_{i2})^2$
- 2. Adding up restriction. Impose $\beta_1 + \beta_2 + \beta_3 = 1$. Strategy: $\beta_3 = 1 \beta_1 \beta_2$. Solution: Minimize for $\beta_1, \beta_2 \sum_{i=1}^{n} (y_i - \beta_1 x_{i1} - \beta_2 x_{i2} - (1 - \beta_1 - \beta_2) x_{i3})^2$ $= \sum_{i=1}^{n} [(y_i - x_{i3}) - \beta_1 (x_{i1} - x_{i3}) - \beta_2 (x_{i2} - x_{i3})]^2$
- 3. Equality restriction. Impose $\beta_3 = \beta_2$

Minimize for $\beta_1, \beta_2, \beta_3 \sum_{i=1}^{n} (y_i - \beta_1 x_{i1} - \beta_2 x_{i2} - \beta_3 x_{i3})^2$ subject to $\beta_3 = \beta_2$ Solution: Minimize for $\beta_1, \beta_2 \sum_{i=1}^{n} [y_i - \beta_1 x_{i1} - \beta_2 (x_{i2} + x_{i3})]^2$ In each case, least squares using transformations of the data.

5-30/36

Restricted Least Squares Solution

 General Approach: Programming Problem Minimize for β L = (y - Xβ)'(y - Xβ) subject to Rβ = q Each row of R is the K coefficients in a restriction. There are J restrictions: J rows

$$\begin{array}{c} \Box \ \beta_3 = 0: \\ \Box \ \beta_2 = \beta_3: \\ \Box \ \beta_2 = 0, \ \beta_3 = 0: \\ R = \begin{bmatrix} 0, 0, 1, 0, \dots \end{bmatrix} \\ \mathbf{q} = (0). \ J = 1 \\ \mathbf{q} = (0). \ J = 1 \\ \mathbf{q} = \begin{bmatrix} 0, 1, -1, 0, \dots \end{bmatrix} \\ \mathbf{q} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\ J = 2 \\ 0, 0, 1, 0, \dots \end{bmatrix}$$

Solution Strategy

- Quadratic program: Minimize quadratic criterion subject to linear restrictions
- All restrictions are binding
- Solve using Lagrangean formulation
- Minimize over (β,λ)
 L* = (y Xβ)'(y Xβ) + 2λ'(Rβ-q)
 (The 2 is for convenience see below.)

Restricted LS Solution

Necessary Conditions

$$\frac{\partial \mathbf{L}^*}{\partial \boldsymbol{\beta}} = -2\mathbf{X}'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) + 2\mathbf{R}'\boldsymbol{\lambda} = \mathbf{0}$$
$$\frac{\partial \mathbf{L}^*}{\partial \boldsymbol{\lambda}} = 2(\mathbf{R}\boldsymbol{\beta} - \mathbf{q}) = \mathbf{0}$$

Divide everything by 2. Collect in a matrix form

 $\begin{bmatrix} \mathbf{X'X} & \mathbf{R'} \\ \mathbf{R} & \mathbf{0} \end{bmatrix} \begin{pmatrix} \boldsymbol{\beta} \\ \boldsymbol{\lambda} \end{pmatrix} = \begin{pmatrix} \mathbf{X'y} \\ \mathbf{q} \end{pmatrix} \text{ or } \mathbf{A}\boldsymbol{\theta} = \mathbf{w}. \text{ Solution } \hat{\boldsymbol{\theta}} = \mathbf{A}^{-1}\mathbf{w}$

Does not rely on full rank of **X**.

Relies on column rank of $\mathbf{A} = \mathbf{K} + \mathbf{J}$.

Restricted Least Squares

If **X** has full rank, there is a partitioned solution for β^* and λ^* $\beta^* = \mathbf{b} - (\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}'[\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}'](\mathbf{R}\mathbf{b}-\mathbf{q})$ $\lambda^* = [\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}'](\mathbf{R}\mathbf{b}-\mathbf{q})$ where \mathbf{b} = the simple least squares coefficients, $\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$. Note $\beta^* = \mathbf{b}$ and $\lambda^* = \mathbf{0}$ if $\mathbf{R}\mathbf{b} - \mathbf{q} = \mathbf{0}$.

Aspects of Restricted LS

1. $b^* = b - Cm$ where

 \mathbf{m} = the "discrepancy vector" $\mathbf{Rb} - \mathbf{q}$. Note what happens if $\mathbf{m} = \mathbf{0}$. What does $\mathbf{m} = \mathbf{0}$ mean?

- **2.** $\lambda = [\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{-1}(\mathbf{Rb} \mathbf{q}) = [\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{-1}\mathbf{m}.$ When does $\lambda = 0$. What does this mean?
- **3.** Combining results: $\mathbf{b}^* = \mathbf{b} (\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}'\lambda$. How could $\mathbf{b}^* = \mathbf{b}$?

Restrictions and the Criterion Function Assume full rank X case. (The usual case.) $\mathbf{b} = (\mathbf{X'X})^{-1}\mathbf{X'y}$ uniquely minimizes $(\mathbf{y}-\mathbf{X}\boldsymbol{\beta})'(\mathbf{y}-\mathbf{X}\boldsymbol{\beta}) = \boldsymbol{\epsilon'\epsilon}$. $(\mathbf{y}-\mathbf{Xb})'(\mathbf{y}-\mathbf{Xb}) < (\mathbf{y}-\mathbf{Xb}^*)'(\mathbf{y}-\mathbf{Xb}^*)$ for any $\mathbf{b}^* \neq \mathbf{b}$. Imposing restrictions cannot improve the criterion value. It follows that $\mathbf{R}^{2*} < \mathbf{R}^2$. Restrictions must degrade the fit.