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Minimizing ee 

   b minimizes ee = (y - Xb)(y - Xb). 

   Any other coefficient vector has a larger sum of squared residuals.   

   Proof:  

         d = the vector, not equal to b;  u = Xd 

        u = y – Xd = y – Xb + Xb – Xd  
            = e - X(d - b).   

   Then, uu = (y - Xd)(y-Xd) = sum of squares using d  

                  = [(y – Xb) - X(d - b)][(y – Xb) - X(d - b)] 

                  = [e  - X(d - b)][e  - X(d - b)] 

Expand to find uu  = ee + (d-b)XX(d-b)   

               (The cross product term is 2eX(d-b)=0  as X’e = 0.)  

                            = e’e + v’v  >  ee  
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Dropping a Variable 

An important special case.  Suppose  

       bX,z = [b,c]  

             = the regression coefficients in a regression of y on [X,z] 

       bX   = [d,0] 

             = is the same, but computed to force the coefficient on z 
          to equal 0.  This removes z from the regression.  

We are comparing the results that we get with and without the variable z in the 
equation.   Results which we can show: 

 

  Dropping a variable(s) cannot improve the fit - that is, it cannot reduce the 
sum of squared residuals. 

 

  Adding a variable(s) cannot degrade the fit - that is, it cannot increase the 
sum of squared residuals. 
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Adding a Variable Never Increases  

the Sum of Squares 

Theorem 3.5 on text page 40.   

u = the residual in the regression of y on [X,z]  

e = the residual in the regression of y on X alone, 
 

         uu = ee – c2(z*z*)    ee  

 

         where z* = MXz and c is the coefficient on 

     z in the regression of y on [X,z]. 
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The Fit of the Regression 

 “Variation:” In the context of the “model” we 

speak of covariation of a variable as movement 

of the variable, usually associated with (not 

necessarily caused by) movement of another 

variable. 

 Total variation =                 = yM0y. 

 M0 = I – i(i’i)-1i’  

     = the M matrix for  

 X = a column of ones. 
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Decomposing the Variation 
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(Sum of cross products is zero.)

Total variation = regression variation + residual variation
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             Recall the decomposition: 
    Var[y]  =  Var [E[y|x]]  +  E[Var [ y | x ]] 
                =  Variation of the conditional mean around the overall mean 
                    +  Variation around the conditional mean function.  
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Decomposing the Variation of Vector y 

Decomposition: (This all assumes the model contains a constant term. 

one of the columns in X is i.)  

      y = Xb + e   so  

      M0y = M0Xb + M0e = M0Xb + e.   

      (Deviations from means.)  

      yM0y = b(X’ M0)(M0X)b + ee  

               = bXM0Xb + ee.   

      (M0 is idempotent and e’ M0X = e’X = 0.) 

Total sum of squares = Regression Sum of Squares (SSR)+ 

                                      Residual Sum of Squares      (SSE) 
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A Fit Measure 

 

R2 = bXM0Xb/yM0y  

     

 

 
(Very Important Result.)  R2 is bounded by zero and one only if: 

(a) There is a constant term in X and  

(b) The line is computed by linear least squares.  
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Adding Variables 

 R2 never falls when a variable z is added to the regression.  

 A useful general result for adding a variable  

 

 

 

 

 
 Useful practical wisdom: It is not possible meaningfully to 

accumulate R2 by adding variables in sequence.  The incremental fit 

added by each variable depends on the order. The increase in R2 

that occurs from x3 in (x1 then x2 then x3) is different from that in  

(x1 then x3 then x2). 

2
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Adding Variables to a Model 
What is the effect of adding PN, PD, PS?  
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A Useful Result 

Squared partial correlation of an x in X with y  is 

 

 

 

We will define the 't-ratio' and 'degrees of freedom' 

later.  Note how it enters: 

  

squared  t - ratio

squared  t - ratio  +  degrees of freedom

   2 2 2 *2 2* 2 2 2

Xz X X yz yz Xz X XR R (1 R )r r R R / 1 R      
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Partial Correlation 

   Partial correlation is a difference in R2s.  

    For PS in the example above,  

  

 

 

   R2 without PS = .9861, R2 with PS = .9907 

   (.9907 - .9861) / (1 - .9861)  =  .331 

   3.922 / (3.922 + (36-5))          = .331 
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Comparing fits of regressions 

Make sure the denominator in R2 is the same - i.e., 

same left hand side variable.  Example, linear 

vs. loglinear. Loglinear will almost always 

appear to fit better because taking logs reduces 

variation.  
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(Linearly) Transformed Data 

 How does linear transformation affect the results of least 
squares?   Z  =  XP  for KK nonsingular P 

 Based on X, b = (XX)-1X’y. 

 Based on Z, c = (ZZ)-1Z’y = (P’XXP)-1P’X’y  

                                                 = P-1(X’X)-1P’-1P’X’y = P-1b 
 “Fitted value” is Zc  =  (XP)(P-1b) = Xb.  The same!! 

 Residuals from using Z are y - Zc = y - Xb (we just 
proved this.).  The same!! 
 Sum of squared residuals must be identical, as y-Xb  = e = y-Zc. 

 R2 must also be identical, as R2  =  1  -  ee/y’M0y (!!). 
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Linear Transformation 

       What are the practical implications of this result? 

(1)  Transformation does not affect the fit of a model to a body of 

data. 

(2)  Transformation does affect the “estimates.”  If b is an estimate 

of something (), then c cannot be an estimate of  - it must be 

an estimate of P-1, which might have no meaning at all.  

 

 Xb is the projection of y into the column space of X.  Zc is the 

projection of y into the column space of Z.  But, since the 

columns of Z are just linear combinations of those of X, the 

column space of Z must be identical to that of X.  Therefore, 

the projection of y into the former must be the same as the 

latter, which now produces the other results.) 
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Principal Components 

 Z = XC   

 Fewer columns than X 

 Includes as much ‘variation’ of X as possible 

 Columns of Z are orthogonal 

 Why do we do this? 

 Collinearity 

 Combine variables of ambiguous identity such as test scores as 

measures of ‘ability’ 
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What is a Principal Component? 

 X = a data matrix (deviations from means) 

 z  = Xp = a linear combination of the columns of X. 

 Choose p to maximize the variation of z. 

 

    How?  p = eigenvector that corresponds to the 

largest eigenvalue of X’X. (Notes 7:41-44.) 
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+----------------------------------------------------+ 

| Movie Regression. Opening Week Box for 62 Films    | 

| Ordinary    least squares regression               | 

| LHS=LOGBOX   Mean                 =   16.47993     | 

|              Standard deviation   =   .9429722     | 

|              Number of observs.   =         62     | 

| Residuals    Sum of squares       =   20.54972     | 

|              Standard error of e  =   .6475971     | 

| Fit          R-squared            =   .6211405     | 

|              Adjusted R-squared   =   .5283586     | 

+----------------------------------------------------+ 

+--------+--------------+----------------+--------+--------+----------+ 

|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 

+--------+--------------+----------------+--------+--------+----------+ 

|Constant|    12.5388***       .98766       12.695   .0000            | 

|LOGBUDGT|     .23193          .18346        1.264   .2122     3.71468| 

|STARPOWR|     .00175          .01303         .135   .8935     18.0316| 

|SEQUEL  |     .43480          .29668        1.466   .1492      .14516| 

|MPRATING|    -.26265*         .14179       -1.852   .0700     2.96774| 

|ACTION  |    -.83091***       .29297       -2.836   .0066      .22581| 

|COMEDY  |    -.03344          .23626        -.142   .8880      .32258| 

|ANIMATED|    -.82655**        .38407       -2.152   .0363      .09677| 

|HORROR  |     .33094          .36318         .911   .3666      .09677| 

|4 INTERNET BUZZ VARIABLES 

|LOGADCT |     .29451**        .13146        2.240   .0296     8.16947| 

|LOGCMSON|     .05950          .12633         .471   .6397     3.60648| 

|LOGFNDGO|     .02322          .11460         .203   .8403     5.95764| 

|CNTWAIT3|    2.59489***       .90981        2.852   .0063      .48242| 

+--------+------------------------------------------------------------+ 
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+----------------------------------------------------+ 

| Ordinary least squares regression                  | 

| LHS=LOGBOX   Mean                 =   16.47993     | 

|              Standard deviation   =   .9429722     | 

|              Number of observs.   =         62     | 

| Residuals    Sum of squares       =   25.36721     | 

|              Standard error of e  =   .6984489     | 

| Fit          R-squared            =   .5323241     | 

|              Adjusted R-squared   =   .4513802     | 

+----------------------------------------------------+ 

+--------+--------------+----------------+--------+--------+----------+ 

|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 

+--------+--------------+----------------+--------+--------+----------+ 

|Constant|    11.9602***       .91818       13.026   .0000            | 

|LOGBUDGT|     .38159**        .18711        2.039   .0465     3.71468| 

|STARPOWR|     .01303          .01315         .991   .3263     18.0316| 

|SEQUEL  |     .33147          .28492        1.163   .2500      .14516| 

|MPRATING|    -.21185          .13975       -1.516   .1356     2.96774| 

|ACTION  |    -.81404**        .30760       -2.646   .0107      .22581| 

|COMEDY  |     .04048          .25367         .160   .8738      .32258| 

|ANIMATED|    -.80183*         .40776       -1.966   .0546      .09677| 

|HORROR  |     .47454          .38629        1.228   .2248      .09677| 

|PCBUZZ  |     .39704***       .08575        4.630   .0000     9.19362| 

+--------+------------------------------------------------------------+ 

The fit goes down when the 4 buzz variables are reduced to a single linear 

combination of the 4. 
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Adjusted R Squared 

 Adjusted R2 (adjusted for degrees of freedom)   

 

 

 Degrees of freedom” adjustment. 

  

       includes a penalty for variables that don’t add much 

fit.  Can fall when a variable is added to the equation.  
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62 1
.24 1 (1 .34)
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Adjusted R2 

What is being adjusted? 

The penalty for using up degrees of freedom. 
 

         =  1  -  [ee/(n – K)]/[yM0y/(n-1)] 
 

         =  1 – [(n-1)/(n-K)(1 – R2)] 

Will        rise when a variable is added to the regression?   

             is higher with z than without z if and only if the t 

ratio on z is in the regression when it is added is larger 

than one in absolute value.   (See p. 46 in text.) 

2R

2R
2R
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Full Regression (Without PD) 
---------------------------------------------------------------------- 

Ordinary     least squares regression ............ 

LHS=G        Mean                 =      226.09444 

             Standard deviation   =       50.59182 

             Number of observs.   =             36 

Model size   Parameters           =              9 

             Degrees of freedom   =             27 

Residuals    Sum of squares       =      596.68995 

             Standard error of e  =        4.70102 

Fit          R-squared            =         .99334  <********** 

             Adjusted R-squared   =         .99137  <********** 

Info criter. LogAmemiya Prd. Crt. =        3.31870  <********** 

             Akaike Info. Criter. =        3.30788  <********** 

Model test   F[  8,    27] (prob) =   503.3(.0000) 

--------+------------------------------------------------------------- 

Variable| Coefficient    Standard Error  t-ratio  P[|T|>t]   Mean of X 

--------+------------------------------------------------------------- 

Constant|   -8220.38**      3629.309       -2.265   .0317 

      PG|   -26.8313***      5.76403       -4.655   .0001      2.31661 

       Y|     .02214***       .00711        3.116   .0043      9232.86 

     PNC|    36.2027        21.54563        1.680   .1044      1.67078 

     PUC|   -6.23235         5.01098       -1.244   .2243      2.34364 

     PPT|    9.35681         8.94549        1.046   .3048      2.74486 

      PN|    53.5879*       30.61384        1.750   .0914      2.08511 

      PS|   -65.4897***     23.58819       -2.776   .0099      2.36898 

    YEAR|    4.18510**       1.87283        2.235   .0339      1977.50 

--------+------------------------------------------------------------- 
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PD added to the model. R2 rises, Adjusted R2 falls 

---------------------------------------------------------------------- 

Ordinary     least squares regression ............ 

LHS=G        Mean                 =      226.09444 

             Standard deviation   =       50.59182 

             Number of observs.   =             36 

Model size   Parameters           =             10 

             Degrees of freedom   =             26 

Residuals    Sum of squares       =      594.54206 

             Standard error of e  =        4.78195 

Fit          R-squared            =         .99336  Was 0.99334 

             Adjusted R-squared   =         .99107  Was 0.99137 

--------+------------------------------------------------------------- 

Variable| Coefficient    Standard Error  t-ratio  P[|T|>t]   Mean of X 

--------+------------------------------------------------------------- 

Constant|   -7916.51**      3822.602       -2.071   .0484 

      PG|   -26.8077***      5.86376       -4.572   .0001      2.31661 

       Y|     .02231***       .00725        3.077   .0049      9232.86 

     PNC|    30.0618        29.69543        1.012   .3207      1.67078 

     PUC|   -7.44699         6.45668       -1.153   .2592      2.34364 

     PPT|    9.05542         9.15246         .989   .3316      2.74486 

      PD|    11.8023        38.50913         .306   .7617      1.65056 (NOTE LOW t ratio) 

      PN|    47.3306        37.23680        1.271   .2150      2.08511 

      PS|   -60.6202**      28.77798       -2.106   .0450      2.36898 

    YEAR|    4.02861*        1.97231        2.043   .0514      1977.50 

--------+------------------------------------------------------------- 
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Linear Least Squares Subject to Restrictions  

Restrictions: Theory imposes certain restrictions on parameters.  

Some  common applications 

   Dropping  variables from the equation = certain coefficients in b 
forced to equal 0.  (Probably the most common testing situation.  “Is 
a certain variable significant?”) 

   Adding up conditions:  Sums of certain coefficients must equal fixed 
values.  Adding up conditions in demand systems.  Constant returns 
to scale in production functions. 

    Equality restrictions:  Certain coefficients must equal other 
coefficients.  Using real vs. nominal variables in equations. 

General formulation for linear restrictions:   

      Minimize the sum of squares, ee, subject to the linear constraint 
 Rb = q.  



Part 5: Regression Algebra and Fit 5-30/36 

Restricted Least Squares 

1 2 3 i 1 i1 2 i2 3 i

Force a coefficient to equal

In practice, restrictions can usually be imposed by solving them out.

1.   Drop the variable from the equation

     Problem:  Minimize for , ,  (y x
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     Solution:  Minimize for , [y x (x x )]  

In each case, least squares using transformations of the data.
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Restricted Least Squares Solution 

 General Approach: Programming Problem 

Minimize for    L = (y - X)(y - X)  

subject to     R = q 

Each row of R is the K coefficients in a restriction. 

There are J restrictions:  J rows 

 3 = 0:             R = [0,0,1,0,…]  q = (0).  J=1 

 2 = 3:            R = [0,1,-1,0,…] q = (0).  J=1 

 2 = 0, 3 = 0:  R = 0,1,0,0,… q =  0     J=2 

                               0,0,1,0,…        0 
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Solution Strategy 

 Quadratic program: Minimize quadratic criterion 

subject to linear restrictions 

 All restrictions are binding 

 Solve using Lagrangean formulation 

 Minimize over (,)  

          L* = (y - X)(y - X) + 2(R-q) 

(The 2 is for convenience – see below.) 
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Restricted LS Solution 

1
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Restricted Least Squares 

1 1

1

1

If  has full rank, there is a partitioned solution for * and *
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Aspects of Restricted LS 

1.  b*  =  b - Cm where  

     m = the “discrepancy vector” Rb - q.   

     Note what happens if m = 0.   

     What does m = 0 mean? 

2.  =[R(XX)-1R]-1(Rb - q) = [R(XX)-1R]-1m.   

     When does  = 0. What does this mean? 

3. Combining results: b*  =  b - (XX)-1R.   

    How could b* = b? 
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1

Restrictions and the Criterion Function

Assume full rank  case. (The usual case.)

 = ( )   uniquely minimizes ( - ) (y- ) = .

( - ) ( - )  <  ( - *) ( - b*) for any *  .

Imposing restri
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X

b X X X y y X X

y Xb y Xb y Xb y X b b

  

2 2

ctions cannot improve the criterion value.

It follows that R * < R .  Restrictions must degrade the fit.


